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Abstract

The evolution from disturbed brain activity to physiological brain rhythms can precede recovery

in patients with disorders of consciousness (DoC). Accordingly, intriguing questions arise: What are

the pathophysiological factors responsible for disrupted brain rhythms in patients with DoC, and

are there potential pathways for individual patients with DoC to return to normal brain rhythms?

We addressed these questions at the individual subject level using biophysical simulations based on

electroencephalography (EEG). The main findings are that unconscious patients exhibit a loss of

excitatory corticothalamic synaptic strength. Synaptic plasticity in this excitatory corticothalamic

circuitry fosters physiological brain rhythms in the selection of patients with DoC. The extent to

which this occurred was correlated with cerebral glucose uptake. The current findings emphasize

the importance of excitatory thalamocortical activity in reestablishing normal brain rhythms after

brain injury and show that biophysical modelling of the corticothalamic circuitry could help select

patients that might be potentially receptive to treatment and undergo plasticity.
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Introduction

Disorders of consciousness (DoC) occur in a small proportion of comatose survivors with severe brain

injury. While the etiology varies among patients, common etiologies include severe traumatic brain

injury (TBI), stroke, and cardiac arrest. Irrespective of the etiology, these patients can be grouped

into the unresponsive wakefulness syndrome (UWS), characterized by the presence of eye-opening

and reflexive behaviors, and the minimally conscious state (MCS), characterized by inconsistent con-

scious behaviors, such as command following or visual pursuit. There is widespread reduction of

cerebral metabolism, commonly measured using [18F]Fluorodeoxyglucose Positron Emission Tomog-

raphy (FDG-PET), and disrupted neocortical activity in DoC due to damaged neuronal circuitry at

the cellular level J. T. Giacino, Fins, et al. 2014. Restoration of cerebral activity (e.g., measured with

electroencephalography (EEG) or FDG-PET) is believed to precede clinical recovery Bareham et al.

2020; Thibaut, Panda, et al. 2021. Patients in whom preservation of cerebral activity was observed in

the absence of behavior were referred to as MCS stars (MCS*) Gosseries, Zasler, and Laureys 2014.

Hence, exploring potential routes for the restoration of cerebral activity is crucial for understanding

clinical recovery in patients with DoC.

Neocortical activity is commonly measured by EEG. This activity represents the electrical signals

generated by neural populations under the skull, orchestrated by corticocortical and thalamocortical

connections. EEG signals in healthy subjects can usually be decomposed into an aperiodic component

(1/f component) and a periodic component or spectral peaks Donoghue et al. 2020. A proposed quali-

tative model for the evolution of the EEG power spectrum in DoC is often referred to as the “ABCD”

model, derived from the mesocircuit hypothesis Edlow, Claassen, et al. 2021. This model states that

neocortical activity in severe brain damage leading to UWS is restricted to the aperiodic part, which

is dominated by a high delta power (i.e., ¡ 4 Hz). Recovery of consciousness is believed to co-occur

with the emergence of a spectral peak in the lower frequency range (around 7 Hz), with a shift towards

higher frequencies (first around 10 Hz and potentially around 20 Hz) during further recovery Edlow,

Claassen, et al. 2021. The relevance of EEG measurements in DoC is underscored by the notion that

the re-emergence of physiological EEG features is associated with behavioral recovery Colombo et al.

2023; Jørgensen and Holm 1998; Maschke et al. 2023; Thibaut, Panda, et al. 2021 and glucose uptake

Annen et al. 2023.

Several hypotheses may explain the recovery of the EEG power spectrum in patients with DoC. One

of these hypotheses, the meso-circuit hypothesis, states that the return of spectral peaks in the EEG

power spectrum is a result of the restoration of excitation in the thalamocortical circuit and, more
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specifically, a more widespread cortico-striato-pallido-thalamic network N. D. Schiff 2010. This hy-

pothesis also postulates widespread deactivation of excitatory synaptic activity across the cerebral

cortex, resulting in a global hyperpolarized state in DoC, which is known as ”disfacilitation” Edlow,

Claassen, et al. 2021. Recovery in this situation would require boosting the excitation to induce a shift

from this hyperpolarized state. Restoration of excitatory processes presumably depends on neuronal

repair and synaptic plasticity Colombo et al. 2023, and both are assumed to occur in DoC to some

extent Werner and Stevens 2015. The potential roles of neuroprotective and neurostimulating drugs

that induce cerebral plasticity, resulting in partial recovery of consciousness, underscore this view De-

mertzi et al. 2011.

Figure 1: Overview of the pipeline. The first part of the analysis entails the estimation of biophys-

ical model parameters from individual EEG data. We use a Markov Chain random walk to esti-

mate biophysical parameters from subject-specific whole-brain power spectra. This is followed by

subject-specific simulations using either corticothalamic or cortical plasticity. Potential links with

available FDG-PET data are further analysed. Abbreviations: excitatory corticothalamic synaptic

strengths (GESE), inhibitory corticothalamic synaptic strengths (GESRE), Excitatory cortical synap-

tic 158 strengths (GEE), inhibitory cortical synaptic strengths (GEI), intrathalamic synaptic strengths

(GSRS), synaptic decay and rise constants (α and β), corticothalamic time delay (t0), electroen-

cephalography (EEG).

