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Abstract: Plants store chemical defenses that act as toxins against herbivores, such as toxic isothio-
cyanates (ITCs) in Brassica plants, hydrolyzed from glucosinolate (GLS) precursors. The fitness of
herbivorous larvae can be strongly affected by these toxins, causing immature death. We modeled
this phenomenon using a set of ordinary differential equations and established a direct relationship
between feeding, toxin exposure, and the net energy of a larva, where the fitness of an organism
is proportional to its net energy according to optimal foraging theory. Optimal foraging theory is
widely used in ecology to model the feeding and searching behavior of organisms. Although feeding
provides energy gain, plant toxins and foraging cause energy loss for the larvae. Our equations
explain that toxin exposure and foraging can sharply reduce larval net energy to zero at an instar.
Since herbivory needs energy, the only choice left for a larva is to stop feeding at that time point. If
that is significantly earlier than the end of the last instar stage, the larva dies without food. Thus,
we show that plant toxins can cause immature death in larvae from the perspective of optimal
foraging theory.

Keywords: glucosinolates (GLSs); isothiocyanates (ITCs); larval death; herbivory; net-energy;
metabolic cost; non-autonomous differential equations; optimal foraging theory

Key Contribution: We developed non-autonomous ordinary differential equations under the frame-
work of optimal foraging theory to explain early larval mortality caused by plant toxins. A major
result is that net energy can become zero at any instar, causing the immature death of the larva.

1. Introduction

Plants of the Brassicaceae family store glucosinolates (GLSs) and their corresponding
activating enzyme (myrosinase) in their leaves to defend themselves against herbivore
attacks [1–3]. The plant stores GLSs and myrosinase in separate leaf compartments to
protect itself. Upon herbivory, the components are brought together, which initiates GLS
hydrolysis via myrosinase [2,3] to produce isothiocyanates (ITCs), nitriles, or epithioni-
triles [4]. These hydrolyzed products act as toxins, growth inhibitors, and deterrents to
leaf-chewing lepidopteran larvae [4]. Among all those chemicals, ITCs are the most toxic,
immensely damaging larval fitness [5,6].

In response to plant defenses, lepidopteran insects have evolved special adapta-
tions [7], called counter-defenses. Insects with preemptive counter-defenses prevent (not
perfectly) the formation of ITCs to avoid toxin exposure [8–11]. For example, some GLS-
metabolizing insects, such as Plutella xylostella, desulfate GLSs before hydrolysis [9], and
Pieris rapae can redirect GLS hydrolysis to produce nitriles [11]. Some GLS-sequestering
specialists, such as Athalia rosae L. and Phyllotreta armoraciae, rapidly absorb GLSs before
hydrolysis [8,10,12].
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Insects with direct counter-defenses, on the other hand, do not have any mecha-
nisms to circumvent ITC formation. However, they can metabolize the hydrolyzed ITCs
to nontoxic conjugates of the tripeptide L-glutathione (GSH) [7,13,14]. Generalists, for
example, Spodoptera littoralis, Spodoptera exigua, Trichoplusia ni, Mamestra brassicae, and He-
licoverpa armigera, usually employ this type of ITC-detoxification strategy. Experimental
results suggest that direct counter-defense is less efficient, meaning that the concentra-
tion of unmetabolized or free ITC is comparatively higher with direct counter-defense
than for pre-emptory detoxification system [13,14]. This is substantiated by mathematical
modeling [15].

One of the major negative effects of ITCs on feeding larvae is a high mortality rate.
For example, both M. brassicae and P. rapae larvae show low survival rates on Brassicaceae
plants [16]; an average mortality of 80% was reported in generalist cabbage moth (Mamestra
brassicae) for larvae of the first instar while feeding on white cabbage (Brassicae oleracea
var. capitata) [17]. ITCs are very effective in increasing mortality in specialist small white
Pieris rapae larvae [18]. Mamestra brassicae larvae have low chances of survival against the
aliphatic GLSs (sinigrin and gluconapin) contained in Brassica oleracea leaves [19]. Allyl
isothiocyanate (AITC) can raise mortality up to 100% in larvae of masked chafer beetles,
Cyclocephala spp. Latreille [20,21], Sitophilus zeamais, Rhyzopertha dominica, and Tribolium
castaneum [22].

