
MNRAS 000, 1–18 (2024) Preprint 29 February 2024 Compiled using MNRAS LATEX style file v3.0

Variety of disk wind-driven explosions in massive rotating stars

Ludovica Crosato Menegazzi,1 Sho Fujibayashi,1 Koh Takahashi,2,1 Ayako Ishii3,1
1Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, Potsdam 14476, Germany
2National Astronomical Observatory of Japan, National Institutes for Natural Science, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
3Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-Machi, Yamagata, Yamagata 990-8560, Japan

Accepted 2024 February 16. Received 2024 January 26; in original form 2023 November 13

ABSTRACT
We perform a set of two-dimensional, non-relativistic, hydrodynamics simulations for supernova-like explosion associated with
stellar core collapse of rotating massive stars to a system of a black hole and a disk connected by the transfer of matter and
angular momentum. Our model of the central engine also includes the contribution of the disk wind. This study is carried out
using the open-source hydrodynamic code Athena++, for which we implement a method to calculate self-gravity for axially
symmetric density distributions. We investigate the explosion properties and the 56Ni production of a star with the zero-age
main-sequence mass of 𝑀ZAMS = 20 𝑀⊙ varying some features of the wind injection. We find a large variety of explosion
energy with 𝐸expl ranging from ∼ 0.049 × 1051 erg to ∼ 34 × 1051 erg and ejecta mass 𝑀ej from 0.58 to 6 𝑀⊙ , which shows a
bimodal distribution in high- and low-energy branches. We demonstrate that the resulting outcome of a highly- or sub-energetic
explosion for a certain stellar structure is mainly determined by the competition between the ram pressure of the injected matter
and that of the infalling envelope. In the nucleosynthesis analysis the 56Ni mass produced in our models goes from < 0.2 𝑀⊙ in
the sub-energetic explosions to 2.1 𝑀⊙ in the highly-energetic ones. These results are consistent with the observational data of
stripped-envelope and high-energy SNe such as broad-lined type Ic SNe.
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1 INTRODUCTION

Gamma-ray bursts (GRBs) are extragalactic cosmological sources
of gamma-rays and among the most energetic events that we can
observe in the Universe. They are short (GRBs typically last from
few milliseconds up to a few minutes) and very intense flashes of
gamma-rays of variable intensity, with fluxes up to ∼ 100 photons
cm−2s−1 usually ranging from hundreds of keV up to∼1 MeV. GRBs
release gamma-rays reaching a total isotropic equivalent radiation
energy (i.e. the radiated energy if the GRB was equally bright in all
directions) of ∼ 1053 − 1054 erg. GRBs properties, such as the total
energy, spectra, and duration, can be useful source of information
about their progenitor (Mészáros 2006, Woosley & Bloom 2006).

Over the years evidence has showed that GRBs of the “long-soft”
variety (lGRBs) are likely to originate from the deaths of massive
stars (Woosley 1993, Woosley & Heger 2006, Woosley & Bloom
2006, Janiuk, Agnieszka et al. 2013) and many gamma ray bursts
have been now associated with bright supernovae (SNe) (Woosley &
Heger 2006).

The Photometric and spectroscopic observations suggest that
GRBs and their SNe progenitor have aspherical features. The sig-
nature of a conical geometry of the bursts manifests itself as a broad-
band break in the power-law decay of the GRB afterglow, known as
“jet break”. This break can be explained by relativistic beaming of
light emitted by a decelerated relativistic jet (Frail et al. 2001, Piran
2004) and it is predicted to be achromatic.

Several scenarios have been proposed to explain the GRBs and
associated SNe (Woosley (1993), Piran (2004), Woosley & Heger

(2006), Trigo-Rodríguez et al. (2017), Obergaulinger & Aloy (2022)).
One of the most promising scenarios is the collapsar scenario. The
collapse of the core of a massive star (≳ 8 𝑀⊙) at the end of its
hydrostatic evolution is the starting point for a complex sequence of
events with many possible outcomes. Specifically, progenitors with
an even higher mass (> 16 𝑀⊙), as shown by Woosley & Heger
(2006), are likely to undergo a failed supernova and form a black
hole (BH) with an accreting disk. It has been shown that in failed
supernova the disk wind generated by viscous dissipation inside the
accretion disk may naturally be a source of the SN energy (Woosley
(1993), MacFadyen & Woosley (1999), Popham et al. (1999)) with
an explosion energy 𝐸expl > 1052 erg and it has been found to be
rich in 56Ni (as shown by Hayakawa & Maeda (2018)). Also recent
numerical studies based on this scenario have confirmed that a large
amount of 56Ni (≥ 0.1 𝑀⊙) can be synthesized in the outflow from
the disk (e.g., Just et al. 2022 and Fujibayashi et al. 2023a). In
this scenario, the interaction between the new-born BH and the still
accreting stellar material is the engine for the relativistic jets.

Another promising scenario for the GRBs and associated Type
Ic-BL SNe is the so-called proto-magnetar scenario, in which highly
magnetized and fast-rotating proto-neutron star generates the rela-
tivistic outflow. In this scenario, rotation leads to global asymmetries
of the shock wave, which translates into the formation of highly colli-
mated, mildly relativistic bipolar outflow (known as MHD-driven su-
pernova) as shown by Obergaulinger & Aloy (2017), Obergaulinger
& Aloy (2020), Aloy & Obergaulinger (2021), Obergaulinger & Aloy
(2021). In their study Grimmett et al. (2021) investigate the produc-
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2 Crosato Menegazzi, L, et al.

tion of 56Ni by performing hydrodynamics simulations based on this
scenario. In their most energetic model (in which they measure an en-
ergy deposition rate > 1052 erg s−1), they find large masses of ejected
56Ni (> 0.05−0.45 𝑀⊙) which is in good agreement with the ranges
inferred from the light curves of SNe Ic-BL (0.12 − 0.8 𝑀⊙ with
median at 0.28 𝑀⊙ as measured by Taddia et al. 2019a). Therefore,
both GRB formation models, the proto-magnetar and the collapsar
scenario, seem to be equally plausible at the current moment.

The different properties of the ejecta such as mass, composition,
velocity, and geometry strongly depend on the explosion mechanism
of the SN. A key to investigate the ejecta properties, is to study its as-
phericity. Since the progenitor stars have to be rapidly rotating, when
they collapse in both previously mentioned scenarios, the resulting
ejecta may naturally have aspherical features, as seen in observations
of SN 1998bw. When the injection of the energy in the stellar enve-
lope is aspherical, the matter can keep infalling also after a successful
explosion. As the energy source of the ejecta may be the infalling
mass to the central engine, the feedback of the injected outflow on
the infall stellar envelope is an important effect in the scenario. In
the case of relativistic bipolar jets, the feedback effect have been
extensively studied (Papish & Soker 2013, Liu et al. 2019). However,
such an effect by sub-relativistic outflow has not yet been studied in
a systematic manner.

The motivation for this work is, therefore, to explore the prop-
erties of the ejecta based on the collapsar scenario, with a focus
on the late-phase mass ejection after BH formation. We perform a
set of two-dimensional hydrodynamics simulations of axisymmetric
models of the ejecta generated by the collapse of rotating massive
star. Based on the collapsar scenario, we assume that the explosion
is powered through a BH-accretion disk system. We vary several pa-
rameters controlling the properties of the mass and energy injection
to investigate their impact on the final ejecta.

The paper is structured as follows. We begin by explaining the
hydrodynamic code we utilize in this work (the hydrodynamic equa-
tions it solves, the model for the central engine, the equation of
state), the characteristics of the progenitor star we employ (taken
from Aguilera-Dena et al. 2020) and the setup for our simulations
(inner boundary conditions and the free parameters of our models),
in Section §2. In Section §3 we present the results of the simulations
focusing on the hydrodynamics of the explosion, the ejecta property
and the 56Ni production with a systematic variation of the initial pa-
rameters. Here we also compare our results with observational data
and a general relativistic neutrino-radiation viscous-hydrodynamics
simulation performed using the same progenitor from the literature.
We discuss the implications of our results also considering the ob-
servational counterpart. We summarize this work in Section §5. The
Appendixes provide the description of the multipole expansion of
the gravitational potential we implement in our code and an insight
to the model of the disk wind we used.

2 METHOD

We study the explosion of rotating massive stars (𝑀 ∼ 20 𝑀⊙) by
performing a set of 2D non-relativistic simulations using the open-
source multi-dimensional hydrodynamics code Athena++ (Stone
et al. 2020). The nucleosynthesis calculation is performed at pos-
teriori using the reaction network torch (Timmes et al. 2000) on
tracer particles.

2.1 The scenario

For this study, we consider the case of a failed core collapse supernova
CCSN, in which the neutrino-driven explosion in the proto-neutron
star (PNS) phase does not occur, leading the PNS to collapse into
a BH. In this collapsar scenario we model the explosion of a com-
pact progenitor star after the formation of a BH (but see Burrows
et al. (2019) for a different scenario). As a progenitor we employ the
model provided by Aguilera-Dena et al. (2020) of a rapidly rotating,
rotationally mixed star with a 20𝑀⊙ ZAMS mass. We then build a
semi-analytical model for the central engine by taking into account
the BH and disk evolution, which in this scenario are governed by the
transfer of matter and angular momentum. This method is based on
the prescriptions provided by Kumar et al. (2008) on which we add
the contribution of the disk following Hayakawa & Maeda (2018).

We chose this progenitor because this kind of stars, with masses
ranging from 4 to 45 𝑀⊙ were proposed to be progenitors of both
superluminous SNe and long gamma-ray bursts (Japelj et al. 2016,
Margalit et al. 2018, Aguilera-Dena et al. 2020). We specifically
employ the model with 𝑀ZAMS = 20 𝑀⊙ because it is supposed to
fail the explosion (Ertl et al. 2016 and Müller et al. 2016) as it has a
very compact core with a core compactness of 𝜉2.5 > 0.6. Here, the
core compactness is calculated by following O’Connor & Ott (2011):

𝜉𝑀/𝑀⊙ =
𝑀/𝑀⊙

𝑅(𝑀)/1000 km
, (1)

where 𝑅(𝑀) is the radius at which its enclosed mass is 𝑀 , and
it is measured at a mass coordinate of 2.5𝑀⊙ at the core collapse.
This quantity measures the gravitational binding energy near the
core of pre-SN stars and is considered as an indicator of whether the
collapse of a non-rotating stellar core leads to a successful explosion,
or ends up with the formation of a BH instead. Sukhbold & Woosley
(2014) found that, if 𝜉2.5 > 0.45 at the core collapse, the core
collapse is likely to fail the explosion and form a BH. Therefore this
𝑀ZAMS = 20 𝑀⊙ progenitor well suits our central engine model in
this sense.

