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The quantum Jarzynski equality and the Crooks relation are fundamental laws connecting equilibrium pro-
cesses with nonequilibrium fluctuations. They are promising tools to benchmark quantum devices and measure
free energy differences. While they are well established theoretically and also experimental realizations for
few-body systems already exist, their experimental validity in the quantum many-body regime has not been
observed so far. Here, we present results for nonequilibrium protocols in systems with up to sixteen interacting
degrees of freedom obtained on trapped ion and superconducting qubit quantum computers, which test the
quantum Jarzynski equality and the Crooks relation in the many-body regime. To achieve this, we overcome
present-day limitations in the preparation of thermal ensembles and in the measurement of work distributions
on noisy intermediate-scale quantum devices. We discuss the accuracy to which the Jarzynski equality holds on
different quantum computing platforms subject to platform-specific errors. The analysis reveals the validity of
Jarzynski’s equality in a regime with energy dissipation, compensated for by a fast unitary drive. This provides
new insights for analyzing errors in many-body quantum simulators.

I. INTRODUCTION

More than a century after the foundations of thermody-
namics and equilibrium statistical mechanics have been laid,
the field of nonequilibrium physics remains an area of ac-
tive research. The study of how macroscopic properties arise
from microscopic quantum dynamics, initiated the develop-
ment of quantum thermodynamics [1–3]. Significant theo-
rerical breakthroughs include the widely-applicable eigenstate
thermalization hypothesis [4–8], and a handful of interesting
cases of its violation [9–11]; at the same time, ongoing exper-
imental progress made it possible to cool down highly con-
trolled systems to temperatures dominated by quantum rather
than thermal fluctuations [12–15]. Despite this progress, we
still lack a comprehensive theoretical framework or a com-
plete set of principles to describe macroscopic phenomena in
nonequilibrium physics.

A remarkable achievement in the field is the Jarzynski equal-
ity [16, 17]. It establishes a mathematical relation between the
work𝑊 applied in a time-dependent process, and the free en-
ergy difference Δ𝐹 between the initial thermal ensemble and
the thermal ensemble associated with the final Hamiltonian:〈

e−𝛽𝑊
〉
𝑃 (𝑊 )

= e−𝛽Δ𝐹 ⇐⇒ ln
〈
e−𝛽𝑊diss

〉
𝑃 (𝑊 )

= 0, (1)

where 𝛽 = 𝑇−1 is the inverse temperature (we work in units
𝑘B = 1, ℏ = 1), and𝑊diss = 𝑊−Δ𝐹 is the dissipated work done
during the process; the average ⟨·⟩𝑃 (𝑊 ) is performed over the
work distribution 𝑃(𝑊) obtained from repeated applications
of the protocol. Remarkably, Eq. (1) holds for any nonequi-
librium protocol without restrictions; for close-to-equilibrium
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FIG. 1. Schematics of our protocol to test the quantum Jarzynski
equality, cf. Eq. (1), in the quantum many-body regime. We simulate
the dynamics of a system of interacting qubits initiated in a thermal
state of the transverse-field Ising chain 𝐻i. The qubits then evolve
under a non-equilibrium process on a quantum computer affected by
energy dissipation. Finally, we extract the work distribution for the
quantum circuit w.r.t. the final Hamiltonian 𝐻f . At the same time,
we independently compute the exact theory prediction for the free
energy difference. We compare both results against each other to test
the validity of Jarzynski’s equality [red box].

processes it reduces to the well-known fluctuation-dissipation
theorem [16].

The classical Jarzynski equality was verified in a number of
experiments, ranging from stretching of single molecules [18,
19] to mechanical systems [20], optical tweezers [21], and
electronic systems [22–24].

For quantum systems, a difficulty has been identified with
measuring work [25–27]. Nevertheless, Jarzynski’s equal-
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ity was generalized to closed quantum systems [28, 29],
systems subject to dephasing [30], general unital [31] and
stochastic [32] quantum maps, and systems with feedback-
control [33, 34]. Recently, there have been increasing efforts
to extend the quantum Jarzynski equality to generic open sys-
tems using one-point-measurement schemes and the notion of
"optimal guessed" quantum work [35–37].

In the following, we focus on a formulation of the quan-
tum Jarzynski equality valid for unital quantum channels,
where work is defined by means of a two-point measurement
scheme [28–30]: Let us denote the initial energy levels by 𝐸 i

𝑚,
and final energy levels – by 𝐸 f

𝑛. In the following, we refer to
a projective measurement in an eigenstate of the initial or fi-
nal Hamiltonian, as an energy measurement; the measurement
output is the corresponding eigenenergy 𝐸 i

𝑚 or 𝐸 f
𝑛, respec-

tively. The work is then defined as the difference between the
measured final and initial energies,

𝑊 = 𝐸 f
𝑛 − 𝐸 i

𝑚. (2)

While this definition does not generalize to the most gen-
eral open systems, together with recent progress in quantum
simulation, it allowed for the experimental test of Eq. (1) us-
ing trapped ions [12, 38], cold atoms [39], nuclear magnetic
resonance (NMR) experiments [40], nitrogen-vacancy (NV)
centers [41], and superconducting qubits [42].

Besides its fundamental importance in quantum statistical
physics, testing the quantum Jarzynski equality is also of prac-
tical interest, as it allows us to measure free energy differ-
ences, which can be used, e.g., to characterize the onset of
chemical reactions. In a recent study, Jarzynski’s equality was
used to extract approximate free energy differences in two- or
three-qubit systems using minimally entangled typical thermal
states [43].

In this work, we propose the idea that the quantum Jarzyn-
ski equality using a two-point measurement scheme provides
a valuable benchmark for the performance of quantum de-
vices. The only requirement for the equality to hold is the
doubly-stochastic property of the underlying dynamics (see
Appendix A and [29, 38] for more details). This property
is fulfilled for all unital channels, including pure unitary dy-
namics and dephasing noise. However, it does not hold for
processes with energy dissipation. By experimentally testing
Eq. (1), it is in principle possible to isolate contributions of
processes violating double-stochasticity present during the dy-
namics and the measurement, which is of fundamental interest
for improving current quantum technologies.

At the same time, a complete understanding of Jarzynski’s
equality in a quantum many-body setting is still lacking. Pre-
vious verification experiments with quantum simulators were
performed for single-, two-, and three-particle systems [12, 38–
43]. It is, therefore, crucial to close this gap and investigate
systems of 𝐿≳8 spin-1/2 particles, where many-body charac-
teristics begin to emerge [44, 45].

In the many-body regime (i.e., for many interacting degrees
of freedom), the work distribution broadens with the square
root of the system size [6], which requires an exponentially
large number of projective measurements in order to estimate
the left-hand-side of Eq. (1). Moreover, for quantum systems,

further challenges arise: First, work fluctuations are not a
measurable observable in quantum mechanics [25]. Hence,
testing the quantum Jarzynski equality presumes the ability to
measure in the energy eigenbasis. This is notoriously difficult
in practice since many-body energy eigenstates are typically
volume-law entangled in real space. Second, preparing a quan-
tum many-body system in a close-to-perfect thermal state can
be demanding, and often comes with a substantial overhead
of resource costs [46, 47]. For these and related reasons, the
quantum many-body regime provides formidable challenges.

In the present study, we use classical presampling or mid-
circuit measurements to prepare thermal ensembles. In partic-
ular, mid-circuit measurements allow us to prepare a ther-
mal ensemble of the transverse field Ising model [48] for
up to 𝐿 = 16 qubits. In contrast to many common ap-
proaches [46, 47, 49–51], this enables us to prepare the thermal
initial state of the transverse field Ising model without the over-
head of using ancilla qubits. This innovation allows us to reach
system sizes one order of magnitude larger compared to previ-
ous studies, which opens the possibility of using the Jarzynski
equality as a benchmark for many-body quantum devices.

In a simulation on digital quantum computers, we test
Jarzynski’s equality for up to 𝐿 = 16 qubits in a system of
strongly interacting spins subject to a nonequilibrium protocol.
We also analyze the quantum Crooks relation [52] [cf. Eq. (18)]
for 𝐿 = 8 qubits – an infinitesimal version of Jarzynski’s equal-
ity – which had hitherto only been tested for a single two-level
system [40, 53]. Unlike earlier experiments [12, 38, 40, 43],
we do not use a parametric quench, but a protocol of random
entangling gates.

Moreover, we compare the accuracy of our results with the
relaxation times on the quantum processor, and identify a novel
feature in this regime of nonequilibrium qubit dynamics: we
show that Jarzynski’s equality holds approximately even in the
presence of accumulating dissipation effects, so long as the
execution time of gates is short compared to the thermal qubit
relaxation time [so-called 𝑇1]. In addition, we show that our
nonequilibrium protocol improves the results in comparison
to a pure energy dissipation process.

This paper is organized as follows: After introducing the
challenges and their resolutions to test the quantum Jarzynski
equality on a digital quantum computer in Sec. II, we pro-
vide results for the Jarzynski equality and the Crooks relation
in Sec. III. In Sec. IV, we develop a theory to understand
the results in the presence of energy dissipation. Finally, we
compare our results with previous experiments in Sec. V and
discuss the potentials of our work for benchmarking quantum
devices and measuring free energy differences.

II. SIMULATION ON QUANTUM COMPUTERS

As already pointed out in the introduction, a quantum sim-
ulation of Jarzynski’s equality in the many-body regime faces
some restrictive challenges.

First and foremost, the work distribution requires the mea-
surement of initial and final eigenenergies [25], cf. Eq. (2).
At the moment, this is only feasible for a suitable choice of
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FIG. 2. The protocol of our quantum experiments (A) The unitary rotation gate defined in Eq. (13) and subsequent measurements prepare a
thermal ensemble of the transverse field Ising model. The measurement has two effects: it prepares a thermal ensemble and is used as the
initial energy measurement to determine the work distribution. (B) Transformation from the initial energy to the computational basis using a
Bogoliubov (red) and a Fourier transformation (light blue). The gates are defined in Appendix C, the fermionic SWAP operators (dark green)
keep track of the correct sign structure under permutation. (C) Now we apply the actual nonequilibrium protocol. In our case we execute a
"random" circuit with 𝑘 = 3 blocks. Each block consists of a layer of single qubit Haar random unitary gates (different colors) and a sequential
CNOT layer. (D) Final measurement of the qubits in the computational basis corresponding to the final energy measurement of of Eq. (7).
More details about the thermal state preparation and its accuracy in the quantum simulation can be found in App. C.

the initial and final Hamiltonians, and requires the ability to
measure in their respective eigenbases.

We emphasize that the ability to apply general unitary trans-
formations is a distinctive feature of digital quantum comput-
ers. In contrast, this is currently not possible, in general, for
analog quantum simulators, such as cold atom systems [54];
at present, this renders obtaining quantum work distributions
in the many-body regime elusive on such platforms.

Second, the verification of Eq. (1) requires the preparation of
an initial thermal ensemble. Most approaches for Gibbs state
preparation require an overhead of ancilla qubits [46, 47, 49–
51]. This uses up valuable qubits and makes the study of
thermal states in the many-body regime difficult for the cur-
rent generation of noisy intermediate-scale quantum (NISQ)
devices.

Finally the number of required measurements increases with
system size: According to [55, 56], the number of shots 𝑠 scales
approximately at least as

𝑠 ≈ e−𝛽⟨𝑊diss ⟩𝑃 (𝑊 ) . (3)

To get an estimate for ⟨𝑊diss⟩𝑃 (𝑊 ) , we can use the fluctuation-
dissipation relation [7] to obtain the realation

⟨𝑊diss⟩𝑃 (𝑊 ) ≈
𝛽

2
⟨𝑊2

diss⟩𝑃 (𝑊 ) . (4)

Recall that the variance of generic non-adiabatic work dis-
tribution scales linearly with the system size 𝐿 [6]. As a
consequence, the number of required shots scales at least ex-
ponentially in the system size:

𝑠 = O(e−𝛽2𝐿) (5)

We stress that this scaling can even become worse in the case of
generic nonequilibrium protocols which can create long tails
in the work distribution [55, 56].

In the following, we describe in detail how we tackle each
of these challenges. In Sec. II A, we motivate our choice
for the initial and final Hamiltonians. Section II B elucidates
our choice of nonequilibrium protocol, which is summarized
diagrammatically in Fig. 2.

A. Choice of initial and final Hamiltonian

Jarzynski’s equality depends neither on the specific form of
the initial or final Hamiltonians, nor on the protocol we evolve
the state with. However, a suitable choice of these ingredients
can help to address the above-mentioned challenges, and en-
ables its verification through a simulation on a quantum device
operated in the many-body regime.

1. Initial and final Hamiltonian

Notice that determining the exponentiated work distribution
requires measuring the initial and final energy, i.e., two-point
measurements [25]. In general, this can be achieved by ap-
plying a unitary transform to switchfrom the computational
(i.e., the Pauli 𝑧-basis) into the energy eigenbasis, which is
equivalent to diagonalizing the initial and final Hamiltonian,
respectively. For generic systems, this requires a circuit of
at least polynomial depth in the number of qubits 𝐿, using a
quantum phase estimation algorithm [57]. However, for sys-
tems equivalent to free fermionic models, circuits increasing
logarithmically with system size suffice [48].

Apart from this practical restriction, the validity of Eq. (1)
imposes no further restrictions on the choice of initial and
final Hamiltonians. Thus, we choose the initial Hamiltonian
to be the transverse field Ising model with periodic boundary
conditions [58],

𝐻i =
∑︁𝐿

ℓ=1
𝜎𝑥
ℓ 𝜎

𝑥
ℓ+1 +

∑︁𝐿

ℓ=1
𝜎𝑧
ℓ
. (6)

This system is integrable and can be mapped to free fermions
through a Jordan-Wigner transformation. It can be diagonal-
ized using a shallow circuit as described in Ref. 48.

Although𝐻i is equivalent to a free-fermion model, its many-
particle eigenstates are entangled and, therefore, feature gen-
uine quantum correlations; thus, the circuit dynamics in the
many-body regime goes beyond existing work on single- and
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few-particle models previously analyzed in the context of ver-
ifying Jarzynski’s equality [12, 38, 40, 42, 43, 59].

