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We analyse the near-adiabatic dynamics in a ramp through the critical point (CP) of the clas-
sical transverse field Ising chain. This is motivated, conceptually, by the fact that this CP–unlike
its quantum counterpart–experiences no thermal or quantum fluctuations, and technically by the
tractability of its effective model. For a ‘half-ramp’ from ferromagnet to CP, the longitudinal and
transverse magnetization scale as τ−1/3 and τ−2/3, respectively, with 1/τ the ramp rate, in accord
with Kibble-Zurek theory. For ferro- to paramagnetic ramps across the CP, however, they stay
closer, τ−1/2 and τ−1, to adiabaticity. This adiabaticity enhancement compared to the half ramp
is understood by casting the dynamics in the paramagnet in the form of a non-hermitian Dirac
Hamiltonian, with the CP playing the role of an exceptional point, opening an additional decay
channel.

Introduction. The study of the non-equilibrium dy-
namics of many-body systems has attracted enormous
interest recently[1, 2]. In particular, defect production
after the non-adiabatic passage through a critical point
was found to exhibit universal behavior with a scaling
that is determined solely by the universality class of the
underlying phase transition[3, 4]. This, the celebrated
Kibble-Zurek mechanism, has been most directly verified
in the transverse field Ising chain[5, 6].

Indeed, the transverse field quantum Ising chain [7] is
a paradigmatic, and one of the most thoroughly stud-
ied, models in physics. It plays an important role in
understanding quantum phase transitions[8] and duality,
conformal field theory[9] and is relevant, through a quan-
tum to classical mapping, for the statistical mechanics of
the classical Ising model in two dimensions. Moreover,
it is closely tied to topological phenomena[10] and the
Kitaev chain[11]. In addition to its theoretical appeal,
experimental realizations involve condensed[12, 13] and
artificial[14] matter.

Surprisingly, despite the great amount of interest in
the transverse field quantum Ising chain, its classical
counterpart has received only limited attention. This is
all the more remarkable as the study of classical spin
chains has unearthed a number of surprises [15, 16],
such as a regime of Kardar-Parisi-Zhang scaling in the
Heisenberg chain [17] or generalized hydrodynamics[18].
Moreover, classical spin models are ubiquitous in that
they are widely used not only in physics[8, 19, 20], but
also to model complex systems such as neural or so-
cial networks[21], and physical realizations include large
interacting quantum spins[20], polariton simulators[22],
coupled nanolaser lattices[23], cold atoms with total col-
lective spin dynamics[24] or precessing rigid bodies such
as a spinning top [25].

The identical ground state phase diagrams[8, 26, 27] of
classical and quantum transverse field Ising chains, being
non-integrable[28] and integrable[8], respectively, possess
ferromagnetic (FM) and paramagnetic (PM) phases, sep-
arated by a CP. However, critical exponents and the ensu-
ing universality classes are distinct. Moreover, the classi-
cal version lacks both quantum and thermal fluctuations,
rendering the corresponding CP unusual.

Here we investigate the non-equilibrium dynamics in
the classical transverse field Ising chain for a wide va-
riety of ramps, starting from a ground state. We sum-
marise the scaling of physical quantities with the ramp
speed in Table I. While many decay exponents are in ac-
cord with Kibble-Zurek scaling, those of deviations of the
spins from adiabaticity for a ramp from the FM across
the CP differ–they stay closer to the adiabatic limit! Our
analysis accounts for this by interpreting the classical dy-
namics as a non-Hermitian Dirac Hamiltonian, where the
CP plays the role of an exceptional point, which allows for
an additional decay channel due to effective non-unitary
dynamics.