2.2 Hydrodynamic equations

We perform two-dimensional non-relativistic hydrodynamic simula-
tions using an open-source code Athena++. In addition to the original
functions, we newly implement the gravitational potential Φ by solv-
ing the Poisson’s equation under the cylindrical symmetry. The set
of equations solved in this work is as follows:
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𝜕𝑡 𝜌 + 1
𝑟2 (𝑟

2𝜌𝑣𝑟 ) +
1

𝑟 sin 𝜃
𝜕𝜃 (sin 𝜃𝜌𝑣 𝜃 ) = 0 (2)

𝜕𝑡 (𝜌𝑣𝑟 ) +
1
𝑟2 𝜕𝑟 (𝑟

2𝜌𝑣2
𝑟 ) +

1
𝑟 sin 𝜃

𝜕𝜃 (sin 𝜃𝑣𝑟 𝑣 𝜃 )

− 𝜌
𝑣2
𝑟 + 𝑣2

𝜙

𝑟
+ 𝜕𝑟𝑃 = −𝜌𝜕𝑟Φ, (3)

𝜕𝑡 (𝜌𝑣 𝜃 ) +
1
𝑟2 𝜕𝑟 (𝑟

2𝜌𝑣𝑟 𝑣 𝜃 ) +
1

𝑟 sin 𝜃
𝜕𝜃 (sin 𝜃𝜌𝑣2

𝜃 )

+ 𝜌𝑣𝑟 𝑣 𝜃

𝑟
− cos 𝜃

sin 𝜃

𝜌𝑣2
𝜙

𝑟
+ 1
𝑟
𝜕𝜃𝑃 = − 𝜌

𝑟
𝜕𝜃Φ, (4)

𝜕𝑡 (𝜌𝑣𝜙) +
1
𝑟2 𝜕𝑟 (𝑟

2𝜌𝑣𝑟 𝑣𝜙) +
1

𝑟 sin 𝜃
𝜕𝜃 (sin 𝜃𝜌𝑣 𝜃 𝑣𝜙)

+
𝜌𝑣𝑟 𝑣𝜙

𝑟
+ cos 𝜃

sin 𝜃
𝜌𝑣𝑟 𝑣𝜙

𝑟
= 0, (5)

𝜕𝑡 𝑒t +
1
𝑟2 𝜕𝑟 [(𝑒t + 𝑃)𝑣𝑟 ] +

1
𝑟 sin 𝜃

𝜕𝜃 (sin 𝜃 (𝑒t + 𝑃)𝑣 𝜃 )

= −𝜌
(
𝑣𝑟𝜕𝑟Φ + 𝑣 𝜃

𝜕𝜃Φ

𝑟

)
, (6)

where 𝜌, 𝑣𝑖 (with 𝑖 = 𝑟, 𝜃 and 𝜙), 𝑃 and 𝑒t are the density, the
velocity components, the pressure and the total energy density of the
fluid respectively. 𝑒t = 𝑒kin + 𝑒int is the sum of the kinetic energy
density 𝑒kin = (1/2)𝜌𝑣2 and the internal energy density 𝑒int. Φ is
the gravitational potential which satisfies the Poisson’s equation:

ΔΦ = 4𝜋𝐺𝜌. (7)

where 𝐺 is the gravitational constant, 𝜌 is the density, and Δ is
the Laplacian. This system of equations shows the continuity equa-
tion (2), the Euler’s equation for the radial, latitudinal, and longi-
tudinal components of the momentum (respectively equation (3),
equation (4), and equation (5)), and the energy equation (6). We
compute these equations using a finite volume method on a spherical
grid.

2.3 The gravity solver

To evaluate the self-gravity in the spherical-polar coordinates, we
implemented a gravitational potential solver in our code. In the solver
we first use the method of Green’s function to obtain the integrated
form of the gravitational potential Φ(r) as:

Φ(r) = −4𝜋𝐺
∫

𝜌(r′)
4𝜋 |r − r′ | 𝑑r′, (8)

where r is a position vector. The potential Φ(r) also satisfies the
Poisson’s equation (equation (7)). To perform the integration, we use
a multipole expansion described in Hachisu (1986). We provide more
details on the implementation of this solver in Appendix A.

2.4 The computational setup

In this work we use an axisymmetric grid with spherical-polar co-
ordinate. Our domain extends from 0 to 𝜋 for the polar dimension,
and from 108 cm (𝑟in) to 3.3 × 1010 cm (𝑟out ) for the radial dimen-
sion. The inner radius determines the inner boundary inside which
the enclosed mass is 1.28 𝑀⊙ and it roughly corresponds to the
dimension of the iron core at core-collapse which we cut out from
the computational domain. The outer radius extends over the stellar
surface (𝑟star = 2.7×1010 cm). The initial mass in the computational
domain is 𝑀domain = 14.2 𝑀⊙ .

The computational domain is discretized by 128 grid points uni-
formly in the 𝜃-direction and 220 grid points with geometric spacing

in the 𝑟-direction, in which the mesh size increases with a constant
factor Δ𝑟𝑖 = 𝛼Δ𝑟𝑖−1. We chose the ratio as 𝛼 ≈ 1.03 to ensure that
all the meshes are approximately squared, i.e., Δ𝑟𝑖 ≈ 𝑟𝑖Δ𝜃. This
grid resolution was chosen after a convergence study described in
Appendix C1.

2.5 The central engine model

In our simulations, the computational domain does not contain the
central engine, which is considered as being embedded in the central
part of the star (at 𝑟 < 𝑟in). We evolve the masses of the disk and
the BH 𝑀disk and 𝑀BH and their angular momenta 𝐽disk and 𝐽BH as
follows:
𝑑𝑀disk
𝑑𝑡

= ¤𝑀fall,disk − ¤𝑀acc − ¤𝑀wind, (9)

𝑑𝑀BH
𝑑𝑡

= ¤𝑀fall,BH + ¤𝑀acc, (10)

𝑑𝐽disk
𝑑𝑡

= ¤𝐽fall,disk − ¤𝐽acc − ¤𝐽wind, (11)

𝑑𝐽BH
𝑑𝑡

= ¤𝐽fall,BH + ¤𝐽acc, (12)

where ¤𝑀fall,BH and ¤𝑀fall,disk are the rates of the mass accretion
that directly infalls onto the BH and onto the disk, respectively.
¤𝐽fall,BH and ¤𝐽fall,disk are the momentum accretions rates respectively
associated to the BH and the disk. We evaluate the fraction of the
infalling matter that directly falls into the BH by considering the
competition between the specific angular momentum of the infalling
matter and that of the innermost stable circular orbit (ISCO) 𝑗ISCO.
More precisely, if the specific angular momentum is smaller than
𝑗ISCO, the infalling mass accretes onto the BH, if instead it is larger
than 𝑗ISCO, it becomes a part of the disk. To determine 𝑗ISCO, we
follow the prescription of Bardeen et al. (1972). We first evaluate the
BH spin parameter 𝑎:

𝑎(𝑡) = 𝑐𝐽BH (𝑡)
𝐺𝑀2

BH (𝑡)
, (13)

we then compute the ISCO radius, 𝑟ISCO, in terms of 𝑎 following:

𝑟ISCO (𝑡) = 𝐺𝑀BH (𝑡)
𝑐2

(
3 + 𝑧2 −

√︁
(3 − 𝑧1) (3 + 𝑧1 + 2𝑧2)

)
, (14)

where 𝑧1 and 𝑧2 are given by:

𝑧1 (𝑡) = 1 + (1 − 𝑎2 (𝑡))1/2
(
(1 + 𝑎(𝑡))1/3 + (1 − 𝑎(𝑡))1/3

)
, (15)

𝑧2 (𝑡) = (3𝑎2 + 𝑧2
1)

1/2. (16)

We then define the specific angular momentum at the ISCO at the
first order as follow:

𝑗ISCO ≈
√︁
𝐺𝑀BH (𝑡)𝑟ISCO (𝑡). (17)

The different accretion rates are then estimated at the inner boundary
𝑟 = 𝑟in as:

¤𝑀fall,BH = 2𝜋𝑟2
in

∫ 1

−1
𝜌𝑣𝑟Θ( 𝑗ISCO − 𝑗)𝑑 cos 𝜃, (18)

¤𝑀fall,disk = 2𝜋𝑟2
in

∫ 1

−1
𝜌𝑣𝑟Θ( 𝑗 − 𝑗ISCO)𝑑 cos 𝜃, (19)

¤𝐽fall,BH = 2𝜋𝑟2
in

∫ 1

−1
𝜌 𝑗𝑣𝑟Θ( 𝑗ISCO − 𝑗)𝑑 cos 𝜃, (20)

¤𝐽fall,disk = 2𝜋𝑟2
in

∫ 1

−1
𝜌 𝑗𝑣𝑟Θ( 𝑗 − 𝑗ISCO)𝑑 cos 𝜃, (21)
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where 𝑗 (𝑟, 𝜃) is the specific angular momentum and Θ(𝑥) is the
Heaviside step function.

The mass and angular momentum transfer between the disk and
the BH, ¤𝑀acc and ¤𝐽acc, are estimated as:

¤𝑀acc =
𝑀disk
𝑡acc

, (22)

¤𝐽acc = 𝑗ISCO ¤𝑀acc, (23)

with 𝑡acc the accretion time scale which is a free parameter in our
models. Similarly, the contribution of the disk wind is evaluated as
follows:

¤𝑀wind =
𝑀disk
𝑡w

, (24)

¤𝐽wind = 𝑗disk ¤𝑀wind, (25)

where 𝑡w is the wind time scale and 𝑗disk = 𝐽disk/𝑀disk the specific
angular momentum of the disk.

Viscosity-driven mechanism is one of the possible mechanisms of
the disk outflow. In this scenario, the magnetorotational instability
results in the turbulent state in the disk, which acts as the effective vis-
cosity (Balbus & Hawley 1991; Balbus & Hawley 1998). The viscous
heating in the disk then drives the wind. There may be another origin
of the viscosity: in the surface region of the disk, there is a velocity
shear between disk matter and infalling envelope. This may induce
the Kelvin-Helmholtz instability, which enhances the magnetic fields
leading to the development of turbulence and dissipating the kinetic
energy of the infalling matter (Obergaulinger et al. 2010). The wind
time scale may be different for the different origin of viscosity. There
may also be other mechanisms for launching the wind from the disk.
For example, the magnetocentrifugal force by large scale magnetic
fields can also work to launch the outflow (Blandford & Payne 1982).
We, therefore, set 𝑡w as a free parameter not to specify the mechanism
for the wind and to investigate more general central engines.

2.6 Inner boundary condition

Until the accretion disk forms, we apply an outflow condition at
the inner boundary, thus allowing the material to inflow toward the
central engine for 𝑟 < 𝑟in. Once the disk is formed, i.e. 𝑀disk > 0,
the wind outflow is injected from the inner boundary with the rate of
equation (24) within an half opening angle 𝜃w.

In Fig.1 we present the geometry used in our simulations. The
outflow half opening angle at the inner boundary and its orientation
can be freely chosen in our code. For this work we set 𝜃w = 𝜋/4
and we direct it along the equatorial plane. Within the opening angle
of 2𝜃w, the wind density is set such that the following relation is
satisfied:

¤𝑀wind = 2𝜋𝑟2
in

∫ cos 𝜃∗2

cos 𝜃∗1
𝜌w𝑣w𝑑 (− cos 𝜃), (26)

where 𝜃∗1 and 𝜃∗2 are the angles of the edges of 2𝜃w, and 𝑣w is the
radial velocity of the wind.1 In this work we decided to describe the
outflow density 𝜌w using a parabolic density profile defined as:

𝜌w = 𝜌0 (𝜁 cos2 𝜃 + 1), (27)

1 In our method of wind injection, actual mass and energy fluxes at the
inner boundary are determined by the numerical fluxes with solving Riemann
problem. Therefore, the computed mass flux at the boundary can be smaller
than that expected in equation (26) if, for example, the infalling matter has a
larger ram pressure than that of the matter set in ghost cells.

Figure 1. Schematic picture of the explosion in the collapsar scenario. 2𝜃w
represents the angle for which we allow the wind outflow. Outside of this
angle, the matter is only allowed to infall towards the central engine. The
figure also shows the rotation axis and the equatorial plane.

with 𝜌0 being derived from the integration of equation (26). In
equation (27), we set the parameter 𝜁 = −1/cos2 (𝜋/2 − 𝜃w) so that
the density is zero at the edges of the opening angle (i.e. at 𝜃1 = 𝜋/4
and 𝜃2 = 3𝜋/4), and reaching maximum value 𝜌0 at 𝜃 = 𝜋/2, i.e.
along the equatorial direction. We define the energy of the disk wind
at the inner boundary having as a fraction of the energy related to the
disk escape velocity 𝑣esc:

1
2
𝑣2

w + 𝑓therm
1
2
𝑣2

w +Φ = 𝜉2 1
2
𝑣2

esc, (28)

where 𝑣esc is:

𝑣esc =

√︄
2𝐺𝑀BH
𝑟disk

, (29)

with the disk radius 𝑟disk defined as:

𝑟disk = 𝑗2disk/𝐺𝑀BH. (30)

In equation (28) the internal energy of the wind is given by
𝑒int,w/𝜌w = (1/2) 𝑓therm𝑣2

w . 𝑓therm is a free parameter in our simu-
lations, measuring the fraction of the wind kinetic energy assumed
to be corresponding to its internal energy. 𝜉 is a fudge factor used to
represent the uncertainties coming from the lack of knowledge of the
precise disk structure (Hayakawa & Maeda 2018), and it is a free pa-
rameter in our simulations. The pressure of the outflow is computed
using the tabulated EOS with the density 𝜌w and the internal energy
𝑒int,w as input parameters. equation (28) indicates that the asymptotic
velocity of the injected matter, the velocity of the matter at infinite
distance in the case the total specific energy (1/2)𝑣2 + 𝑒int/𝜌 +Φ is
conserved, is 𝜉𝑣esc.