The fast decaying fitness of a larva does not only lead to high mortality but also
to other adverse effects, such as reduced growth, slow feeding, delayed development,
etc. [5,13]. Therefore, it is important to determine how the fitness of a larva is correlated to
the interplay between nutritional gain and the various types of toxin (ITCs) costs, owing
to herbivory. However, in our study, we only focused on how toxin cost leads to larval
mortality. In optimal foraging theory (OFT) [23,24], a long-known concept (originally
established for predation) is that species increase their fitness by maximizing the net rate
of energy intake from feeding [25–28]. The net energy benefit of an organism comes from
feeding, but foraging causes net energy loss [27,28]. Moreover, herbivory stops if the net
energy benefit is zero [27].

Foraging costs should be common for every species if food resources are not abun-
dant [29,30]. However, in the case of toxic-plant-feeding larvae, toxin exposure is the major
cost, because fitness is negatively correlated to toxin (ITCs) concentration in the larval
gut [5,13]. Therefore, given the aspects of the optimal foraging models under consideration,
we accommodated ITC exposure as an additional cost to a leaf-chewing larva on a Bras-
sicaceae plant. Through herbivory, the net energy of a larva is gained from nutrition but
lost through the metabolic cost of ITCs, together with foraging, as shown in the schematic
diagram in Figure 1.

Herbivory

Energy gain

Net-energy

Energy loss

Difference

Food

Metabolic cost of toxins

Metabolic cost of foraging

Figure 1. Scheme for the net energy of a larva, obtained through herbivory.

We formulated the larval net energy curve by developing a system of non-autonomous
ordinary differential equations (ODEs), because ODEs are widely used in mathematical
biology to describe dynamic processes [27,28,31]. From the behavior of the net energy
curve, we explained the relationship between net energy and larval mortality. Our model
equations establish a continuous relationship between herbivory, GLS ingestion, exposure
to ITCs, and net energy of a larva as its instar stage progresses. From that relationship, we
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obtained the exact time at which the larval net energy is zero. Theoretically, it is the time
point at which a larva stops feeding, because further feeding leads to negative net energy.
If the net energy is zero long before the final instar, the larva dies due to lack of nutrition.
Thus, from the perspective of optimality theory [32], we explain how decaying fitness
causes mortality in the larval stages of insect herbivores on toxic Brassicaceae host plants.

2. Results

We summarize our main results as follows:

1. Herbivory per larva is a strictly monotonic increasing quadratic function, as shown in
Equation (2) and Figure 2A, which is a good fit to previously published data [33].

2. The GLSs ingested by a larva are proportional to herbivory, as shown in Equation (4)
and Figure 2A.

3. The concentration of ITCs in the larval gut is a strictly monotonic increasing function,
as shown in Equation (7) and Figure 2B.

4. Due to the adverse effect of ITCs (plant toxins) , the larval net energy becomes zero
at a certain time point (T). This may happen in any instar, as shown in Equation (10)
and Figures 3 and 4.

5. When net energy becomes zero, a larva stops herbivory because further feeding leads
to negative net energy, as shown in Equations (11) and (15) and Figure 3. The energy
benefit of herbivory and the metabolic costs of toxin exposure and foraging determine
the particular time, T, as shown in Figure 4.

6. The time point, T, when herbivory stops can be obtained numerically from Equation (11).
Analytically, T can be calculated if some approximations are used, as shown in
Equation (15).

7. If the net energy reaches zero at an early time point (Figure 4), i.e., T is small in
comparison to larval development time, the larva dies prematurely. A larva does not
necessarily die as soon as it stops herbivory; there could be a time lag, but eventually
it dies without nutrition. If net energy becomes zero close to the end of the larval
instar stages (Figure 4), i.e., T is approximately equal to larval development time, then
the larva survives the plant toxin.

Figure 2. (A) Herbivory (H) and GLS ingestion (G) by a larva, as calculated using
Equations (2) and (4), respectively. Parameters: θ = 0.3, α = 0.4. (B) ITC (I) exposure of a larva, as
calculated using Equation (7). Parameters: β = 0.2, γ = 0.8.
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Figure 3. Net energy (EN) of a larva becomes 0 at some time point, initial value EN0 = 0.2; parameters
κ = 0.3, µ = 0.1, δ = 0.03, β, γ are the same as in Figure 2.

Figure 4. Net energy (EN) of a larva can be zero early or later, depending upon the parameters of
benefits (κ) and costs (µ and δ).