As a final Hamiltonian, we chose the simple Hamiltonian

𝐻f =
∑︁𝐿

ℓ=1
𝜎𝑧
ℓ
, (7)

which is already diagonal in the computational basis, such
that measurements in the eigenbasis of 𝐻f are straightforward.
Overall, the choice of the initial and final Hamiltonians, which
are either already diagonal in the computational basis, or where
a circuit is known to diagonalize them in practice, enables us
to perform a two-point measurement protocol to determine
the work; this is essential to measure the left-hand side of the
Jarzynski equality, cf. Eq. (1).

The partition functions for the initial and final ensemble (and
thus the free energy difference) can be computed exactly for
our choice of Hamiltonians. The transverse field Ising model
is equivalent to a system of non-interacting fermions

𝐻 =
∑︁𝐿/2

𝑘=−𝐿/2+1
𝜔𝑘𝑎

†
𝑘
𝑎𝑘 + 𝐸𝑐, (8)

with the energies 𝜔𝑘 defined in App. C; the energy offset is
given by 𝐸c = 1 −

√
2 (As mentioned above, we we work in

units 𝑘B = 1, ℏ = 1). The free energy therefore reads as

𝐹i = 𝐸c −
1
𝛽

∑︁𝐿/2
𝑘=−𝐿/2+1

ln
(
1 + e−𝛽𝜔𝑘

)
. (9)

Since the energy offset 𝐸𝑐 enters as a constant additive term
both in the definition of the work 𝑊 [Eq. (2)] and in the free
energy 𝐹i above, and because the latter appear in the exponents
on both sides of Eq. (1), we can ignore 𝐸c in the following
discussion. The free energy of the final Hamiltonian is then

𝐹f = −
𝐿

𝛽
ln

[
2 cosh

(
𝛽

2

)]
. (10)

In order to validate Eq. (1), it is therefore sufficient to focus on
measuring the average exponentiated work.

2. Gibbs ensemble preparation: midcircuit measurements
vs. classical presampling

To test the Jarzynski equality, we need to prepare a thermal
ensemble w.r.t. the initial Hamiltonian on the quantum simula-
tor. This is a difficult task on quantum devices in general since
energy eigenstates are not necessarily accessible; however, the
mapping of the Ising model to a model of non-interacting
fermions allows us to use the initial energy measurement to
prepare the thermal ensemble using a shallow circuit, as we
now explain [see also parts (A) and (B) of the circuit in Fig. 2].

The thermal density matrix for a system of non-interacting
fermions can be written as

𝜌 =
1
𝑍i

∑︁
𝑚

e−𝛽𝐸
i
𝑚 |𝑚⟩ ⟨𝑚 | (11)

=
1
𝑍i

⊗
𝑘

(
e−𝛽𝜔𝑘 |1⟩ ⟨1|𝑘 + |0⟩ ⟨0|𝑘

)
, (12)

where𝜔𝑘 denotes again the energy of the single-particle eigen-
modes. In the case of free-fermions, each energy eigenstate
|𝑚⟩ is uniquely defined by the collection of excited single-
particle eigenmodes; This allows us to introduce an equiv-
alence between bitstrings and eigenstates: We can map an
occupied single-particle eigenmode 𝑘 to the 𝑘-th qubit in the
excited state, written as |1⟩𝑘 . In the initial state, |0⟩⊗𝐿 , all
qubits are in the |0⟩-state; thus, an excitation of the 𝑘-th mode
is equivalent to applying an 𝑋-gate to qubit 𝑘 .

Midcircuit measurements: starting from the product state
|0⟩⊗𝐿 , we can implement the Gibbs ensemble in two steps: (i)
to prepare a thermal ensemble in the free fermion basis, we
start from the state |0⟩ and first apply a rotation gate𝑈𝑘 to each
qubit, of the form

𝑈𝑘 ≡ 𝑈
(
𝜃𝑘

)
=

(
cos 𝜃𝑘 − sin 𝜃𝑘
sin 𝜃𝑘 cos 𝜃𝑘

)
, (13)

with 𝜃𝑘 implicitly defined by

sin2 𝜃𝑘 =
e−𝛽𝜔𝑘

1 + e−𝛽𝜔𝑘
; (14)

(ii) we then perform a subsequent measurement of all qubits.
The angles 𝜃𝑘 are chosen such that this projective measurement
collapses the state with probability equal to that of the Gibbs
ensemble; hence, the measurement statistics correspond to
sampling from the Gibbs state in Eq. (12). These two steps
constitute part (A) of our circuit protocol, see Fig. 2.

To complete the procedure, we have to apply a transforma-
tion from the energy to the computational eigenbasis. This
transformation consists of a fermionic Bogoliubov transform
and a fermionic Fourier transform [cf. App. C]; these consti-
tute part (B) of our circuit, see Fig. 2. In the case of 𝐿 = 2𝑘

spins (𝑘 ∈ N), the Fourier transform can be decomposed
into fermionic SWAP gates and two-body Fourier transform
gates, which can be efficiently implemented on a quantum
computer [48].

We emphasize that, besides its use for Gibbs state prepara-
tion, the mid-circuit measurement simultaneously serves as a
measurement of 𝐸 i

𝑚, which is necessary to determine the work
distribution.

Classical presampling: unfortunately, mid-circuit mea-
surements are currently not feasible on all present-day quantum
computing platforms. Wherever they are not available, we use
classical presampling [41, 48, 60]. To this end, we prepare a
randomly chosen many-body eigenstate |𝑚⟩ with probability
equal to its Boltzmann weight, following Eq. (11). This is
equivalent to sampling a bitstring directly from the Boltzmann
distribution provided bitstring preparation can be performed
with unit fidelity.

Since, at the end of the day, we want to perform a quan-
tum simulation end-to-end, we avoid classical presampling
whenever possible, and stick to midcircuit measurements for
the largest system sizes 𝐿 = 16. Furthermore, classical pre-
sampling requires preparing different circuits corresponding
to each different initial bitstring, while the use of mid-circuit
measurements requires only one circuit for all possible initial
bitstrings. As a consequence, this results in a speed-up for the
execution of the simulation.
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After having discussed the difficulties related to measuring
work and thermal state preparation, we now move on to address
the remaining challenges concerning the exponential scaling
of measurement shots and free energy differences.

B. Nonequilibrium protocol

In contrast to previous experiments, the local control over
qubit interactions offers significant freedom in the choice of
nonequilibrium protocol, cf. part (C) of our circuit in Fig. 2.
Our goal is to devise a protocol that makes use of the intrinsic
features of quantum computers in order to address the expo-
nential scaling of the number of required measurements with
the system size.

Because of the local nature of gates on digital quantum com-
puters, we choose a circuit whose dynamics does not describe
a parametric deformation between the initial and final Hamil-
tonians. This allows us to explore nonequilibrium protocols
distinct from previous experiments [12, 40].

Instead, in our digital quantum simulations, we apply a pro-
tocol made out of 𝑘 sequential blocks, as shown in Fig. 2(C).
Each block consists of a layer of single-qubit Haar random
unitary gates, followed by a sequential layer of CNOT-gates.
In comparison to pure Haar random circuits, our circuit allows
for a more native and shallow implementation on NISQ de-
vices; moreover, 𝑘 = 𝐿 − 1 blocks are sufficient to build up
bipartite von Neumann entanglement in the system close to the
Page value [61], as we demonstrate in a classical emulation in
App. D.

Our choice of a non-equilibrium protocol results in a work
distribution 𝑃(𝑊), that approaches a Gaussian for system sizes
𝐿 ≳ 8 [cf. App. D]. Thus, the tails of the work distribution
exhibit a Gaussian decay and do not dominate the average of
the exponentiated work [55, 56].

However, the number of measurements to determine the
distribution of the exponentiated work still scales exponentially
with the system size 𝐿 and thus eventually gives rise to a
bottleneck in testing Eq. (1). In our case, we find that for the
case of 𝐿 = 16, 216 measurements are sufficient. As we show
below, this is feasible on current devices.

In order to determine the final energy (and with it, the work),
we perform up to 224 measurements on superconducting quan-
tum computing architectures, and between 212 (Quantinuum)
and 216 (IonQ) measurements on trapped ion platforms. The
reason for the smaller number of measurements on trapped ion
devices is the higher simulation cost of the quantum simulation
due to lower protocol repetition rates, which restricts us to use
less data points. For further details, see App. B.

Last, it is curious to note that the separation of parts (B)
and (C) in our protocol [Fig. 2] is somewhat arbitrary. On
the one hand, part (B) belongs naturally together with part
(A) in a thermal state preparation subprotocol. On the other
hand, we can interpret part (B) as part of the nonequilibrium
protocol (C) applied to the system. Since Jarzynski’s equality
holds for arbitrary protocols, equilibrium or nonequilibrium,
the accuracy of implementation of part (B) is not crucial for
the accuracy to which we verify Jarzynski’s equality, provided

the errors are systematic and are, thus, identical across trials.
Note that this does not compromise the many-body character
of our circuit: indeed, the entanglement created by the circuit
reaches the maximal Page curve, cf. Fig. 9 in App. D.

III. JARZYNSKI EQUALITY AND CROOKS RELATION
ON A NOISY QUANTUM DEVICE

After having discussed the details of the implementation
of a test for the many-body quantum Jarzynski equality on
quantum devices, we now provide simulation results for the
test of Jarzynski’s equality and Crooks’ relation on present-
day quantum computing platforms.

A. Jarzynski relation in the few- and many-body regime

The results presented below are obtained in experiments on
the ibmq_guadalupe superconducting quantum processor [62].
A detailed comparison with other digital quantum architectures
is included in App. G. For the technical details of the various
devices including gate fidelities and relaxation times 𝑇1 and
𝑇2, we refer the interested reader to App. B 3.

In Fig. 3 we display the deviations from Jarzynski’s equality
as a function of the inverse temperature. The three panels
show the same data, but viewed through the lens of different
quantifiers of the deviation.

Let us open up the discussion in Fig. 3 (a) by introducing
the plain deviation quantifier ln

〈
e−𝛽𝑊diss

〉
𝑃 (𝑊 ) , which van-

ishes whenever Jarzynski’s equality holds. The curves show
an approximately linear scaling with the inverse temperature 𝛽
in the high-temperature limit. The dominant contributions to
this deviation quantifier originate from violations of double-
stochasticity with equal contributions from all final energy
eigenstates. By contrast, for inverse temperatures 𝛽 ≳ 1, the
deviations are determined by processes involving the ground
state of the final system. As a consequence, the deviations for
large 𝛽 ≳ 1 will converge to a constant value, which depends
on the concrete effect of energy dissipation on the process. For
a detailed discussion, see App. E 2. The comparison between
the three system sizes in Fig. 3 (a) reveals increasing absolute
deviations from Jarzynski’s equality with increasing 𝐿. We
suspect that this is due to the increasing number of qubits to
be read out: a primary contribution to the overall error arises
from measurement errors, and hence the error in the work mea-
surement scales linearly with system size. We provide a more
detailed analysis of various errors in Sec. IV and App. E. For
a meaningful and systematic comparison of the results for dif-
ferent system sizes we, therefore, consider different quantifiers
for relative deviations in panels (b) and (c).

Figure 3 (b) shows the ratio Δ𝐹sim/Δ𝐹, introduced in previ-
ous work [12, 42]. Here,

Δ𝐹sim = − 1
𝛽

ln
〈
e−𝛽𝑊

〉
𝑃 (𝑊 ) . (15)

is the free energy difference obtained from the distribution
average of the exponentiated work and Δ𝐹 is the theoretical
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FIG. 3. Testing Jarzynski’s equality on a digital quantum computer using midcircuit measurements as a function of inverse temperature 𝛽,
for three different systems sizes 𝐿 = 4, 8, 16. (a) ⟨e−𝛽𝑊diss ⟩𝑃 (𝑊 ) as a function of inverse temperature 𝛽. The unnormalized data depend on
temperature and sytem size: deviations from Jarzynski’s equality for a dissipation-free system are sensitive to the system size 𝐿 and grow with
increasing inverse temperature. (b) Δ𝐹sim/Δ𝐹 as a function of inverse temperature 𝛽. The normalization largely removes the dependence on
temperature and sytem size. (c) The same data, but now normalized by the maximum possible deviation [see Eq. (17)]. The dashed red line
shows the prediction from our theory derived in Sec. IV. Jarzynski’s equality holds better than one part in ten, irrespective of the system size;
the deviation agrees well with our theoretical prediction. We took 216 measurements on ibmq_guadalupe; the number of blocks in the circuit
[cf. Fig. 2] is seven for 𝐿 = 4, 8, and three for 𝐿 = 16. Further technical details of the device can be found in App. B 3.

prediction for the free energy difference. Any deviations from
the ideal, dissipation-free case, are indicated by deviations
of the ratio from unity. We observe Δ𝐹sim/Δ𝐹 > 90% for all
inverse temperatures and only a weak system-size dependence,
since the latter is absorbed by the scaling of the denominator.

Since Δ𝐹 is a protocol-dependent quantity and not imme-
diately accessible for a given setting, we introduce another
normalization, which facilitates a straightforward quantitative
comparison with previous experiments and which is tailored
to quantify the amount of energy dissipation in the system.
For this purpose, we consider the process of dissipative decay
to the ground state of the final system as the natural reference
for deviations from the Jarzynski equality, because it consti-
tutes its worst possible violation. The resulting work obtained
by the two-point measurement scheme when starting from an
initial energy 𝐸 i is𝑊 = 𝐸 f

0 − 𝐸
i. Accordingly, we introduce

e−𝛽𝑊decay ≡ e−𝛽
(
𝐸f

0−𝐸 i
)
+𝛽Δ𝐹sim , (16)

where the right-hand side is the ratio of the exponentiated
energy differences for the purely dissipative process, andΔ𝐹sim
for the true process simulated on the quantum computer. The
bar (·) denotes an average over the initial thermal ensemble.