The mechanisms underlying the recovery of EEG power spectra in patients with DoC cannot be di-
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rectly inferred from the EEG data. However, using biophysical models of macroscopic brain activity,

we cannot only infer biophysical model parameters (e.g., synaptic properties not measured empirically

with EEG) from EEG power spectra of individual patients but also model subject-specific synaptic

plasticity R. Abeysuriya and P. Robinson 2016. Our biophysical model includes excitatory and in-

hibitory intracortical, intrathalamic, and corticothalamic synaptic strengths as well as synaptic time

constants and axonal conduction delays. This model allowed us to test the roles of excitation and

inhibition in thalamocortical synaptic connections. It allows the identification of the circuits that are

most affected in patients with DoC, for example, thalamocortical or intracortical circuits. This allowed

us to model the subject-specific plasticity of synapses and their effects on brain rhythms. Well-known

types of plasticity commonly used in corticothalamic biophysical models are Hebbian and homeostatic

plasticities Romesh G Abeysuriya et al. 2018; Fung, Haber, and P. Robinson 2013; Magee and Grien-

berger 2020. The former is a positive feedback-mediated form of plasticity in which synapses between

presynaptic and postsynaptic neurons that are coincidently active are strengthened. The latter is a

negative feedback-mediated form of plasticity, also known as synaptic scaling, which maintains network

activity at the initial level.

In the current work, we will address three questions: 1) Which synaptic parameter determines disrupted

EEG in patients with DoC the most? 2) What are the potential cortical or corticothalamic routes of

plasticity that lead to neurophysiological recovery in individual patients with DoC? 3) To what extent

do the routes for neurophysiological recovery relate to metabolic preservation as potential biomarkers

of plasticity?

Results

Estimating corticothalamic model parameters for disturbed EEG patterns

in patients with DoC

The power spectra for each subject were estimated and averaged across (occipital, temporal and pari-

etal) electrodes, resulting in a single power spectrum per subject. We used a Markov Chain random

walk to estimate the parameters of the biophysical corticothalamic model R. Abeysuriya and P. Robin-

son 2016. This corticothalamic model includes a cortical excitatory and cortical inhibitory population,

a thalamic relay, and a reticular population. The postsynaptic membrane potential of a population

is modulated by the firing activity of the presynaptic populations. The impact of presynaptic input

on the postsynaptic membrane potential also depends on the mean number of synapses between the

presynaptic b and postsynaptic population a (modelled as synaptic strength νab) and on the closing
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Figure 2: Estimating corticothalamic model parameters in DoC. Panel A shows the group-averaged

empirical power spectra and model-estimated power spectra for the different groups alongside the

goodness of fit of the estimation for the different groups. Panel B shows a graphical description of

the model parameters and their estimates in the different groups. Blue circles in the UWS group de-

note MCS* patients. Both excitatory and inhibitory corticothalamic synaptic strengths differ between

MCS and UWS. Abbreviations: healthy controls (HC), minimal conscious state (MCS), unrespon-

sive wakefulness syndrome (UWS), excitatory corticothalamic synaptic strengths (GESE), inhibitory

corticothalamic synaptic strengths (GESRE), Excitatory cortical synaptic strengths (GEE), inhibitory

cortical synaptic strengths (GEI), intrathalamic synaptic strengths (GSRS), synaptic decay and rise

constants (α and β), corticothalamic time delay (t0). ∗ = p < 0.05, ∗∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001.

(FDR corrected)
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and opening rates of synaptic channels characterized by the synaptic decay and rise constants (α and

β). The average postsynaptic membrane potential is transformed into firing activity in the cell bodies

of a population. This process results in activity propagation in a closed loop between the thalamic and

cortical populations, where the firing rate propagated between the thalamus and cortex is delayed by

t0. The synaptic parameters νab are transformed in a linear version of the model to the gain parameters

Gab and closed loop parameters Gaba = GabGba. Given this transformation, the gain parameters did

not strictly indicate the equivalence of synaptic strengths.

Figure 2A shows the empirical power spectra (red) and model-estimated power spectra (blue) averaged

across the subjects within each group. Power spectra from patients with UWS are mostly characterized

by an aperiodic component without a spectral peak, whereas power spectra from patients with MCS

are predominantly characterized by an aperiodic component with a subtle peak in the theta-band (4-8

Hz). The fraction of patients with a spectral peak in the (lower) frequency bands was 0.21 for UWS and

0.44 for MCS (p = 0.026, χ = 4.97). The power spectrum of healthy control subjects was characterized

by an aperiodic component (1/f part) and a spectral peak in the alpha band at approximately 10 Hz.

For all groups, the model-estimated power spectra (blue curves) provide a close approximation to the

empirical power spectra, as evident from Fig. 2A, both visually and in terms of the goodness-of-fit

(GOF) in the rightmost panel. There was no significant difference in GOF between the groups (p >

0.05). Figures S2–S4 show the estimated and empirical power spectra for the individual patients. This

indicates that the individual fits only captured the global shape of the power spectra, including the

most prominent peaks. This may lead to the omission of details in the estimation spectra but avoids

overfitting.

The groups did not differ in cortical excitatory (Gee) or cortical inhibitory (Gei) synaptic gains (Fig.