3. Discussion

We developed non-autonomous ordinary differential equations (ODEs) under the
framework of optimal foraging theory (OFT) to obtain results that help explain the early
larval mortality caused by plant toxins, as shown in Equations (11) and (15). Our use of
non-autonomous equations was motivated by the reasoning that larval development is
driven by a genetic program that is implemented in time. All equations can be solved
analytically. A major result is that net energy intake can become zero during any instar,
depending on the activity and concentration of the toxin. This can cause the immature
death of the larva.

Optimal foraging theory (OFT) has been applied to determine the foraging behavior
of the European starling [34], honeybee workers [35], centrarchids (white crappie and
bluegill) [36], muskoxen [37], and so on. However, applying OFT to field studies can
be challenging [38]. Especially, field conditions may introduce complexities that are not
considered in theoretical models [39]. Regarding our model of larval feeding behavior
and exposure to plant toxins, certain observations can be made in the field. For example,
the mean value expressing the maximum time of larval herbivory (T) can be measured;
parameters related to larval herbivory, such as θ, κ, can be estimated from larval leaf
consumption data [33]; parameters related to toxin exposure, such as β, γ, can be estimated
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by fitting our ITC curve to data [13]. Moreover, a relationship between the costs of toxins
and foraging (µ and δ, respectively) can be established from the analytical solution (15).

Here, we adopted a deterministic approach. Deterministic models are widely used
in various subfields of mathematical biology, such as epidemiology [40,41], population
dynamics [42–45], enzyme kinetics [15,31,46–48], optimal foraging [27,28], and so on. In
parallel to deterministic techniques, stochastic methods are also extensively applied to
explain biological phenomena. For example, geometric Brownian motion (GBM) is a
stochastic process in which the logarithm of the variable follows Brownian motion with a
drift. It can be described using a particular stochastic differential equation (SDE) [49–52].
GBM can be used to model the population dynamics of bacteria [53,54], for example, under
shock treatment with toxins or antibiotics killing a large part of the population [55]. In
mathematical language, this reset means an abrupt reduction in the process variable [52,55].
Similarly, we mathematically explained that larval net energy can be abruptly reduced to
zero in an immature stage of development, as shown in Equations (11) and (15). However,
while bacteria can start dividing again and, thus, their population can recover, insect
larvae show different growth dynamics in that they “age” and cannot recover as easily
as bacteria. We found that our deterministic approach, which is procedurally different
from the above-mentioned stochastic methods, is sufficient to describe the phenomenon
under study.

Generalist insect herbivores are usually highly affected because their toxin (I) expo-
sure is high due to their inefficient counter-defense mechanisms [13–15]. For example,
the amount of ITCs is extremely high in the feces of generalist Lepidoptera (S. littoralis,
H. armigera, M. brassicae, and T. ni) in comparison to that in specialist Lepidoptera (P. xy-
lostella and P. rapae) of Brassicaceae host plants [13,14]. Therefore, the toxin cost function
(µI) increases faster for generalists, which causes a fast-degrading net energy curve in Equa-
tion (10). This explains why immature deaths (high larval mortality) are highly common
among generalist insects [16,17,19].

High mortality can sometimes also be seen in larvae that are specialists for Brassi-
caceae [16,18,20]. For example, although P. rapae is a specialist against the defenses of Bras-
sica plants, ITCs can cause immature death in P. rapae larvae [16,18]. This phenomenon can
be explained using Equation (10). Although, toxin (ITCs) exposure is comparatively low for
specialist larvae (both GLS-metabolizing and -sequestering), it is not negligible [10,13,15,56].
Earlier, we substantiated, using a model, that despite having efficient counter-defense sys-
tems, specialist larvae can be affected by plant toxins [15]. Since there is an exposure to
toxins with an associated cost µ (a proportionality constant), Equation (8), larval net energy
can be decreased by ITCs (Figures 3 and 4). Therefore, the net energy of a specialist larva
can be zero early on (before its last instar ends) , depending on the cost (µ) associated with
the toxins (I). So, we can say that specialists should be less affected by plant defenses than
generalists due to their low toxin exposure, but they are not completely immune to plant
defenses [15,57].