This allows us to define the relative deviation from the the-
oretical prediction,

E
(
𝛽
)
=

����� ln
〈
e−𝛽𝑊diss

〉
𝑃 (𝑊 )

ln e−𝛽𝑊decay

����� . (17)

This quantity is bounded from below and above. Whenever
Jarzynski’s equality holds, we have E(𝛽) = 0. On the other
hand, for a purely dissipative process, E(𝛽) = 1. In con-
trast to previous deviation quantifiers, the normalization in
E(𝛽) by the worst-case scenario allows us to directly com-
pare the amount of dissipation in our simulations and previous

10−2 10−1 100 101

tidle/T1

10−2

10−1

100
E(
β

)

β =0.1

β =0.5

β =0.7

β =1.0

FIG. 4. Relative deviation from Jarzynski’s equality as a function of
the waiting time 𝑡idle (solid lines), for four different inverse temper-
atures 𝛽, at 𝐿 = 8. The 𝑥-axis is normalized by the average waiting
time 𝑇1 = 118 𝜇s [63]. For comparison, the diamonds denote the
results for our protocol shown in Fig. 3(b), placed at their respective
execution time [dashed vertical line]. The application of gates be-
tween the two measurements in the protocol [cf. Fig. 2] improves the
accuracy of our results by up to more than one order of magnitude.

experiments, cf. Table I in the Discussion. Moreover, small
deviations from the equality can be resolved logarithmically,
while the upper bound simultaneously justifies a quantitative
interpretation.

The relative deviation from Jarzynski’s equality as defined
in Eq. (17) is plotted in Fig. 3 (c). Consistently with Fig. 3 (b)
the results are largely independent of the inverse temperature
𝛽 and the relative deviations do not exceed 10%. As for the
previous normalization Δ𝐹sim/Δ𝐹, E(𝛽) exhibits only a weak
system-size dependence. Because increasing the system size
requires a larger circuit depth via the sub-circuits (B) and
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(C) in Fig. 2, one could naïvely expect that scaling to large
system sizes is quickly hampered by dissipation effects which
accumulate with increasing circuit size. However, this appears
not to be the case in the observed behavior in Fig. 3, where
we show data up to 𝐿 = 16 qubits. Therefore, we now briefly
investigate our circuit’s susceptibility to energy dissipation.

The purely dissipative process leading to the right-hand-side
of Eq. (16) can be emulated on a NISQ device by applying a
so-called "idle process" [64]: this is a similar process as the
one described in Fig. 2, but with the circuit parts (B) and (C)
replaced by free evolution for a variable duration 𝑡idle. In other
words, the two measurements at the end of circuit part (A)
and in part (D) are separated by the idle time 𝑡idle. Hence, to
access the regime of validity of Eq. (16), we have to apply an
idle process of time 𝑡idle ≫ 𝑇1, with 𝑇1 being the dissipation
time.

Figure 4 shows the relative deviation from Jarzynski’s equal-
ity for an idle process, as a function of the waiting time 𝑡idle for
𝐿 = 8 qubits. As expected, for large waiting times 𝑡idle ≳ 𝑇1,
E → 1 reaches the limit of a pure dissipative process. We now
want to compare the time required to reach the purely dissipa-
tive regime with the execution time of the circuit from Fig. 2.
Before we do this, notice first that the average dissipation time
of ibmq_guadalupe is 𝑇1 ≈ 118 𝜇s, while the execution time
for our circuit [Fig. 2, (A) to (D)] is 𝑇𝑐 = 57 𝜇s for 𝐿 = 8
qubits; hence 𝑇𝑐/𝑇1 ≈ 0.48 [cf. Diamonds on dashed ver-
tical line in Fig. 4] [for comparison, for 16 qubits we have
𝑇𝑐/𝑇1 ≈ 2.95]. Furthermore, the normalized deviation of
the quantum Jarzynski equality Eq. (17) does not depend on
the number of entangling blocks, as is shown in Fig. 12 in
App. D 4.

Comparing the deviation values with the idle process, the
accuracy of the process from Fig. 3 appears quite striking, since
the deviation there is up to more than one order of magnitude
smaller than an idle protocol of the same waiting time, 𝑡idle =

𝑇𝑐. In fact, the deviation values are comparable to those of
the idle process with the smallest idle time investigated, from
which we can deduce that the main source of deviations from
Eq. (1) originates in part (D) of the protocol.

To sum up, our nonequilibrium circuit has the property of
preventing energy dissipation effects from accumulating, de-
spite increasing circuit execution time; this is, in turn, reflected
in Jarzynski’s equality being obeyed to a high degree of accu-
racy even in the many-body regime of 𝐿 = 16 qubits. We will
discuss this observation in more detail in Sec. IV.

B. Crooks relation in the many-body regime

While Jarzynski’s equality is a statement about work-
averaged processes, we can also check to what extent its in-
finitesimal [or in-sample] version, the Crooks relation [29, 52]

ln
(
𝑃𝐹 (𝑊)
𝑃𝑅 (−𝑊)

)
= 𝛽(𝑊 − Δ𝐹) , (18)

holds [see App. A for a derivation]. To the best of our knowl-
edge, the latter was only tested in two-level quantum systems
so far [40, 53].

−12 −10 −8 −6 −4 −2 0 2

W

−5

0

5

ln
(P
F

(W
)/
P
R

(−
W

))

FIG. 5. Test of the Crooks relation ln
(

𝑃𝐹 (𝑊 )
𝑃𝑅 (−𝑊 )

)
as a function of

the work 𝑊 . The black line denotes the theoretical prediction for a
noiseless device, Eq. (18). Although the results from the quantum
simulation follow the theory prediction, deviations indicate the vio-
lation of double-stochasticity. The data shown here are for 𝛽 = 1.0 ,
224 ∼ 1.7 × 107 shots and 𝐿 = 8 qubits on ibmq_guadalupe.

For a process described by a sequence of unitary gates, and
ignoring noise for the time being, the backward process can
be implemented in a straightforward way by reversing the gate
order and taking the inverse of each individual gate.

We tested the Crooks relation for 𝐿 = 8 qubits, using
224 ≈ 1.7×107 measurements to reduce statistical fluctuations
due to a limited number of measurements. The corresponding
data are shown in Fig. 5. The validity of the Crooks relation
requires that all data points lie on the black line, apart from
statistical fluctuations arising from a finite number of mea-
surements. Indeed, the data follow the trend predicted by the
Crooks relation. However, the deviation between the theory
prediction and the measurement outcomes cannot solely be ex-
plained by the statistical uncertainty due to a limited number of
measurements: The ratio between occurrences of forward and
backward processes in Eq. (A3) is up to one order of magnitude
larger than expected due to statistical errors. These deviations
are a consequence of the presence of energy dissipation in the
device.

IV. THEORETICAL ANALYSIS

In order to understand the small deviations in the valida-
tion measurement for the Jarzynski equality and the strong
fluctuations in the Crooks relation, we analyze a simplified
single-qubit toy model subject to a periodic application of a
single-qubit rotation gate, instead of a random sequence of
gates. As we discuss below, the main results of this analysis
extrapolate also to the protocol from Fig. 2.

A. Single-qubit case

Consider first a single qubit. The Hilbert space is two-
dimensional, such that the state can be expressed by a vector
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|𝜓⟩ = (𝑢1, 𝑢2). To be more concrete, |𝜓𝐺⟩ = (1, 0) defines
the "physical" ground state of the qubit, whereas |𝜓𝐸⟩ = (0, 1)
denotes an excited state.

Consider the single-qubit density matrix 𝜌:

𝜌 =

(
𝜌11 𝜌12
𝜌21 𝜌22

)
. (19)

We analyze the repeated [periodic] application to the qubit of
a unitary gate𝑈 of the form

𝑈 =

(
cos𝛼 − sin𝛼
sin𝛼 cos𝛼

)
. (20)

The density matrix vector evolves according to

𝜌 → 𝑈𝜌𝑈†. (21)

Let us assume that the excited state has a finite lifetime 𝑇1;
thus, we can use a single amplitude damping channel [65] to
describe this effect. The time evolution over one period is then
given by

F
(
𝜌
)
=

∑︁2

𝑖=1
K𝑖

(
𝑈𝜌𝑈†

)
K†

𝑖
. (22)

Here F
(
𝜌
)

is a completely positive trace-preserving map on
the space of density matrices with a unique largest eigenvalue
𝜆 = 1 for 𝑝 > 0. The Kraus operators K𝑖 describing the
damping process are given by

K1 =

(
1 0
0

√︁
1 − 𝑝

)
, and K2 =

(
0 √𝑝
0 0

)
. (23)

The parameter 𝑝 is the fraction of the excited state population
which decays to the ground state after one application of F . It
is related to the relaxation time 𝑇1 and the gate time 𝑇𝑔 via

𝑝 = 1 − exp
(
−
𝑇𝑔

𝑇1

)
. (24)

Repeating the process 𝑁 times, the density matrix evolves in
the long time limit as

lim
𝑁→∞

F 𝑁
(
𝜌
)
= 𝜌0. (25)

A simple calculation gives, for 𝑝 > 0,

𝜌0 =

(
1/2 + 𝑓 (𝑝, 𝛼) 𝑔(𝑝, 𝛼)
𝑔(𝑝, 𝛼) 1/2 − 𝑓 (𝑝, 𝛼)

)
, (26)

with

𝑓 (𝑝, 𝛼) =
𝑝

[
1 −

√︁
1 − 𝑝 cos(2𝛼)

]
2
[
1 − 𝑝 +

√︁
1 − 𝑝

] [
1 − cos(2𝛼)

] , (27)

and

𝑔(𝑝, 𝛼) =
𝑝
√︁

1 − 𝑝 sin(2𝛼)

2
[
1 − 𝑝 +

√︁
1 − 𝑝

] [
1 − cos(2𝛼)

] . (28)

Jarzynski’s equality holds for 𝑓 (𝑝, 𝛼) = 0, which is indeed the
case at 𝑝 = 0.

Our quantum simulations testing Jarzynski’s equality are in
the regime 𝑇𝑔/𝑇1 ≪ 1. In order to understand this regime, we
perform an expansion of 𝑓 (𝑝, 𝛼) around 𝑝 = 0; together with
Eq. (24) this gives

𝑓 (𝑝, 𝛼) = 1
4
𝑝 + O

(
𝑝2) = 1

4
𝑇𝑔

𝑇1
+ O

(
𝑇2
𝑔

𝑇2
1

)
. (29)

This regime is approached in the case of an infinitely fast
drive, as can be seen from the relation in Eq. (29). Note that
the actual time of the protocol does not matter in this case,
since this analysis holds in the limit of infinitely many periods
𝑁 → ∞. Indeed, there is no obstruction if the protocol time
greatly exceeds the relaxation time scale 𝑇1.

B. Extension to multiple qubits

Although we restricted the analysis to the case of a sin-
gle qubit with a periodic protocol, we can apply it to random
gates and multi-qubit systems. For simplicity, let us only take
into account the independent decay of qubits in the excited
state to their ground state, and ignore many-particle effects
for a moment. Although this is a crude simplification, it will
turn out that it gives quantitative good results, such that this
approximation is well justified a posteriori. The relevant phys-
ical parameter is 𝑝, as defined in Eq. (24). The application
of single-qubit gates can be interpreted as a drive applied to
the system, which repopulates excited states and thus compen-
sates for the deviations from Jarzynski’s equality caused by
the energy dissipation process.

To make a quantitative estimate for our experiment, we
determine the parameter 𝑝 and the measurement error of
ibmq_guadalupe. The execution time of single-qubit gates
is negligible in comparison to two-qubit gates 𝑇𝑔, so 𝑝 is given
by:

𝑝 = 1 − e−
𝑇𝑔

𝑇1 = 3 × 10−3, (30)

see App. B 3 for the characteristic time scales of the device.
Thus, in our approximation, the effect of 2-qubit entangling
gates only enters via the gate time 𝑇𝑔. Furthermore, averaging
over the angle 𝛼 for each single rotation gate, 𝑓 (𝑝, 𝛼) reduces
to

𝑓0 (𝑝) =
𝑝

2
[
1 − 𝑝 +

√︁
1 − 𝑝

] ≈ 8 × 10−4. (31)

In addition, we have to factor in the dissipation during the
measurement process, i.e., excited qubits which are misidenti-
fied to be in the ground state. In the following, we neglect the
opposite case, i.e., a qubit in the ground state misidentified to
be in the excited state. For the device ibm_guadalupe, we get
an approximate measurement error of 𝑝0 ≈ 0.04. The steady-
state probability for each single qubit to be in the excited state
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Experiment Experimental platform System size 𝐿 Inverse temperature 𝛽 Relative deviation E(𝛽)
This work superconducting qubits 16 0.7 0.061(3)

Ref. 43 superconducting qubits 3 1.0 0.03(1)
Ref. 42 superconducting qubits 1 1.0 0.02(2)
Ref. 12 trapped ions: vibrational modes 1 1.13 0.02(2)
Ref. 38 trapped ions: two hyperfine levels 1 1.3 0.03(9)
Ref. 40 NMR 1 0.15 0.17(8)
Ref. 39 Hyperfine levels of 87Rb 1 1.75 0.00(4)
Ref. 41 NV centers 1 0 0

TABLE I. Comparison of different experiments for the validation of the quantum Jarzynski equality, using the normalized deviation defined
in Eq. (17). The relative accuracy E of our simulations is comparable with previous experiments on few-qubit systems. More details for the
extraction of the data and the determination of 𝛽 are provided in the appendix G.

is then given by

𝑝exc =

(
1
2
− 𝑓0 (𝑝)

)
(1 − 𝑝0) =

1
2
− 𝑝0 − 𝑓0 (𝑝) − 𝑓0 (𝑝)𝑝0.

(32)
Since 𝑓0 (𝑝) ≪ 𝑝0, the model predicts that the deviations

from our experiment are almost exclusively due to measure-
ment imperfections. The analytically estimated deviation from
a dissipation-free evolution is indicated as a red dashed line in
Fig. 3. Taking the simplifications of our analysis into account,
the result agrees quantitatively well with our simulation results
and suggests that measurement errors are indeed the dominant
source for deviations from the quantum Jarzynski equality.

