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Abstract
We present the PanAf20K dataset, the largest and most diverse open-access annotated video dataset of great apes in their
natural environment. It comprises more than 7 million frames across∼20,000 camera trap videos of chimpanzees and gorillas
collected at 18 field sites in tropical Africa as part of the Pan African Programme: The Cultured Chimpanzee. The footage is
accompanied by a rich set of annotations and benchmarks making it suitable for training and testing a variety of challenging
and ecologically important computer vision tasks including ape detection and behaviour recognition. Furthering AI analysis
of camera trap information is critical given the International Union for Conservation of Nature now lists all species in the
great ape family as either Endangered or Critically Endangered. We hope the dataset can form a solid basis for engagement
of the AI community to improve performance, efficiency, and result interpretation in order to support assessments of great
ape presence, abundance, distribution, and behaviour and thereby aid conservation efforts. The dataset and code are available
from the project website: PanAf20K
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1 Introduction

Motivation As the biodiversity crisis intensifies, the survival
of many endangered species grows increasingly precari-
ous, evidenced by species diversity continuing to fall at an
unprecedented rate (Ceballos et al., 2020; Vié et al., 2009).
The great ape family, whose survival is threatened by habi-
tat degradation and fragmentation, climate change, hunting
and disease, is a prime example (Carvalho et al., 2021). The
International Union for Conservation of Nature (IUCN) con-
siders all three member species, that is orangutans, gorillas,
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chimpanzees (including bonobos), to be either endangered
or critically endangered.

The threat to great apes has far-reaching ecological impli-
cations. Great apes contribute to the balance of healthy
ecosystems by seed dispersal, consumption of leaves and
bark, and shaping habitats by creating canopy gaps and trails
(Chappell&Thorpe, 2022;Haurez et al., 2015;Tarszisz et al.,
2018). They also form part of complex forest foodwebs, their
removal from which would have cascading consequences
for local food chains. In addition, great apes are our closest
evolutionary relatives and a key target for anthropological
research. We share 97% of our DNA with the phylogenet-
ically most distant orangutans and 98.8% with the closer
chimpanzees and bonobos. The study of great apes, includ-
ing their physiology, genetics, and behaviour, is essential to
addressing questions of human nature and evolution (Pollen
et al., 2023). Urgent conservation action for the protection
and preservation of these emblematic species is therefore
essential.

The timely and efficient assessment of great ape pres-
ence, abundance, distribution, and behaviour is becoming
increasingly important in evaluating the effectiveness of con-
servation policies and interventionmeasures. The potential of
exploiting camera trap imagery for conservation or biological
modelling is well recognised (Kühl & Burghardt, 2013; Tuia
et al., 2022). However, even small camera networks generate
large volumes of data (Fegraus et al., 2011) and the number
and complexity of downstream processing tasks required to
perform ecological analysis is extensive. Typically, ecolo-
gists first need to identify those videos that contain footage
of the target study species followed by further downstream
analyses, such as estimating the distance of the animals from
the camera (i.e., camera trap distance sampling) to calculate
species density or identification of ecologically or anthropo-
logically important behaviours, such as tool use or camera
reactivity (Houa et al., 2022). Performing these tasks man-
ually is time consuming and limited by the availability of
human resources and expertise, becoming infeasible at large
scale. This underlines the need for rapid, scalable, and effi-
cient deep learning methods for automating the detection
and assessment of great ape populations and analysis of their
behaviours.

To facilitate the development of methods for automating
the interpretation of camera trap data, large-scale, open-
access video datasets must be available to the relevant
scientific communities, whilst removing geographic details
that could potentially threaten the safety of animals (Tuia
et al., 2022). Unlike the field of human action recognition
and behaviour understanding, where several large, widely
acknowledged datasets exist for benchmarking (Kay et al.,
2017; Kuehne et al., 2011; Soomro et al., 2012), the number
of great ape datasets is limited and those that are currently
available lack scale, diversity and rich annotations.

Contribution In this study, we present the PanAf20K
dataset, the largest and most diverse open-access video
dataset of great apes in the wild—ready for AI training.
The dataset comprises footage collected from 18 study sites
across 15African countries, featuring apes in over 20 distinct
habitats (i.e., forests, savannahs, and marshes). It displays
great apes in over 100 individual locations (e.g., trails, termite
mounds, and water sources) displaying an extensive range of
18 behaviour categories. A visual overview of the dataset is
presented in Fig. 1. The footage is accompanied by a rich set
of annotations suitable for a range of ecologically important
tasks such as detection, action localisation, fine-grained and
multi-label behaviour recognition.

Paper Organisation. Following this introduction, Sect. 2
reviews existing animal behaviour datasets and method-
ologies for great ape detection and behaviour recognition.
Section 3 describes both parts of the dataset, the PanAf20K
and the PanAf500, and details how the data was collected and
annotated. Benchmark results for several computer vision
tasks are presented in Sect. 4. Section 5 discusses the main
findings as well as any limitations alongside future research
directions while Sect. 6 summarises the dataset and high-
lights its potential applications.

2 RelatedWork

Great Ape Video Datasets for AI Development While there
have been encouraging trends in the creation of new animal
datasets (Beery et al., 2021; Cui et al., 2018; Swanson et
al., 2015; Van Horn et al., 2018), there is still only a limited
number specifically designed for great apes and even fewer
suitable for behavioural analysis. In this section, the most
relevant datasets are described.