Generally, in experimental studies, the fitness of a larva is determined using the time
courses of larval body size and weight [13,58–64]. The data suggest that a larva develops
exponentially (or sometimes linearly) until its last instar [58,63,64]. In addition to early
larval mortality, plant toxins slow the development curve (i.e., slow weight and size gain)
of a larva [4,65–67]. Larval growth may be explained by its net energy function. At the start,
net energy intake is very low, so that growth is slow. Later, the growth rate increases because
net energy is increased. In the end, net energy intake becomes very low again, reaching zero
at the point of stopping herbivory, which indicates that the larval growth curve should also
decrease [63,64]. In future modeling studies, it would be worth elucidating the relationship
between larval development (mass and size increases) and the net energy reserve of a larva
in more detail.

We can generalize our results to other plant families. High mortality in herbivorous
insects when faced with plant toxins is a widely common phenomenon [68]. For example,
the ingestion of luteolin flavone caused 43% mortality in S. exigua caterpillars [69]. Codling
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moth (Cydia pomonella) caterpillars have a cumulative mortality of 23% in the first instar,
33.6% in the second instar, 75.2% in the third instar, and 96.8% in the fourth instar [33]
on apple plant leaves, possibly due to the phlorizin defense. The crude extract of a
herbaceous plant, Cynodon dactylon, caused 75% mortality in Spodoptera litura larvae [70].
High mortality in Culex quinquefasciatus mosquitoes was found when facing the chemical
defenses of five weed plants (Convulvulus arvensis, Chenopodium murale, Tribulus terrestris,
Trianthema portulacastrum, and Achyranthes aspera) [71]. Therefore, we think that, with small
modifications, our model can be applied to explain the generally high larval mortality
owing to plant toxins.

Our model includes only the direct role of plant toxins [72,73]. However, plant defenses
also cause high mortality in insect herbivores by attracting the natural enemies (predator
and parasitoid) [42,74–76]. This is called the indirect effect of plant defenses [72]. For
example, Cotesia rubecula wasps are attracted by nitriles [77], and Trichogramma chilonis
wasps are recruited by isothiocyanates in Brassica plants [78]. Predation and parasitism
by natural enemies, causing immature death in larvae, is substantiated by mathematical
modeling in population ecology [42,79,80]. However, we did not incorporate this indirect
role of plant defenses, rather focusing only on the direct, adverse effect of plant toxins on
the fitness of a larva.

Host plant toxins only kill a certain percentage of larvae during herbivory [33,69,70].
This causes a major problem from crop protection against pest infestations [81]. Several
approaches are implemented to stop insect pests, one of which is the application of in-
secticides [82]. Insecticides are treated as novel compounds that are toxic to the feeding
larvae [83]. Since insects are usually not adapted to novel toxins, larval fitness can be
rapidly reduced to death [71,84]. Therefore, our model can be applied to explain the early
mortality of larvae caused by insecticide application. However, insecticides can have
negative effects on our environment as well as cause serious public health issues [84,85].
Moreover, insecticide resistance in insect pests raises critical concerns [86], wihch is why al-
ternative safe approaches, such as intercropping, sterile insect techniques, etc., are practiced
for crop protection [87,88].

4. Materials and Methods

Lepidepteran larvae grow in instars. Instar-specific increases in larval mass and
herbivory have been reported [33,58,63,64]. Therefore, we relied on the leaf consumption
data from the codling moth (Cydia pomonella) to express herbivory as a function of instar
or time. Published data [33] regarding herbivory by C. pomonella on apple leaves suggest
that the cumulative leaf consumption (i.e., herbivory) per larva with respect to its instar
follows a quadratic or parabolic curve. The mean data points [33] are shown in Table 1
and plotted in Figure 5. Since C. pomonella belongs to the Lepidopteran order, a similar
herbivory function can be assumed for other species of that order due to the similarities in
biology. Moreover, by way of example, we focused, in this study, on Brassicaceae plants.
However, the described phenomena are very general for the feeding of insect larvae on
plants (see Section 3).

Table 1. Mean data of cumulative leaf consumption (or herbivory) per larva for different instars of
codling moth (Cydia pomonella), originally published in [33].

Instar Cumulative Leaf Consumption (or Herbivory) per Larva (Mean) Duration of Instar (Mean)

1 0.588 mg 3.54 days

2 2.713 mg 3.27 days

3 8.001 mg 3.27 days

4 37.667 mg 4.5 days
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Figure 5. Plot of data points from Table 1.