2B). However, all groups differed in terms of excitatory corticothalamic synaptic gains (Gese) and in-

hibitory corticothalamic synaptic gains (Gesre). In particular, the excitatory corticothalamic synaptic

gain (Gese) could differentiate between the MCS and UWS groups. Patients in the UWS group were

characterized by a smaller excitation and larger inhibition of the thalamocortical system. There was a

loss of inhibition in the intrathalamic loop in DoC (Gsrs); however, this could not differentiate between

UWS and MCS. Furthermore, there were considerably longer synaptic decay and rise constants (α and

β) for the MCS group compared to the healthy control (HC) group, although the UWS group did

not differ from either the HC or MCS group. The same holds true for the corticothalamic time delay

t0 with longer time delays in the MCS group than in the healthy control group, and no differences

between the MCS and UWS groups were observed. Of note, the aforementioned significant differences

between the groups could not be explained merely by etiology (see Fig. S4).
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Potential routes for recovery of EEG activity in individual patients with

DoC

We studied two potential mechanisms for the recovery of EEG activity in patients with DoC: 1) the

role of excitatory synaptic plasticity in the cortex and 2) the role of excitatory synaptic plasticity in

the corticothalamic loop. We employed the full nonlinear model in this context and simulated model

Equations 1-3 (see Materials and Methods) with subject-specific model parameters obtained from the

previous analysis (Fig. 2B). The synaptic parameters Gab translate to νab in the fully nonlinear model

regime, and we applied synaptic plasticity (Equation 14) to the excitatory corticothalamic loop νes

and the excitatory intracortical loop νee.

Figure 3A shows examples of the subject-specific simulations of corticothalamic plasticity. The red

line shows the empirical power spectrum superimposed on several power spectra during the evolution

of synaptic plasticity (transformation from red to green). The effects of corticothalamic synaptic plas-

ticity differed between the subjects. While some subjects developed a spectral peak in the theta band

or even the alpha band, other subjects did not develop a clear spectral peak despite the induction

of corticothalamic synaptic plasticity. For example, a patient with UWS due to anoxia did not show

an apparent spectral peak after corticothalamic plasticity, whereas a patient with MCS due to TBI

developed an evident alpha peak only after the corticothalamic plasticity was set (Fig. 3A). The

implementation of cortical plasticity alone produced a different picture (Fig. 3B). Although cortical

synaptic plasticity led to a different slope of the power spectrum, no spectral peak was induced by

cortical plasticity alone in any of the patients. Figure 3B shows the power spectra for the same groups

demonstrated in Fig. 3A.

The results of the individual spectra suggest that spectral peaks are more likely to occur during the

progression of synaptic corticothalamic plasticity in patients with MCS than in those with UWS. The

fraction of patients that showed a clear peak after corticothalamic plasticity that was not present in

the initial and original empirical data was 0.2 for UWS and 0.45 for MCS (p = 0.019, χ = 5.43). This

was also assessed using the Kullback-Leibler divergence, which was used to quantify the difference in

the shape of the power spectrum between the UWS and MCS groups during plasticity. First, regarding

cortical plasticity, we observed that the Kullback-Leibler divergence remained approximately constant

during the effectuation of synaptic plasticity (Fig. 3C). Second, for corticothalamic plasticity, we

observed that the power spectra between the UWS and MCS groups diverged as plasticity advanced
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Figure 3: Modelling synaptic plasticity in DoC. Panels A and B show simulated power spectra for

individual subjects during excitatory corticothalamic (A) and excitatory cortical synaptic plasticity

(B). Panels D and E show the Kullback-Leibler (abbreviated to KL) divergence during either cortical

plasticity (D) or corticothalamic plasticity (E). The power corresponding to the peak frequency after

completion of corticothalamic plasticity is illustrated for the three different groups (UWS, MCS, and

EMCS), with a significant difference (p < 0.001) denoted by ***. Panel G shows the group-averaged

power spectra during the course of corticothalamic plasticity for the UWS, MCS, and EMCS groups.

The same group-averaged power spectra are illustrated for different etiologies (H). Abbreviations:

healthy controls (HC), minimal conscious state (MCS), unresponsive wakefulness syndrome (UWS),

excitatory corticothalamic synaptic strengths (GESE), inhibitory corticothalamic synaptic strengths

(GESRE), Excitatory cortical synaptic strengths (GEE), inhibitory cortical synaptic strengths (GEI),

intrathalamic synaptic strengths (GSRS), synaptic decay and rise constants (α and β), corticothalamic

time delay (t0).
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(Fig. 3C). This effect was probably driven by a significantly stronger occurrence of a spectral peak

in the higher levels of consciousness than in the lower levels of consciousness (Fig. 3D), which could

also be observed from the group-averaged power spectra in the respective groups after corticothala-

mic plasticity (Fig. 3E). Finally, we analyzed the effect of corticothalamic plasticity in patients with

different etiologies, as the contributions of certain etiologies may differ between the MCS and UWS

groups (Fig. 3F). The group-averaged power spectra showed that the reoccurrence of a spectral peak

might be more prominent in the TBI subgroup than in the anoxic subgroup (Fig. 3F).