Bain et al. (2021), curated a large camera trap videodataset
(> 40h) with fine-grained annotations for two behaviours;
buttress drumming and nut cracking. However, the data and
corresponding annotations are not yet publicly available and
the range of annotations is limited to two audio-visually
distinct behaviours. The Animal Kingdom dataset (Ng et
al., 2022), created for advancing behavioural understanding,
comprises footage sourced fromYouTube (50h, 30K videos)
along with annotations that cover a wide range of actions,
from eating to fighting. TheMammalNet dataset (Chen et al.,
2023), which is larger and more diverse, is also composed
from YouTube footage (18K videos, 539h) and focuses
on behavioural understanding across species. It comprises
taxonomy-guided annotations for 12 common behaviours,
identified through previous animal behaviour studies, for
173 mammal categories. While both datasets are valuable
resources for the study of animal behaviour, they contain
relatively few great ape videos since these species make
up only a small proportion of the overall dataset. Animal
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Fig. 1 PanAf20K visual overview. We present the largest and most
diverse open-access video dataset of great apes in the wild. It com-
prises ∼20,000 videos and more than 7 million frames extracted from
camera traps at 18 study sites spanning 15 African countries. Shown are

25 representative still frames from the dataset highlighting its diversity
with respect to many important aspects such as behavioural activities,
species, number of apes, habitat, day/night recordings, scene lighting,
and more

Kingdom spans ∼100 videos while MammalNet includes
∼1000 videos across the whole great ape family, represent-
ing ∼0.5% and ∼5% of all videos, respectively. Other work
to curate great ape datasets has focused annotation efforts
on age, sex, facial location, and individual identification
(Brookes & Burghardt, 2020; Freytag et al., 2016; Schofield
et al., 2019), rather than behaviour.

For the study of great ape behaviour, the currently avail-
able datasets have many limitations. First, they are too small
to capture the full breadth of behavioural diversity. This is
particularly relevant for great apes, which are a deeply com-
plex species, displaying a range of individual, paired and
group behaviours, that are still not well understood (Samuni
et al., 2021; Tennie et al., 2016). Secondly, they are not
composed of footage captured by sensors commonly used
in ecological studies, such as camera traps and drones. This
means that apes are not observed in their natural environment
and the distribution of behaviours will not be representative
of the wild (i.e., biased towards ‘interesting’ or ‘entertain-
ing’ behaviours). Additionally, the footage may be biased
towards captive or human-habituated animals which display
altered or unnatural behaviours and are unsuitable for study-
ing their wild counterparts (Chappell & Thorpe, 2022; Clark,
2011). All these factors may limit the ability of trained mod-
els to generalise effectively to wild footage of great apes
where conservation efforts are most urgently needed. This,

in turn, limits their practical and immediate utility. We aim
to overcome these limitations by introducing a large scale,
open-access video dataset that enables researchers to develop
models for analysing the behaviour of great apes in the wild
and evaluate them against established methods.

Great Ape Detection and Individual Recognition Yang
et al. (2019) developed a multi-frame system capable of
accurately detecting the full body location of apes in chal-
lenging camera-trap footage. In more recent work, Yang et
al. developed a curriculum learning approach that enables the
utilisation of large volumes of unlabelled data to improve
detection performance (Yang et al., 2023). Several other
works focus on facial detection and individual identifica-
tion. In early research, Freytag et al. (2016) applied YOLOv2
(Redmon & Farhadi, 2017), to localise the faces of chim-
panzees. They utilised a second deep CNN for feature
extraction (AlexNet (Krizhevsky et al., 2012) andVGGFaces
(Parkhi et al., 2015)), and a linear support vector machine for
identification. Later, Brust et al. (2017) extended their work
utilising a much larger and diverse dataset. Schofield et al.
(2019) presented a pipeline for identification of 23 chim-
panzees across a video archive spanning 14 years. Similar
to Brust et al. (2017), they trained the single-shot object
detector, SSD (Schofield et al., 2019), to perform initial
localisation, and a secondary CNNmodel to perform individ-
ual classification. Brookes and Burghardt (2020) employed
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YOLOv3 (Redmon & Farhadi, 2018) to perform one-step
simultaneous facial detection and individual identification
on captive gorillas.

Great Ape Action and Behaviour Recognition To date,
three systemshave attempted automatedgreat apebehavioural
action recognition. The first (Sakib & Burghardt, 2020)
was based on the two-stream convolutional architecture by
Simonyan and Zisserman (2014) and uses 3D ResNet-18 s
for feature extraction and LSTM-based fusion of RGB and
optical flow features. They reported a strong top-1 accuracy
of 73% across the nine behavioural actions alongside a rel-
atively low average per class accuracy of 42%. The second,
proposed by Bain et al. (2021), utilises both audio and video
inputs to detect two specific behaviours; buttress drumming
and nut cracking. Their system utilises a 3D ResNet-18 and
a 2D ResNet-18 for extraction of visual and audio features,
respectively, in different streams. They achieved an average
precision of 87% for buttress drumming and 85% for nut
cracking on their unpublished dataset. Lastly, Brookes et al.
(2023) introduced a triple-stream model that utilises RGB,
optical flow and DensePose within a metric learning frame-
work, and achieved top-1 and average per-class accuracy of
85% and 65%, respectively.