For simplicity, if we assume that the herbivory growth function is differentiable
even at the transitions between instars, then the data points (Figure 5) can be modelled
deterministically using a non-autonomous ordinary differential equation. Let H(t) be
the amount of herbivory of a larva at time t, where larval instar continuously increases
with its development time. Herbivory by a larva increases as its instar progress or the
larva develops [33], where larval development time is also its herbivory time. Therefore,
we denote the herbivory growth rate per unit time (for a larva) using a constant θ, i.e.,
the herbivory growth rate is proportional to development or herbivory time with the
proportionality constant θ. The rate (growth) equation of larval herbivory is then :

1
t

dH
dt

= θ (1)

Here and below, we use non-autonomous differential equations (i.e., equations explic-
itly depending on time) because we consider larval development as driven by a genetic
program that is implemented over time. Since there is no herbivory until the larva is
hatched from an egg, the initial condition is H(t = 0) = 0. Solving Equation (1) with this
initial condition, we obtain:

H =
θt2

2
(2)

Thus, herbivory per larva in Equation (2) is a quadratic or parabolic function of time,
as shown in Figure 2A, which matches the data points [33] in Figure 5. More exactly, the
parameter θ depends on the instar. For simplicity, we neglect this effect and consider θ
to be constant throughout. Note that when larval development ends, herbivory stops.
Mathematically, this is defined as:

Herbivory =


0, at t = 0
H(t), at 0 < t ≤ b,
0, at t > b

(3)

where b is the end time point of larval development.
Since GLSs are entirely contained in the plant leaves, and our model does not take

into account spatial heterogeneity, it is plausible to assume that the ingestion of GLSs by a
leaf-chewing larva is proportional to its herbivor. Let G(t) be the GLSs ingested by a larva
at time t ∈ [0, b]; the GLS ingestion is:

G =
αt2

2
, where initially G(t = 0) = 0 (4)
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where α is the GLS ingestion growth rate constant per unit time t; i.e., the growth rate of
GLS ingestion ( dG

dt ) is defined as αt, which linearly increases with time t. The quadratic or
parabolic curve of GLS ingestion, in Equation (4), is shown in Figure 2A.

The ingested plant GLSs are degraded to form ITCs, other less toxic products [4],
and nontoxic products (for pre-emptive counter-defense only) [9,11,15]. Moreover, GLSs
can be sequestered by sequestering specialists [8,10], which can also be included in the
degradation of ingested plant GLSs. Let η be the rate at which the ingested GLSs are
degraded, and let F(t) be the free GLS content in the larval gut after degradation at time
t ∈ [0, b]. Therefore, the growth rate of the free GLS content in larval gut is:

dF
dt

= αt − ηF (5)

Experimental studies found no traces of free GLSs (F) in the larval gut [5,13,14]. For
example, Spodoptera littoralis and Mamestra brassicae larvae were fed on Arabidopsis thaliana
leaves, and feces of those larvae were collected daily. However, free GLSs were not detected
in the larval feces [13]. Therefore, we assume that F stays in a quasi steady state [47,89]
close to 0 on each day during the entire larval development period. In particular, this
implies that the net increase in the free GLS concentration (after ingestion) in the larval gut
is negligibly small compared to degradation, i.e. dF

dt ≈ 0 in Equation (5). These assumptions
prove that plant GLS ingestion and degradation are simultaneous processes, explained by
the following calculations:

dF
dt

≈ 0

⇒ ηF ≈ αt

⇒ αt
η

≈ 0 ∀ t > 0, since F ≈ 0 is the quasi steady state

⇒ α ≪ η

This implies that ingested GLSs are degraded immediately. Moreover, ηF ≈ αt means
that GLSs’ degradation to ITCs and other products in the larval gut is proportional to
time t.

Since ITCs are the most toxic (having direct fitness cost for a larva) among all the
products, we modeled only the dynamic ITC concentration in the larval gut. Let β be the
hydrolysis rate at which ITCs are formed from GLSs, and let γ be the excretion rate and
rate of nontoxic conjugate product formation (only for direct counter-defense) [7,13–15].
Assuming I(t) is the concentration of ITCs in the larval gut at time t ∈ [0, b], the rate
equation for ITC exposure is:

dI
dt

= βt − γI (6)

The initial condition for the produced ITCs is I(t = 0) = 0. Since Equation (6) is
a first-order linear ODE system, we can analytically solve it using the integrating factor
method (see Appendix A.1):

I =
β

γ2

(
γt − 1 + e−γt) (7)

where Equation (7) is a strictly monotonic increasing function of time (for proof, see
Appendix A.3). The graphical presentation of I for definite parameter values is shown in
Figure 2B.