ramp type \observables δx(τ ) δy(τ ) δz(τ ) ∆E(τ )/N

FM → FM 1 1 1 2

FM → CP 1/3 2/3 2/3 4/3

FM → PM 1/2 1/2 1 1

TABLE I. The exponent of deviations from the adiabatic
value for several physical quantities as τ−a for various ramps.
For PM to FM ramp, no defects are created. The PM ini-
tial state Sn = (0, 0, 1) remains the solution of the Landau-
Lifshitz equation for any time dependent g(t). The FM to
FM ramp is unrelated to Kibble-Zurek theory since no CP is
crossed. The scaling of the excess energy as well as the FM
to CP ramp follow the Kibble-Zurek theory. The exponents
in blue follow from an effective non-hermitian dynamics.
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We study the one dimensional Hamiltonian

H =
∑

n

−JSx
nS

x
n+1 − 2gSz

n (1)

with unit length classical spins Sn ∈ S2 and ferromag-
netic Ising coupling J = 1, and transverse field strength
g > 0. We use periodic boundary conditions for the N
spins. For g < 1, the ground state is FM[26, 29] and

Sx
n,gs = ±

√

1− g2, Sz
n = g, the ± signs corresponds

to the two degenerate ground state configurations. The
ground state energy per spin is Egs/N = −2g− (1− g)2.
In the PM, Sz

n,gs = 1 for g > 1 with ground state energy
Egs/N = −2g. These two regions are separated by a
classical CP at g = 1, which corresponds to a continuous
second order classical phase transition upon tuning the
transverse field with critical exponents α = 0, β = 1/2,
without thermal or quantum fluctuations at zero tem-
perature. The non-analytic behaviour of the transverse
magnetization at g = 1 also allows us to define the cor-
responding critical exponent βz = 1.
The spin dynamics of the model is obtained from the

classical Landau-Lifshitz equation of motion

∂tSn = Bn × Sn, (2)

where the effective magnetic field for the nth spin is

Bn = −(Sx
n−1 + Sx

n+1, 0, 2g). (3)

A classical linear spin wave theory[19] analysis re-
veals that in the PM, the energy spectrum is ωq =

2
√

g(g − cos(q)) with q the momentum. The energy dis-
perses linearly with momentum around q = 0 at the CP
g = 1, giving the dynamical critical exponent z = 1,
while the gap collapses as ∼

√
g − 1 upon approaching

the critical point[29], defining the exponent of the cor-
relation length as ν = 1/2. In the FM, the spin wave
spectrum is ωq = 2

√

1− g2 cos(q), yielding the same ν
and z. During any non-equilibrium dynamics, the system
heats up, and thermal fluctuations appear.
Similarly to its quantum counterpart[1, 2, 5, 6], we

are interested in ramping the transverse field as g(t) =
g0 + (g − g0)t/τ across the classical CP with a speed
of 1/τ and 0 < t < τ . Since these ramps are spatially
homogeneous and start from the ground state, where all
spins behave identically, the dynamics involves only the
homogeneous long wavelength (q = 0) mode of the spins,
and it suffices to study the dynamics of a single spin as

∂tS = B× S with B = −2(Sx, 0, g). (4)

This corresponds to the effective Hamiltonian[29]

H = − (Sx)
2 − 2gSz (5)

of a single classical spin with uniaxial anisotropy in the
presence of transverse field. Note that this applies to spa-
tially homogeneous quenches in the ground states of the

classical model in Eq. (1). The spatial correlation length
is infinite in the original model and loses its meaning
in the effective description, where only temporal fluctu-
ations appear. This simplifies the problem immensely
since only three, rather than 3N , coupled differential
equations need to be solved. Dynamics in the quan-
tum version of Eqs. (1) and (5) was considered in Refs.
5, 6, 30–34.

Ramp from PM. For quenches with g0 > 1 and any
final g, the initial spin configuration, S = (0, 0, 1), is sta-
tionary and remains a solution of Eq. (4) for any time de-
pendent transverse field, in contrast to the Kibble-Zurek
mechanism[3, 4, 35], where the final energy density de-
pends on the ramp rate. Here, it is determined by the
energy of the infinitely long lived ’scar state’. Loosely
speaking, the system can neither choose any spin config-
uration (up or down in the x direction) on the FM side
for a spatially homogeneous quench, nor can it be in a su-
perposition due to the classical nature of the spins. The
same applies to ramps starting from the ground state at
the CP.