C. Relation to DiVincenzo’s third criterion

The compensation for energy dissipation is reminiscent of
DiVicenzo’s criteria for quantum computing [66]. To be more
concrete, the third criterion states that scalable quantum com-
puting requires long decoherence times in comparison to the
time scale of operational gates.

In our case, we are not interested in scalable fault-tolerant
quantum computing, but in a weaker question, namely under
which conditions the quantum Jarzysnki equality Eq. (1) is
fulfilled. This only requires long dissipation timescales. In
contrast to fault-tolerant quantum error correction, it is not
necessary to actively correct for errors; the dynamics itself
already compensates for the energy dissipation. Put differ-
ently, the application of single-qubit gates can be interpreted
as a re-population of excited states. The quantum Jarzynski
equality, thus, holds in an effective way, although every single
component of the dynamics is spoiled by energy dissipation.

V. DISCUSSION & OUTLOOK

We proposed a protocol to test the quantum Jarzynski equal-
ity and the Crooks relation in the many-body regime on near-
term quantum computing devices, in the presence of different
errors. We pushed the state of the art for the quantum simula-
tion of Jarzynski’s equality up to 16 qubits, and for the Crooks
relation – to 8 qubits, respectively. We identified the imple-
mentation of two-point work measurements, the preparation of

a thermal ensemble on a digital quantum simulator, and the ex-
ponential growth of the required number of measurements as
the major practical challenges to reach the many-body regime.

To address the first two challenges, we developed a pro-
tocol sequence that prepares a canonical ensemble by using
mid-circuit measurements. While for small system sizes clas-
sical presampling is still feasible, mid-circuit measurements
allow us to prepare thermal ensembles for up to 𝐿 = 16 qubits
without running multiple independent experiments and with-
out any overhead incurred by using ancilla qubits. Taking the
transverse field Ising model and an 𝑆𝑧-model as exemplary ini-
tial and final Hamiltonians, respectively, we performed energy
measurements with circuits scaling at most logarithmically in
the system size 𝐿. This approach is exact for Hamiltonians
equivalent to single-particle systems; it is currently an open
question whether, to what accuracy, and under which condi-
tions, one could prepare thermal ensembles for more general
Hamiltonians using similar protocols. A possible route could
be to use variation quantum eigensolvers for the preparation of
thermal ensembles for non-integrable systems [67].

While the exponential (in the system size) number of pro-
jective measurements still appears as the dominant bottleneck
in testing the quantum Jarzynski equality when increasing the
number of degrees of freedom, we were able to collect enough
measurement data to test the latter for up to 𝐿 = 16 qubits. As
a side product, our protocol in Fig. 2 reveals the ingredients of
Eq. (1) in a simple way: the quantum Jarzynski equality is a
relation between initial and final eigenenergies, and a double-
stochastic transfer matrix connecting them. Any other terms,
including the transformation to a computational basis, can
be absorbed into the transition process itself. The quantum
Jarzynski equality thus probes only the double-stochasticity
of the process and not the accuracy of different parts of the
protocol.

Let us also compare our results to previous experiments on
the quantum Jarzynski equality, cf. Table I. To this end, we
first extract the results for the left-hand side of Eq. (1), and
the theory prediction of the free energy of the corresponding
experiments; then we compute the maximum deviation of an
idle process, cf. Eq. (16), which gives us the normalized devi-
ation defined in Eq. (17) for each experiment [cf. Appendix G
for details]. The comparison shown in Table I clearly suggests
that the accuracy of our results is comparable with most of the
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earlier experiments; however, we reach an order of magnitude
larger system sizes, where quantum many-body effects become
pronounced.

Moreover, in contrast to previous experiments, the protocol
duration of our circuits is comparable to, or even exceeds, the
average dissipation time 𝑇1 of the NISQ devices; therefore,
energy dissipation is no longer negligible. We checked that
our results do not depend on the specific choice of random-
ness in our protocol. Furthermore, we demonstrated that the
relative accuracy of our results is almost independent of sys-
tem size and circuit depth. We also developed a theoretical
model which predicts the empirical observations in a quanti-
tative manner. By employing a fast drive that compensates for
energy dissipation, we thus found the Jarzynski equality to be
effectively valid in this regime, even though the dynamics is
not doubly stochastic.

While these observations are interesting on their own, our
work demonstrates two promising practical applications: First,
testing the equality can be used to investigate errors on NISQ
devices in new ways: Since Jarzynski’s equality is only sensi-
tive to processes violating double-stochasticity, it can be used
to quantify and single out this effect. Even though simpler
protocols to determine the dissipation time 𝑇1 of devices ex-
ist [65], our approach can be used as the generalization of these
approaches to the many-qubit regime: Jarzynski’s equality can
not only be used to detect the decay of excited states as shown
in our analysis in Sec. IV, but it is, more generally, sensitive to
any violation of double-stochasticity. It remains an open ques-
tion for future studies to investigate to what extent this allows
us to refine our understanding of correlated error processes on
modern quantum devices. For instance, the commonly used
protocol for measuring 𝑇1 can be interpreted as special cases
of testing the Jarzynski equality for a single spin system, as
we show explicitly in App. F. Second, our analysis emphasizes
important limitations concerning the measurement of free en-
ergy differences – one of the promising applications of the
Jarzynski equality: in generic non-integrable systems, the ex-
act work distributions can only be extracted by diagonalizing
the circuits, which requires at least polynomially deep circuits
using quantum phase estimation [68] and is thus infeasible in
the many-body regime. It remains an exciting question for fu-
ture research to find approximations to Eq. (1), which allow for
a scalable method to extract free energies using the quantum
Jarzynski equality in the many-body regime [43].
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Appendix A: Quantum Jarzynski Equality and Crooks Relation

Let us recall the derivation of the quantum Jarzynski equal-
ity [28, 30]. Consider a system described by a Hamilto-
nian 𝐻i with eigenstates 𝐻i |𝑚i⟩=𝐸 i

𝑚 |𝑚i⟩, coupled to a ther-
mal reservoir of inverse temperature 𝛽. The system is thus
described by a thermal ensemble with the density matrix
𝜌 = 𝑍−1

i
∑

𝑚 e−𝛽𝐸 i
𝑚 |𝑚i⟩ ⟨𝑚i |, and 𝑍i =

∑
𝑚 e−𝛽𝐸 i

𝑚 is the parti-
tion function. We now decouple the system from the reservoir,
and let it evolve according to a dynamical process𝑈 (not nec-
essarily unitary, see below). At the end of this process, the in-
stantaneous final Hamiltonian 𝐻f of the system has eigenstates
𝐻f |𝑛f⟩=𝐸 f

𝑛 |𝑛f⟩. We denote by 𝐾𝑚→𝑛 the transition probability
from the initial eigenstate |𝑚i⟩ to the final eigenstate |𝑛f⟩.

While the dynamical process 𝑈 need not be unitary, we
require that the transition probabilities satisfy the following
two sum rules:∑︁

𝑛
𝐾𝑚→𝑛 = 1, ∀𝑚, and

∑︁
𝑚
𝐾𝑚→𝑛 = 1, ∀𝑛. (A1)

The left-hand equality reflects the conservation of probability.
The right-hand sum rule is less obvious and implies the so-
called double-stochasticity of the matrix 𝐾𝑚𝑛; this condition
is fulfilled for unitary dynamics 𝐾𝑚→𝑛 = |⟨𝑛f |𝑈 |𝑚i⟩|2, but is
also conserved throughout evolution in the presence of addi-
tional decoherence noise [38]. By contrast, energy dissipation
violates the right-hand sum rule condition [38, 69].

Using these definitions, we can now prove the quantum
Jarzynski equality for the process introduced above:〈

e−𝛽Δ𝑊
〉
𝑃 (𝑊 )

=
1
𝑍i

∑︁
𝑚,𝑛

e−𝛽𝐸
i
𝑚𝐾𝑚→𝑛e−𝛽𝑊𝑛𝑚

=
1
𝑍i

∑︁
𝑚,𝑛

𝐾𝑚→𝑛e−𝛽𝐸
f
𝑛 =

1
𝑍i

∑︁
𝑛

e−𝛽𝐸
f
𝑛

=
𝑍f
𝑍i

= e−𝛽Δ𝐹 , (A2)

where we used 𝑊𝑛𝑚=𝐸
f
𝑛−𝐸 i

𝑚 according to Eq. (2) and the
double-stochasticity of 𝐾𝑚→𝑛 in the second line, and the defi-
nition of free energy 𝐹i = −𝛽 ln 𝑍i in the last line. We note that
Jarzynski’s equality imposes no restrictions on the initial and
final Hamiltonians; in particular, they need not be identical.

There exists an infinitesimal (i.e., work-resolved) version of
Jarzynski’s equality, called the Crooks relation [29, 52]. The
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Crooks relation states that
𝑃𝐹 (𝑊)
𝑃𝑅 (−𝑊)

= e 𝛽 (𝑊−Δ𝐹 ) . (A3)

Here 𝑃𝐹 (𝑊) denotes the probability of extracting an amount
of work𝑊 for a given (so-called forward) process and 𝑃𝑅 (−𝑊)
for the reverse (or backward) protocol, which can be expressed
as

𝑃𝐹 (𝑊) =
e−𝛽𝐸 i

𝑚

𝑍i
𝐾𝑚→𝑛

����
𝐸 i
𝑚−𝐸f

𝑛=𝑊

, (A4)

𝑃𝑅 (−𝑊) =
e−𝛽𝐸f

𝑛

𝑍f
𝐾𝑚←𝑛

����
𝐸f
𝑛−𝐸 i

𝑚=−𝑊
. (A5)

The Jarzynski equality follows by rearranging the Crooks re-
lation, and integrating it over the work𝑊 .

Appendix B: Comparison of different NISQ architectures

In the following section, we give a brief overview of the
different quantum computing platforms, the noise they are
affected by, and their significance for the test of Jarzynski’s
equality.

1. NISQ architecture characteristics

In order to test the effect of different noise types, we run our
circuits on five different devices using two different architec-
tures: superconducting qubits (ibm_perth, ibmq_guadalupe
and Rigetti Aspen-11), and trapped ion platforms (Quantin-
uum H1 and an 11-qubit system of IonQ). We extract the
exponential of the work, Eq. (2), to test the Jarzynski equality,
cf. Eq. (1). As mentioned above the latter is valid also in the
presence of noise which does not violate double-stochasticity,
and is only sensitive to errors that violate the second sum rule
in Eq. (A1). The size of the deviation from the theoretical pre-
diction Eq. (1), valid for an ideal dissipationless device, gives
us therefore information about the amount processes violating
double-stochasticity during the simulation.

The quality of qubits is often measured by means of the
average gate times 𝑇𝑔 and the relaxation times 𝑇1 and 𝑇2.
The timescale of dephasing errors, 𝑇2, is not relevant for our
purposes, since depolarizing errors do not violate double-
stochasticity [30, 38]. Only the thermal relaxation time 𝑇1
or, more concretely, the ratio 𝑞 = 𝑇𝑔/𝑇1 matters, as it sets the
decay rate for excited states, cf. Sec. III. While the two-qubit
fidelities for all architectures fall between 95% and 99.5%, the
𝑞-factor depends strongly on the underlying architecture.

As discussed in Sec. IV, the accuracy to which the Jarzyn-
ski equality Eq. (1) holds in experimental setups, depends on
(a) the ratio between gate time 𝑇𝑔 and the relaxation time 𝑇1,
(b) measurement errors, and (c) statistical errors due to a finite
number of measurements. The statistical error reduces with the
square root of the number of measurements. Thus, by testing to
what accuracy Eq. (1) holds, we gain information about pro-
cesses violating double-stochasticity in the quantum device.

FIG. 6. Validation of the Jarzynski equality Eq. (1) for 𝐿 = 4 qubits
as a function of inverse temperature 𝛽 on ibm_perth (blue), Rigetti
Aspen-11 (orange) and IonQ (green), 65, 536 shots with classical
sampling. Red: comparison with a circuit executed on Quantin-
uum H1 with a slightly different sampling, see text, and 4, 000 shots.
The data for superconducting platforms are denoted by circles, for
trapped ions – by squares. The trapped ion platforms show a bet-
ter performance than the superconducting qubit architectures, since
ln⟨e−𝛽𝑊diss ⟩ is closest to zero – the theory prediction value.

The two-qubit gate time for IonQ-devices is 𝑇𝑔 ∼ 200 𝜇s,
and the relaxation time 𝑇1 ∼ 107 𝜇s, resulting in a factor
𝑞IonQ ∼ O(105). On the other hand, the timescale for IBM-
platforms are 𝑇𝑔 ∼ 400 ns, 𝑇1 ∼ 160 𝜇s, yielding 𝑞IBM ∼ 400.
Based on these estimates, we anticipate obtaining significantly
smaller deviations from Jarzynski’s equality Eq. (1) on trapped
ion compared to superconducting platforms. Furthermore, due
to the high-quality factor 𝑞IonQ we can assign deviations from
the Jarzynski equality on trapped ion platforms solely to mea-
surement errors.

2. Comparison on different devices

Besides presenting results for the largest system sizes and
the most resource-intensive simulations (see main text), it is
worth comparing the performance of the different devices on
smaller systems. This is necessary to obtain an overview of
the scaling with system size 𝐿 of the simulations, and their ex-
pected resource costs. Furthermore, it allows us to get valuable
insights about the quality of the experimental platforms.

For a direct comparison of the performance on the five dif-
ferent devices, we estimate the validity of Jarzynski’s equality
using 216 measurement shots and 𝐿 = 4, 8 qubits. In the case
of Quantinuum, we are restricted by the smaller number of
measurements to 𝐿 = 4 qubits and to a different sampling
scheme due to the higher financial resource costs for circuit
evaluation on these devices: We sample each eigenstate 200
times, and weigh the results by the Boltzmann distribution
during classical postprocessing. In this way, we are able to
extract data for different inverse temperatures with a total of
4, 000 shots.
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Device
��ln⟨e−𝛽𝑊diss ⟩𝑃 (𝑊 )

�� Runtime
ibmq_guadalupe 0.05(4) 51 𝜇s

IonQ 0.03(4) ≈ 20 ms
Rigetti Aspen-11 0.04(3) ≈ 18 𝜇s

ibmq_guadalupe (mid-circuit meas.) 0.10(4) 57 𝜇s

TABLE II. Accuracy of the Jarzynski equality for 𝛽 = 0.7, executed on
different devices for an extension of the protocol from Fig. 2 to 𝐿 = 8
qubits. The case for mid-circuit measurements is shaded in grey. The
values for the runtimes on IonQ and Rigetti are extrapolated, using
information about the compiled circuit and gate times. The accuracy
of the results on ibmq_guadalupe is comparable to that on the trapped
ion device IonQ.