A part of the injected matter could fall back to the central engine,
affecting the disk mass. This is the case when the ram pressure of the
matter at the inner boundary is larger than that of the injected matter.

MNRAS 000, 1–18 (2024)
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To avoid the recycling of the injected matter, in our study we set the
angular momentum in the ghost cells to zero. In this way we do not
allow the injected matter to fall back to the disk, but only to the BH.

For 𝜃 < 𝜃∗1 or 𝜃 > 𝜃∗2, the boundary condition is set to prevent the
matter from inflowing from the central engine to the computational
domain. To achieve that we set zero fluxes (reflecting boundary con-
dition) if the radial velocity in a first active cell is positive, while we
allow the mass infall to the central engine if it is negative.

2.7 The equation of state

The thermodynamical properties of the star are described by a tab-
ulated equation of state (EOS) that includes the ion, the radiation,
the electrons, and 𝑒−– 𝑒+ pair. In this work we use an oxygen-based
EOS, i.e an EOS using oxygen as the only component of the ion (i.e.
𝑌𝑒 = 0.5), resulting in a 16O mass fraction of 1. This decision is made
considering the composition of our progenitor model dominated by
oxygen outside the iron core (see Aguilera-Dena et al. 2020).

2.8 Diagnostics

In the following subsection, we describe the method used to calculate
the properties of the ejecta and injected matter.

In our simulations, we define the ejecta mass 𝑀ej as the sum
of unbound matter mass. The explosion energy 𝐸expl is the energy
carried by the unbound matter. Several criteria are used to define the
unbound matter in hydrodynamic simulations (citation here). For our
study we chose to use the Bernoulli criterion which takes into account
the thermal effect on the matter and the effects of the gravitational
potential, and is defined as follows:

𝐵 :=
𝑒int + 𝑒kin + 𝑃

𝜌
+Φ > 0. (31)

Using the Bernoulli criterion we track the evolution of the ejecta
mass2 and energy at every time step by integrating the equations:

𝑀ej = 𝑟2
out

∫ 𝑡

0

∫
𝐵>0,𝑣𝑟>0

𝜌𝑣𝑟 𝑑Ω𝑑𝑡 +
∫
𝐵>0,𝑣𝑟>0

𝜌𝑑3𝑥, (32)

𝐸expl = 𝑟2
out

∫ 𝑡

0

∫
𝐵>0,𝑣𝑟>0

𝜌𝐵𝑣𝑟 𝑑Ω𝑑𝑡 +
∫
𝐵>0,𝑣𝑟>0

(𝑒t + 𝜌Φ)𝑑3𝑥.

(33)

The injected mass 𝑀inj represents the matter coming from the
central engine with a positive mass flux at the inner boundary 𝑟in. It
is defined as:

𝑀inj = 𝑟2
in

∫ 𝑡

0

∫
𝐵>0,𝑣𝑟>0

𝜌𝑣𝑟 𝑑Ω𝑑𝑡. (34)

We consider the injected energy 𝐸inj as the energy carried by 𝑀inj
with positive binding energy.We, then, compute the injected energy
𝐸inj applying the Bernoulli criterion as follows:

𝐸inj = 𝑟2
in

∫ 𝑡

0

∫
𝐵>0,𝑣𝑟>0

𝜌𝐵𝑣𝑟 𝑑Ω𝑑𝑡. (35)

2 Using the Bernoulli criterion to compute the ejecta mass, we are actually
defining it as the unbound mass.

2.9 Parameters and initial condition

In this work, as mentioned above, we consider the scenario of a
failed CCSN and we assume that the mass of the innermost region
(1.28 𝑀⊙) of our progenitor corresponds to the initial mass of the
BH. In our model, the beginning of the disk formation is when the
condition to launch the wind from the inner boundary is met for the
first time. For our simulations, the density and velocity structure of
the wind are fixed as explained in Sec. 2.6. We then use four more
free parameters, which are the wind time scale 𝑡w, the ratio between
the accretion and wind time scales 𝑡acc/𝑡w, the ratio between the
radial velocity of the outflow and the escape velocity 𝜉 , and 𝑓therm
which measures the fraction of the wind kinetic energy assumed to
be corresponding to its internal energy (see equation (28)). In this
work, we fix the direction of the outflow, its opening angle, and the
density profile as we want to investigate the parameter space of the
other quantities. Specifically, we set the wind along the equatorial
plane using an half-opening angle 𝜃w of 𝜋/4, and the density profile
𝜌w described in equation (27).

Using this setup, we investigate the parameter space for 𝑡w, 𝑡acc/𝑡w,
𝜉 and 𝑓therm. We sample 𝑡w in a wide interval, (0.1, 1, 3.16, 10) s,
using also more extreme values like 0.1 or 10 s (usually 𝑡w is few
seconds as shown by Wang & Burrows 2023) to survey a parameter
space as large as possible and to analyse the condition to reach the
energies and the amount of 56Ni produced in high-energy SNe. 𝑡acc
is set through the ratio 𝑡acc/𝑡w and the value of 𝑡w. We vary 𝑡acc/𝑡w
in the interval (1,3.16,10, ∞). The accretion time scale controls the
accretion rate onto the BH from the disk, therefore it allows to track
the dynamics of the central engine (see also Kumar et al. 2008). If 𝑡acc
has small values so that it is shorter than the infalling time scale of
the envelope (which is given by ¤𝑀fall,disk/𝑀disk), then the accretion
rate onto the BH tracks the rate at which mass is falling onto the disk.
On the contrary, for longer 𝑡acc up to the extreme case of 𝑡acc = ∞
the mass infall onto the disk dominates. Varying 𝑡acc/𝑡w from 1 to ∞
allows us to investigate the effect of these two very different scenarios
on the explosion and on the 56Ni production. We assume the wind
time scale and accretion time scale to be constant throughout the
explosion in order to model the central engine as simple as possible.

In our simulations we use 𝜉2 = (0.1, 0.3) following the approach
of Hayakawa & Maeda (2018) who used 𝜉2 = 0.1 in their work. We
increase it because of our interest in the high energy explosions.

Finally, we set 𝑓therm as (0.1, 0.01) following the typical values of
the wind internal energy in the literature (as in Hayakawa & Maeda
2018). In our work, we, then, test several combinations of these
parameters.

2.10 Tracer particles and nucleosynthesis

To obtain thermodynamic histories of the ejecta, we use tracer par-
ticles following the method described in Fujibayashi et al. (2023b).
In this method, the evolution of tracer particles is followed backward
in time. Hence, they are placed every time interval Δ𝑡 from the end
of the simulation at radius 𝑟 = 𝑟out in the range of 0 ≤ 𝜃 ≤ 𝜋.
The mass of each particle is defined as Δ𝑚 = 𝜌𝑣𝑟𝑟ext2ΔΩΔ𝑡, where
ΔΩ is the solid angle element. The time interval Δ𝑡 is defined as
as Δ𝑡 := 𝑟outΔ𝜃/⟨𝑣𝑟 ⟩, where Δ𝜃 is the interval of the polar angle
and ⟨𝑣𝑟 ⟩ is the average radial velocity of the ejecta at 𝑟 = 𝑟out. This
formulation of Δ𝑡 ensures an optimal distribution of tracer particles
in time.

This method is also utilized to judge whether a given fluid element
is the injected matter from the inner boundary or the one that orig-
inates from the stellar envelope: A particle is tagged as an injected
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matter if it crosses the inner boundary during the back-tracing. On
the other hand, if a particle stays inside the computational domain
until the initial snapshot, it is an ejecta component originating from
the stellar envelope.

A disadvantage of using a post-process particle tracing method is
that the accuracy of the thermodynamics histories is limited by the
frequency of the output (see, e.g., Sieverding et al. 2023). For most
of the model, the time interval of the output is ∼ 70 ms. To check
the systematic error that stems from this limitation, we performed
a set of simulations using a higher time resolution of Δ𝑡 ∼ 10 ms
for selected models, and performed particle tracing using this time
interval. This convergence study is presented in Appendix C2.

For tracer particles originating from the stellar envelope, the full
thermodynamical history is available. To obtain the nucleosynthetic
yield based on the density and temperature evolution along such par-
ticles, we perform nucleosynthesis calculation with the open-source
code torch (Timmes et al. 2000) using 200 isotopes. The initial
composition of the calculation is set by the stellar composition at the
initial position of each tracer particle. Due to the lack of knowledge
about the thermodynamical history of the injected matter (coming
from the inner boundary), we perform nucleosynthesis calculation
only for the stellar envelope.

Since we carry out the nucleosynthesis calculation without evolv-
ing the stellar composition from that of the original star (hence assum-
ing always symmetric matter) and without taking into account neu-
trino interactions, the 56Ni mass evaluated might be slightly higher
than in reality. Yet, the nucleosynthesis calculation is performed only
for those particles which are inside the computational domain for the
whole simulation (i.e. at 𝑟 > 𝑟in = 108 cm) where the neutrino inter-
action is not significant and hence not expected to strongly affect the
56Ni production.

3 RESULTS

In this section, we will first describe the hydrodynamical evolution
of the supernova explosion using one of our simulations as the char-
acteristic model (subsection 3.1). Then, in the subsection 3.2, we
will compare the results of some observables between our different
models, using this to analyse the effect of 𝑡w, 𝑡acc/𝑡w, 𝜉 and 𝑓therm
on the explosion and 56Ni production.

3.1 Hydrodynamical evolution

To present the general outline of the evolution of our simulations, we
describe the model, M20_10_1_0.3_0.1, with parameters 𝑡w = 10 s,
𝑡acc/𝑡w = 1, 𝜉2 = 0.3 and 𝑓therm = 0.1 as example. In Fig. 2, we plot
the evolution of the total mass, BH mass, disk mass, mass enclosed
in our computational domain, and ejecta mass for this model. In
the first ∼ 10 seconds, the infalling matter accretes only onto the BH
because of the small angular momentum of infalling matter. The disk
formation starts after about 10 s, which is the condition to trigger the
wind injection in our simulation. A part of the disk mass accretes
to the BH (equation (22)) and the other part contributes to the wind
according to equation (24). The injection of the wind does not occur
for the first 10-20 s due to the small ram pressure of the injected
matter compared to that of the infalling matter. In this model it starts
at 𝑡 ≈ 20 s and it leads to the increase in the ejecta mass. The disk
mass peaks at about 1 𝑀⊙ , followed by a decrease because of the
rate of the mass accretion into the BH and injection as the wind mass
exceeds that of the supply to the disk from the stellar envelope. After
∼200 s, the mass components reach approximately constant values
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Figure 2. Masses evolution for the characteristic model , M20_10_1_0.3_0.1.
In cyan the total mass, in orange the mass enclosed in our computational
domain, in green the disk mass, in red the BH mass and in purple the ejecta
mass. 𝑀total is plotted to show the conservation of mass throughout the
simulation.
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Figure 3. Injected (solid line) and explosion energy (dashed line) evolution
for the characteristic model, M20_10_1_0.3_0.1.

and 𝑀BH becomes ∼ 11 𝑀⊙ . The ejecta mass reaches a temporal
maximum beyond 5 𝑀⊙ after ∼ 32 s and then converges to 4.6 𝑀⊙ .

In Fig. 3 we show the time evolution of the injected and explosion
energies of the characteristic model, M20_10_1_0.3_0.1. It shows a
wind injection beginning at ∼ 20 s and lasting ∼ 20 s. Within the first
40 seconds from the start of the simulation the wind has already been
almost injected, reaching an energy 𝐸inj of ∼ 19.33 × 1051 erg. In
this model, we see that towards the end of the wind injection period,
𝐸expl reaches a temporal maximum, before plateauing after the wind
injection is finished at 𝐸expl ∼ 12.30 × 1051 erg.