Ramp within the FM phase. For simplicity, we con-
sider g(t) = gt/τ with 0 < t < τ and g < 1. By intro-
ducing the difference

δj(t) = Sj(t)− Sj
gs(g(t)) j = x, y, z (6)

between the time evolved and adiabatic ground state val-
ues of the spins, the effective dynamics to lowest order in
δ is described from Eq. (4) by only two coupled equations
as

∂tδ
y(t) = 2

√

1− (gt/τ)2δz(t), (7a)

∂tδz(t) = −2
√

1− (gt/τ)2δy(t)−
g

τ
(7b)

with initial condition δy,z(t = 0) = 0 and Sx(t) im-
plicit via the unit length constraint. For g ≪ 1 and long
enough quenches, this is solved to a good approximation
by taking

√

1− (gt/τ)2 as a time independent constant
to yield

δz(t) = −
g sin(2

∫ t

0

√

1− (gt′/τ)2dt′)

2τ
√

1− (gt/τ)2
(8)

and δy(t) follows from using Eq. (7b). Notably, both
contain the 1/τ term from the denominator of Eq. (8),
which stems from the source term in Eq. (7b). At the
end of the quench t = τ , all spin components deviate from
their ground state values ∼ τ−1. From this and Eq. (5),
the naive expectation for the scaling of the excess energy
would be the same. However, in reality, the excess energy
vanishes as τ−2 since the τ−1 prefactors in the two terms
in Eq. (5) cancel. This is expected to be the typical
scaling for the near-adiabatic dynamics away from the
CP[36].
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FIG. 1. Numerical data for deviations from the adiabatic
value for spin components x, y and z (blue, red and green)
from top to bottom after quenching to the critical point (g =
1) from the FM (g0 = 0) phase. The black dashed lines depict

the τ−1/3 and τ−2/3 scalings.

Ramp from FM to CP In this case, we consider g(t) =
t/τ with 0 < t < τ . The dynamics is still described by
Eq. (7) with g = 1, and the time evolution ends at the
CP. From a numerical analysis of the problem, we learn
that to a good approximation,

√

1− (Sx(t))2 ≈ Sz(t) =
t
τ + δz(t).
At the heart of the problem lies the square root vanish-

ing longitudinal spin component,
√

1− (t/τ)2 at the CP,
which renders any adiabatic approximation rather diffi-
cult, since any temporal derivative of the above expres-
sion diverges at the CP. This can be cured by retaining
higher order terms in δ in Eq. (7). In this case, we have
to replace the

√

1− (t/τ)2 term by
√

1− (t/τ + δz(t))2

which cures the aforementioned singularity at the CP for
any finite δz(τ). Eq. (8) is replaced by

δz(t) = − sin(2φ(t))

2τ
√

1− (t/τ + δz(t))2
(9)

with φ(t) =
∫ t

0

√

1− (t′/τ + δz(t′))2dt′. The self consis-
tency condition at the end of the quench at the CP reads

δz(τ) ≈ − sin(2φ(τ))

2τ
√

−2δz(τ)
, (10)

which yields δz(τ) ∼ τ−2/3 and δy(τ) follows the same
scaling via Eq. (7b). From the unit length constraint, we
obtain δx(τ) ∼ τ−1/3. These features are shown in Fig.
1 from the full numerical solution of Eq. (4) using a 5th
order Runge-Kutta method.
The transition time ttr when this scaling appears due

to the close vicinity of the CP, is determined from
Sx(τ − ttr) ≈ 0. Using the above scalings, this gives
ttr ∼ τ1/3: the presence of criticality makes its presence
felt at t ∼ τ − τ1/3. These features are illustrated in
Fig. 2. From the above scalings and the structure of
the effective Hamiltonian in Eq. (5), it is tempting to

0 1 2 3 4
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

FIG. 2. Temporal data collapse of δz(t) close to the CP for
various ramp rates after a ramp from the FM (g0 = 0). The
data is obtained from the numerical solution of Eq. (4) Devi-

ations from zero start to appear at times ∼ τ 1/3 before reach-
ing the CP. Similar data collapse characterizes the other spin
components.

conclude that the excess energy pumped into the system
by the non-equilibrium ramp scales as ∆E/N ∼ τ−2/3,
since both terms in Eq. (5) produce this scaling. This is,
however, again not correct. The prefactors of the leading
order terms cancel, leaving the subleading term for the
excess energy, ∆E/N ∼ τ−4/3.