Neurophysiological correlates of FDG-PET findings in DoC

To better characterize the relationship between cerebral integrity and (the ability to recover a more

normal) peak frequency of power spectral density, we associated the peak frequency with metabolic

activity. We extracted the peak frequency of the empirical power spectrum for all the participants

for whom a peak was present before the application of plasticity (UWS, n = 7 of 36; MCS, n = 42

of 95). This was also performed for the power spectra extracted from the simulated EEG data after

corticothalamic plasticity (UWS, n = 13 of 36; MCS, n = 80 of 95). The scatter plots in Fig. 4A

show the relationship (or lack thereof) between the metabolic index of the best-preserved hemisphere

and peak frequency from the empirical power spectra. A strong positive correlation between these

two entities was observed in the UWS group, whereas no significant correlation was observed in the

MCS group. The correlation in the UWS group was mainly driven by the presence of patients with

MCS* (green in Fig. 4). However, for the modelled power spectra obtained after corticothalamic

plasticity, we observed strong to moderate correlations with the metabolic index in both groups (UWS

and MCS).

Discussion

Clinical recovery in patients with DoC may be dependent on sufficient cerebral metabolism and the

recovery of physiological brain rhythms, as measured by EEG (6). Insight into the evolution of physi-

ological EEG rhythms in DoC requires knowledge of the most important pathophysiological determi-

nants of disturbed EEG activity. Using parameter estimation, we demonstrated that disturbed brain

rhythms in DoC were likely the result of delayed propagation of neuronal activity between the thalamus

and cortex, delayed synaptic responses, and loss of synaptic strength within the thalamus, especially

loss of synaptic strength between the thalamus and cortex. Corticothalamic synaptic strength was not

only lower in patients with DoC but also sensitive in differentiating between patients with MCS and

UWS. The important role of corticothalamic synapses was strengthened by the observation that plas-
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Figure 4: The relationship between modelled synaptic plasticity and FDG-PET findings in DoC. Panel

A shows scatter plots and correlations between the peak frequencies of empirical EEG data with

the metabolic index from FDG-PET. Panel B shows scatter plots and correlations between the peak

frequency of simulated EEG signals after corticothalamic plasticity and the metabolic index from FDG-

PET. For the modelled peak frequency, significant correlations in all groups were observed, whereas for

the empirical peak frequency, a significant correlation for only the UWS group was observed. Green

circles in the UWS group denote MCS* patients.

ticity in these synapses specifically resulted in the recovery of physiological brain rhythms (e.g., theta

and alpha rhythms) indicative of thalamocortical modulation in some patients. The extent to which

this occurred correlated with whole-brain metabolic activity as measured by FDG-PET. Recovery of

theta and alpha brain rhythms cannot be achieved merely by cortical synaptic plasticity.

The current findings are in agreement with the mesocircuit hypothesis, which states that the slow

EEG activity observed in patients with DoC results from the quiescent activity of the central thala-

mus and complete deafferentiation of excitatory corticothalamic synapses (6). The mesocircuit model

predicts that the power spectrum in DoC recovers its shape from a 1/f spectrum to a 1/f spectrum

superimposed by peaks in the theta and alpha bands. While theta activity may emerge only from

cortical neurons, alpha activity may emerge from increased activity in the central thalamus and the

restoration of corticothalamic synaptic connectivity Forgacs et al. 2017. However, to date, this predic-
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tion has mostly been verified indirectly using structural MRI Lutkenhoff et al. 2015, fMRI Coulborn

et al. 2021; Panda, Thibaut, et al. 2022, FDG-PET Fridman et al. 2014, or in vivo animal studies

Timofeev et al. 2000. The current findings reveal a more direct relationship between qualitative model

predictions of the mesocircuit hypothesis and EEG findings in DoC. We showed that disturbed EEG

in patients with DoC may be the result of both axonal and synaptic damage, especially damage to

the excitatory corticothalamic synapses. The latter was also sensitive in distinguishing between MCS

and UWS. Another observation in agreement with the mesocircuit hypothesis was that intrathalamic

synaptic strength was weaker in patients with DoC than in healthy controls, which could lead to re-

duced excitatory output towards the cortex.

The presumed role of excitatory corticothalamic synapses in the recovery of EEG rhythms in DoC

was further strengthened by the finding that the plasticity of corticothalamic synapses, rather than

merely cortical synapses, could result in the re-emergence of the 1/f spectrum superimposed by peaks

in some patients. Interestingly, the extent to which the spectral peaks re-emerged was related to the

metabolic index extracted from FDG-PET. The relationship between the modelled spectral peak and

the metabolic index was stronger than that between the patients’ empirical spectral peak and their

metabolic index. The relationship between the occurrence of spectral peaks on EEG after corticothala-

mic synaptic plasticity and the metabolic index suggests that the metabolic index from FDG-PET can

encompass information about the potential to recover and decode the residual capacity of the thalamo-

cortical system in the brain Thibaut, Panda, et al. 2021. This suggests that the functional integrity of

neurons, as measured using glucose, is a good index of potential local and global network interactions

that give rise to higher peak frequencies. This is in agreement with a previous functional MRI study

suggesting that stronger connectivity (albeit purely cortical networks) is related to a higher metabolic

index in patients with DoC Di Perri et al. 2016; Panda, López-González, et al. 2023. Furthermore,

we observed that plasticity induced a spectral peak in a subset of patients. High response rates are