3 Dataset Overview

Task-Focused Data Preparation The PanAf20K dataset con-
sists of two distinct parts. The first includes a large video
dataset containing 19,973 videos annotated with multi-label
behavioural labels. The second part comprises 500 videos
with fine-grained annotations across ∼180,000 frames.
Videos are recorded at 24 FPS and resolutions of 720 × 404
for 15 s (∼360 frames). In this section, we provide an
overview of the dataset, including how the video data was
originally collected (see Sect. 3.1) and annotated for both
parts (see Sect. 3.2).

3.1 Data Acquisition

Camera Trapping in the Wild The PanAf Programme: The
Cultured Chimpanzee has 39 research sites and data col-
lection has been ongoing since January 2010. The data
included in this paper samples 18 of these sites and the
available data were obtained from studies of varying dura-
tion (7–22months). Grids comprising 20 to 96 1 × 1 km
cells were established for the distribution of sampling units
(to cover a minimum of 20–50km2 in rainforest and 50–
100km2 in woodland savannah). An average of 29 (range
5–41) movement-triggered Bushnell cameras were installed
per site. One camera was installed per grid cell where possi-
ble. However, in larger grids cameraswere placed in alternate
cells. If certain grid cells did not contain suitable habitat,

such as grassland in forest-savanna mosaic sites, two cam-
eras were placed instead as far away from each other as
possible, in cells containing suitable habitat to maximize
coverage. In areas where activities of interest (e.g., termite
fishing sites) were likely to take place, a second camera was
installed to capture the same scene from a different angle.
Cameras were placed approx. 1m high above ground, in
locations that were frequently used by apes (e.g., trail, fruit
trees). This method ensured a strategic installation of cam-
eras, with maximal chance of capturing footage of terrestrial
activity of apes. Both GPS location and habitat type for each
location was noted. Footage was recorded for 60 s with a
1 s interval between triggers and cameras were visited every
1–3 months for maintenance and to download the recorded
footage throughout the study periods.

3.2 Data Annotation

Fine-grained Annotation of PanAf500 The PanAf500 was
ground-truth labelled by users on the community sci-
ence platform Chimp&See (Arandjelovic et al., 2016) and
researchers at the University of Bristol (Sakib & Burghardt,
2020; Yang et al., 2019) (examples are shown in Fig. 2).
We re-formatted themetadata from these sources specifically
for use in computer vision under reproducible and compa-
rable benchmarks ready for AI-use. The dataset includes
frame-by-frame annotations for full-body location, intra-
video individual identification, and nine behavioural actions
(Sakib & Burghardt, 2020) across 500 videos and ∼180,000
frames.

As shown in Fig. 3, the number of individual apes varies
significantly, from one to nine, with up to eight individu-
als appearing together simultaneously. Individuals and pairs
occur themost frequently while groups occur less frequently,
particularly those exceeding four apes. Bounding boxes are
categorised according to the COCO dataset (Lin et al., 2014)
(i.e., > 962, 962 and 322 for large, medium and small,
respectively) with small bounding boxes occurring relatively
infrequently compared to large and medium boxes.

The behavioural action annotations cover 9 basic
behavioural actions; sitting, standing, walking, running,
climbing up, climbing down, hanging, sitting on back, and
camera interaction. We refer to these classes as behavioural
actions in recognition of historical traditions in biologi-
cal and computer vision disciplines, which would consider
them behaviours and actions, respectively. Figure4 displays
the behavioural actions classes in focus together with their
per-frame distribution. The class distribution is severely
imbalanced, with the majority of samples (> 85%) belong-
ing to three head classes (i.e., sitting, walking and standing).
The remaining behavioural actions are referred to as tail
classes. The same imbalance is observed at the clip level, as
shown in Table 1, although the distribution of classes across

123



International Journal of Computer Vision

Fig. 2 Manually annotated full-body location, species and behavioural
action labels. Sample frames extracted from PanAf20K videos with
species (row 1) and behavioural action annotations (row 2) displayed.

Green bounding boxes indicate the full-body location of an ape. Species
and behavioural action annotations are shown in the corresponding text

Fig. 3 Number of apes & bounding box size distribution in the
PanAf500 data. The top row shows the distribution of apes across frames
and videos in (a) and (b), respectively, while the distribution of bound-
ing box sizes is shown in (c). Themiddle row shows still frame examples

of videos containing one, two, four and eight apes (viewing from left to
right). The bottom row demonstrates still frames with bounding boxes
of various sizes; the colour of bounding box and associated number
represent the intra-video individual IDs
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Fig. 4 Behavioural actions in the PanAf500 data. Examples of each one of the nine behavioural action classes (right) and their distribution (left)
across 500 videos. The total number of per-frame annotations for each behavioural action class is shown on top of the corresponding bar (Color
figure online)

Table 1 Behavioural action class statistics. The total number of clips
for each behavioural action alongside the average duration in seconds
and frames

Action Clips Time (s) Frames

walking 747 3.49 ± 2.94 83.69

standing 366 4.77 ± 4.59 114.57

sitting 308 10.30 ± 5.51 247.13

climbing up 81 2.11 ± 1.67 50.59

hanging 50 7.35 ± 5.24 176.28

climbing down 35 1.73 ± 1.24 41.57

running 34 2.61 ± 2.06 62.59

camera interaction 32 2.52 ± 3.77 60.59

sitting on back 26 3.89 ± 4.04 93.46

The total number of clips for each behavioural action alongside the
average duration in seconds and frames

clips does notmatch the per-frame distribution exactly.While
behavioural actions with longer durations (i.e., sitting) have
more labelled frames, this does not necessarily translate to
more clips. For example, there are more clips of walking
and standing than sitting, and more clips of climbing up than
hanging, although the latter have fewer labelled frames.