The dynamics of the explosion of M20_10_1_0.3_0.1 can be fol-
lowed in the left panel of Fig. 4 where we present the time evolution
of the mass outflow rate Φm averaged over the injection angle. The
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Table 1. Model description and key results. From left to right, the columns contain wind time scale, the ratio of the accretion and wind time scales, the squared
ratio of the asymptotic velocity of injected matter to escape velocity of the disk, the internal to kinetic energy ratio of injected matter, cumulative injected
energy, ejecta mass, explosion energy, average ejecta velocity, the mass of ejecta component that is originated from the computational domain and experienced
temperature higher than 5 GK, the mass of the 56Ni synthesized, the mass of ejecta component originated from the injected matter. The results are for an output
frequency of 70 ms.

model 𝑡w 𝑡acc/𝑡w 𝜉 2 𝑓therm 𝐸inj 𝑀ej 𝐸expl 𝑣ej 𝑀stellar
ej,>5GK 𝑀stellar

ej,Ni 𝑀
inj
ej

(s) (1051 erg) (𝑀⊙) (1051 erg) (103 km/s) (𝑀⊙) (𝑀⊙) (𝑀⊙)
M20_0.1_1_0.1_0.10 0.1 1 0.1 0.10 < 0.01 0.60 0.049 2.9 0.014 0.016 0.0077
M20_0.1_3.16_0.1_0.10 0.1 3.16 0.1 0.10 0.36 0.64 0.057 3.0 0.0070 0.0069 0.015
M20_0.1_10_0.1_0.10 0.1 10 0.1 0.10 0.80 0.77 0.057 2.7 0.016 0.028 0.015
M20_0.1_inf_0.1_0.10 0.1 ∞ 0.1 0.10 1.1 0.78 0.051 2.6 0.024 0.034 0.012
M20_1_1_0.1_0.10 1 1 0.1 0.10 0.12 0.63 0.073 3.4 0.0089 0.013 0.032
M20_1_3.16_0.1_0.10 1 3.16 0.1 0.10 3.3 0.65 0.24 2.8 0.040 0.048 0.013
M20_1_10_0.1_0.10 1 10 0.1 0.10 4.8 0.77 0.077 3.2 0.025 0.028 0.022
M20_1_inf_0.1_0.10 1 ∞ 0.1 0.10 4.3 1.3 0.24 4.3 0.0054 0.0083 0.028
M20_3.16_1_0.1_0.10 3.16 1 0.1 0.10 1.1 0.64 0.049 2.8 0.0088 0.020 0.0079
M20_3.16_3.16_0.1_0.10 3.16 3.16 0.1 0.10 7.1 3.4 3.0 9.4 0.036 0.035 1.1
M20_3.16_10_0.1_0.10 3.16 10 0.1 0.10 8.6 4.2 4.4 10 0.048 0.046 1.4
M20_3.16_inf_0.1_0.10 3.16 ∞ 0.1 0.10 9.2 4.2 4.6 10 0.050 0.049 1.2
M20_10_1_0.1_0.10 10 1 0.1 0.10 1.8 0.71 0.062 3.0 0.0076 0.011 0.019
M20_10_3.16_0.1_0.10 10 3.16 0.1 0.10 12 4.4 7.7 13 0.053 0.039 1.2
M20_10_10_0.1_0.10 10 10 0.1 0.10 15 5.3 11 14 0.061 0.052 1.9
M20_10_inf_0.1_0.10 10 ∞ 0.1 0.10 17 5.9 12 14 0.064 0.061 2.0
M20_0.1_1_0.3_0.10 0.1 1 0.3 0.10 < 0.01 0.72 0.055 2.6 0.0066 0.010 0.018
M20_0.1_3.16_0.3_0.10 0.1 3.16 0.3 0.10 1.2 0.73 0.067 3.0 0.020 0.025 0.022
M20_0.1_10_0.3_0.10 0.1 10 0.3 0.10 2.2 0.87 0.070 2.8 0.024 0.035 0.016
M20_0.1_inf_0.3_0.10 0.1 ∞ 0.3 0.10 2.6 0.87 0.079 3.0 0.037 0.056 0.014
M20_1_1_0.3_0.10 1 1 0.3 0.10 3.1 0.75 0.088 3.5 0.013 0.024 0.022
M20_1_3.16_0.3_0.10 1 3.16 0.3 0.10 6.6 3.7 1.6 6.6 0.39 0.35 1.3
M20_1_10_0.3_0.10 1 10 0.3 0.10 7.7 4.2 3.6 9.3 0.037 0.096 1.1
M20_1_inf_0.3_0.10 1 ∞ 0.3 0.10 7.7 4.0 3.5 9.4 0.049 0.058 1.1
M20_3.16_1_0.3_0.10 3.16 1 0.3 0.10 10 3.0 3.0 10 0.048 0.044 0.39
M20_3.16_3.16_0.3_0.10 3.16 3.16 0.3 0.10 14 5.4 8.0 12 0.051 0.062 0.80
M20_3.16_10_0.3_0.10 3.16 10 0.3 0.10 15 5.8 9.2 13 0.039 0.065 0.69
M20_3.16_inf_0.3_0.10 3.16 ∞ 0.3 0.10 16 6.0 11 13 0.044 0.072 1.0
M20_10_1_0.3_0.10 10 1 0.3 0.10 19 4.6 12 16 0.041 0.052 0.59
M20_10_3.16_0.3_0.10 10 3.16 0.3 0.10 32 5.9 25 21 0.054 0.079 0.78
M20_10_10_0.3_0.10 10 10 0.3 0.10 38 6.6 32 22 0.13 0.14 1.4
M20_10_inf_0.3_0.10 10 ∞ 0.3 0.10 40 6.8 34 23 0.076 0.096 1.4
M20_0.1_1_0.1_0.01 0.1 1 0.1 0.01 < 0.01 0.66 0.053 2.8 0.020 0.023 0.019
M20_0.1_3.16_0.1_0.01 0.1 3.16 0.1 0.01 0.36 0.68 0.060 3.0 0.0057 0.0082 0.016
M20_0.1_10_0.1_0.01 0.1 10 0.1 0.01 0.79 0.73 0.073 3.2 0.036 0.061 0.012
M20_0.1_inf_0.1_0.01 0.1 ∞ 0.1 0.01 1.1 0.81 0.076 3.1 0.017 0.023 0.013
M20_1_1_0.1_0.01 1 1 0.1 0.01 0.20 0.61 0.044 2.7 0.0063 0.013 0.0073
M20_1_3.16_0.1_0.01 1 3.16 0.1 0.01 3.0 0.88 0.088 3.2 0.18 0.21 0.0029
M20_1_10_0.1_0.01 1 10 0.1 0.01 3.6 0.92 0.077 2.9 0.095 0.13 0.0055
M20_1_inf_0.1_0.01 1 ∞ 0.1 0.01 3.8 0.98 0.25 5.0 0.00012 0.0097 0.059
M20_3.16_1_0.1_0.01 3.16 1 0.1 0.01 1.4 0.58 0.053 3.0 0.0083 0.011 0.0090
M20_3.16_3.16_0.1_0.01 3.16 3.16 0.1 0.01 7.3 2.8 2.5 9.6 0.055 0.052 0.58
M20_3.16_10_0.1_0.01 3.16 10 0.1 0.01 8.6 3.9 4.5 11 0.063 0.062 1.1
M20_3.16_inf_0.1_0.01 3.16 ∞ 0.1 0.01 9.5 4.3 5.0 11 0.084 0.083 1.1
M20_10_1_0.1_0.01 10 1 0.1 0.01 23 0.68 0.075 3.4 0.011 0.015 0.031
M20_10_3.16_0.1_0.01 10 3.16 0.1 0.01 12 5.3 8.2 12 0.057 0.054 1.8
M20_10_10_0.1_0.01 10 10 0.1 0.01 14 5.7 9.9 13 0.072 0.061 1.9
M20_10_inf_0.1_0.01 10 ∞ 0.1 0.01 17 5.9 12 14 0.059 0.058 2.3

angular-averaged mass outflow rate is given by:

Φm (𝑟) =

∫ 𝜃2
𝜃1

sin 𝜃 · 𝜌(𝑟, 𝜃)𝑣𝑟 (𝑟, 𝜃) 𝑑𝜃∫ 𝜃2
𝜃1

sin 𝜃𝑑𝜃
, (36)

where 𝜃1 and 𝜃2 are the edges of the angle within which we
average the mass outflow rate, in this case they limit the injection
angle between 𝜋/4 and 3/4𝜋, corresponding to 𝜃∗1 and 𝜃∗2 introduced
in Sec.2.6. We focus here on the mass outflow rate averaged over

the injection angle because it results to be almost equivalent to that
averaged over the entire computational region (i.e., over [0 − 𝜋]).
This indicates that the explosion is quasi spherical. The right panel
of Fig. 4 displays the time evolution of the ratio between the averaged
ram pressure of the expanding matter, 𝑃̄exp

ram, and that of the infalling
matter, 𝑃̄infall

ram . These are defined as:
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Figure 4. Left panel: time evolution of the mass outflow rate Φm averaged over the injection angle (i.e., in [𝜋/4 − 3/4𝜋 ]). Right panel: space-time diagram of
the ratio between the ram pressure averaged over the injection angle of the injected matter, 𝑃̄exp

ram, and of the infalling envelope, 𝑃̄infall
ram . These plots are obtained

for the model M20_10_1_0.3_0.1.
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Figure 5. Radial distribution along the equator (𝜃 = 𝜋/2) of 𝑃ram for the
expanding matter (solid line) and the infalling matter (dotted line) up to
𝑟 = 3×109 cm, after the wind onset. The distribution is compared between the
models M20_10_1_0.3_0.1 and M20_1_1_0.3_0.1. Respectively, the upper
panel shows the distribution for M20_10_1_0.3_0.1 with high 𝐸expl/𝐸inj and
the lower panel displays the radial distribution of Pram for M20_1_1_0.3_0.1.
The comparison time is chosen such as the front of the outflow is at similar
radius for both simulations.

𝑃̄
exp
ram (𝑟) =

∫ 𝜃2
𝜃1 ,𝑣𝑟>0 sin 𝜃 · 𝑃ram (𝑟, 𝜃) 𝑑𝜃∫ 𝜃2

𝜃1 ,𝑣𝑟>0 sin 𝜃𝑑𝜃
(37)

𝑃̄infall
ram (𝑟) =

∫ 𝜃2
𝜃1 ,𝑣𝑟<0 sin 𝜃 · 𝑃ram (𝑟, 𝜃) 𝑑𝜃∫ 𝜃2

𝜃1 ,𝑣𝑟<0 sin 𝜃𝑑𝜃
(38)

The left panel highlights the formation of a strong mass outflow
at about the onset of the injection starting from the inner boundary
and reaching the outer boundary. The positive mass rate dominates
over the infalling envelope in the outer layers for the first ∼ 200 s
of the simulation which corresponds to the time within which the
ejecta mass converges. This region of the plot perfectly corresponds
to that with the highest value of 𝑃̄exp

ram/𝑃̄infall
ram , in the right panel. This

comparison suggests that the explosion in this model is driven by
the injected wind which has a ram pressure larger than that of the
infalling matter at the onset of the injection. The competition between
the ram pressure of the wind and that of the infalling envelope can be
analysed more in detail in the upper panel of Fig. 5, where we compare
the ram pressure of the expanding (solid lines) and infalling matter
(dotted lines) along the equatorial plane in this simulation at 𝑡 = 19 s,
soon after the injection has started. In the figure the expanding and
infalling matter close to the inner boundary represents the wind
component and the infalling envelope respectively. The upper panel
confirms that after the injection starts, for M20_10_1_0.3_0.1, the
ram pressure of the injected matter dominates. As a result, most of
the injected matter can expand outward without falling back, leading
to a highly-energetic explosion with ∼ 1052 erg.