Because of hardware limitations on Rigetti and IonQ, that
prevent the use of mid-circuit measurements, in order to make
a fair comparison between the various devices, in the following
we use classical presampling for the preparation of the Gibbs
ensemble.

We emphasize that the comparison in this section is not a
statement about the quality of the different devices for an ac-
curate simulation of a quantum circuit: as explained in Sec. A,
the quantum Jarzynski equality is only sensitive to noise chan-
nels violating double-stochasticity, and thus a good accuracy
for the validation of the circuit does not imply an accurate
evaluation of the corresponding quantum circuit.

Accuracy of the results.—The results for 𝐿 = 4 qubits are
shown in Fig. 6 for five different values of the inverse temper-
ature 𝛽; for 𝐿 = 8 and a fixed 𝛽 = 0.7, see Table II. The error
bars indicate the statistical uncertainty due to a finite number
of measurements.

We apply no error mitigation; instead, we consider the mea-
surement process itself as part of the protocol with its own
errors, which, depending on their origin, may or may not vio-
late the double stochasticity condition. Moreover, in the case
of IonQ, error mitigation was infeasible, since the data collec-
tion continued over a few days. However, we can still obtain
rough estimates for the measurement errors and their impact
on the validity of Jarzynski’s equality.

The errors for the IonQ, Rigetti and IBM devices are within
2% to 5%, even for large values of 𝛽 and 𝐿 = 8 qubits. Note that
the theory predicted value from Eq. (1), ln ⟨e−𝛽𝑊diss⟩𝑃 (𝑊 ) = 0,
does not fall within the error bars for the superconducting
architectures—a direct manifestation of violations of double-
stochasticity.

Even if deviations from Jarzynski’s equality are not de-
tectable with the current experiment, a closer look reveals that
the measurement process itself is an energy-dissipative process
in this case: our quantum simulations reveal that excited qubits
are detected in the ground state with a probability of roughly
1%. This process violates the second sum rule in Eq. (A1),
and thus leads to a weak violation of the quantum Jarzynski
equality. As discussed in App. E, our simulations reveal a
means to detect the readout error as a residual deviation in the
limit of infinite measurements.

It is also insightful to compare the deviation from Eq. (1)
with and without error-prone mid-circuit measurements on a
IBM quantum device. In the case of 𝐿 = 8 qubits, the error

is increased by almost a factor of 2 due to the first measure-
ment, as is shown in Table II. This already shows that most
of the deviation from the theoretical prediction is due to the
measurement process.

On Rigetti’s Aspen-11, we found it was essential to dis-
able “fencing” to obtain quality results on par with other de-
vices. Fencing makes two-qubit gates executed sequentially,
even when acting on different qubits within the same circuit
layer. While this reduces crosstalks and increases the fidelity
of the individual operations, it leads to circuits with a longer
execution time, making relaxation effects through 𝑇1 more
prominent.

Runtime and resource cost.—Regarding the execution time,
note that different physical platforms have different run times.
In the case of superconducting qubits, gates are implemented
as a sequence of microwave pulses, where the average duration
of each such gate is of the order of 10 ns to 100 ns [73]; thus, the
overall circuit duration for 𝐿 = 8 qubits is of the order of 50 𝜇s.
In the case of trapped ions, gates are implemented via two-
photon Raman processes, with gate times ranging from 10 𝜇s
to 100 𝜇s [70]. As a consequence, the execution time for a
circuit is also three orders of magnitude longer, which presents
a relevant bottleneck for us when increasing the system size or
the number of measurement shots.

The use of different architectures also affects the simulation
cost. The simulation cost on trapped ion systems is at least 30
times higher than on superconducting qubits, which is caused
by the longer circuit evaluation times. This is the major bottle-
neck we encounter for simulations on trapped ion devices: it
limits the number of circuit evaluations to 216 and the system
size to 𝐿 = 8 qubits on IonQ, and to 4, 000 evaluations on
𝐿 = 4 qubit systems on Quantinuum H1, respectively.

Ability to perform midcircuit measurements— In the end,
we want to perform a quantum simulation without any classi-
cal presampling. The thermal state preparation introduced in
Sec. II A 2 requires the ability to perform midcircuit measure-
ments. From the above platforms, only the IBM and Quantin-
uum devices are currently capable of performing this task.

3. Technical data of the various quantum devices

The technical details, including coherence times, thermal-
ization times, and gate times, as well as the average two-qubit
fidelities on the different devices we used, are shown in Ta-
ble III.

Appendix C: Preparation of a thermal distribution for the
transverse field Ising model

In the following section, it is explained how the eigenstates
of the transverse field Ising model are mapped to computational
basis states of the quantum simulator by a shallow circuit. This
step is crucial to test the quantum Jarzynski equality on current
devices.
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Device name # Qubits 𝑇1[𝜇s] 𝑇2[𝜇s] 𝑇𝑔[𝜇s] Average two-qubit fidelity q

ibm_perth [62] 7 134 146 0.44 0.988 3.0 · 102

ibmq_guadalupe [62] 16 106 119 0.4 0.99 2.6 · 102

IonQ [70] 11 1010 2 × 103 200 0.96 5.0 · 107

Rigetti Aspen-11 [71] 40 30 14 0.18 ∼ 0.93 1.7 · 102

quantinuum.hqs-lt-s1 [72] 20 > 109 3 × 106 28 0.997 > 3 · 107

TABLE III. Technical data of the various quantum devices. 𝑇1 is the relaxation rate of diagonal matrix elements in the density matrix, while 𝑇2
denotes the relaxation rate of off-diagonal elements [65]. 𝑇𝑔 denotes the average execution time of the native two-qubit gate on each of these
devices. The average two-qubit fidelity is the average fidelity of the system-specific two-qubit gate. 𝑞 denotes the ratio between 𝑇1 and gate
time 𝑇𝑔, as introduced in App. B. While the qubit fidelity is comparable for all devices, 𝑇1 varies over several orders of magnitude, depending
on the underlying architecture.

1. Theory

As we discussed in the main text, the transverse field Ising
model can be mapped to a noninteracting fermionic Hamilto-
nian. It is therefore possible to prepare it in a Gibbs ensemble,
using the protocol described in Sec. II A 2, and with the addi-
tional help of a unitary transformation between the energy and
spin bases of the system. The different transformation steps
are explained here in detail, following Ref. 48.

The transverse field Ising model is given by the Hamiltonian

𝐻′ =
𝐿∑︁
𝑖=1

𝜎𝑥
𝑖 𝜎

𝑥
𝑖+1 +

𝐿∑︁
𝑖=1

𝜎𝑧
𝑖
. (C1)

The transverse field here is chosen of the same strength as the
Ising interaction, although this is not a necessary requirement
for testing Jarzynski’s equality using our protocol. In order to
simplify the realization on a quantum computer, we impose pe-
riodic boundary conditions, and add an additional Pauli string
to eliminate unwanted terms that appear in the Jordan-Wigner
transformation:

𝐻 =

𝐿∑︁
𝑖=1

𝜎𝑥
𝑖 𝜎

𝑥
𝑖+1 +

𝐿∑︁
𝑖=1

𝜎𝑧
𝑖
+ 𝜎𝑦

1 𝜎
𝑧
2 . . . 𝜎

𝑧
𝐿−1𝜎

𝑦

𝐿
. (C2)

Note that the multi-body term becomes negligible in the ther-
modynamic limit.

As a first step, we transform the Hamiltonian into fermionic
modes using a Jordan-Wigner transform:

𝑐 𝑗 =

(∏
𝑖< 𝑗

𝜎𝑧
𝑖

)
𝜎𝑥
𝑗
+ 𝑖𝜎𝑦

𝑗

2
, 𝑐

†
𝑗
=
𝜎𝑥
𝑗
+ −𝜎𝑦

𝑗

2

(∏
𝑖< 𝑗

𝜎𝑧
𝑖

)
.

(C3)

This gives the following fermionic Hamiltonian:

𝐻 =

𝐿∑︁
𝑖=1

1
2

(
𝑐
†
𝑖
𝑐𝑖+1 + 𝑐†𝑖+1𝑐𝑖 + 𝑐𝑖𝑐𝑖+1 + 𝑐

†
𝑖+1𝑐

†
𝑖

)
+ 𝑐†

𝑖
𝑐
†
𝑖+1. (C4)

The wave function can be expressed as

|𝜓⟩ =
∑︁

𝑖1 , ¤𝑖𝐿=0,1

𝜓𝑖1 ,...,𝑖𝐿 |𝑖1 . . . 𝑖𝐿⟩

=
∑︁

𝑖1 ,...𝑖𝐿=0,1
𝜓𝑖1 ,...,𝑖𝐿

(
𝑐
†
1
) 𝑖1 . . . (𝑐†

𝐿

) 𝑖𝐿 |Ω𝐿⟩ . (C5)

FIG. 7. A circuit to prepare the thermal ensemble of the transverse
Ising Hamiltonian. The unitaries 𝑈𝑖 are rotation gates defined in
Eqs. (13) and (14). The ensemble arising from repeated measure-
ments is described by a Gibbs state. After the measurement, the
circuit realizes a transformation from the energy eigenbasis of the
transverse field Ising model to the computational basis. Here 𝐹𝑖 are
Fourier gates, and 𝐵𝑖 – Boguliobov gates. Note that fermionic SWAP
gates are required, that contain an extra sign compared to qubit swap
gates.

Here |Ω𝑁 ⟩ is the vacuum state, i.e., 𝑐𝑖 |Ω𝑁 ⟩ = 0. Note that
the coefficients of the wave function do not change; thus,
the Jordan-Wigner transformation does not add any additional
gates to the quantum circuit. However, we have to keep track
of fermionic signs when swapping fermionic modes.

The next step is to apply a Fourier transform:

𝑐
†
𝑘
=

1
√
𝑁

𝐿−1∑︁
𝑗=0

e𝑖
2𝜋 𝑗

𝐿
𝑘𝑐
†
𝑗
, 𝑘 = −𝐿

2
+ 1 . . . ,

𝐿

2
. (C6)

The Fourier transform for 𝐿 = 2𝑚 (𝑚 ∈ N) qubits can be
implemented with a quantum circuit of depth log(𝐿). To see
how, we split the Fourier transform into even and odd sites:

𝐿∑︁
𝑗=1

e𝑖
2𝜋 𝑗

𝐿
𝑘𝑐
†
𝑗
=

𝐿
2 −1∑︁
𝑗′=0

(
e

2𝜋𝑖𝑘
𝐿/2 𝑗′

𝑐
†
2 𝑗′ + e

2𝜋𝑖𝑘
𝐿 e

2𝜋𝑖𝑘
𝐿/2 𝑗′

𝑐
†
2 𝑗′+1

)
. (C7)

The two terms on the right-hand-side independently represent
a Fourier transform for 𝐿/2 fermions. The case 𝐿 = 2𝑚 is
particularly appealing, since we can keep iterating this step
until we end with a Fourier transform of only two fermions,
which can be easily implemented using two-qubit gates.

To do so, we need the fermionic swap gate (note the sign
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𝑚) to measure a given eigenstate 𝐻i |𝑚i⟩ =
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𝑚/𝑍i (dashed lines), for different
inverse temperatures 𝛽, at 𝐿 = 8. The simulation prepares up to
small fluctuations the correct thermal state.

structure, green gates in Fig. 7)

𝑓 𝑆𝑊𝐴𝑃 =

©«
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

ª®®®¬ , (C8)

and the Fourier gates (light blue gates in Fig. 7)

𝐹𝑘 =

©«
1 0 0 0

0 1√
2

e
2𝜋𝑖𝑘
𝐿√
2

0

0 1√
2
−e

2𝜋𝑖𝑘
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2

0
0 0 0 −e 2𝜋𝑖𝑘

𝐿

ª®®®®®¬
. (C9)

In our case, we have to restrict to 𝐿 ≤ 16, due to a limited
number of available qubits.

The above transformations lead to the Hamiltonian

𝐻 =

𝐿/2∑︁
𝑘=−𝐿/2+1

[
1 − cos

(
2𝜋𝑘
𝐿

)]
𝑐
†
𝑘
𝑐𝑘

−𝑖 sin
(
2𝜋𝑘
𝐿

)
(𝑐†−𝑘𝑐

†
𝑘
+ 𝑐−𝑘𝑐𝑘),

(C10)

Finally, in order to diagonalize the Hamiltonian, we have to
apply a Bogoliubov transformation:

𝑎𝑘 = 𝑢𝑘𝑐𝑘 + 𝑖𝑣𝑘𝑐†−𝑘 ,
𝑎
†
𝑘
= 𝑢𝑘𝑐𝑘 − 𝑖𝑣𝑘𝑐†−𝑘 . (C11)

This transformation can be achieved with gates (red gate in
Fig. 7) of the form

𝐵𝑘 =

©«
cos 𝜙𝑘

2 0 0 𝑖 sin 𝜙𝑘

2
0 1 0 0
0 0 1 0

𝑖 sin 𝜙𝑘

2 0 0 𝑖 cos 𝜙𝑘

2

ª®®®¬ , (C12)

FIG. 9. Classically computed operator entanglement entropy 𝑆1 (𝑥),
Eq. (D3) of the circuits as a function of the cut-position x, for a
different number of blocks of the non-equilibrium protocol (legend),
for 𝐿 = 8 qubits. We chose 𝐿 − 1 blocks for our simulations, see
Fig. 2. The dashed horizontal lines indicate the Page curve 𝑆Page =

2𝑧 ln 2− 22𝑧−𝐿−1, with 𝑧 = min(𝑧, 𝐿 − 𝑧). 𝐿 − 1 blocks are sufficient
to generate an entanglement curve close to the Page curve.

where [48]

𝜙𝑘 = arccos
©«

1 − cos
(

2𝜋𝑘
𝐿

)
√︂[

1 − cos
(

2𝜋𝑘
𝐿

)]2
+ sin2

(
2𝜋𝑘
𝐿

) ª®®®®¬
. (C13)

The transformation steps for 𝐿 ≥ 4 qubits are analogous
to the case described above. This casts the Hamiltonian in
diagonal form:

𝐻 =

𝐿/2∑︁
𝑘=−𝐿/2+1

𝜔𝑘𝑎
†
𝑘
𝑎𝑘 + 𝐸𝑐, (C14)

with eigenenergies

𝜔𝑘 =

√︄[
1 − cos

(
2𝜋𝑘
𝐿

)]2
+ sin2

(
2𝜋𝑘
𝐿

)
. (C15)

Here, 𝐸𝑐 is a constant energy offset 𝐸𝑐 = 1 −
√

2. Note that
we ignore this term in the work distributions and free energy
computations, since it only appears as a constant factor in
the partition function 𝑍i, which is not relevant for testing the
validity of Eq. (1).