Multi-label Behavioural Annotation of PanAf20K Com-
munity scientists on the Chimp&See platform provided
multi-label behavioural annotations for ∼20,000 videos.
They were shown 15-second clips at a time and asked to
annotate whether animals were present or whether the clip
was blank. To obtain a balance between specificity and keep-
ing the task accessible and interesting to a broad group of
people, annotators were presented with a choice of classifi-
cation categories. These categories allowed focus to be given
to ecologically important behaviours such as tool use, camera
reaction and bipedalism. Hashtags for behaviours not listed
in the classification categories were also permitted, allowing
new and interesting behaviours to be added when they were
discovered in the videos. The new behaviours were subcat-

egories of the existing behaviours, many of them relating to
tool use (e.g., algae scooping and termite fishing in aboreal
nests).

To ensure annotation quality and consistency a video
was only deemed to be analyzed when either three vol-
unteers marked the video as blank, unanimous agreement
between seven volunteers was observed, or 15 volunteers
annotated the video. These annotations were then extracted
and expertly grouped into 18 co-occurring classes, which
form the multi-label behavioural annotations presented here.
The annotations follow a multi-hot binary format that indi-
cates the presence of one or many behaviours. It should
also be noted that behaviours are not assigned to individ-
ual apes or temporally localised within each video. Figure 5
presents examples for several of the most commonly occur-
ring behaviours. Figure 6 shows the full distribution of
behaviours across videos, which is highly imbalanced. Four
of the most commonly occurring classes are observed in
> 60% videos, while the least commonly occurring classes
are observed in < 1%. The relationship between behaviours
is shown in Fig. 7 which presents co-occurring classes. The
behaviours differ from the behavioural actions included in the
PanAf500 dataset, corresponding to higher order behaviours
that are commonly monitored in ecological studies. For
example, instances of travel refer to videos that contain an
individual or group of apes travelling, whereas associated
behavioural actions such as walking or running may occur
in many contexts (i.e., walking towards another ape during a
social interaction or while searching for a tool).

Both parts of the dataset are suitable for different computer
vision tasks. The PanAf500 supports great ape detection,
tracking, action grounding, and multi-class action recog-
nition, while the PanAf20k supports multi-label behaviour
recognition. The difference between the two annotation types
can be observed in Fig. 8.
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Fig. 5 PanAf20K behaviour examples. Triplets of example frames for
six categories (i.e., feeding, travel, camera reaction, social interaction,
chimp carrying and tool use) in the PanAf20K dataset are shown. Note

that camera reaction, social interaction and chimp carrying have been
abbreviated to reaction, social and carrying, respectively

Machine Labels for Animal Location and IDs We gen-
erated full-body bounding boxes for apes present in the
remaining, unlabelled videos using state-of-the-art (SOTA)
object detection models evaluated on the PanAf500 dataset
(see Sect. 4). Additionally, we assigned intra-video IDs to
detected apes using the multi-object tracker, OC-SORT (Cao
et al., 2023). Note that these pseudo-labels do not yet asso-
ciate behaviours with individual bounding boxes.

4 Experiments and Results

This section describes experiments relating to the PanAf500
and PanAf20K datasets. For the former, we present bench-

mark results for great ape detection and fine-grained action
recognition. For the latter, we present benchmark results for
multi-label behavioural classification. For both sets of exper-
iments, several SOTA architectures are used.

4.1 PanAf500 Dataset

Baseline Models We report benchmark results for ape detec-
tion and fine-grained behavioural action recognition for the
PanAf500 dataset, trained and evaluated on SOTA archi-
tectures. For ape detection, this entails the MegaDetector
(Beery et al., 2019), ResNet-101 (+SCM+TCM) (Yang et
al., 2019), VarifocalNet (VFNet) (Zhang et al., 2021), Swin-
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Fig. 6 Behavioural annotations of the PanAf20K dataset. The distribution of behaviour categories for the PanAf20K dataset is shown. Figures
above each bar represent the dataset proportion (%) of each class

Fig. 7 Co-occurrence of behaviours in the PanAf20k dataset. A co-occurrence matrix for the PanAf20K behaviours, where each cell reflects the
number of times two behaviours occurred together. Diagonal cells are reset to aid visibility
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Fig. 8 Examples of fine-grained and multi-label annotations.
For videos with fine-grained annotations, full-body locations and
behavioural actions are associated with each ape on a frame-by-frame

basis (left). In contrast, multi-label behaviour annotations are provided
at the video level (right); behaviours are not localised or assigned specif-
ically to each ape

Table 2 Ape detection benchmarks. Detection performance on the
PanAf500 dataset. Results are reported for the MegaDetector (Beery et
al, 2019), ResNet-101 (+SCM+TCM) (Yang et al, 2019), VarifocalNet

(Zhang et al, 2021), Swin Transformer (Liu et al, 2021) and ConvNeXt
(Liu et al, 2022). The highest scores for each metric are shown in bold

Model mAP (%) Other (%)
All L M S Precision Recall F1

MegaDetector 88.0 98.05 82.60 68.21 56.93 90.58 69.92

ResNet-101 81.2 77.60 88.97 88.84 42.37 88.93 57.40

VarifocalNet 84.1 84.50 88.73 82.07 21.73 88.57 34.90

Swin Transformer 87.2 82.47 96.86 88.53 83.66 92.03 87.65

ConvNeXt 86.6 83.51 95.16 81.13 81.80 91.93 86.57

Fig. 9 Megadetector (Beery et al., 2019) achieves higher precision for
the majority of cases although ConvNeXt (Liu et al., 2022) and Swin
Transformer (Liu et al., 2021) achieve better precision scores at high
recall rates (Rdet > 0.84)