biologically unrealistic in patients with severe brain damage, some of whom may never recover. In-

deed, the number of patients with anoxic brain injury leading to global atrophy and recovery is lower

than the number of patients with local traumatic brain injury Whyte et al. 2009. In line with these

observations regarding spontaneous recovery, we found that patients with a traumatic brain injury

had a higher probability of recovering a spectral peak than patients with anoxic brain injury. Finally,

we observed that the proportion of patients in whom plasticity altered the power spectra aligns with

treatment response rates reported in empirical studies reviewed by Thibaut et al. Thibaut, N. Schiff,

et al. 2019. These important insights increase the biological plausibility and clinical relevance of this

model.
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This study has several potential clinical implications. As corticothalamic plasticity induces faster al-

pha oscillations in some patients, while failing to induce alpha oscillations in others, it could identify

which subjects could be sensitive to (noninvasive) interventions in DoC Edlow, Sanz, et al. 2021, such

as amantadine or transcranial direct current stimulation Martens et al. 2020; Thibaut, N. Schiff, et

al. 2019; Thibaut, Wannez, et al. 2017. The results suggest that in some patients, overall synaptic

and axonal damage is too severe, and promoting corticothalamic plasticity in these patients is insuf-

ficient to return to physiological brain rhythms. In some patients, there may be a residual capacity

of the brain that can be assessed by promoting corticothalamic plasticity. For example, the results

of deep brain stimulation of the central thalamus in patients with DoC have been mixed Vanhoecke

and Hariz 2017, potentially because of the suboptimal selection of patients with sufficient residual

capacity, despite the observation that plasticity may be promoted by deep brain stimulation in other

clinical populations Van Hartevelt et al. 2014. Recent work has shown that low-frequency stimula-

tion of the centromedian-parafascicular complex (CM-Pf) in the thalamus in DoC could promote the

regeneration of whole-brain communication in the alpha band Arnts et al. 2022. Hence, there may

be a role for subject-specific corticothalamic modelling based on resting-state EEG data in the selec-

tion of patients for deep brain stimulation and potentially for other (non-invasive) interventions such

as transcranial magnetic stimulation, transcranial direct-current stimulation, or vagal/median nerve

stimulation Briand et al. 2020; Gosseries, Thibaut, et al. 2014. Particularly for MCS* patients with

higher recovery rates at the group level Thibaut, Panda, et al. 2021, the model would be valuable for

predicting recovery. However, because the number of patients with MCS* in this study was relatively

small, they were not included in a separate group. We denoted them with different colors in the plots,

which showed that the potential plasticity in the UWS group was mainly driven by MCS* patients.

Future studies using longitudinal data could assess whether this framework opens avenues for predict-

ing therapeutic effects and spontaneous recovery in patients with DoC.

fMRI model-based approaches to better characterize DoC have shown that low-level states of conscious-

ness are characterized by segregated and less connected network states, potentially caused by increased

inhibition López-González et al. 2021; Luppi, Cabral, et al. 2023; Luppi, Mediano, et al. 2022. These

approaches are increasingly being studied; however, their direct clinical relevance is limited because

of the complexity of data acquisition and analysis. An important methodological advancement of the

proposed approach is the induction of plasticity in the modelled resting-state EEG data. This could

be relevant not only to DoC but also to other pathologies. EEG-based modelling studies on DoC are

scarce Assadzadeh et al. 2023; N. D. Schiff, Nauvel, and Victor 2014, although we envision their clinical

applicability to be more direct. For example, the analysis and (plasticity-induced) peak detection can

be fully automated. Some reflections on the model-based approach are warranted. Our results may
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be biased by the choice of biophysical model, as this model for healthy conditions is tuned to generate

a 1/f spectrum superimposed by alpha oscillations from corticothalamic resonance due to a delay in

propagation between the thalamus and the cortex Peter A Robinson et al. 2001. However, previous

work has demonstrated that there are three possible ways to generate alpha oscillations in this specific

model, which include the corticothalamic circuitry, as well as an intracortical circuit Hindriks and

Putten 2013. Finally, we focused on the synaptic plasticity of excitatory synapses. However, in light of

the mesocircuit hypothesis, the role of inhibition should also be studied, suggesting that disinhibition

of the thalamus may play an important role in inducing excitatory input from the thalamus. More

detailed biophysical models that include the caudate and globus pallidus could be used to analyze the

role of plasticity within the context of disinhibition in future studies. Finally, despite the existence

of several other hypotheses on consciousness that could be applied in the context of DoC, such as

integrated information theory Tononi 2008 and the global neuronal workspace Mashour et al. 2020,

these cannot be used to make quantitative predictions for EEG spectra from patients with DoC based

on underlying neuronal circuits but require extraction of other features from EEG data Melloni et al.

2023. Hence, we restricted our interpretation of our findings to the context of the mesocircuit hypoth-

esis.

In conclusion, we demonstrated the advantage of biophysical modelling in individual subjects with DoC,

showing that the recovery of the corticothalamic circuitry comes with the reappearance of physiological

brain rhythms in some patients with DoC. Although these findings underscore the predictive ability of

the mesocircuit hypothesis, they may also have potential clinical implications. Examples include the

prediction of recovery in patients with DoC and aid in the selection of patients with sufficient residual

brain capacity for (non-invasive) treatment. Future work is needed to verify whether the recovery of

the excitatory corticothalamic circuitry results in good neurological recovery.

