日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Quantitative passive imaging by iterative holography: the example of helioseismic holography

MPS-Authors
/persons/resource/persons291643

Müller,  Björn
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons262984

Hohage,  Thorsten
Max Planck Fellow Group: Inverse Problems, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons214480

Fournier,  Damien
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons103925

Gizon,  Laurent
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Müller, B., Hohage, T., Fournier, D., & Gizon, L. (2024). Quantitative passive imaging by iterative holography: the example of helioseismic holography. Inverse Problems, 40, 045016. doi:10.1088/1361-6420/ad2b9a.


引用: https://hdl.handle.net/21.11116/0000-000E-B06A-4
要旨
In passive imaging, one attempts to reconstruct some coefficients in a wave equation from correlations of observed randomly excited solutions to this wave equation. Many methods proposed for this class of inverse problem so far are only qualitative, e.g. trying to identify the support of a perturbation. Major challenges are the increase in dimensionality when computing correlations from primary data in a preprocessing step, and often very poor pointwise signal-to-noise ratios. In this paper, we propose an approach that addresses both of these challenges: it works only on the primary data while implicitly using the full information contained in the correlation data, and it provides quantitative estimates and convergence by iteration. Our work is motivated by helioseismic holography, a well-established imaging method to map heterogenities and flows in the solar interior. We show that the back-propagation used in classical helioseismic holography can be interpreted as the adjoint of the Fréchet derivative of the operator which maps the properties of the solar interior to the correlation data on the solar surface. The theoretical and numerical framework for passive imaging problems developed in this paper extends helioseismic holography to nonlinear problems and allows for quantitative reconstructions. We present a proof of concept in uniform media.