In order to prepare the Gibbs state, we consider the diag-
onalized Hamiltonian. In this case a thermal ensemble can
be prepared using projective measurements, as explained in
Sec. II A 2. To apply a transformation back into the compu-
tational basis, we have to reverse the unitary Fourier and Bo-
goliubov transformations described above. The corresponding
circuit is shown in Fig. 7.
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𝛽 ln ⟨e−𝛽𝑊diss ⟩ ⟨𝛽𝑊diss⟩
0.1 0.01 0.004
0.5 0.08 0.27
1.0 0.23 1.03

TABLE IV. ⟨e−𝛽𝑊diss ⟩ and 𝛽𝑊diss, experimental data for 𝐿 = 8 qubits.
The data indicate that our chosen protocol is away from the adiabatic
regime, for which ⟨𝑊diss⟩=0.

2. Accuracy of the thermal state preparation using midcircuit
measurement

Let us now investigate the accuracy of the mid-circuit mea-
surement state preparation. To do so, we detect the probability
to prepare a state |𝑚i⟩ after part (A) of the protocol displayed
in Fig. 2, and compare it with the probability distribution of
the canonical ensemble. The results are shown in Fig. 8, us-
ing the data for 𝐿 = 8 qubits from Fig. 3. The quantum
simulation prepares the correct thermal ensemble for different
inverse temperatures 𝛽 and the entire range of initial energies.
Note that we observe a slight temperature dependence in the
fluctuations: Low energy states are prepared more often than
predicted by theory; higher energy states are slightly underrep-
resented. As we discussed in Sec. IV, the measurement itself
is a dissipative process, causing decay from the excited to the
ground state of the qubits.

In general, device imperfections do not allow us to perfectly
prepare a given target state. In our case, we obtain instead of
an eigenstate |𝜙𝑖⟩ of the transverse field Ising model, a density
matrix 𝜌𝑖sim. To determine the quality of the state preparation
process, we obtain the form of the density matrix for 𝐿 = 4
qubits using quantum state tomography [68]. This allows us
to compute the average single particle fidelity

𝐹 =

2𝐿∑︁
𝑖=0

𝐿

√︃
tr{𝜌sim𝑖 |𝜙𝑖⟩ ⟨𝜙𝑖 |} ≈ 0.59. (C16)

As before we apply no error mitigation in this case.

Appendix D: Analysis of the nonequilibrium protocols

This section is dedicated to an analysis of the specific circuit
protocols we selected to use in this study. We show here
numerically that we are operating in a nontrivial quantum
many-body regime, by computing the operator entanglement
entropy of our circuits [74], and the work distribution they
give rise to. Finally, we present results for different choices of
the one-body random unitary gates and show that the specific
choice of random gates has only a minor impact on the accuracy
for validation of Eq. (1).

1. Operator entanglement entropy

We analyze our circuits from an entanglement perspective
and show that our ideal circuits are sufficient to create entan-

glement close to the Page value. This, in turn, demonstrates
that we operate in the quantum many-body regime.

For a given system, we can choose complete basis sets of
operators {𝐴𝑖} and {𝐵𝑖} which are orthonormal and have only
support on subsystem 𝐴 and its complement 𝐵 = 𝐴𝑐, respec-
tively. An operator 𝑂 can now be decomposed as

𝑂 =
∑︁
𝑖, 𝑗

𝑂𝑖, 𝑗𝐴𝑖 ⊗ 𝐵 𝑗 . (D1)

This allows us to define the notion of a reduced operator density
matrix 𝜌𝐴op with matrix elements(

𝜌𝐴op

)
𝑖, 𝑗

=
∑︁
𝑘

𝑂𝑖,𝑘𝑂
∗
𝑗 ,𝑘 . (D2)

In the following, we consider subsets of the form 𝐴 =

{0, . . . 𝑥}, where 𝑥 is the position of the last qubit included
in the subset. The operator entanglement entropy for such a
partition is defined as [74]

𝑆1 (𝑥) = − tr
(
𝜌𝐴op ln 𝜌𝐴op

)
|𝐴={0,...𝑥} (D3)

We now compute the operator entanglement entropy of the
unitary operator of our protocol for different partitions. The
results are shown in Fig. 9. It is clear that our chosen operators
with 𝐿 − 1 blocks already exhibit an entanglement (operator)
entropy close to the Page-value [61], 𝑆Page = 𝐿 ln 2 − 1/2.

2. Work distribution

The work distributions 𝑃𝐹 (𝑊) for two different inverse tem-
peratures 𝛽 = 0.1 and 𝛽 = 1.0 are shown in Fig. 10, for the
protocol from Fig. 2. We obtain an approximately Gaussian
distribution for both temperatures.

At this point it is interesting to compare the work distribution
with the free energy difference. The free energy difference is
marked in Fig. 10 by a dashed black line, the average work
by a dashed magenta line. Since Δ𝐹 < ⟨𝑊⟩𝑃𝐹

, the second
law of thermodynamics holds, as expected. However, it is also
visible that with a finite probability the extracted work ⟨𝑊⟩𝑃𝐹

for single realizations is smaller than the free energy difference;
such datapoints are known as "microscopic violations" of the
second law [75].

Furthermore, in order to demonstrate that our circuit oper-
ates away from the adiabatic regime, we compute ⟨𝛽𝑊diss⟩ and
compare it to Eq. (1), see Table IV. Since𝑊diss ≫ 0, it follows
that the adiabatic approximation does not hold for our chosen
protocols.

3. Different circuit realizations

Let us also check the effect of different single-qubit random
unitaries on our results. To do so, we repeat our experiment
for 4 qubits and 3 layers on ibm_perth for different circuit
realizations, by choosing different random unitary gates. As
we can see in Fig. 11, the deviation from Jarzynski’s equality
does not depend strongly on the particular choice of random
gates in our circuits.
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FIG. 10. Histograms of the work distribution 𝑃𝐹 (𝑊) for the protocol
in Fig. 2 with seven blocks and 𝐿 = 8 qubits: theory prediction (red)
vs. experimental simulations (blue).The free energy difference Δ𝐹

is indicated by a dashed black line, the average work by a magenta
line. Although the measured work can be smaller than the free
energy for some shots, the average work is larger than the free energy
difference and the second law of thermodynamics thus holds. The
work distributions have a nearly Gaussian shape. The absence of
strong tails in the work distribution reduces the number of required
measurements.
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FIG. 11. Validation of the Jarzynski equality for 𝐿 = 4 qubits as
a function of inverse temperature 𝛽 for different choices of random
unitaries in the nonequilibrium protocol, simulated on ibm_perth.
The accuracy of the result is in all cases comparable, i.e., it does not
depend strongly on the choice of the random single-qubit gates in the
protocol of Fig. 2.

4. Dependence on the number of circuit blocks

Finally, we investigate the deviations from Eq. (1) as a func-
tion of the non-equilibrium-protocol length. To do this, we
consider the blocks introduced in part (C) of the circuit in
Fig. 2; we can then stack multiple such blocks with different
unitaries one after the other to increase the circuit depth. As is
shown in Fig. 12, the deviations barely scale with the size of
the non-equilibrium protocol for more than two-three blocks.
In this case, most of the errors accumulated during the circuit
are compensated for by applications of single-qubit random
gates, as is explained in Sec. IV.
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FIG. 12. Test of the Jarzynski equality Eq. (1) as a function of the
circuit depth of the non-equilibrium protocol. The legend shows
different inverse temperatures 𝛽 for a system of 𝐿 = 8 qubits. A
single block here is defined in part (C) of the circuit introduced in
Fig. 2. The deviations from Eq. (1) are almost independent of the
number of blocks in the non-equilibrium protocol.

Appendix E: Statistical fluctuations due to a finite number of
measurements

The following section gives a quantitative analysis of the
statistical uncertainties in the case of a finite number of mea-
surements.

1. General theory

For the scrambling circuits we choose in our simulations,
we can use additional assumptions to get simple estimates for
the size of the statistical fluctuations. This is especially helpful
if we want to estimate the number of shots needed to estimate
the free energy difference to a given accuracy.

To do so, consider the quantity

Δ𝑃 =

〈
e−𝛽 (Δ𝑊−Δ𝐹 )

〉
. (E1)

This is just another representation of Jarzynski’s equality from
Eq. (1). Given a perfect experimental realization including
an infinite number of measurements, we expect Δ𝑃 = 1. All
deviations from this value can therefore be assigned to sta-
tistical errors, or errors coming from noise violating double-
stochasticity. Note that we consider Δ𝑃 instead of Eq. (1),
since this representation is easier to handle analytically. Fur-
thermore, in the limit of small deviations, the first order Taylor
expansions around unity for Δ𝑃, and zero for Eq. (1), agree
with one another.

Given the eigenenergies of the initial and final Hamiltonians,
we compute the contribution e𝛽Δ𝐹 = 𝑍i/𝑍f exactly. Thus, any
error originates from the measurement of the work distribution.
We write 〈

e−𝛽𝑊
〉
=

∑︁
𝑚,𝑛

𝑃𝑚𝐾𝑚→𝑛e−𝛽 (𝐸
i
𝑚−𝐸f

𝑛 ) . (E2)
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Here 𝑃𝑚 denotes the probability to prepare a given initial
eigenstate, and 𝐾𝑚→𝑛 is the transition matrix of the pro-
cess, defined in Sec. A. In the optimal case of infinitely
many measurements and error-free preparation, we have 𝑃𝑚 =

e−𝛽𝐸 i
𝑚/𝑍i.

There are two generic ways for errors to occur. The first one
is as a statistical error in 𝑃𝑚,

𝑃𝑚 =
1
𝑍i

e−𝛽𝐸
i
𝑚 + 𝛿𝑃𝑚. (E3)

The first term on the right-hand side in the above equation is
the probability distribution of the canonical ensemble. The
second term denotes the statistical error for the measurement
probability of each state |𝑚i⟩, which satisfies the sum rule∑

𝑚 𝛿𝑃𝑚 = 0. For a large enough number of states, we can
assume the errors 𝑃𝑚 to be independent of one another and
neglect this constraint. The statistical error of measurement
probability for each state |𝑚i⟩ can be modeled by a binomial
distribution: For each shot, we obtain this state with prob-
ability e−𝛽𝐸 i

𝑚/𝑍i and measure another state with probability
1 − e−𝛽𝐸 i

𝑚/𝑍i; then the statistical uncertainty is given by the
variance of the binomial distribution, and scales as

𝛿𝑃𝑚 ∝

√√√
e−𝛽𝐸 i

𝑚

𝑍i

(
1 − e−𝛽𝐸 i

𝑚

𝑍i

)
1
𝑠
, (E4)

where 𝑠 denotes the number of shots. This expression is the
variance of a binomial distribution for an event occurring with
probability e−𝛽𝐸 i

𝑚/𝑍i.
The second way an error can occur is through a measurement

of 𝐾𝑚→𝑛. We can write

𝐾𝑚→𝑛 = �̃�𝑚→𝑛 + 𝛿𝐾𝑚→𝑛, (E5)

where �̃�𝑚→𝑛 comprises any unitary or doubly-stochastic con-
tributions that Jarzynski’s equality is insensitive to. Using the
(simplifying) assumption that the correct size of each matrix
element is roughly 1/𝐷 with 𝐷 = 2𝐿 (this is justified by using
a scrambling circuit, and becomes more accurate with increas-
ing system size 𝐿 ≫ 1), the error of 𝛿𝐾𝑚→𝑛 scales with the
number of measurement shots as

𝛿𝐾𝑚→𝑛 ∝

√︄
𝑍i

𝐷𝑠e−𝛽𝐸 i
𝑚

. (E6)

This is again the standard deviation for a binomial process
of an event with probability 1/𝐷 and an effective number of
repetitions 𝑠e−𝛽𝐸 i

𝑚/𝑍i. We used here (1 − 1/𝐷) ≈ 1.
Taking these considerations into account, we can now divide

the contributions of the fluctuations into four parts:

Δ𝑃 = 1 (E7)

+ 𝑍i
𝑍f

∑︁
𝑚,𝑛

𝛿𝑃𝑚�̃�𝑚→𝑛e−𝛽 (𝐸
i
𝑚−𝐸f

𝑛 ) (E8)

+ 1
𝑍f

∑︁
𝑚,𝑛

𝛿𝐾𝑚→𝑛e−𝛽𝐸
f
𝑛 (E9)

+ 𝑍i
𝑍f

∑︁
𝑚,𝑛

𝛿𝑃𝑚𝛿𝐾𝑚→𝑛e−𝛽 (𝐸
i
𝑚−𝐸f

𝑛 ) . (E10)

FIG. 13. Classically emulated validation of the Jarzynski equality
Eq. (1) for 𝐿 = 8 qubits as a function of the number of shots, noise-
free results at inverse temperature 𝛽 = 0.1. The green error bars
indicate the error due to a finite number of measurements in the em-
ulation. The orange error bars are computed using the simplification
of roughly equal-size transition matrix elements [see text]. Blue:
Classical emulation, but now with thermal noise of similar size as
on ibmq_guadalupe. The impact of shot noise becomes negligible
with an increasing number of measurements (error bars decrease),
such that the effects of violating double-stochasticity become visible
(remaining finite plateau value).