The net energy curve for a larva can be determined from the difference between the
energy-benefit function of herbivory and metabolic cost functions of toxin and foraging, as
shown in Figure 1. Below, we develop these functions:
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• Energy benefit: A larva obtains energy benefit from herbivory. Therefore, this function
is proportional to herbivory: Equations (1) and (2). Let the increase in energy growth
rate per unit time due to the growth of larvae be a constant κ. Then, the energy
growth rate is a linear function κt (like Equation (1)) and larval energy is a monotonic
increasing quadratic function of time κt2

2 (like Equation (2)) if metabolic costs (of toxin
and foraging) are absent.

• Toxin cost: The metabolic costs of toxins in a larva should be proportional to the ITC
concentration I. Assuming µ is the proportionality constant, a simple function for the
metabolic cost of toxin is µI.

• Foraging cost: This is the metabolic cost of herbivory, i.e., the energy expended for
herbivory. Therefore, the foraging cost is proportional to the herbivory function in
Equation (2), denoted as δt2, where δ is the proportionality constant.

By denoting the net energy of a larva at time t ∈ [0, b] as EN , the change in net
energy is:

dEN
dt

= κt − µI − δt2 (8)

Using the value of I from Equation (7), Equation (8) can be rewritten as:

dEN
dt

= κt − µβ

γ2

(
γt − 1 + e−γt)− δt2 (9)

A larva needs basic energy (some positive value) to commence herbivory. This could
be called the innate energy, already present in a larva just after it is hatched from the egg.
So, initially, net energy is equal to the innate energy, i.e., EN(t = 0) = EN0 > 0. Solving
Equation (8) with this initial condition, we obtain (see Appendix A.2):

EN =
µβt
γ2 −

(
µβ

γ
− κ

)
t2

2
+

µβe−γt

γ3 − δt3

3
+

(
EN0 −

µβ

γ3

)
(10)

The curve corresponding to Equation (10) for larval net energy (EN) is monotonically
increasing first, but monotonically decreasing later, as shown in Figure 3. The proof of the
curve behavior is given in Appendix A.3.

Moreover, EN(t) becomes zero at a certain time point. Let us denote that intersection
point of EN and the time axis (t) as T:

EN(T) =
µβT
γ2 −

(
µβ

γ
− κ

)
T2

2
+

µβe−γT

γ3 − δT3

3
+

(
EN0 −

µβ

γ3

)
= 0 (11)

T represents the maximum time of herbivory for a larva. If T is less than the larval
developmental time (b), the larva does not survive. Since the net energy is zero at time T,
the larva is forced to stop herbivory. Otherwise, larval net energy becomes negative via
herbivory, which is impossible, as shown in Figure 3.

Remark 1. The stopping time of herbivory (T) can be quite short or long (close to the end of larval
development time), as shown in Figure 4. The net energy curve depends on the values of κ, β, γ, δ,
and µ. Different groups of insect larvae should have different net energy curves (Figure 4), according
to their adaptiveness to plant toxins.

Although the net energy function (Figure 3) guarantees the existence of the time
point T, there is no analytical way to explicitly calculate T. Numerical methods (such as
bisection, Newton–Raphson, secant, false position, etc.) can be used to find T. Moreover,
proposing an analytical approximation to obtain T is of interest, as we describe in the
following subsection.
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Analytical Approximate Calculation

Since an exponential function progresses faster than a polynomial function, at high
values of t, we can ignore the negative exponential term e−γt in Equation (9). Thus,
Equation (9) is simplified to:

EN ≈ µβt
γ2 −

(
µβ

γ
− κ

)
t2

2
− δt3

3
+

(
EN0 −

µβ

γ3

)
(12)

where EN0 −
µβ

γ3 ≥ 0, otherwise EN becomes negative at t = 0, which is impossible.
However, we make a further approximation by assuming that larval net energy is negligible
at t = 0, i.e., EN0 −

µβ
γ3 ≈ 0. Thus, Equation (12) can be written as:

EN ≈ µβt
γ2 −

(
µβ

γ
− κ

)
t2

2
− δt3

3
(13)

Equating Equation (13) to zero at t = T, we get:

µβ

γ2 −
(

µβ

γ
− κ

)
T
2
− δT2

3
= 0, since T ̸= 0 (14)

Solving Equation (14), we obtain:

T =
3
(

κ − µβ
γ

)
+

√
9
(

µβ
γ − κ

)2
+ 24µβδ

γ2

2δ
, (without the negative solution) (15)

where T is positive if we consider only the positive square root, which always produces a

value greater than
∣∣∣3(κ − µβ

γ

)∣∣∣. Interestingly, T remains positive irrespective of whether

κ ≥ or < µβ
γ . If the parameters (κ, β, γ, δ, µ) are known or estimated, the approximate time

when a larva stops herbivory can be obtained from Equation (15).
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List of Symbols and Acronyms

Symbols Definitions Types

t Time or instar in continuous form Independent variable

H Herbivory by a larva at time t Dependent variable

G Ingested GLSs by a larva at time t Dependent variable

F Free GLSs in larval gut at time t Dependent variable

I ITCs in a larval gut at time t Dependent variable

EN Net energy of a larva at time t Dependent variable

θ Larval herbivory growth rate constant per unit time Parameter

α GLS ingestion growth rate constant per unit time Parameter

η Degradation rate constant of GLS ingestion in larval gut Parameter

β Hydrolysis rate constant at which ITCs are formed Parameter

γ Excretion rate constant of ITCs Parameter

κ Energy growth rate constant per unit time Parameter

µ Metabolic cost (constant) of ITCs Parameter

δ Metabolic cost (constant) of foraging Parameter

T Maximum duration of herbivory for a larva Solution of EN(t) = 0

Important acronyms Full name Type

GLSs Glucosinolates Precursor of plant toxins

ITCs Isothiocyanates Plant toxins

OFT Optimal Foraging Theory Theory

ODEs Ordinary differential equations Equations

Appendix A. Solution of Differential Equations

Appendix A.1. Solution of Equation (6)

dI
dt

= βt − γI, Initial condition I(t = 0) = 0

⇒ dI
dt

+ γI = βt

Let µ(t) be the integrating factor (I.F.), then:

µ(t) = e
∫

γdt = eγt

The I.F. is determined by integrating the coefficient of the dependent variable (I).

eγt dI
dt

+ γIeγt = βteγt, multiplying both sides of Equation (6) by the I.F.

⇒ d(Ieγt)

dt
= βteγt

⇒
∫

d(Ieγt) =
∫

βteγtdt

⇒ Ieγt = eγt βt
γ

−
∫

β
eγt

γ
dt + K, K is an arbitrary constant
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⇒ Ieγt =
βteγt

γ
− βeγt

γ2 + K

⇒ Ieγt =
βteγt

γ
− βeγt

γ2 +
β

γ2 , where K =
1

γ2 from I(t = 0) = 0

⇒ I =
β

γ2

(
γt − 1 + e−γt), that is the solution, given in Equation (7)

While the ODE dI
dt = βt yields a solution quadratic time and the ODE dI

dt = −γI yields
a monotonic decreasing exponential function, the combination of the two terms on the
right-hand side leads to the solution given in Equation (7), which is asymptotically linear
in time.

Alternatively, we can also find the analytical solution to Equation (6) via a linear
transformation of variables in a way such that the ODE (6) becomes autonomous.

Let J = ϕt + I + ψ (A1)

such that
dJ
dt

= −γJ (A2)

which gives the solution:

J(t) = J0e−γt, where J0 is the initial value of J (A3)

The reverse transformation of Equation (A1) is:

I = J − ϕt − ψ (A4)

Differentiation of Equation (A1) with respect to time gives:

dJ
dt

= ϕ +
dI
dt

(A5)

Using the value of dI
dt from Equation (6) in Equation (A5), we obtain:

dJ
dt

= ϕ + βt − γI

⇒ dJ
dt

= ϕ + βt − γ(J − ϕt − ψ), placing the value of I from Equation (A4)

This gives:
dJ
dt

= ϕ + (β + γϕ)t − γJ + γϕ (A6)

By comparing Equations (A2) and (A6), we obtain:

−γJ = ϕ + (β + γϕ)t − γJ + γϕ,

A comparison of coefficients leads to:

β + γϕ = 0 ϕ + γψ = 0 (A7)

ϕ = − β

γ
ψ = −ϕ

γ
=

β

γ2 . (A8)

Using these expressions, Equation (A4) leads to

I(t) = J0e−γt +
βt
γ

− β

γ2 (A9)
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Initially, I0 = 0, which implies J0 = ψ in Equation (A1), where ψ = β

γ2 in Equation (A8).
Using this value of J0, Equation (A9) gives:

I(t) =
β

γ2

(
γt − 1 + e−γt), which coincides with the solution given in Equation (7)

Appendix A.2. Solution to Equation (9)

The right-hand side of the ODE for EN explicitly depends on time, while it does not
depend on EN . Thus, the ODE can be solved by straightforward integration with respect
to time:

dEN
dt

= κt − µβ

γ2

(
γt − 1 + e−γt)− δt2

⇒ EN =
∫ (

κt − µβ

γ2

(
γt − 1 + e−γt)− δt2

)
dt

⇒ EN =
κt2

2
− µβ

γ2

(
γt2

2
− t − e−γt

γ

)
− δt3

3
+ L, where L is an arbitrary constant

⇒ EN =
κt2

2
− µβ

γ2

(
γt2

2
− t − e−γt

γ

)
− δt3

3
+

(
EN0 −

µβ

γ3

)
, where EN(t = 0) = EN0

⇒ EN =
µβt
γ2 −

(
µβ

γ
− κ

)
t2

2
+

µβe−γt

γ3 − δt3

3
+

(
EN0 −

µβ

γ3

)
Appendix A.3. Behavior of EN in Equation (9)

To understand the behavior of EN for t > 0, we look at the derivative ( dEN
dt ) in

Equation (8):
dEN
dt

= κt +
µβ

γ2

(
1 − γt − e−γt)− δt2 (A10)

We denote the function in the middle of Equation (A10) by f (t):

f (t) =
µβ

γ2

(
1 − γt − e−γt) (A11)

f (t) is strictly monotonic decreasing for t > 0; the proof is given below:

d f
dt

= −µβ

γ
(1 − e−γt)

⇒ d f
dt

< 0, because e−γt < 1 for t > 0

Note that this proof also shows that the I(t) given in Equation (7) is strictly monotonic
increasing. Moreover, the supremum of f (t) is 0 at t = 0 and f (t) is negative ∀ t > 0.
Therefore, from Equation (A10), we can state:

dEN
dt

< κt − δt2, ∀ t > 0 (A12)

Since κt in Equation (A10) is a strictly monotonic increasing positive function and
µβ

γ2

(
1 − γt − e−γt)− δt2 is a strictly monotonic decreasing negative function with the supre-

mum 0 ∀ t > 0, we can state:

dEN
dt

>
µβ

γ2

(
1 − γt − e−γt)− δt2 (A13)
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Together, the Inequalities (A12) and (A13) are written as:

µβ

γ2

(
1 − γt − e−γt)− δt2 <

dEN
dt

< κt − δt2, ∀ t > 0 (A14)

Let g(t) = κt − δt2 (the right-hand side of Inequality (A14)), we now analyze the behavior
of g(t), ∀ t > 0:

g(t) ≤ 0 g(t) > 0

⇒ t(κ − δt) ≤ 0 ⇒ t(κ − δt) > 0

⇒ t ≥ κ

δ
⇒ t <

κ

δ

⇒ dEN
dt

< 0, ∀ t ≥ κ

δ
̸⇒ dEN

dt
> 0

Therefore, EN is strictly monotonic decreasing for t ≥ κ
δ because dEN

dt < 0. However, for
t < κ

δ , we cannot say whether dEN
dt is positive or negative or zero: anything could be

possible. To solve that problem, we analyze the left-hand side of Inequality (A14). Since the
left-hand side of Inequality (A14) is always negative at t > 0, we obtain:

dEN
dt

> 0, for t ∈
(

0,
κ

δ

)
Therefore, EN is strictly monotonic increasing in the range t ∈

(
0, κ

δ

)
. To be noted, EN is

practically always monotonic decreasing if κ
δ ≈ 0. In contrast, if κ

δ is very large (> b), EN is
always monotonic increasing and does not become 0 in the interval t ∈ (0, b].
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