1 Methods and Materials

Experimental design

We included 145 patients (58 females, mean age 40 years ± 17 years) and 30 healthy control subjects

(controls; 14 females, mean age 43 years± 15). Patients were diagnosed with MCS (n=95), MCS*

(n=12), or UWS (n=38). The etiologies were traumatic brain injury in 76 patients, anoxia after

cardiac arrest in 50 patients, mixed anoxia after cardiac arrest and traumatic brain injury in 7 patients,

stroke/hemorrhage in 19 patients, and other etiologies such as metabolic encephalopathy or infection of

the central nervous system in 3 patients. The average time between injury and hospitalization/scanning
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was on average 2.3 years, with a standard deviation of 3.5 years. This study was approved by the Ethics

Committee of the University Hospital of Liège. All healthy participants and their legal surrogates

provided written informed consent to participate in the study. The level of consciousness of the patients

was assessed using the Coma Recovery Scale-Revised (CRS-R) J. T. Giacino, Kathleen Kalmar, and

John Whyte 2004, which was repeated at least five times to minimize clinical misdiagnoses Wannez

et al. 2017. The patients’ diagnoses were based on the best behavioral scores obtained over repeated

CRS-R assessments during the week of hospitalization.

EEG data acquisition and preprocessing

Part of the EEG data was used in previous studies Carrière et al. 2020; Mortaheb et al. 2019; Rizkallah

et al. 2019; Thibaut, Panda, et al. 2021. Our preprocessing pipeline was in accordance with the recent

guidelines and recommendations for EEG data analysis Pernet et al. 2020. Briefly, EEG recordings of

20–25 min were obtained from patients with DoC and healthy controls. The data were acquired using a

high-density EEG system with a sampling frequency of 250 Hz. Data from some patients were acquired

at a sampling frequency of 500 Hz. Data from these patients 418 were down-sampled at a sampling

frequency of 250 Hz. An Electrical Geodesic Inc. EEG system with 256 channels was employed, and

a saline solution was used. During data collection, patients were kept awake as much as possible. An

examiner was present during the acquisition to ensure this. EEG data were imported into MATLAB

version R2021a for further analysis, partly using FieldTrip Oostenveld et al. 2011. EEG data from the

neck, forehead, and cheek channels were discarded because they can be easily contaminated by muscle

artifacts, resulting in 150 channels that were used for further analysis. EEG data were segmented

into epochs of two seconds, and epochs with signals that had an amplitude exceeding 100 µV were

rejected automatically. The remaining bad epochs were rejected via visual inspection (Jitka Annen).

Data were referenced to a common average montage Thibaut, Panda, et al. 2021. The EEG data were

further preprocessed using a zero-phase sixth-order Butterworth bandpass filter of 0.5–40 Hz. After

preprocessing, we computed the power spectrum for each channel and averaged it across the channels.

Only the scalp channels covering the parietal, temporal, and occipital areas were included to compute

the grand average across the channels. Other channels, such as those covering the frontal areas and

jaws, were excluded. Power spectra were computed using Welch’s method with windows of 5 s with

2.5 s overlap.

FDG-PET data

Patients fasted for at least six hours prior to the FDG-PET procedure. FDG-PET data were acquired

after intravenous injection of 150–300 MBq of FDG on a Philips Gemini TF PET-CT scanner. The
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PET data were spatially normalized and smoothed using a Gaussian filter with a full-width at half-

maximum value of 14 mm. The data were recorded in a single 12-min emission frame after a 30-min

uptake phase, and the images were corrected for attenuation. Two FDG-PET analyses were performed.

First, a statistical evaluation of relatively preserved and hypometabolic regions compared to healthy

volunteers was performed as described previously Panda, López-González, et al. 2023. The brain

FDG-PET SUV of each patient with an unequivocal and reliable bedside diagnosis of UWS or MCS

was visually inspected by three experts in the analyses of FDG-PET of DoC patients. The patients

were blinded to their clinical diagnoses. Patients with clinical UWS were subsequently qualitatively

classified as MCS* Gosseries, Zasler, and Laureys 2014 based on the relative preservation of metabolism

in the frontoparietal network Stender, Gosseries, et al. 2014. Second, for quantitative assessment of

glucose metabolism, the FDG-PET metabolic index of the best-preserved hemisphere (MIBH) was

calculated to approximate the cerebral metabolic rate of glucose at the single-subject level Stender,

Mortensen, et al. 2016. As previously described Stender, Gosseries, et al. 2014, individual images were

registered on a population-specific FDG-PET template. Images were segmented into the left and right

cortices and extracerebral tissue. Cortical uptake was normalized based on the metabolism of the

extracerebral tissue in healthy volunteers and scaled between 0 and 1, based on the mean activity of

the extracerebral tissue. Finally, the MIBH was calculated as having the highest mean metabolism in

both hemispheres.