If the wind injection is weak, the injected matter is not able
to efficiently push forward the stellar envelope determining a sub-
energetic explosion with < 1051 erg. The dynamics of such explo-
sion is presented in Fig. 6 using the model M20_1_1_0.3_0.1. This
model has the same parameters as M20_10_1_0.3_0.1 (𝑡acc/𝑡w = 1,
𝜉2 = 0.3 and 𝑓therm = 0.1) apart from the wind timescale which
is 𝑡w = 1 s (and hence 𝑡acc = 1 s). In this simulation we measure
lower injected and explosion energy, i.e. 𝐸inj = 3.08 × 1051 erg and
𝐸expl = 0.088 × 1051 erg. In the upper and bottom panels of Fig. 6
we show the time evolution of Φm (left panels) and 𝑃̄

exp
ram/𝑃̄infall

ram
(right panels) averaged over the injection angle and outside that,
respectively. The dynamics of the explosion of M20_1_1_0.3_0.1
looks different from that of M20_10_1_0.3_0.1 (see Fig. 4). In this
case there is no positive Φm dominating at all radii from the inner

MNRAS 000, 1–18 (2024)



9

Figure 6. Upper-left panel: time evolution of the mass rate Φm averaged over the injection angle. Upper-right panel: time evolution of the ratio between the ram
pressure averaged over the injection angle of the injected matter, 𝑃̄exp

ram, and of the infalling envelope, 𝑃̄infall
ram . Lower panels: they show the same time evolution

diagrams as the upper panels but here the mass flux and the ram pressure are angled-averaged outside the injection angle, i.e., in [0 − 𝜋/4] + [3/4𝜋 − 𝜋 ]. These
plots are obtained for the model M20_1_1_0.3_0.1 (lower panels).

boundary to the outer boundary within the injection angle (see left
panels of Fig. 6). This means that most of the injected matter cannot
expand outwards without falling back. Indeed the upper-left panel of
Fig. 6 shows that a negative averaged mass rate always dominates the
innermost region around 2× 108 cm, within the injection angle. This
infalling mass stops the expansion of the injected matter. However
a positive Φm is present at larger radii. The bottom-left panel of
Fig. 6 shows that the expanding component of the mass flux seems
to dominate not only at 𝑟 ≳ 5 × 108 cm, but also in the innermost
region outside the injection angle, between ∼ 180 s and ∼ 700 s.
Nonetheless, the expanding matter is blocked by the infalling matter
at around 2× 108 cm here as well. These regions of dominating pos-
itive (negative) Φm in the left panels correspond to regions in which
the ram pressure of the expanding (infalling) matter dominates in the
right panels. This confirms that the dominating component of the ram
pressure determines the direction of the muss flux, as suggested for
M20_10_1_0.3_0.1. Therefore, since in M20_1_1_0.3_0.1 the ram
pressure of the injected material close to the inner boundary seems
to be on average always weaker than that of the infalling, contrary to
what happens in M20_10_1_0.3_0.1, the explosion in this model is
unlikely to be driven by the wind. The competition between the ram
pressure of the injected wind and that of the infalling matter of this
model is further investigated in the lower panel of Fig. 5. In this case
even though we find some matter with positive velocity, the injected
matter has a ram pressure smaller than that of the infalling envelope

and some of it is found also at smaller radii, i.e. ∼ 108 cm, among
the wind, limiting the explosion energy.

These results leads to the conclusion that if the ram pressure
of the injected matter is smaller than that of the infalling matter,
the explosion is determined by another mechanism: the infalling
envelope bounces on the wind, launching the shock wave propagating
outward. The outer layer of the star is then swept by the shock wave,
being unbound. In this case, the energy source of the explosion
is not the energy injected, but the released gravitational binding
energy of bounced matter. Such a case is shown in the lower panel
of Fig. 5 for the model M20_1_1_0.3_0.1. The plot shows that the
ram pressure of the infalling envelope (dashed line) dominates over
that of the injected matter (solid line). However the amount of the
injected matter is sufficient to act as a “wall” causing the bounce
of the infalling envelope, which occurs at around 𝑟 ≲ 109 cm. In
this figure the shock wave launched is also visible at larger radii,
i.e. at 𝑟 = 2 × 109 cm, propagating outwards and then sweeping the
outer layer of the star. Since this unbound mass is located only at
radii of tens of thousands of kilometer, where the density is small,
also the amount of the unbound mass is small. At the same time
the shock propagation decreases the infalling matter velocity and its
ram pressure so that if the latter becomes sufficiently small, then the
injected matter can move over it and go outwards becoming another
ejecta components. However this happens after hundreds of seconds,
when the energy budget - which is determined by the mass supply
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of the infalling envelope to the disk - is low determining also a very
low 𝐸inj.

The comparison of the 𝑃ram competition between the two models
shows that whether the ram pressure of the disk wind can overcome
the ram pressure of the accretion flow or not determines a distinction
between highly-energetic explosions and sub-energetic explosions.
The efficiency of the explosion mechanism can also be measured
by the ratio 𝐸expl/𝐸inj which indicates the fraction of the injected
energy transferred to the ejecta. For M20_10_1_0.3_0.1, the explo-
sion energy is the ∼ 64% of the injected energy, while in the case of
M20_1_1_0.3_0.1, 𝐸expl/𝐸inj ≈ 0.029.

We find that some models with sub-energetic explosions have
𝐸expl > 𝐸inj. For example, model M20_1_1_0.1_0.01 has 𝐸expl ≈
5 × 1049 erg, while 𝐸inj < 1049 erg (see Table. 1). This can happen
because the energy source of such sub-energetic explosion is different
from that of the injected matter, it is the gravitational binding energy
released by the bouncing infalling envelope (see Sec. 3.1).

3.2 Bimodality of 𝐸expl

We plot the injected and explosion energies of all models with dif-
ferent parameters against respectively the ejecta mass (left panel of
Fig. 7) and the average ejecta velocity 𝑣ej =

√︃
2𝐸expl/𝑀ej (right

panel of Fig. 7). The figures show that the models fall into two cat-
egories having different explosion energies, while such a distinction
is not seen for the injection energy, which shows a rather continuous
distribution. The first category is made of highly-energetic explo-
sions, characterized by the explosion energy of about 1052 erg. The
second category is made of sub-energetic explosions with an energy
of approximately 1050 erg. This bimodal distribution seems to be
mainly controlled by the wind time scale. Models with shorter 𝑡w
(i.e. 𝑡w ∼ 0.1 − 1 s) are located in the left, low-energy side of the
plots, while those with longer 𝑡w (∼ 3.16 − 10 s) belong to the high
explosion energy group, on the right of our plots.

Another feature distinguishing the highly-energetic and sub-
energetic explosions is the fraction of the injected energy converted
in explosion energy which can be measured by the ratio 𝐸expl/𝐸inj.
Both panels in Fig. 7 shows that the gap between 𝐸inj and 𝐸expl de-
creases with increasing 𝑀ej and 𝑣ej, indicating a correlation between
𝐸expl/𝐸inj and 𝐸expl.

To explain the bimodality of the explosion, we compare the
evolution of two models belonging to the highly-energetic and
sub-energetic categories respectively. Since M20_10_1_0.3_0.1, de-
scribed in Section 3.1, lays in the right-hand side of both panels of
Fig. 7, we compare it to the model M20_1_1_0.3_0.1 having the
same parameters (𝑡acc/𝑡w = 1, 𝜉2 = 0.3 and 𝑓therm = 0.1), but a
different 𝑡w = 1 s (and hence 𝑡acc = 1 s) which is instead located on
the left, low-energy side. In Fig. 8, we compare the time evolution of
injected energy (upper panel) and explosion energy (lower panel) of
the two models in the first 70 seconds of the simulation. Compared
to the injected and explosion energies of M20_10_1_0.3_0.1 (see
Sec. 3.1), M20_1_1_0.3_0.1 reaches only 𝐸inj = 3.08×1051 erg and
𝐸expl = 0.088 × 1051 erg (these values are also shown in Table 1).
In the model with 𝑡w = 10 s the injected energy grows faster with a
steeper slope after the onset of the injection.

It is clear from equation (24) that, for a given disk mass, the shorter
wind time scale leads to the higher mass injection rate. The upper
panel of Fig. 9 shows that the difference in the disk mass is always
less than an order of magnitude in the first 70 s of the evolution.
Since the wind time scales are different by a factor of ten for those
two models, the mass injection rate in model M20_1_1_0.3_0.1 may

be always larger than that in M20_10_1_0.3_0.1. Indeed, the lower
panel of Fig. 9 shows that the mass injection begins slightly earlier
in model M20_1_1_0.3_0.1 than the other model, which indicates
that the wind power is stronger in the model in the earlier phase.
However, the mass injection rate is somehow smaller in the later
phase (𝑡 ≳ 20 s). This stems from the smaller escape velocity of the
disk, 𝑣esc, as found in Fig. 10, especially in the later phase. The escape
velocity plays an important role in determining the mass injection
rate and affects it more than 𝑡w because the flux ¤𝑀wind defined in
equation (24) is actually computed according to equation (26) solving
the Riemann problem at the inner boundary.3 The smaller escape
velocity leads to the smaller specific energy of injected matter, which
is proportional to 𝜉2𝑣2

esc. Hence, the wind is injected less efficiently
in model M20_1_1_0.3_0.1 in the later phase. Therefore, the injected
mass and energy saturate earlier.

As found in equation (29), which can be rewritten as 𝑣esc =√
2𝐺𝑀BH/ 𝑗disk with equation (30), the larger specific angular mo-

mentum of the disk leads to smaller escape velocity. Using Eqs. (9),
(11), and (22)–(25), the evolution equation of the disk specific angu-
lar momentum is written as:

𝑑𝑗disk
𝑑𝑡

=
1
𝑡acc

( 𝑗disk − 𝑗ISCO) +
¤𝑀fall,disk
𝑀disk

( 𝑗fall − 𝑗disk), (39)

where 𝑗fall := ¤𝐽fall,disk/ ¤𝑀fall,disk is the specific angular momentum of
the infalling matter. The two terms of the equation are the contribution
of the mass accretion onto the BH and the contribution of the infalling
envelope respectively. Due to the contribution of the first term, if it
dominates over the second, the disk specific angular momentum
𝑗disk = 𝐽disk/𝑀disk always increases because 𝑗disk > 𝑗ISCO. The
second term does not always add a positive contribution to 𝑗disk
since it can be also negative when 𝑗disk > 𝑗fall. If the absolute value
of these negative contributions is smaller that the first term, then the
accretion onto the BH dominates and 𝑗disk keeps increasing. In our
simulations we find that the second term becomes also negative, i.e.
𝑗disk > 𝑗fall, however its absolute value is on average smaller that
the first term. In this case, it is evident from the equation that the
time scale of the increase in 𝑗disk is determined by 𝑡acc. Therefore, the
decrease in 𝑣esc and thus the energy injection efficiency drop faster in
model M20_1_1_0.3_0.1 than those in model M20_10_1_0.3_0.1.

3.3 Parameter dependence of 𝐸expl and 𝑀ej

In this section we analyse the effects that the parameters of our model
have on the explosion. To do that we show in Fig. 11 the distribution
of our models in the 𝐸expl-𝑀ej plane. We display our results (filled
markers) together with the observational data for broad-lined type Ic
SNe taken from Taddia et al. (2019b) and for stripped-envelope SNe
and superluminous SNe from Gomez et al. (2022) (empty markers).
We also show the results obtained by Fujibayashi et al. (2023a) who
did a first-principled general relativistic neutrino-radiation viscous-
hydrodynamics simulation using the same progenitor model. The
values they measured for the ejecta mass of 𝑀ej = 2.2 𝑀⊙ and
the explosion energy of 𝐸expl = 2.2 × 1051 erg can be considered
as the lower limits for the self-consistent simulation since they are
still growing at the end of their simulation. The wind time scale of
our models is indicated by the color of the marker, while the shape

3 Solving the Riemann problem at the inner boundary may be an additional
reason for ¤𝑀disk < 𝑀disk/𝑡w. In addition, the discrepancy of the computed
¤𝑀disk from 𝑀disk/𝑡w is larger for smaller escape velocity
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Figure 7. The 𝐸expl (filled markers) and the 𝐸inj (open markers) against the ejecta mass 𝑀ej (left panel) and against the ejecta velocity 𝑣ej (right panel) for the
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Figure 8. Upper panel: evolution of the injected energy in the first 70 seconds
of the simulation for the models M20_10_1_0.3_0.1 and M20_1_1_0.3_0.1.
Both models have the same parameters apart from 𝑡w (see Table 1).
Model M20_10_1_0.3_0.1 is represented using red lines, while model
M20_1_1_0.3_0.1 is represented using blue lines. Lower panel: evolution
of the explosion energy in the first 70 seconds of the simulation for the same
two models.

distinguishes models with different 𝜉2 and 𝑓therm. The lines connect
models with the same 𝑡w and 𝑡acc, but different 𝜉2 or 𝑓therm.