Equation (E7) is Jarzynski’s equality. Assuming that all terms
𝐾𝑚→𝑛 ∼ 1/𝑁 (as a consequence of using random circuits,
which should not prefer any particular eigenstate transitions),
and invoking the central limit theorem (the variance of a sum
is the sum of the variances), we find that the second term,
Eq. (E8), scales as

(E8) ∝ 𝑍i

𝐷
√
𝑠

√√√∑︁
𝑚

e𝛽𝐸 i
𝑚

𝑍i

(
1 − e−𝛽𝐸 i

𝑚

𝑍i

)
. (E11)

In turn, the third term is proportional to

(E9) ∝
√︂
𝑍i
𝐷𝑠

√︄∑︁
𝑚

1
e−𝛽𝐸 i

𝑚

√√∑︁
𝑛

e−2𝛽𝐸f
𝑛

𝑍2
f

, (E12)

and the last term is of order

(E10) ∝ 𝑍i√
𝑁𝑠𝑍f

√√√∑︁
𝑚

e2𝛽𝐸 i
𝑚

(
1 − e−𝛽𝐸 i

𝑚

𝑍i

)√︄∑︁
𝑛

e−2𝛽𝐸f
𝑛 .

(E13)

Let us now test these expressions and the underlying as-
sumptions we made above. Figure 13 shows the scaling of the
errors for a noise-free quantum simulation (red) and a com-
parison with the exact error bars using the exact size of the
matrix elements (blue). The data show that the simplification
we used to compute error bars is well justified.
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2. High- and low-temperature expansions for deviations from
Jarzynski’s equality

The goal of this section is to explain the dependence of
deviations from Eq. (1) in quantum simulations, as is shown in
Fig. 3. In order to make the discussion more transparent, we
ignore errors in the preparation of the initial state and due to a
finite number of measurements and focus here on the violations
of double-stochasticity instead. To be more concrete, we only
consider errors of type Eq. (E9).

High-temperature expansion: The conservation of prob-
ability gives ∑︁

𝑚,𝑛

𝛿𝐾𝑚→𝑛 = 0. (E14)

Furthermore, if we denote by 𝐷 the Hilbert space dimension,
a Taylor expansion for small 𝛽 gives

Δ𝑃 = 1 + 𝛽
𝐷

∑︁
𝑚,𝑛

𝛿𝐾𝑚→𝑛𝐸
f
𝑛 + O(𝛽2). (E15)

We note that due to Eq. (E14) this expression is insensitive to
constant shifts of the overall energy.

For high temperatures, the deviation scales linearly with
inverse temperature 𝛽. Transitions towards all states, therefore,
give rise to maximum deviation.

Low temperature expansion: The behavior drastically
changes, if one instead considers inverse temperatures larger
than the inverse gap to the ground state energy 𝐸 f

0. In this case,
𝑍f ≈ 𝑒−𝛽𝐸

f
0 and only transitions to the ground state contribute:

Δ𝑃 ≈ 1 +
∑︁
𝑚

𝛿𝐾𝑚→0. (E16)

The deviation converges in this case towards a constant value,
determined by the violations of double-stochasticity w.r.t. the
ground state.

Comparison with simulations: To test the approximations
above, we extract the transition matrix from data for 𝛽 = 0.05
and 𝐿 = 8. Afterwards, we weigh all transitions using the
weights of the canonical ensemble which allows us to construct
curves for all values of 𝛽. The results are shown in Fig. 14:
the deviations from Eq. (1) for dissipation-free simulations
agree perfectly with the high- and low-temperature expansion
described above.

Appendix F: Relation between 𝑇1 measurement and the
Jarzynski equality.

In the following section, we illustrate the connection be-
tween the standard measurement scheme for 𝑇1 [65] and the
quantum Jarzynski equality. This derivation also illustrates
how the latter can be interpreted as a generalization of all
experimental protocols detecting processes violating double-
stochasticity like energy dissipation.

Consider a single-particle system described by the Hamil-
tonian

𝐻i = 𝐻f = 𝐸 (|1⟩ ⟨1| − |0⟩ ⟨0|) . (F1)
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FIG. 14. |𝑙𝑛(Δ𝑃) | Eq. (E1) as a function of 𝛽 (orange), together
with the high-temperature expansion Eq. (E15) (dotted black line)
and the zero-temperature limit Eq. (E16) (red). The transition matrix
is extracted from simulations data with 𝐿 = 8 and 𝛽 = 0.05. The
deviations from Eq. (1) for a dissipation-free simulations agree per-
fectly with the high- and low-temperature expansions (see text).

The specific choice of the energies does not matter, as long as
they are non-degenerate.

We can interpret the standard protocol to measure the ther-
mal relaxation time 𝑇1 as a dynamical process connecting the
initial and final ensemble:

First apply a 𝑋 gate to excite the qubit, followed by some
waiting time 𝑡. The fraction of decayed states is thus given by

𝑝1 = 1 − e−
𝑡
𝑇1 . (F2)

Similar to the analysis presented in the main text, |𝜓𝐺⟩ =
(1, 0) defines the "physical" ground state of the qubit, whereas
|𝜓𝐸⟩ = (0, 1) denotes an excited state.

In order to simplify our analysis, we assume that the state
preparation is perfect and statistical errors due to a finite num-
ber of measurements are negligible. Furthermore, we assume
that there are no unwanted excitations during the process from
the ground state to the excited state, i.e., 𝛿𝐾0→1 = 0.

To determine the deviation from the Jarzynski equal-
ity Eq. (E7), we have to determine the transition matrix 𝐾𝑚→𝑛,
which is given by

𝐾𝑚→𝑛 =

(
1 𝑝1
0 1 − 𝑝1

)
. (F3)

The assumptions above are sufficient to determine the devi-
ation terms in Eq. (E7)-(E10):

𝛿𝐾1→0 = −𝛿𝐾1→1 = 𝑝1, (F4)
𝛿𝐾0→1 = 𝛿𝐾0→0 = 0, (F5)
𝛿𝑃0 = 𝛿𝑃1 = 0. (F6)

The first two relations follow from Eq. (F3), the third is a
consequence of perfect state preparation.
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The evaluation of Eq. (E7)-(E10) gives, together with
Eq. (F1) and Eq. (F4),

Δ𝑃 = 1 + 𝑝1 tanh 𝛽𝐸. (F7)

The deviation 𝑝1 tanh 𝛽𝐸 is proportional to the decayed popu-
lation. This means that the standard protocol to measure𝑇1 is a
special case of testing deviations from the quantum Jarzynski
equality.

Appendix G: Comparison with previous experiments

In this appendix, we discuss the details of the comparison
of our results to previous work, cf. Table I.

We use the definition from Eq. (17) to compare our simula-
tion with previous experiments on systems with a finite Hilbert
space dimension. To do so, we extract the Hamiltonian, the
inverse temperature 𝛽, and the measurement data for the vali-
dation of Eq. (1) from the simulations. Using these data, the
evaluation of Eq. (17) is straightforward.

In the experiments [38, 40, 42, 43], the underlying Hamilto-
nian was either a spin-1/2 system or the transverse field Ising
model with up to three qubits. We extracted the data for the
validation from Fig. 3 of Ref. [43], from Fig. 3 of Ref. [38],
from Fig. 3 of Ref. [40], Fig. 3 of Ref. [42] and Table 1 of
Ref. [39]. The case of Ref [41] is special: in their setup the
authors chose 𝛽 = 0, where Jarzynski’s equality is trivially
obeyed, as can be directly seen from Eq. (1).

The trapped ion experiment [12] was modeled by a harmonic
oscillator, i.e., a system with an infinite-dimensional Hilbert
space. In order to compare with the other experiments that
deal with systems with a finite-dimensional Hilbert space, we
evaluate Eq. (17) and introduce an artificial cutoff for the har-
monic oscillator Hilbert space by taking only the first 10 modes
into account; the experimental data concerning the occupation
of the different modes shows that this is a valid approximation.
We normalized 𝛽 by the energy gap of the harmonic oscilla-
tor. For the extraction of the data, we considered Table 1 of
Ref. [12], using a ramp time of 5 𝜇s.

[1] P. Talkner and P. Hänggi, Colloquium: Statistical mechanics and
thermodynamics at strong coupling: Quantum and classical,
Rev. Mod. Phys. 92, 041002 (2020).

[2] J. Millen and A. Xuereb, Perspective on quantum thermody-
namics, New Journal of Physics 18, 011002 (2016).

[3] F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso,
Thermodynamics in the quantum regime, Fundamental Theories
of Physics 195, 1 (2018).

[4] J. M. Deutsch, Quantum statistical mechanics in a closed system,
Phys. Rev. A 43, 2046 (1991).

[5] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E
50, 888 (1994).

[6] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its
mechanism for generic isolated quantum systems, Nature 452,
854 (2008).

[7] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, From
quantum chaos and eigenstate thermalization to statistical me-
chanics and thermodynamics, Advances in Physics 65, 239
(2016).

[8] J. M. Deutsch, Eigenstate thermalization hypothesis, Reports on
Progress in Physics 81, 082001 (2018).

[9] R. Nandkishore and D. A. Huse, Many-body localization
and thermalization in quantum statistical mechanics, An-
nual Review of Condensed Matter Physics 6, 15 (2015),
https://doi.org/10.1146/annurev-conmatphys-031214-014726.

[10] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium:
Many-body localization, thermalization, and entanglement, Rev.
Mod. Phys. 91, 021001 (2019).

[11] M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body
scars and weak breaking of ergodicity, Nature Physics 17, 675
(2021).

[12] S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q.
Yin, H. Quan, and K. Kim, Experimental test of the quantum
Jarzynski equality with a trapped-ion system, Nature Physics 11,
193 (2015).

[13] R. Blatt and C. F. Roos, Quantum simulations with trapped ions,
Nature Physics 8, 277 (2012).

[14] C. Gross and I. Bloch, Quantum simulations with ultracold
atoms in optical lattices, Science 357, 995 (2017).

[15] F. Schäfer, T. Fukuhara, S. Sugawa, Y. Takasu, and Y. Takahashi,
Tools for quantum simulation with ultracold atoms in optical
lattices, Nature Reviews Physics 2, 411 (2020).

[16] C. Jarzynski, Nonequilibrium equality for free energy differ-
ences, Phys. Rev. Lett. 78, 2690 (1997).

[17] C. P. Broedersz and P. Ronceray, Twenty-five years of nanoscale
thermodynamics (2022).

[18] J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco Jr, and C. Busta-
mante, Equilibrium information from nonequilibrium measure-
ments in an experimental test of Jarzynski’s equality, Science
296, 1832 (2002).

[19] N. C. Harris, Y. Song, and C.-H. Kiang, Experimental free
energy surface reconstruction from single-molecule force spec-
troscopy using Jarzynski’s equality, Physical review letters 99,
068101 (2007).

[20] F. Douarche, S. Ciliberto, A. Petrosyan, and I. Rabbiosi, An
experimental test of the Jarzynski equality in a mechanical ex-
periment, EPL (Europhysics Letters) 70, 593 (2005).

[21] V. Blickle, T. Speck, L. Helden, U. Seifert, and C. Bechinger,
Thermodynamics of a colloidal particle in a time-dependent
nonharmonic potential, Physical review letters 96, 070603
(2006).

[22] O.-P. Saira, Y. Yoon, T. Tanttu, M. Möttönen, D.-V. Averin,
and J. P. Pekola, Test of the Jarzynski and Crooks fluctuation
relations in an electronic system, Physical review letters 109,
180601 (2012).

[23] G. Wimsatt, O.-P. Saira, A. B. Boyd, M. H. Matheny, S. Han,
M. L. Roukes, and J. P. Crutchfield, Harnessing fluctuations in
thermodynamic computing via time-reversal symmetries, Phys.
Rev. Research 3, 033115 (2021).

[24] O.-P. Saira, M. H. Matheny, R. Katti, W. Fon, G. Wimsatt,
J. P. Crutchfield, S. Han, and M. L. Roukes, Nonequilibrium
thermodynamics of erasure with superconducting flux logic,
Phys. Rev. Research 2, 013249 (2020).

[25] P. Talkner, E. Lutz, and P. Hänggi, Fluctuation theorems: Work

https://doi.org/10.1103/RevModPhys.92.041002
https://doi.org/10.1088/1367-2630/18/1/011002
https://link.springer.com/book/10.1007/978-3-319-99046-0
https://link.springer.com/book/10.1007/978-3-319-99046-0
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://www.nature.com/articles/nature06838
https://www.nature.com/articles/nature06838
https://www.tandfonline.com/doi/full/10.1080/00018732.2016.1198134
https://www.tandfonline.com/doi/full/10.1080/00018732.2016.1198134
https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://arxiv.org/abs/https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/RevModPhys.91.021001
https://www.nature.com/articles/nphys3197
https://www.nature.com/articles/nphys3197
https://www.nature.com/articles/nphys2252
https://www.science.org/doi/10.1126/science.aal3837
https://www.nature.com/articles/s42254-020-0195-3
https://doi.org/10.1103/PhysRevLett.78.2690
https://www.nature.com/articles/d41586-022-00869-y
https://www.nature.com/articles/d41586-022-00869-y
https://www.science.org/doi/10.1126/science.1071152
https://www.science.org/doi/10.1126/science.1071152
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.068101
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.068101
https://iopscience.iop.org/article/10.1209/epl/i2005-10024-4
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.070603
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.070603
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.180601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.180601
https://doi.org/10.1103/PhysRevResearch.3.033115
https://doi.org/10.1103/PhysRevResearch.3.033115
https://doi.org/10.1103/PhysRevResearch.2.013249


20

is not an observable, Phys. Rev. E 75, 050102(R) (2007).
[26] J. Åberg, Fully quantum fluctuation theorems, Phys. Rev. X 8,

011019 (2018).
[27] S. Vinjanampathy and J. Anders, Quantum thermodynamics,

Contemporary Physics 57, 545 (2016).
[28] J. Kurchan, A quantum fluctuation theorem, arXiv:cond-

mat/0007360 (2000).
[29] H. Tasaki, Jarzynski relations for quantum systems and some

applications, arXiv:cond-mat/0009244 (2000).
[30] S. Mukamel, Quantum extension of the Jarzynski relation: Anal-

ogy with stochastic dephasing, Phys. Rev. Lett. 90, 170604
(2003).