Corticothalamic mean-field model

We employed a corticothalamic mean-field model Peter A Robinson et al. 2001, which describes the

aggregate activity of a neuronal population in terms of their firing activity ϕa and mean membrane

potential Va with a being either e, i, r, or s. The corticothalamic mean-field model encompasses two

cortical populations (excitatory (e) and inhibitory (i)) and two thalamic populations (relay (s) and

reticular (r)). The membrane potential of a population fluctuates Va(t) as a result of the incoming

firing rate ϕa(t) from other populations and/or itself according to R. Abeysuriya and P. Robinson

2016; P. Robinson et al. 2001; Peter A Robinson et al. 2001(
1

αβ

d2

dt2
+

(
1

α
+

1

β

)
d

dt
+ 1

)
Va(t) =

∑
a′

νaa′ϕa′(t) +
∑
b

νabϕb(t− t0/2). (1)

The effect of the presynaptic input on the postsynaptic membrane potential depends on the mean

number of synapses between the presynaptic b and postsynaptic population a (modelled as synaptic

strength νab) and on the closing and opening rate of synaptic channels characterized by the synaptic

decay and rise constants (α and β). The average postsynaptic membrane potential is transformed at
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the cell bodies in a population, giving rise to the firing activity Qa(t)

Qa(t) =
Qmax

1 + exp (− (Va(t)− θ) /σ)
. (2)

Here, Qmax refers to the maximum firing rate in Hz, θ is the mean firing threshold in mV , and σ is

the standard deviation of this threshold. This process results in activity propagation in a closed loop

between the thalamic and cortical populations, where the firing rate propagated between the thalamus

and cortex is delayed by t0. The firing activity Qa(t) was temporally damped using the following

expression (
1

γ2
a

d2

dt2
+

1

γa

d

dt
+ 1

)
ϕa(t) = Qa(t), (3)

with γa being the temporal damping rate, based on γ = va/ra, where va is the propagation velocity

and ra is the mean range of axons. For inhibitory, relay and reticular populations, γa ≈ ∞, hence

ϕa(t) = Qa(t).

Estimation of model parameters

Model power spectrum

Parameter estimation for nonlinear models remains challenging. Therefore, we transformed the nonlin-

ear model into a linear model using linearization around a stable fixed point. Linearization is achieved

by expressing the sigmoid function (Equation 2) that transforms Va(t) into Qa(t) as Taylor expansion

and retaining only the term containing the first derivative (ρa) evaluated at the fixed point. The

corresponding details have been discussed previously R. Abeysuriya and P. Robinson 2016. Using

the derivative (ρa), we can express the synaptic strengths as gain parameters in the linear regime

Gab = ρaνab, from which we can define loop parameters such as Gaba = GabGba. Accordingly, we

transformed the linear system in the time domain to the frequency domain (withk and ω being the

wave vector and angular frequency) and derived the following transfer function with the firing rate of

the excitatory population as output ϕe(k, ω) and external signalϕn(k, ω) as input

ϕe(k, ω)

ϕn(k, ω)
=

GesGsnL
2exp(iωt0/2)

(1−GsrsL2)(1−GeiL)(k2r2e + q2r2e)
(4)

Here, L follows from the transformation of the second-order differential operator describing the synaptic

response (Equation 1) in the Fourier domain, which can be interpreted as a low-pass filter depending

on the synaptic parameters α and β

L(ω) =
1

(1− iω/α)

1

(1− iω/β)
(5)

The EEG power spectrum can then be obtained by integrating over k, where the cortex is approximated

as a rectangular sheet due to its finite size, with a size of 0.5 m Timofeev et al. 2000. Using periodic
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boundary conditions, we derived the following power spectrum P. Robinson et al. 2001

P (ω) =
m=∞∑
m=−∞

n=∞∑
n=−∞

|ϕe(kx, ky, ω)|2F (k)∆kx∆ky, (6)

with kx = 2πm
Lx

, kx = 2πm
Lx

and k =
√

k2x + k2y. The filter function F (k) accounts for the low-pass

filtering resulting from volume conduction by the skull, cerebrospinal fluid, and scalp Srinivasan,

Nunez, and Silberstein 1998

F (k) = e−k2/k2
0 . (7)

Here, k0 corresponds to the low-pass cutoff at k0 = 10m−1. This value was obtained in a previous study

by using a spherical harmonic head transfer function Srinivasan, Nunez, and Silberstein 1998 Lastly,

pericranial muscles activity resulted in electromyogram (EMG) artifacts in the EEG, necessitating our

attention and correction; hence, Ptotal(ω) = P (ω) + PEMG(ω).

Fitting model parameters

Similarly as in R. Abeysuriya and P. Robinson 2016 a selection of parameters was fixed to re-

duce parameter space, Qmax = 340s−1, γe = 116s−1, θ = 12.9mV, σ = 3.8mV . The parameter set

x = [Gei, Gee, Gese, Gesre, Gsrs, α, β, t0, PEMG] is estimated from EEG data by minimizing the er-

ror between the experimentally obtained power spectrum Pexp and model power spectrum Ptotal(x)

expressed as

χ2 =
∑
j

Wj |
Ptotal(x)− Pexp

Pexp
|2, (8)

where j denotes the frequency bins. The weights Wj ensure equal weighting for every frequency decade

and are proportional to 1/f . Because the parameter space was very large, we restricted the parameter

values to neurophysiologically plausible values (see reference R. Abeysuriya and P. Robinson 2016 for

values). The χ2 statistic is further transformed into a likelihood function as follows