Transformer (Liu et al., 2021) and ConvNext (Liu et al.,
2022) architectures. For fine-grained action recognition, we
considered X3D (Feichtenhofer, 2020), I3D (Carreira &
Zisserman, 2017), 3D ResNet-50 (Tran et al., 2018), Times-
former (Bertasius et al., 2021) and MViTv2 (Li et al., 2022)
architectures. Action recognition models were chosen based
on SOTA performance on human action recognition datasets

Fig. 10 R101 (+SCM+TCM) (Yang et al., 2019) and VFNet (Zhang
et al., 2021) achieve the highest true positive rates at low false positive
rates (FPR < 0.15). At higher false positive rates R101(+SCM+TCM)
(Yang et al., 2019) performs better

and to be consistent with the best performing models on the
AnimalKingdom (Ng et al., 2022) and MammalNet datasets
(Chen et al., 2023). In all cases, train-val-test (80:05:15) splits
were generated at the video-level to ensure generalisation
across video/habitat and splits remained consistent across
tasks.
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Fig. 11 Megadetector detection
examples. A sequence of frames
(along each row) extracted from
3 different videos. The ground
truth bounding boxes (green) are
shown alongside detections
(red). The first sequence (row 1)
shows successful detections.
The second set of sequences
(row 2–4) provide examples of
false positive detections. The
third set of sequences (row 5–6)
provide examples of false
negative detections

Great Ape Detection We initialised all models with pre-
trained feature extractors. For allmodels, except theMegade-
tector, we utilised MS COCO (Lin et al., 2014) pretrained
weights.We use the out-of-the-boxMegadetector implemen-
tation since it is pretrained onmillions of camera trap images
and provides a strong initialisation for camera trap specific
detection tasks.We then fine-tuned eachmodel for 50 epochs
using SGD with a batch size of 16. Training was carried out
using an input image resolution of 4162 and an Intersec-
tion over Union (IoU) threshold of 0.5 for non maximum
suppression, at an initial learning rate of 1 × 10−2 which
was reduced by 10% at 80 and 90% of the total training
epochs. All ape detection models were evaluated using the
commonly used object detection metrics: mean average pre-
cision (mAP), precision, recall and F1-scores. All metrics
follow the open images standard (Krasin et al., 2017) and are
considered in combination during evaluation. Performance is
provided separately for small (322), medium (962) and large

bounding boxes (> 962), as per the COCO object detection
standard, in addition to overall performance.

Performance Table 2 shows that the fine-tuned Megade-
tector achieves the best mAP score overall and for large
bounding boxes, although it is outperformed by the Swin
Transformer andResNet-101 (+CascadeR-CNN+SCM+TCM)
on medium and small bounding boxes, respectively. This
shows that in-domain pre-training of the feature extractor
is valuable for fine-tuning since the Megadetector is the only
model pretrained on a camera trap dataset, rather than the
COCO dataset (Lin et al., 2014). Performance across the
remaining metrics, precision, recall and F1-score, is domi-
nated by the Swin Transformer, which shows the importance
of modelling spatial dependencies for good detection perfor-
mance.

The precision-recall (PR) curve displayed in Fig. 9 shows
that most models maintain precision of more than 90%
(Pdet > 0.9) at lower recall rates (Rdet < 0.80), except
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Fig. 12 Per-class distribution vs. behavioural thresholds. Distribution
of each behavioural action class at various behavioural thresholds. Note
that tail classes are effectedmore significantly by longer thresholds than
head classes

ResNet-101 (+SCM+TCM) which falls below this at recall
of 78% (Rdet = 0.78). The fine-tunedMegadetector achieves
consistently higher precision than othermodels formore than
84% of cases (Rdet = 0.84), outperforming other models
by 5% (Pdet = 0.05) on average. However, at higher recall
rates (Rdet > 0.84)ConvNeXt andSwinTransformer achieve
higher precision, with the latter achieving marginally better
performance. The ROC curve presented in Fig. 10 shows that
VFNet and ResNet-101 (+SCM+TCM) achieve higher true
positive rate than all other models at false positive rates less
than 5% (FPR < 0.05) and 40% (FPR < 0.40), respectively.
At higher false positive rates ConvNext and SwinTrans-
former are competitive with ResNet-101 (+SCM+TCM),
with marginally better performance being established by
ConvNeXt at very high false positive rates. Figure11 presents
qualitative examples of success and failure cases for the best
performing model.

Behavioural Action Recognition We trained all mod-
els using the protocol established by Sakib and Burghardt
(2020). During training we imposed a temporal behaviour
threshold that ensures that only frame sequences in which a
behaviour is exhibited for t consecutive frames are utilised
during training in order to retain well-defined behaviour
instances. We then sub-sampled 16-frame sequences from
clips that satisfy the behaviour threshold. The test threshold
is always kept consistent (t = 16). Figure 12 shows the effect
of different behaviour thresholds on the number of clips avail-
able for each class. Higher behaviour thresholds have a more
significant effect on minority/tail classes since they occur
more sporadically. For example, there are no training clips
available for the climbing down class where t = 128. All
models were initialised with feature extractors pre-trained on
Kinetics-400 (Kay et al., 2017) and fine-tuned for 200 epochs

using the Adam optimiser and a standard cross-entropy loss.
We utilised a batch size of 32, momentum of 0.9 and per-
formed linear warm-up followed by cosine annealing using
an initial learning rate of 1×10−5 that increases to 1×10−4

over 20 epochs. All behavioural action recognition models
were evaluated using average top-1 and average per-class
accuracy (C-Avg).