The first parameter we study is the wind time scale, 𝑡w, sampled in
the interval (0.1, 1, 3.16, 10) s. Fig. 11 shows that most of the models
with 𝑡w ≥ 3.16 s lay on the right side of the panel having 𝐸expl ≳

1 × 1051 erg and 𝑀ej ≳ 2.5 𝑀⊙ , while all models with 𝑡w = 0.1 s
occupy the lower-left side of the plot presenting 𝐸expl ≲ 1051 erg and
𝑀ej ≲ 0.07 𝑀⊙ . Longer wind time scales lead to higher explosion
energy because they keep a larger escape velocity for longer time, as
explained above and shown in Fig. 10. Only in models with 𝑡w = 1 s
this parameter seems not to be predominant with respect to the 𝜉2

and 𝑓therm in determining whether an explosion in highly or sub-
energetic. This case and the difference with models having other 𝑡w
will be discussed in a following paragraph, after analysing the general
effects of the two other parameters 𝜉 and 𝑓therm.

Considering 𝜉2, the figure shows that a higher value of the param-
eter increases the explosion energy and the mass ejecta. This effect is
evident by following the gray solid lines in Fig. 11 from the circular
to the squared markers which represent models with all the same
parameter but 𝜉2 = 0.1 and 𝜉2 = 0.3 respectively. The lines show
that in all simulation an increase in 𝜉2 makes the point move towards
the upper-right side of the plot, i.e. towards higher ejecta mass and
explosion energy. This is consistent with our model of the wind (see
equation (28)) in which we use 𝜉2 to set the asymptotic velocity of
the injected matter as 𝜉𝑣esc. Hence, a higher 𝜉 corresponds to a larger
kinetic energy of the wind and enhances the energy budget for the
explosion. Similarly, 𝐸expl and 𝑀ej increase by decreasing 𝑓therm.
According to equation (28), 𝑓therm determines the ratio between the
internal to the kinetic energies of the wind. Since the sum of these
energies is provided by (1/2)𝜉2𝑣2

esc, reducing 𝑓therm increases the
kinetic energy by decreasing the fraction of the thermal energy.

Observing the distribution of our numerical results, we note that,
despite the variation of the parameters in wide ranges, the explosion
of the 𝑀ZAMS = 20 𝑀⊙ tend to remain located along a line and it
does not spread to cover the space in the 𝑀ej − 𝐸expl as the observa-
tional data do. In other words, the correlation between the explosion
energy and the ejecta mass is tighter in our simulations than that
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in Fig. 8.

observationally measured by Taddia et al. (2019b) and Gomez et al.
(2022).

We also note that the results from our simulations presented here
are in good agreement with that obtained in Fujibayashi et al. (2023a),
especially considering that their values of 𝐸expl and 𝑀ej are still
growing at the end of their simulation, so higher values were expected
if they ran the simulation longer, which will be comparable to our
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Figure 11. Parameter dependence with respect to the observable pair of ejecta
mass 𝑀ej and explosion energy 𝐸expl. The color distinguishes the wind time
scale 𝑡w. The lines connect models with all the other parameters fixed but
different 𝜉 2 or 𝑓therm. The open markers display the observational data for
stripped-envelope SNe, some of which are broad-lined type Ic SNe, taken
from Taddia et al. (2019b) and Gomez et al. (2022). The magenta plus-
sign denotes the result obtained in a general relativistic neutrino-radiation
viscous-hydrodynamics simulation with the same progenitor (Fujibayashi
et al. 2023a).

results. This indicates that our model contains the case studied in
Fujibayashi et al. (2023a) and explores various possibilities with a
variety of wind properties.

3.4 56Ni production

In this section, we then present the results of the 56Ni production in
our models and its dependence on the free parameters of the simu-
lations to understand if it is possible to reproduce the observational
data like those presented by Taddia et al. (2019b) and Gomez et al.
(2022), especially for the high-energy SN (𝐸expl > 1052 erg).

The results of our nucleosynthesis calculations are presented in
Table 1, where we list: the 56Ni mass synthesized in the stellar
component of the ejecta (the part of the ejecta originated from the
computational domain), 𝑀stellar

ej,Ni and the mass of ejecta component

originated from the injected matter (i.e. from the disk), 𝑀
inj
ej . In

Table 1 we also show the mass of the stellar component of the ejecta
reaching temperature higher than 5 GK(= 5 × 109 K), 𝑀stellar

ej,>5GK, as
the 56Ni production primarily occurs for 𝑇 ≥ 5GK.

Although the injected matter explains 0.9−40% of the total ejecta
mass, it is hard to accurately estimate the 56Ni production for this
component since the complete thermodynamical history is not avail-
able. We, therefore, estimate the upper limit of the mass of 56Ni in the
ejecta, 𝑀ej,Ni, considering that the injected matter entirely becomes
56Ni: 𝑀ej,Ni = 𝑀stellar

ej,Ni + 𝑀
inj
ej . It is found that it ranges from ∼ 0.02

to ∼ 2.09 𝑀⊙ , which corresponds to ∼ 2.2 − 47% of the total ejecta
mass.

Fig. 12 shows 𝑀ej,Ni and 𝑀stellar
ej,Ni , the 56Ni ejecta mass that orig-

inates from the stellar component, as a function of the explosion
energy (left panel) and average ejecta velocity (right panel). To-
gether with the results of our simulations, represented by the up and
down-pointing filled triangles, we also display the observational data
for broad-lined type Ic SNe taken from Taddia et al. (2019b) and for
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Figure 12. Relations between the explosion energy and the 56Ni mass (left) and average velocity of the ejecta and the 56Ni mass (right). Each grey line connects
𝑀stellar
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obtained in a general relativistic neutrino-radiation viscous-hydrodynamics simulation with the same progenitor (Fujibayashi et al. 2023a). The open markers
display the observational data for stripped-envelope SNe, some of which are broad-lined type Ic SNe, taken from Taddia et al. (2019b) and Gomez et al. (2022).

stripped-envelope SNe and superluminous SNe taken from Gomez
et al. (2022). We also show the 56Ni mass obtained by Fujibayashi
et al. (2023a).

The simulation results highlight that, for most models, 𝑀
inj
ej is

likely to dominate the total 56Ni mass produced. They also show
that the difference between 𝑀ej,Ni and 𝑀stellar

ej,Ni is larger for higher
explosion energies and, equivalently, for higher averaged ejecta ve-
locities. This means that the value 𝑀ej,Ni we estimated is affected by
the uncertainty of the thermodynamical history of 𝑀 inj

ej , and this is
particularly true for the highly-energetic models.

Looking at Fig. 12 it is found that our numerical results for the 56Ni
mass reproduce the relation between 𝑀Ni and 𝐸expl or 𝑀Ni and 𝑣ej
for very-high energy SNe with 𝐸expl > 2×1051 erg and sub-energetic
SNe with 𝐸expl < 0.1×1051 erg of the observational data, suggesting
that these SNe may be driven by a wind-driven explosion modeled as
in this work. Moreover, Fig. 12 shows that also considering the 56Ni
mass produced, the models fall into two categories which correspond
to those of highly-energetic and sub-energetic explosions observed
in Fig. 7. Sub-energetic explosions produce a smaller amount of 56Ni
(< 0.2 𝑀⊙) while highly-energetic explosions produce 0.2− 2.1 𝑀⊙
of 56Ni.

Our estimate of the 56Ni ejecta mass is in good agreement also
with that obtained in Fujibayashi et al. (2023a), as it was for 𝐸expl and
𝑀ej (see Fig. 11), especially considering that their values of 𝐸expl
and 𝑀Ni were still growing at the end of their simulation.

𝑀ej,>5GK can be a first indicator of the 56Ni mass produced. It is,
then, informative to compare 𝑀stellar

ej,>5GK and 𝑀stellar
ej,Ni . We limit this

analysis to the stellar component of the ejecta as it is the matter for
which we know the complete thermodynamical history.

This comparison is shown in Fig. 13 where the two quantities are
displayed as a function of the explosion energy. In most of the mod-
els 𝑀stellar

ej,>5GK is a good approximation of 𝑀stellar
ej,Ni . For high energy

(𝐸expl ≳ 1.5 × 1051 erg) the amount of matter experiencing T>5GK
is larger than the 56Ni mass, however, is not always the case, es-
pecially at lower energy (𝐸expl ≲ 0.25 × 1051 erg) when for many
explosions we measure 𝑀stellar

ej,>5GK < 𝑀stellar
ej,Ni , which means that 56Ni

starts being produced already at 𝑇 < 5GK.
The results of the 56Ni mass are expected to be different if the wind

is composed of lower electron fraction matter (i.e.,𝑌𝑒 ≪ 0.5). In this
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Figure 13. Comparison between the 𝑀stellar
ej,Ni (blue triangles) and 𝑀stellar

ej,>5GK
(orange down-pointing triangles) displayed against the explosion energy. Each
grey line connects 𝑀stellar

ej,Ni and 𝑀stellar
ej,>5GK of the same model.

case the nucleosynthesis result is not supposed to peak at 56Ni, but in
heavier nuclei (Siegel et al. 2019) and the amount of 56Ni produced
in the injected component is not expected to be significant. Therefore
the 56Ni mass is not supposed to be dominated by 𝑀

inj
ej .

4 DISCUSSION

4.1 Variety of disk wind-driven explosions

The progenitor model used in this work is, as mentioned in Sec. 2,
we a rapidly rotating, low metallicity, rotationally mixed quasi-
chemically homogeneously evolving star with the zero-age main-
sequence mass 𝑀ZAMS = 20 𝑀⊙ taken from Aguilera-Dena et al.
(2020), which has a very compact core, and it is supposed to fail
the explosion (Ertl et al. 2016 and Müller et al. 2016). Our results
show a large variety of explosion energies with 𝐸expl ranging from
∼ 0.049 × 1051 erg to ∼ 34 × 1051 erg (see also Table 1). More-
over, the distribution of these points in the plots can be divided into
two categories: the sub-energetic explosions and the highly-energetic
ones. In the plots in Fig. 7, every single point is the result obtained
for the same structure of the progenitor in which we varied the pa-
rameters controlling the wind injection. It means that, in reality, a
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given structure of the progenitor results in only a single point in these
plots. This means that, in reality, the 20𝑀⊙ star we employed results
in either a highly- or sub-energetic explosion depending on the power
of the wind injection and the competition between the ram pressure
of the wind and the infalling envelope.

It can be, then, interesting to study this competition for other
massive progenitors with different structures to further investigate
the variety of explosion properties and to verify if stars with other
structures also present sub- and highly-energetic explosion branches
depending on the power of the wind injection. The first parameter
worthy of consideration is the progenitor mass. For instance, gener-
ally speaking, more massive stars tend to present a more compact
CO-layer, and thus, have higher mass-infall rates leading to a larger
amount of matter available to form the disk and to a higher thermal
energy budget for the explosion energy. Therefore, employing such
progenitors could allow us to model even more energetic SNe.

Another parameter that affects the fate of the core collapse and
plays a role in the explosion after the formation of a BH is the
rotation. The initial angular momentum profile of the progenitor has
an impact on the explosion energy and the ejecta mass as shown by
Fujibayashi et al. (2023a). Specifically, a star with fast rotation is
expected to determine a more energetic explosion and to enhance
the mass ejection. Then, we can also assume more 56Ni will be
produced. Therefore it can be informative also to perform simulations
employing the same progenitor star but using different rotational
profiles.