[31] A. E. Rastegin, Non-equilibrium equalities with unital quantum
channels, Journal of Statistical Mechanics: Theory and Experi-
ment 2013, P06016 (2013).

[32] A. E. Rastegin and K. Życzkowski, Jarzynski equality for quan-
tum stochastic maps, Phys. Rev. E 89, 012127 (2014).

[33] T. Sagawa and M. Ueda, Generalized Jarzynski equality under
nonequilibrium feedback control, Phys. Rev. Lett. 104, 090602
(2010).

[34] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano,
Experimental demonstration of information-to-energy conver-
sion and validation of the generalized Jarzynski equality, Nature
physics 6, 988 (2010).

[35] A. Sone, Y.-X. Liu, and P. Cappellaro, Quantum Jarzynski equal-
ity in open quantum systems from the one-time measurement
scheme, Phys. Rev. Lett. 125, 060602 (2020).

[36] K. Beyer, K. Luoma, and W. T. Strunz, Work as an external
quantum observable and an operational quantum work fluctua-
tion theorem, Phys. Rev. Research 2, 033508 (2020).

[37] S. Deffner, J. P. Paz, and W. H. Zurek, Quantum work and the
thermodynamic cost of quantum measurements, Phys. Rev. E
94, 010103(R) (2016).

[38] A. Smith, Y. Lu, S. An, X. Zhang, J.-N. Zhang, Z. Gong,
H. Quan, C. Jarzynski, and K. Kim, Verification of the quantum
nonequilibrium work relation in the presence of decoherence,
New Journal of Physics 20, 013008 (2018).

[39] F. Cerisola, Y. Margalit, S. Machluf, A. J. Roncaglia, J. P.
Paz, and R. Folman, Using a quantum work meter to test non-
equilibrium fluctuation theorems, Nature communications 8, 1
(2017).

[40] T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise, R. S.
Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro,
and R. M. Serra, Experimental reconstruction of work distri-
bution and study of fluctuation relations in a closed quantum
system, Phys. Rev. Lett. 113, 140601 (2014).

[41] S. Hernández-Gómez, N. Staudenmaier, M. Campisi, and
N. Fabbri, Experimental test of fluctuation relations for driven
open quantum systems with an NV center, New Journal of
Physics 23, 065004 (2021).

[42] A. Solfanelli, A. Santini, and M. Campisi, Experimental verifi-
cation of fluctuation relations with a quantum computer, PRX
Quantum 2, 030353 (2021).

[43] L. Bassman Oftelie, K. Klymko, D. Liu, N. M. Tubman, and
W. A. de Jong, Computing free energies with fluctuation re-
lations on quantum computers, Phys. Rev. Lett. 129, 130603
(2022).

[44] M. Schiulaz, M. Távora, and L. F. Santos, From few-to many-
body quantum systems, Quantum Science and Technology 3,
044006 (2018).

[45] G. Zisling, L. Santos, and Y. Bar Lev, How many particles make
up a chaotic many-body quantum system?, SciPost Physics 10,
088 (2021).

[46] D. Poulin and P. Wocjan, Sampling from the thermal quantum

Gibbs state and evaluating partition functions with a quantum
computer, Phys. Rev. Lett. 103, 220502 (2009).

[47] S. R. White, Minimally entangled typical quantum states at finite
temperature, Phys. Rev. Lett. 102, 190601 (2009).

[48] A. Cervera-Lierta, Exact Ising model simulation on a quantum
computer, Quantum 2, 114 (2018).

[49] J. Wu and T. H. Hsieh, Variational thermal quantum simula-
tion via thermofield double states, Phys. Rev. Lett. 123, 220502
(2019).

[50] D. Zhu, S. Johri, N. M. Linke, K. A. Landsman, C. H. Alderete,
N. H. Nguyen, A. Y. Matsuura, T. H. Hsieh, and C. Monroe, Gen-
eration of thermofield double states and critical ground states
with a quantum computer, Proceedings of the National Academy
of Sciences 117, 25402 (2020).

[51] A. Riera, C. Gogolin, and J. Eisert, Thermalization in nature and
on a quantum computer, Phys. Rev. Lett. 108, 080402 (2012).

[52] G. E. Crooks, Entropy production fluctuation theorem and the
nonequilibrium work relation for free energy differences, Phys.
Rev. E 60, 2721 (1999).

[53] T. B. Batalhão, A. M. Souza, R. S. Sarthour, I. S. Oliveira,
M. Paternostro, E. Lutz, and R. M. Serra, Irreversibility and the
arrow of time in a quenched quantum system, Phys. Rev. Lett.
115, 190601 (2015).

[54] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with
ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[55] C. Jarzynski, Rare events and the convergence of exponentially
averaged work values, Phys. Rev. E 73, 046105 (2006).

[56] N. Yunger Halpern and C. Jarzynski, Number of trials required
to estimate a free-energy difference, using fluctuation relations,
Phys. Rev. E 93, 052144 (2016).

[57] D. S. Abrams and S. Lloyd, Quantum algorithm providing expo-
nential speed increase for finding eigenvalues and eigenvectors,
Phys. Rev. Lett. 83, 5162 (1999).

[58] For practical reasons, one has to add another Pauli string
𝜎
𝑦

1 𝜎
𝑧
2 . . . 𝜎

𝑧
𝑛−1𝜎

𝑦
𝑛 . This term becomes negligible in the limit

of large system sizes. Further details are discussed in App. C.
[59] S. Hernández-Gómez, S. Gherardini, F. Poggiali, F. S. Cataliotti,

A. Trombettoni, P. Cappellaro, and N. Fabbri, Experimental test
of exchange fluctuation relations in an open quantum system,
Phys. Rev. Research 2, 023327 (2020).

[60] L. Buffoni and M. Campisi, Thermodynamics of a quantum
annealer, Quantum Science and Technology 5, 035013 (2020).

[61] D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71,
1291 (1993).

[62] Ibm quantum, https://quantum-computing.ibm.com/
(2022).

[63] It is important to avoid confusion about the physical units of
𝑇1; it denotes an intrinsic timescale of our physical device. In
the analysis of the Jarzynski equality, 𝑇1 enters indirectly, and
only via the ratio of gate time 𝑇𝑔 and 𝑇1, which is dimensionless
again.

[64] O. E. Sommer, F. Piazza, and D. J. Luitz, Many-body hierarchy
of dissipative timescales in a quantum computer, Phys. Rev.
Research 3, 023190 (2021).

[65] M. A. Nielsen and I. Chuang, Quantum computation and quan-
tum information (2002).

[66] D. P. DiVincenzo, The physical implementation of quantum
computation, Fortschritte der Physik 48, 771 (2000).

[67] J. Selisko, M. Amsler, T. Hammerschmidt, R. Drautz, and
T. Eckl, Extending the variational quantum eigensolver to fi-
nite temperatures (2022), arXiv:2208.07621 [quant-ph].

[68] K. Vogel and H. Risken, Determination of quasiprobability dis-
tributions in terms of probability distributions for the rotated
quadrature phase, Phys. Rev. A 40, 2847 (1989).

https://doi.org/10.1103/PhysRevE.75.050102
https://doi.org/10.1103/PhysRevX.8.011019
https://doi.org/10.1103/PhysRevX.8.011019
https://doi.org/10.1080/00107514.2016.1201896
https://arxiv.org/abs/cond-mat/0007360
https://arxiv.org/abs/cond-mat/0007360
https://arxiv.org/abs/cond-mat/000924with4
https://doi.org/10.1103/PhysRevLett.90.170604
https://doi.org/10.1103/PhysRevLett.90.170604
https://doi.org/10.1088/1742-5468/2013/06/P06016
https://doi.org/10.1088/1742-5468/2013/06/P06016
https://doi.org/10.1103/PhysRevE.89.012127
https://doi.org/10.1103/PhysRevLett.104.090602
https://doi.org/10.1103/PhysRevLett.104.090602
https://www.nature.com/articles/nphys1821
https://www.nature.com/articles/nphys1821
https://doi.org/10.1103/PhysRevLett.125.060602
https://doi.org/10.1103/PhysRevResearch.2.033508
https://doi.org/10.1103/PhysRevE.94.010103
https://doi.org/10.1103/PhysRevE.94.010103
https://iopscience.iop.org/article/10.1088/1367-2630/aa9cd6
https://www.nature.com/articles/s41467-017-01308-7
https://www.nature.com/articles/s41467-017-01308-7
https://doi.org/10.1103/PhysRevLett.113.140601
https://iopscience.iop.org/article/10.1088/1367-2630/abfc6a
https://iopscience.iop.org/article/10.1088/1367-2630/abfc6a
https://doi.org/10.1103/PRXQuantum.2.030353
https://doi.org/10.1103/PRXQuantum.2.030353
https://doi.org/10.1103/PhysRevLett.129.130603
https://doi.org/10.1103/PhysRevLett.129.130603
https://iopscience.iop.org/article/10.1088/2058-9565/aad913
https://iopscience.iop.org/article/10.1088/2058-9565/aad913
https://scipost.org/SciPostPhys.10.4.088
https://scipost.org/SciPostPhys.10.4.088
https://doi.org/10.1103/PhysRevLett.103.220502
https://doi.org/10.1103/PhysRevLett.102.190601
https://doi.org/10.22331/q-2018-12-21-114
https://doi.org/10.1103/PhysRevLett.123.220502
https://doi.org/10.1103/PhysRevLett.123.220502
https://doi.org/10.1073/pnas.2006337117
https://doi.org/10.1073/pnas.2006337117
https://doi.org/10.1103/PhysRevLett.108.080402
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevLett.115.190601
https://doi.org/10.1103/PhysRevLett.115.190601
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/PhysRevE.73.046105
https://doi.org/10.1103/PhysRevE.93.052144
https://doi.org/10.1103/PhysRevLett.83.5162
https://doi.org/10.1103/PhysRevResearch.2.023327
https://iopscience.iop.org/article/10.1088/2058-9565/ab9755/pdf
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1103/PhysRevLett.71.1291
https://quantum-computing.ibm.com/
https://doi.org/10.1103/PhysRevResearch.3.023190
https://doi.org/10.1103/PhysRevResearch.3.023190
https://doi.org/https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://arxiv.org/abs/2208.07621
https://doi.org/10.1103/PhysRevA.40.2847


21

[69] B. Gardas and S. Deffner, Quantum fluctuation theorem for error
diagnostics in quantum annealers, Scientific reports 8, 1 (2018).

[70] K. Wright, K. M. Beck, S. Debnath, J. Amini, Y. Nam, N. Grze-
siak, J.-S. Chen, N. Pisenti, M. Chmielewski, C. Collins, et al.,
Benchmarking an 11-qubit quantum computer, Nature commu-
nications 10, 1 (2019).

[71] Rigetti systems, https://qcs.rigetti.com/qpus (2022).
[72] Quantinuum system model h1, https://www.quantinuum.

com/products/h1 (2022).
[73] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gambetta,

Procedure for systematically tuning up cross-talk in the cross-
resonance gate, Phys. Rev. A 93, 060302(R) (2016).

[74] T. Zhou and D. J. Luitz, Operator entanglement entropy of the
time evolution operator in chaotic systems, Phys. Rev. B 95,
094206 (2017).

[75] O. Maillet, P. A. Erdman, V. Cavina, B. Bhandari, E. T. Mannila,
J. T. Peltonen, A. Mari, F. Taddei, C. Jarzynski, V. Giovannetti,
and J. P. Pekola, Optimal probabilistic work extraction beyond
the free energy difference with a single-electron device, Phys.
Rev. Lett. 122, 150604 (2019).

https://www.nature.com/articles/s41598-018-35264-z
https://www.nature.com/articles/s41467-019-13534-2.pdf
https://www.nature.com/articles/s41467-019-13534-2.pdf
https://qcs.rigetti.com/qpus
https://www.quantinuum.com/products/h1
https://www.quantinuum.com/products/h1
https://doi.org/10.1103/PhysRevA.93.060302
https://doi.org/10.1103/PhysRevB.95.094206
https://doi.org/10.1103/PhysRevB.95.094206
https://doi.org/10.1103/PhysRevLett.122.150604
https://doi.org/10.1103/PhysRevLett.122.150604

	Quantum many-body Jarzynski equality and dissipative noise on a digital quantum computer
	Abstract
	Introduction
	Simulation on Quantum Computers
	Choice of initial and final Hamiltonian
	Initial and final Hamiltonian
	Gibbs ensemble preparation: midcircuit measurements vs. classical presampling

	Nonequilibrium protocol

	Jarzynski equality and Crooks relation on a noisy quantum device
	Jarzynski relation in the few- and many-body regime
	Crooks relation in the many-body regime

	Theoretical analysis
	Single-qubit case
	Extension to multiple qubits
	Relation to DiVincenzo's third criterion

	Discussion & Outlook
	Acknowledgments
	Quantum Jarzynski Equality and Crooks Relation
	Comparison of different NISQ architectures
	NISQ architecture characteristics
	Comparison on different devices
	Technical data of the various quantum devices

	Preparation of a thermal distribution for the transverse field Ising model
	Theory
	Accuracy of the thermal state preparation using midcircuit measurement

	Analysis of the nonequilibrium protocols 
	Operator entanglement entropy
	Work distribution
	Different circuit realizations
	Dependence on the number of circuit blocks

	Statistical fluctuations due to a finite number of measurements
	General theory
	High- and low-temperature expansions for deviations from Jarzynski's equality

	Relation between T1 measurement and the Jarzynski equality.
	Comparison with previous experiments
	References