PerformanceTable 3 shows theX3Dmodel attains the best
top-1 accuracy at behaviour thresholds t = 16 and t = 64,
although similar performance is achieved by MViTV2 and
TimeSformer for the latter threshold. It also achieves the best
average per-class performance at t = 64, while TimeSformer
achieves the best performance at t = 32 and t = 128.

The MVITV2 models realise the best top-1 accuracy at
t = 32 and t = 128, although they do not achieve the
best average per-class performance at any threshold. The 3D
ResNet-50 achieves the best average per-class performance
at t = 16. When considering top-1 accuracy, model perfor-
mance is competitive. At lower behavioural thresholds, i.e.,
t = 16 and t = 32, the difference in top-1 performance is
2.55 and 4.68%, respectively, between the best andworst per-
forming models, although this increases to 5.38 and 11.74%
at t = 64 and t = 128, respectively. There is greater vari-
ation in average per-class performance and it is rare that a
model achieves the best performance across both metrics.

Although we observe strong performance with respect to
top-1 accuracy, our models exhibit relatively poor average
per-class performance. Figure 13 plots per-class performance
against class frequency and shows that the average per-class
performance is caused by poor performance on tail classes.
The average per-class accuracy across all models for the head
classes is 83.22% while only 28.33% is achieved for tail
classes. There is significant variation in the performance of
models; I3D performs well on hanging and climbing up but
fails to classify any of the other classes correctly. Similarly,
X3D performs extremely well on sitting on back but achieves
poor results on the other classes. None of the models except
for TimeSformer correctly classify any instances of running
during testing. Figure 14 presents the confusionmatrix calcu-
lated on validation data alongside examples of misclassified
instances.

4.2 PanAf20K Dataset

Data Setup We generate train-val-test splits (70:10:20) using
iterative stratification (Sechidis et al., 2011; Szymanski &
Kajdanowicz, 2019). During training, we uniformly sub-
sample t = 16 frames from each video, equating to ∼ 1
frame per second (i.e., a sample interval of 22.5 frames).

Baseline Models To establish benchmark performance for
multi-label behaviour recognition, we trained the X3D, I3D,
3D ResNet-50s, and MViTv2 models. All models were ini-
tialised with feature extractors pre-trained on Kinetics-400
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Table 3 Behavioural action
recognition benchmarks.
Behavioural action recognition
performance on the PanAf500
dataset. Results are reported for
X3D (Feichtenhofer, 2020), I3D
(Carreira & Zisserman, 2017),
3D ResNet-50 (Hara et al.,
2017), MViTV2 (Li et al.,
2022), and TimeSformer
(Bertasius et al., 2021) models.
The highest scores for top-1 and
average per-class accuracy are
shown in bold

Model Top-1 (%) C-Avg (%)
16 32 64 128 16 32 64 128

X3D 80.00 80.04 79.40 74.24 50.35 56.10 53.02 40.89

I3D 79.29 78.48 76.90 67.45 42.15 48.14 31.65 24.46

3D ResNet-50 77.45 76.41 74.02 73.31 55.17 33.79 38.72 36.03

MViTV2 78.31 81.09 79.29 79.19 40.45 54.91 48.28 41.11

TimeSformer 78.53 79.45 79.26 78.18 45.05 56.38 48.27 41.10

Fig. 13 Class-wise performance vs. proportion of data. The per-class accuracy for each behavioural action recognition model is plotted against the
proportion of data for each class. All models consistently achieve strong performance on the head classes, whereas performance is variable across
tail classes

(Kay et al., 2017) and fine-tuned for 200 epochs using the
Adam optimiser. We utilised a batch size of 32, momentum
of 0.9 and performed linear warm-up followed by cosine
annealing using an initial learning rate of 1 × 10−5 that
increases to 1×10−4 over 20 epochs.Models were evaluated
usingmAP, subset accuracy (i.e., exact match), precision and
recall. Behaviour classes were grouped, based on class fre-
quency, into head (> 10%), middle (> 1%) and tail (< 1%)
segments, and mAP performance is reported for each seg-
ment. To address the long-tailed distribution, we substitute
the standard loss for those calculated using long-tail recog-
nition techniques. Specifically, we implement (i) focal loss
(Cui et al., 2019) LC B ; (ii) logit adjustment (Menon et al.,
2020) L L A; and (iii) focal loss with weight balancing via a
MaxNorm constraint (Alshammari et al., 2022).

Multi-label Behaviour Recognition As shown in Table 4,
performance is primarily dominated by the 3D ResNet-50
and TimeSformer models when coupled with the various
long-tailed recognition techniques. TheTimeSformer (+Log-
itAdjustment) attains the highest mAP scores for both overall
and tail classes, while the MViTV2 (+FocalLoss) and 3D
ResNet-50 (+FocalLoss) demonstrate superior performance
in terms of head and middle class mAP, respectively. The 3D

ResNet-50 (+FocalLoss) and 3D ResNet-50 (+WeightBal-
ancing) models achieve the best subset accuracy and recall,
respectively, while the highest precision is realised by the
TimeSformer (+LogitAdjustment) model. Although the 3D
ResNet-50 and TimeSformer models perform strongest, it
should be noted that the difference in overall mAP across all
models is small (i.e., 4.03% between best and worst perform-
ing models).