L(x) = exp[
−χ2(x)

2
]. (9)

Hence, minimizing the error translates into maximizing the likelihood function. The Metropolis-536

Hastings algorithm was used to generate a probability distribution for each parameter using Markov

Chain random walk Rosenthal et al. 2011. The details of the algorithm have been reported previously

R. Abeysuriya and P. Robinson 2016. For every subject, we ran the Metropolis-Hastings algorithm

to obtain model parameters for individual power spectra. The random walk was initialized using

parameters obtained from a large database of healthy controls R. Abeysuriya, Rennie, and P. Robinson

2015. This initialization generally does not affect the final output but affects the convergence time. For

every subsequent step in the random walk, the likelihood of this step was computed using Equation 13.
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A new randomly proposed set is generated. The likelihood of this new set of parameters was computed

using Equation 13. If these new parameters have a higher probability, this step is used to sample the

probability distribution. Otherwise, a random number is drawn from a uniform distribution. If this

random number is smaller than the ratio of the probability of the new parameters to that of the old

parameters, the probability distribution sampling step is accepted. If this random number is larger

than the ratio of the probability of the new parameters to that of the old parameters, the step is

not accepted. This procedure was repeated several times until there were no iterative changes in the

sampled probability distribution.

Modelling synaptic plasticity

After estimating the subject-specific mean-field parameters, we performed simulations using a fully

nonlinear model (Equations 1–3) to analyze potential routes for neurophysiological recovery in in-

dividual patients. In order to do this, we first transformed the subject-specific and estimated gain

parameters Gab to synaptic strength parameters νab using the derivative of the sigmoid function ρa

evaluated at the steady state Gab = ρaνab. The steady-state firing rate for each subject was obtained

during the parameter estimation.

We initially explored two possible synaptic plasticity rules based on Hebbian and homeostatic plastic-

ities Magee and Grienberger 2020. Hebbian plasticity refers to a positive-feedback-mediated form of

plasticity in which synapses between presynaptic and postsynaptic neurons that are coincidently active

are strengthened. Homeostatic plasticity refers to a negative-feedback-mediated form of plasticity, also

known as synaptic scaling, which maintains the network activity at a desired set point. Both types of

plasticity are thought to occur in neural systems Ho, Lee, and Martin 2011. We first evaluated the

Hebbian plasticity using an existing implementation of our current mean-field model, also known as

spike-timing-dependent plasticity Fung, Haber, and P. Robinson 2013 In addition, we implemented

a general homeostatic plasticity rule, as used in previous studies Romesh G Abeysuriya et al. 2018;

Hellyer et al. 2016

τisp
dνab
dt

= −ϕa(t)(ϕb(t)− ρ) (10)

This Equation models the change in synaptic strength νab between populations a and b as a function of

their firing rate and a desired set point ρ, which will be set to the average firing rate from healthy control

subjects that were included for this study. The synaptic time-scale parameter τisp is chosen exactly to

be similar to that reported in previous literature and is set to τisp = 20 Romesh G Abeysuriya et al.

2018. Simulations of Equations 1–3 are executed, first, for the first 30 s without plasticity, succeeded

by switching on plasticity for the remaining part of the simulations (10 min). First, we examined
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spike-timing-dependent plasticity. However, spike-timing-dependent plasticity in isolation leads to an

unopposed strengthening of synapses, resulting in an unstable system. Next, we executed both spike-

timing-dependent plasticity and homeostatic plasticity but noticed that stability only occurred if the

contribution of homeostatic plasticity was very large and that of spike-timing-dependent plasticity was

negligible. Hence, in the results presented in our manuscript, we reported only homeostatic plasticity.

Simulations of the model are performed by solving Equations 1–3 and 14 using an Euler-Maruyama

solver with a sufficiently small time step (1×10-4) using in-house Matlab scripts (R2021a). The Laplace

operator in Equation 3 is set to zero to run the model as a neural mass model instead of a neural field

model.

Statistics

We test for significant differences for parameters (Gei, Gee, Gese, Gesre, Gsrs, α, β, and t0) between

groups using the Wilcoxon rank sum test. The false discovery rate was subsequently used to correct

for multiple tests Benjamini and Hochberg 1995. We quantified the similarity between the power

spectra for different groups using the Kullback-Leibler divergence Van Erven and Harremos 2014.

Summary statistics from the power spectra, such as the slope, peak frequency, and peak power, were

extracted using the FOOOF algorithm Donoghue et al. 2020. We used the following settings for the

FOOOF algorithm (maximum number of peaks = 2, minimum peak height 0.3 (units of power), peak

width limits 1-14 (Hz), aperiodic mode = “knee”). We tested the null hypothesis that the presence

of a spectral peak was equal for MCS and UWS using the chi-square test. Finally, we tested the

relationships between these summary statistics and the metabolic indices using Pearson’s correlation

coefficients.

Data and materials availability

Data and materials availability: The code for the parameter estimation method can be found at

https://github.com/BrainDynamicsUSYD/braintrak, and includes an explanation of the method on

the wiki page https://github.com/BrainDynamicsUSYD/braintrak/wiki. Data cannot be shared on

open-sharing platforms due to the lack of informed consent from patient representatives. Further

ethical approval is required for data sharing.
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