These exponents follow Kibble-Zurek scaling[3, 4]. In
general, an operator is expected to scale with the speed
of the drive after the ramp as[30, 32, 37, 38] O − O0 ∼
τ−χ/(1+µ) measured from its adiabatic value O0 with χ
the critical exponent associated to O and µ = zν in
conventional Kibble-Zurek theory. Using the critical ex-
ponents for Eq. (1) for the spins and linear spin wave
theory, we obtain µ = 1/2, the conventional value ex-
pected in related models[31, 32]. Also the transition
time[6] is expected to scale as τµ/(1+µ), in accord with
Fig. 2. As to the excess energy, its critical exponent
is[39] 2 − α = 2, which gives the observed −4/3 expo-
nent. Note that these differ from those identified for the
quantum counterparts[6, 31, 32] of Eqs. (1) and (5).

Ramp from FM to PM. This is the continuation of
the previous FM to CP ramp. The temporal variation of
the transverse field is g(t) = gt/τ with g > 1, 0 < t < τ .
For the initial FM part of the ramp for t < τ/g, we use
the results in the previous section and pick up the time
evolution at the critical point, t = τ/g.

By linearizing Eq. (4), the effective dynamics couples
only the x and y components, resulting in two coupled
differential equations. These equations of motion may be
written in a suggestive form of a non-Hermitian Hamilto-

nian, namely a Schrödinger equation[40–48] of a quantum
spin-1/2 in a complex magnetic field or the non-hermitian
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(0 + 1) dimensional Dirac equation[49]

i∂t

(

δx(t)

δy(t)

)

=

(

0 2ig(t)

−2ig(t) + 2i 0

)(

δx(t)

δy(t)

)

(11)

and δz(t) follows from the unit length spin constraint,
τ/g < t < τ . Eq. 11 is a non-hermitian, PT-
symmetric[50–52] Dirac-equation, where non-hermiticity
arises from the 2iδx(t) term in Eq. (11). The instan-
taneous eigenvalues are ±2

√

g(t)(g(t)− 1), These van-
ish exactly at the CP g(t) = 1, t = τ/g, where the ef-
fective dynamics starts. This corresponds to an excep-
tional point[45, 46, 53] with vanishing spectrum at g = 1,
consistent with critical exponent µ = 1/2. There, not
only the eigenvalues become degenerate but also the two
eigenstates coalesce and no longer form a complete basis.
The system becomes increasingly hermitian with time for
g ≫ 1. The initial condition to Eq. (11) is the one and
only eigenstate of the r.h.s. of Eq. (11) at the exceptional
point, namely (δx(τ/g), δy(τ/g)) ∼ τ−1/3(1, 0)[54].
This represents a variation of the theme of non-

hermitian Kibble-Zurek scaling[55, 56]. By starting the
time evolution from the single eigenstate of the Dirac
equation in Eq. (11) at the exceptional point, the norm
of the ”wavefunction”, (δx(t), δy(t)) decays in time[57].
This occurs even in PT-symmetric systems due to the
non-unitary non-eigenstate evolution. By taking a fixed
g(t) = g & 1 in Eq. (11), the norm of the initial
state (1, 0) evolves in time as 1 − g−1 sin2(Et) with
E = 2