As demonstrated by the head, middle and tail mAP scores,
higher performance is achieved for more frequently occur-
ring classes with performance deteriorating significantly for
middle and tail classes. Across models, the average differ-
ence between head and middle, and middle and tail classes
is 35.68 (±1.88)% and 40.55 (±3.02)%, respectively. The
inclusion of long-tailed recognition techniques results in
models that consistently attain higher tail class mAP per-
formance than their standard counterparts (i.e., models that
do not use long-tail recognition techniques). The logit adjust-
ment technique consistently results in the best tail class mAP
across models, whereas the focal loss results in the best per-
formance on the middle classes for all models except the
X3D model. None of the standard models achieve the best
performance on any metric.
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Fig. 14 Confusionmatrix&example errors. The confusionmatrix (left)
is shown alongside examples of mis-classified frames (right). For mis-
classified examples, ground truth labels are shown on the y-axis (i.e.,
hanging, running, sitting) and examples of the classes most likely to be

incorrectly predicted for the ground truth class are shown on the x-axis.
Note that a high proportion of errors are due to predictions made in
favour of majority classes

Figure 15 plots per-class mAP performance of the 3D
ResNet-50 and 3D ResNet-50 (+LogitAdjustment) models
against the per-class proportionof data. Thebest performance
is observed for the three most commonly occurring classes
(i.e., feeding, travel, and no behaviour) whereas the worst
performance is obtained by the most infrequently occur-
ring classes (i.e., display, aggression, sex, bipedal, and cross
species interaction) with the exception of piloerection. It
can also be observed that the ResNet-50 (+LogitAdjustment)
model outperforms its standard counterpart on the majority
of middle and tail classes, although it is outperformed on
tail classes. Examples of success and failure cases by the 3D
ResNet-50 model are presented in Fig. 16.

5 Discussion and FutureWork

Results The performance of current SOTA methods is not
currently sufficient for facilitating the large-scale, automated
behavioural monitoring required to support conservation
efforts. The conclusions drawn in ecological studies rely on
the highly accurate classification of all observed behaviours
by expert primatologists. While the current methods achieve
strong performance on head classes, relatively poor perfor-
mance is observed for rare classes. Our results are consistent
with recent work on similar datasets (i.e., AnimalKingdom
(Ng et al., 2022) and MammalNet (Chen et al., 2023))
which demonstrate the significance of the long-tailed dis-

tribution that naturally recorded data exhibits (Liu et al.,
2019). Similar to (Ng et al., 2022), our experiments show
that current long-tailed recognition techniques can help to
improve performance on tail classes, although a large dis-
crepancy between head and middle, and head and tail classes
still exists. The extent of this performance gap (see Table 4)
emphasises the difficulty of tackling long-tailed distributions
and highlights an important direction for future work (Per-
rett et al., 2023). Additionally, the near perfect performance
at training time (i.e., > 95% mAP) highlights the need for
methods that can learn effectively from a minimal number of
examples.

Community Science and AnnotationAlthoughbehavioural
annotations are provided by non-expert community sci-
entists, several studies have shown the effectiveness of
citizen scientists to perform complex data annotation tasks
(Danielsen et al., 2014; McCarthy et al., 2021) typically car-
ried out by researchers (i.e., species classification, individual
identification etc.). However, it should be noted that, as high-
lighted by Cox et al. (2012), community scientists are more
prone to errors relating to rare species. In the case of our
dataset, this may translate to simple behaviours being iden-
tified correctly (e.g., feeding and tool use) whereas more
nuanced or subtle behaviours (e.g., display and aggression)
are missed or incorrectly interpreted, amongst other prob-
lems. This may occur despite the behaviour categories were
predetermined by experts as suitable for non-expert annota-
tion.
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Fig. 15 Class-wise accuracy vs. proportion of data. The per-class
average precision for the 3D ResNet-50 (Hara et al., 2017) and 3D
ResNet-50 (+LogitAdjustment) (Hara et al., 2017; Menon et al., 2020)
models is plotted against the proportion of data for each class. In general,

better model performance is achieved on classes with high data propor-
tions and the ResNet-50 (+LogitAdjustment) model shows improved
performance on middle and tail classes

Fig. 16 Multi-label errors.
Frames extracted from three
videos exhibit success and
failure cases of the 3D
ResNet-50 model. Behaviour
predictions are shown in light
boxes of the first frame of each
sequence; true positives are
green, false positive are blue,
and false negatives are red. In
the first video (row 1), the model
fails to classify feeding by the
chimp visible in frames 1 and 2
whereas in the second video
(row 2), it fails to classify tool
use by the infant chimp in the
final frame. Climbing is
predicted incorrectly in the final
video (row 3) (Color figure
online)

Thedataset’s rich annotations suit various computer vision
tasks, despite key differences from other works. Unlike sim-
ilar datasets (Chen et al., 2023; Ng et al., 2022), behaviours
in the PanAf20K dataset are not temporally located within
the video. However, the videos in our dataset are relatively
short (i.e., 15 s) in contrast to the long form videos included
in other datasets. Therefore, the time stamping of behaviour
may be less significant considering it is possible to utilise
entire videos, with a suitably fine-grained sample interval
(i.e., 0.5–1s), as input to standard action recognition mod-
els. With that being said, behaviours occur sporadically and
chimpanzees are often only in frame for very short periods
of time. Therefore, future work will consider augmenting the
existing annotations with temporal localisation of actions.
Moreover, while our dataset comprises a wide range of
behaviour categories, many of them exhibit significant intra-

class variation. In the context of ecological/primatological
studies, this variation often necessitates the creation of sep-
arate ethograms for individual behaviours (Nishida et al.,
1999; Zamma & Matsusaka, 2015). For instance, within the
tool use behaviour category, we find subcategories like nut
cracking (utilizing rock, stone, or wood), termite fishing, and
algae fishing. Similarly, within the camera reaction category,
distinct subcategories include attraction, avoidance, and fix-
ation. In future, we plan to extend the existing annotations to
include more granular subcategories.