In order to investigate the variety of explosion properties depend-
ing on the progenitor structure and wind injection, it can be also
interesting to use our central engine model for a failed CCSN for
those progenitors that are more likely to undergo a neutrino-driven
explosion according to Ertl et al. (2016) or Müller et al. (2016).
Comparing the results obtained using our code for these two cate-
gories of progenitors (those supposed to fail the explosion and those
expected to succeed in a neutrino-driven explosion) can be useful
also to investigate the different dependencies of the explosion. In-
deed Fujibayashi et al. (2023a) showed that the explosion in failed
CCSN is sensitive to the mass-infall rate at the disk formation, i.e.,
a higher mass-infall rate (usually from the carbon-oxygen layer of
the star) enhances the viscous and shock heating rates around the
inner region of the disk, which result in the larger explosion energy,
while Ertl et al. (2016) found that the neutrino-driven explosion is
more likely to be sensitive to the compactness of inner domain, i.e.
the iron-silicon layer. Hence, using the same general central engine
model can allow us to verify these effects.

As mentioned in Sec. 3.3, another interesting result of our study
is that the correlation between 𝐸expl and 𝑀ej found in our models
is stronger than that of observations (Fig. 11). This illustrates the
incapability of our simulations to fully explain the variety of ob-
servational data by utilizing a single progenitor model. However,
changing the mass and the rotational profile of the progenitor may
fill the areas in Fig. 11 not covered by the present results. Perform-
ing explosion simulations using progenitors with different 𝑀ZAMS
and rotational profiles is, thus, demanded to further investigate the
correlation between the explosion energy and the ejecta mass.

4.2 The model of the wind injection

In this work, we adopt a simple prescription to set the wind by
evolving the disk and the BH using Eqs. (9)-(12). In this model, the
wind time scale and the accretion time scale are free parameters,
which remain constant throughout the simulation. The flexibility in
setting the parameters allows us to set engine models with diverse

characteristics, unrestricted by specific scenarios. In Sec. 3.3 and 3.4,
we showed that the results of our models with 𝑡w ∼ 𝑡acc ≳ 3.16 s
reproduce 𝑀ej and 𝐸expl obtained by a general relativistic neutrino-
radiation viscous-hydrodynamics simulation by Fujibayashi et al.
(2023a) (see Fig. 11). Our models can also account for the 56Ni
mass measured in their work within the uncertainty of the mass
fraction of 56Ni of the injected component. These similar results
can be explained by the similar time scales in the two simulations
at the onset of the injection (i.e., 𝑡 ≲ 20 s). In the model used by
Fujibayashi et al. (2023a) 𝑡w and 𝑡acc later evolve in time since they
are evaluated from the viscous time scale that depends on the disk
radius. However, this happens after the wind injection and they found
that at early time in their 20 𝑀⊙ model both 𝑡w and 𝑡acc are of several
seconds, hence they are comparable to those used in our simulations
with 𝑡w ∼ 𝑡acc ≳ 3.16 s.

Fujibayashi et al. (2023a) showed that in the viscosity-driven wind
scenario, the viscous heating plays a role in determining the injected
energy budget. After the efficiency of neutrino cooling drops, the
outflow from the disk is driven by viscosity determining the evolution
of the viscous time scale and hence of both 𝑡w and 𝑡acc. Therefore,
focusing on this scenario, a future implementation of our model can
be taking into account the effects of the time evolution of 𝑡w and
𝑡acc. This will allow us to provide more quantitative models for more
sophisticated, although specific, scenarios in which we can describe
the accretion flow during both the neutrino dominated accretion flow
phase (NDAF) (Narayan & Yi 1994; Popham et al. 1999) and the
advection dominated accretion flow phase (ADAF) (Narayan & Yi
1994, Kohri et al. 2005 and Hayakawa & Maeda 2018).

4.3 The effect of GRB ejecta

As mentioned in Sec. 2, we exclude the central engine from the
computational domain, and it is considered as being embedded in
the central part of the star and characterized by the presence of a BH
and a disk evolved according to Eqs. (9)-(12).

If the dimensionless spin of the BH is large, in the presence of
electromagnetic fields, the Blandford-Znajek effect could play an
important role (see Blandford & Znajek 1977), i.e., it could launch an
energetic jet or outflow along the spin axis of the BH. If a relativistic
jet is produced, a gamma-ray burst will be also launched (see Izzard
et al. 2004 and Gottlieb et al. 2022 for simulation works). In the
presence of the jet, more energy can be injected into the stellar
matter, and hence, the energy budget available for the explosion
and the 56Ni production increases. Therefore performing relativistic-
hydrodynamic simulations including the injection of relativistic jets
will be one of our follow-up works.

5 SUMMARY AND CONCLUSIONS

We studied the hydrodynamics and nucleosynthesis for the explosion
of a massive star to explore the properties of ejecta and the 56Ni
production in the collapsar scenario. Our main goal was to investigate
the explosion mechanism of Type Ic SNe in the collapsar scenario.

We implemented a new feature that solves the cylindrically
symmetric gravitational potential Φ to the open-source multi-
dimensional hydrodynamics code Athena++. We used it to simu-
late the explosion of a rapidly rotating, rotationally mixed, quasi-
chemically homogeneous 𝑀ZAMS ∼ 20 𝑀⊙ star employing the pro-
genitor model from Aguilera-Dena et al. (2020). For this work we
also built a semi-analytical model for the central engine by taking
into account the BH and disk evolution connected through matter
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and angular momentum transfer, to which we added the contribution
of the disk wind following Hayakawa & Maeda (2018).

We tested different models by varying the parameters that control
the properties of mass and energy injection to thoroughly investi-
gate their influence on the final ejecta. The parameter setups of the
simulations and the main results are listed in Table 1.

In all of our models, we found that the energy and mass injection
occurs roughly between 10 and 20 s after the disk formation. After
the wind injection, the competition between the ram pressure of the
injected and infalling matter leads the disk wind-driven explosion to
be sub- or highly-energetic with an explosion energy < 0.1×1051 erg
and > 1052 erg respectively.

This distinction originates from whether the 𝑃ram of the in-
jected matter can overcome 𝑃ram of the infalling envelope and ef-
ficiently push the stellar envelope outwards. When the first one is
larger than the second one, most of the matter can expand out-
wards without falling back, leading to a highly-energetic explosion
with ∼ 1 × 1052 erg. In the case of the sub-energetic explosions
(𝐸expl < 1 × 1051 erg), instead, the shock wave transfers the energy
from the infalling matter bouncing on the wind. Propagating then
outwards, the bounce shock causes the ejection of the matter outside
the star.

Studying the impact of the parameters on the final ejecta, we found
that the wind timescale strongly affects 𝐸expl. In particular, models
with longer wind time scales tend to reach higher explosion energies
due to a high mass-infall rate. We also noticed that models with
higher 𝜉2 (i.e. 𝜉2 = 0.3), and hence, higher wind kinetic energy,
or smaller 𝑓therm (that is 𝑓therm = 0.01) represent highly-energetic
explosions. In contrast, smaller values of 𝜉2 or larger 𝑓therm lead the
explosions to be sub-energetic.

We found that sub-energetic explosions produce smaller amounts
of 56Ni (< 0.2 𝑀⊙) while highly-energetic explosions produce 0.2−
2.1 𝑀⊙ of 56Ni. The 56Ni mass was evaluated separately taking
into account the stellar and the injected components of the ejecta
since the whole thermodynamical history of the particle tracer is
only available for the former component. Our results show that 𝑀 inj

ej

dominates and the difference between 𝑀stellar
ej,Ni and 𝑀stellar

ej,Ni + 𝑀
inj
ej is

larger for highly-energetic explosions.
We also compared our numerical results with the observational

data for stripped-envelope SNe, some of which are broad-lined type
Ic SNe, taken from Taddia et al. (2019b) and Gomez et al. (2022). We
found that the distribution of the 56Ni mass of our models reproduces
the relation between 𝑀Ni and 𝐸expl or 𝑀Ni and 𝑣ej for very-high
energy SNe with 𝐸expl > 2 × 1051 erg and sub-energetic SNe with
𝐸expl < 0.1 × 1051 erg of the observational data. Moreover, we
measured a tighter correlation between the explosion energy and the
ejecta mass in our simulations than that observationally measured by
Taddia et al. (2019b) and Gomez et al. (2022).

To better investigate the variety of explosion properties and to ver-
ify whether stars with different structures present sub- and highly-
energetic explosion branches, we plan to perform numerical simula-
tions by varying the mass and the rotational profile of the progenitor
in our follow-up work. More massive stars can, for instance, have a
larger amount of matter to form the disk and hence a higher energy
budget for the explosion energy. Moreover, Fujibayashi et al. (2023b)
showed that the initial angular momentum profile of the progenitor
affects the explosion energy and the ejecta mass. Therefore we expect
that varying the progenitor mass and rotational profile may explain
the variety of observational data.

Finally, in this work, we found that our models with 𝑡w ∼ 𝑡acc
of several seconds reproduce the results for 𝑀ej, 𝐸expl and the 56Ni

mass obtained by Fujibayashi et al. (2023a) in a general relativistic
neutrino-radiation viscous-hydrodynamics simulation that utilizes
the same progenitor model. This is due to the similar time scales
in our and their works at early times (i.e., 𝑡 < 20s), at the onset of
the injection. In their model for the viscosity-driven wind scenario,
however, 𝑡w and 𝑡acc later evolve in time with the viscous time scale.
However this happens after the wind injection which is the moment
that we model in this work and we are focusing on. At this early time
𝑡w and 𝑡acc in our work and that of Fujibayashi et al. (2023a) are
similar. Considering the model used by Fujibayashi et al. (2023a), it
may be interesting implement the evolution of these time scales in
our model and use it to investigate the NDAF and ADAF phases in
this specific scenario.
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APPENDIX A: 2D GRAVITY SOLVER

Hereafter we set 4𝜋𝐺 = 1 for simplicity. We can evaluate the grav-
itational potential in spherical-polar coordinates at (𝑟, 𝜃) using the
multipole expansion as:

Φ(𝑟, cos 𝜃) = −
∫ ∞

0
𝑑𝑟′

∫ 1

−1
𝑑 cos 𝜃′

×
(

1
2

∞∑︁
𝑛=0

𝑓𝑛 (𝑟′, 𝑟)𝑃𝑛 (cos 𝜃)𝑃𝑛 (cos 𝜃′)𝜌(𝑟′, cos 𝜃′)
)

= −
∑︁
𝑛

𝜙𝑛 (𝑟)𝑃𝑛 (cos 𝜃),

where 𝑃𝑛 (𝑥) is the Legendre’s polynomial and it is defined as the
coefficients of an expansion of:

1
√

1 − 2𝑥𝑡 + 𝑡2
≡

∞∑︁
𝑘=0

𝑃𝑛 (𝑥)𝑡𝑘 (A1)

which converges for |𝑡 | < 1. And 𝑓𝑛 (𝑟′, 𝑟) is given by:

𝑓𝑛 (𝑟′, 𝑟) =

𝑟′

(
𝑟 ′
𝑟

)𝑛+1
for r′ < r

𝑟′
(
𝑟
𝑟 ′

)𝑛
for r′ > r

(A2)

and

𝜙𝑛 (𝑟) = −1
2

∫
𝑑𝑟′

∫
𝑑 cos 𝜃′ 𝑓𝑛 (𝑟′, 𝑟)𝑃𝑛 (cos 𝜃′)𝜌(𝑟′, cos 𝜃′).