√

g(g − 1), which decays initially before revival
sets is. However, by reintroducing g(t), when the driv-
ing rate ∂tE/E is larger than the revival frequency
E, there is not enough time for revival and only the
norm decay remains. Most of the decay occurs at the
close vicinity[55] of the exceptional point, i.e. within a
τ1/3 temporal window, similarly to the FM side of the
transition (see Fig. 2). The resulting suppression of
(δx(τ))2 + (δy(τ))2 from its initial value scales as τ−1/3.
This comes from 1/3 = µ/(1 + µ). Altogether, the over-
all decay exponent of δx(τ), including the initial value,
is 1/2 = 1/3+ 1/6. This is a combination of two factors:
the 1/3 comes from the τ−1/3 scaling of the initial con-
dition, while the additional suppression factor 1/6 from
the non-hermitian time evolution around the exceptional
point, i.e. 1

2µ/(1 + µ).
In addition to these scaling ideas, we treat these two

coupled first order differential equations with the WKB
method, similarly to Dirac systems[58]. By solving the
wavefunction away from the exceptional point, corre-
sponding to the turning point in WKB approaches, we
obtain the asymptotic form of the wavefunction. We then
match this form with the initial exact solution of the lin-
earized version of Eq. (11). This amounts to replac-
ing g(t) by g in the first line of Eq. (11) while keeping
g(t) = gt/τ in the second line. This is solved exactly

100 101 102 103

10-2

100

FIG. 3. Numerical solution of the deviations from the adi-
abatic value for spin components x, y and z (blue, red and
green) from top to bottom after quenching from FM (g0 = 0)

to PM (g = 3). The black dashed lines depict the τ−1/2 and
τ−1 scalings obtained analytically.

using Airy functions and we obtain δx(τ) ∼ δy(τ) ∼
exp(±iτ2

∫ g−1

0

√

t′(t′ + 1)dt′) τ−1/2. The numerical so-
lution of Eq. (4) using the Runge-Kutta method for the
FM to PM ramp is illustrated in Fig. 3.

The deviation of the z component from the adiabatic
value follows from the unit length constraint as δz(τ) ∼
(δx(τ))2 + (δy(τ))2 ∼ τ−1, i.e. the initial value ∼ τ−2/3

is further suppressed by τ−µ/(1+µ). Building on these,
the excess energy also scales as τ−1. This is connected
to Kibble-Zurek ideas[59]: the difference between the 1/τ
exponent of excess energy for a half ramp and a full ramp
is exactly µ/(1+µ) = 1/3, which translates to 4/3−1/3 =
1 in our case.

Overall, the deviations from the adiabatic value of the
spin are suppressed for a full FM → PM ramp compared
to a half ramp. This chimes with the robustness of the
PM ground state spin configuration, which remains im-
mune to any quenches. But it is in contrast to the re-
sponse of the quantum transverse field Ising chain, where
the transverse magnetization follows the same τ−1/2 scal-
ing for both full and half ramps[60, 61]

Discussion. We have studied near-adiabatic dynam-
ics in the classical transverse field Ising chain. Rich be-
haviour and scaling are identified based on the ramp type,
summarized in Table I. The scaling of physical quanti-
ties after the FM to CP ramp follows the Kibble-Zurek
prediction. Most interestingly, the dynamics of the FM
to PM ramp encompasses a region where the effective
dynamics is described by a non-hermitian Hamiltonian
around an exceptional point, emerging from the classical
equations of motion of the parent model. This effective
non-hermitian description incorporates a suppression of
the defect production, accounting for the suppressed de-
viation from adiabaticity compared to the half ramp.

These results are not limited to the one dimensional
classical transverse field Ising model, but apply more gen-
erally. By considering H =

∑

〈n,m〉−JSx
nS

x
m − gSz

n for
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any lattice with uniform coordination in arbitrary dimen-
sions, the very same phase diagram and effective Hamil-
tonian apply not only to the ground state properties but
also for the near adiabatic dynamics.
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[55] B. Dóra, M. Heyl, and R. Moessner, The kibble-zurek
mechanism at exceptional points, Nature Communica-
tions 10(1), 2254 (2019).

[56] L. Xiao, D. Qu, K. Wang, H.-W. Li, J.-Y. Dai, B. Dóra,
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