Ethics Statement All data collection, including camera
trapping, was done non-invasively, with no animal contact
and no direct observation of the animals under study. Full
research approval, data collection approval and research and
sample permits of national ministries and protected area
authorities were obtained in all countries of study. Sample
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Table 4 Multi-label behaviour
recognition benchmarks. Results
are reported for I3D (Carreira
and Zisserman, 2017), 3D
ResNet-50 (Hara et al, 2017),
X3D (Feichtenhofer, 2020),
MViTV2 (Li et al, 2022), and
TimeSformer (Bertasius et al,
2021) models with focal loss
(Cui et al, 2019), logit
adjustment (Menon et al, 2020),
and focal loss with weight
balancing (Alshammari et al,
2022). The highest scores across
all metrics are shown in bold

Model mAP (%) mAP (%) Other (%)
All Head Middle Tail Accuracy Precision Recall

I3D 45.49 87.92 53.43 6.62 41.99 51.77 38.62

+FocalLoss 46.65 87.67 53.51 10.17 42.51 60.02 37.46

+LogitAdjustment 46.81 87.52 52.54 12.05 43.02 57.99 38.88

+WeightBalancing 46.41 88.41 51.91 11.07 41.93 57.36 35.62

3D ResNet-50 46.03 86.12 53.22 9.73 40.76 54.13 35.87

+FocalLoss 47.93 87.07 54.31 13.35 43.35 57.77 38.89

+LogitAdjustment 48.04 87.44 53.91 13.96 41.15 58.86 36.27

+WeightBalancing 46.68 87.09 54.06 9.90 41.54 54.05 40.62

X3D 46.06 87.32 52.95 9.36 42.70 49.26 39.25

+FocalLoss 47.19 89.26 52.75 11.75 41.67 50.93 36.99

+LogitAdjustment 47.85 88.58 53.06 13.77 42.64 59.18 36.94

+WeightBalancing 45.64 88.45 51.15 9.75 40.96 48.40 33.29

MViTV2 45.71 88.72 51.16 9.76 42.38 52.03 36.55

+FocalLoss 45.78 89.27 50.82 10.05 42.83 56.54 36.38

+LogitAdjustment 45.91 88.97 50.75 10.74 41.02 57.73 38.11

+WeightBalancing 45.36 88.58 49.82 10.59 42.44 49.77 36.20

TimeSformer 47.24 88.83 51.91 13.29 41.60 57.66 38.63

+FocalLoss 48.82 88.75 52.65 17.10 42.70 68.01 37.37

+LogitAdjustment 49.39 88.52 53.21 18.20 42.44 71.31 35.45

+WeightBalancing 48.17 87.98 51.81 16.78 41.86 61.16 39.36

Results are reported for I3D (Carreira & Zisserman, 2017), 3D ResNet-50 (Hara et al., 2017), X3D (Feicht-
enhofer, 2020), MViTV2 (Li et al., 2022), and TimeSformer (Bertasius et al., 2021) models with focal loss
(Cui et al., 2019), logit adjustment (Menon et al., 2020), and focal loss with weight balancing (Alshammari
et al., 2022). The highest scores across all metrics are shown in bold

and data export was also done with all necessary certifi-
cates, export and import permits. All work conformed to
the relevant regulatory standards of the Max Planck Soci-
ety, Germany. All community science work was undertaken
according to the Zooniverse User Agreement and Privacy
Policy. No experiments or data collection were undertaken
with live animals.

6 Conclusion

We present by-far the largest open-access video dataset of
wild great apes with rich annotations and SOTAbenchmarks.
The dataset is directly suitable for visual AI training and
model comparison. The size of the dataset and extent of
labelling across > 7M frames and ∼ 20K videos (lasting
> 80h) now offers the first comprehensive view of great ape
populations and their behaviours to AI researchers. Task-
specific annotations make the data suitable for a range of
associated, challenging computer vision tasks (i.e, animal
detection, tracking, and behaviour recognition) which can
facilitate ecological analysis urgently required to support
conservation efforts. We believe that given its immedi-
ate AI compatibility, scale, diversity, and accessibility, the
PanAf20K dataset provides an unmatched opportunity for
the many communities working in the ecological, biologi-

cal, and computer vision domains to benchmark and expand
great ape monitoring capabilities. We hope that this dataset
can, ultimately, be a step towards better understanding and
more effectively conserving these charismatic species.
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Heidi Pfund, Kristeena Sigler and JaneWidness. The work that allowed
for the collection of the dataset was funded by the Max Planck Society,
Max Planck Society Innovation Fund, and Heinz L. Krekeler. In this
respect we would like to thank: Ministre des Eaux et Forěts, Ministère
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