(A3)

To express now the potential in the computational domain we
consider 𝑖 ∈ [1, 𝐼] the index for 𝑟𝑖 and 𝑗 ∈ [1, 𝐽] the index for cos 𝜃 𝑗
and 𝑁 be the maximum order of the multipole expansion. In this
work 𝑁 = 5. Then the equation of the multipole expansion becomes:

Φ(𝑖, 𝑗) = −
𝐼∑︁

𝑖′=1

𝐽∑︁
𝑗′=1

𝑑𝑟𝑖′𝑑 cos 𝜃 𝑗′

×
(

1
2

𝑁∑︁
𝑛=0

𝑓𝑛 (𝑖′, 𝑖)𝑃𝑛 ( 𝑗)𝑃𝑛 ( 𝑗 ′)𝜌(𝑖′, 𝑗 ′)
)

= −
𝑁∑︁
𝑛=0

(
1
2

𝐼∑︁
𝑖′=1

𝐽∑︁
𝑗′=1

𝑑𝑟𝑖′𝑑 cos 𝜃 𝑗′ 𝑓𝑛 (𝑖′, 𝑖)𝑃𝑛 ( 𝑗)𝑃𝑛( 𝑗 ′)𝜌(𝑖′, 𝑗 ′)
)

(A4)

where 𝜙(𝑖, 𝑗) is the gravitational potential at (𝑖, 𝑗) grid point, 𝑑𝑟𝑖′
and 𝑑 cos 𝜃 𝑗′ are respectively the 𝑟− and cos 𝜃−widths of (𝑖′, 𝑗 ′) grid
point, 𝜌(𝑖′, 𝑗 ′) is the density of (𝑖′, 𝑗 ′) grid point and the coefficients
are evaluated as:

𝑓𝑛 (𝑖′, 𝑖) = 𝑓𝑛 (𝑟𝑖′ , 𝑟𝑖) (A5)
𝑃𝑛 ( 𝑗) = 𝑃𝑛 (cos 𝜃 𝑗 ) (A6)
𝑃𝑛 ( 𝑗 ′) = 𝑃𝑛 (cos 𝜃′ 𝑗 ) (A7)

In this way the summation reduces to:

Φ(𝑖, 𝑗) =
𝑁∑︁
𝑛=0

𝑃𝑛 ( 𝑗)𝜙𝑛 (𝑖) (A8)

with:

𝜙𝑛 (𝑖) ≡ −
𝑁∑︁
𝑖′=1

𝐽∑︁
𝑗′=1

(
1
2
𝑑𝑟 (𝑖′)𝑑 cos 𝜃 ( 𝑗 ′) 𝑓𝑛 (𝑖′, 𝑖)𝑃𝑛 ( 𝑗 ′)𝜌(𝑖′ 𝑗 ′)

)
(A9)

that represents the radial component of the gravitational potential.

A1 The contribution to the gravitational potential of the mass
outside the computational domain

In this appendix we describe the procedure we used to If the compu-
tational domain is limited between a non-zero inner radius 𝑟in to an
outer radius 𝑟out, then we have to take into account the mass distribu-
tion for 𝑟 < 𝑟in contributing to the gravitational potential. Therefore
the integral of 𝜙𝑛 (𝑟) showed in equation (A3) splits in two parts:

𝜙𝑛 (𝑟) = − 1
2

∫ 𝑟in

0

∫
𝑓𝑛 (𝑟′, 𝑟)𝑃𝑛 (cos 𝜃′)𝜌(𝑟′, cos 𝜃′)𝑑𝑟′𝑑 cos 𝜃′

− 1
2

∫ 𝑟out

𝑟in

∫
𝑓𝑛 (𝑟′, 𝑟)𝑃𝑛 (cos 𝜃′)𝜌(𝑟′, cos 𝜃′)𝑑𝑟′𝑑 cos 𝜃′

= : 𝜙<𝑟in
𝑛 (𝑟) + 𝜙

𝑟in<𝑟<𝑟out
𝑛 (𝑟) (A10)

For 𝑟 < 𝑟in we only know the total mass of the region and we
don’t have any information about the denisty distribution there, since
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it is not part of the computational domain. Therefore we assume a
spherically symmetric matter distribution in that central region (with
𝑟 < 𝑟in): 𝜌(𝑟, cos 𝜃) = 𝜌(𝑟). Because of the assumption of spherical
symmetry 𝜙

<𝑟in
𝑛 = 0 for 𝑛 ≥ 0 and

𝜙
<𝑟in
0 = −1

2

∫ 𝑟in

0

∫
𝑓0 (𝑟′, 𝑟)𝜌(𝑟′)𝑑𝑟′𝑑 cos 𝜃′

= −
∫ 𝑟in

0
𝑓0 (𝑟′, 𝑟)𝜌(𝑟′)𝑑𝑟′ (A11)

Since we are interested in computing the potential inside the com-
putational domain in which 𝑟 > 𝑟in, then 𝑓0 (𝑟′, 𝑟) is always given by
𝑓0 (𝑟′, 𝑟) = 𝑟′2/𝑟. Therefore, equation (A11) becomes:

𝜙
<𝑟in
0 = −1

𝑟

∫ 𝑟in

0
𝑟′2𝜌(𝑟′)𝑑𝑟′

= −𝑀<𝑟in

𝑟
. (A12)

APPENDIX B: MODEL OF THE DISK WIND

If we consider the evolution if the specific angular momentum of
the disk 𝑗disk as described in equation (39), we can notice that if the
contribution of infalling matter is small, the average specific angular
momentum of the disk increases with time. As a consequence the
disk radius, which is defined as 𝑟disk B 𝑗2disk/(𝐺𝑀BH), can become
larger than the inner boundary radius. Indeed if we assume that the
wind carries the average specific angular momentum of the disk
and we require the angular momentum conservation, considering a
uniform angular velocity, 𝜔wind is evaluated as:

𝑗disk ¤𝑀wind = 2𝜋𝑟4
in𝜔w

∫ 𝜃∗2

𝜃∗1

𝜌w sin3 𝜃𝑑𝜃, (B1)

Which implies 𝜔 ∼ 𝑗disk/𝑟2
in = 𝑟2

disk/𝑟
2
in

√︃
(𝐺𝑀BH)/𝑟3

disk. If
𝑟disk/𝑟in ≪ 1, then 𝜔wind, and hence 𝑣𝜙 = 𝑟in𝜔, at the injection
can become large, even larger than the speed of light.

Since our model does not describe the injection from a disk with
𝑟disk > 𝑟in, we cannot describe such a system consistently. So we
describe the disk outflow according to equation (28) considering that
the injected matter does not carry angular momentum.

APPENDIX C: CONVERGENCE STUDIES

C1 Resolution study

The resolution of the computational domain we use in this work
has been chosen considering its effect on the duration of the sim-
ulations and the convergence of the results. In order to verify that
(𝑛𝜃 , 𝑛𝑟 ) = (128, 220) is a sufficient discretization of our domain, for
M20_10_1_0.3_0.1 we also performed a simulation increasing the
resolution to (𝑛𝜃 , 𝑛𝑟 ) = (256, 460). Fig. C1 shows the disk mass and
the injected mass measured in the two simulations. The difference
of these quantities in the two runs ranges from ∼ 0.01% to ∼ 2.9%,
confirming that using resolution of (𝑛𝜃 , 𝑛𝑟 ) = (128, 220) we obtain
converged results. The good agreement of the two simulations is also
visible comparing the evolution of the explosion energy, as done in
Fig. C2.
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Figure C1. Upper panel: Disk mass of M20_10_1_0.3_0.1 at two different
resolutions. The red solid line shows the results for (𝑛𝜃 , 𝑛𝑟 ) = (128, 220)
used in this work and the dotdashed line displays the quantities for (𝑛𝜃 , 𝑛𝑟 ) =
(256, 460) . Lower panel:injected mass of M20_10_1_0.3_0.1 at two different
resolutions. The solid line shows the results for (𝑛𝜃 , 𝑛𝑟 ) = (128, 220) and
the dotdashed line displays the quantities for (𝑛𝜃 , 𝑛𝑟 ) = (256, 460) .
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Figure C2. Evolution of the explosion energy of M20_10_1_0.3_0.1 at two
different resolutions: The red solid line shows the results for the resolu-
tion used for all the simulations in this work (𝑛𝜃 , 𝑛𝑟 ) = (128, 220) and
the dashed, blue lines displays the quantities for the higher resolution of
(𝑛𝜃 , 𝑛𝑟 ) = (256, 460) .
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Table C1. Model description and key results for models with an increased frequency (every 10 ms) of output. From left to right, the columns contain wind time
scale, the ratio of the accretion and wind time scales, the squared ratio of the asymptotic velocity of injected matter to escape velocity of the disk, the internal
to kinetic energy ratio of injected matter, cumulative injected energy, ejecta mass, explosion energy, average ejecta velocity, the mass of ejecta component that
is originated from the computational domain and experienced temperature higher than 5 GK, the mass of the 56Ni synthesized, the mass of ejecta component
originated from the injected matter.

model 𝑡w 𝑡acc/𝑡w 𝜉 2 𝑓therm 𝐸inj 𝑀ej 𝐸expl 𝑣ej 𝑀stellar
ej,>5GK 𝑀stellar

ej,Ni 𝑀
inj
ej

(s) (1051 erg) (𝑀⊙) (1051 erg) (103 km/s) (𝑀⊙) (𝑀⊙) (𝑀⊙)
M20_10_3.16_0.1_0.10_hf 10 3.16 0.1 0.10 12 4.4 7.7 13 0.060 0.036 1.3
M20_10_10_0.1_0.10_hf 10 10 0.1 0.10 15 5.3 11 14 0.069 0.039 2.0
M20_10_inf_0.1_0.10_hf 10 ∞ 0.1 0.10 17 5.9 12 14 0.090 0.056 2.0
M20_3.16_3.16_0.3_0.10_hf 3.16 3.16 0.3 0.10 14 5.4 8.0 12 0.071 0.059 0.97
M20_3.16_10_0.3_0.10_hf 3.16 10 0.3 0.10 15 5.8 9.2 13 0.071 0.065 0.87
M20_3.16_inf_0.3_0.10_hf 3.16 ∞ 0.3 0.10 16 6.0 11 13 0.081 0.068 1.2
M20_10_1_0.3_0.10_hf 10 1 0.3 0.10 19 4.6 12 16 0.050 0.045 0.70
M20_10_3.16_0.3_0.10_hf 10 3.16 0.3 0.10 32 5.9 25 21 0.072 0.073 0.99
M20_10_10_0.3_0.10_hf 10 10 0.3 0.10 38 6.6 32 22 0.18 0.15 1.6
M20_10_inf_0.3_0.10_hf 10 ∞ 0.3 0.10 40 6.8 34 23 0.11 0.091 1.6
M20_3.16_1_0.1_0.01_hf 3.16 1 0.1 0.01 1.4 0.58 0.053 3.0 0.0099 0.012 0.0081
M20_3.16_3.16_0.1_0.01_hf 3.16 3.16 0.1 0.01 7.3 2.8 2.5 9.6 0.081 0.044 0.61
M20_3.16_10_0.1_0.01_hf 3.16 10 0.1 0.01 8.6 3.9 4.5 11 0.086 0.050 1.2
M20_3.16_inf_0.1_0.01_hf 3.16 ∞ 0.1 0.01 9.5 4.3 5.0 11 0.11 0.066 1.2
M20_10_3.16_0.1_0.01_hf 10 3.16 0.1 0.01 12 5.3 8.2 12 0.082 0.049 1.9
M20_10_10_0.1_0.01_hf 10 10 0.1 0.01 14 5.7 9.9 13 0.090 0.049 2.0
M20_10_inf_0.1_0.01_hf 10 ∞ 0.1 0.01 17 5.9 12 14 0.092 0.058 2.3

C2 Dependence of particle tracing on time interval of outputs

As mentioned in Section 2.10, the accuracy of the thermodynami-
cal history evaluated in the post-process particle tracing is strongly
affected by the frequency of the output. For most of the model we
use a time interval of the output of 70 ms. We check the systematic
performing the particle tracing with an output frequency increased
to every 10 ms for selected model. The results obtained for 𝑀stellar

ej,>5GK
and 𝑀stellar

ej,Ni with the increased frequency are displayed in parenthesis
Table C1. By comparing them with the results obtained for the same
models but with lower output frequency listed in Table 1, they show
that the uncertainty on the accuracy of the particle tracing is of 10%
level.
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