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Aposematic animals rely on diverse secondary metabolites for
defence. Various hypotheses, such as competition, life history
and multifunctionality, have been posited to explain defence
variability and diversity. We investigate the compound
selectivity hypothesis using large milkweed bugs, Oncopeltus
fasciatus, to determine if distinct cardenolides vary in toxicity
to different predators. We quantify cardenolides in the bug’s
defensive secretions and body tissues and test the individual
compounds against predator target sites, the Na+/K+-ATPases,
that are predicted to differ in sensitivity. Frugoside, gofruside,
glucopyranosyl frugoside and glucopyranosyl gofruside were
the dominant cardenolides in the body tissues of the insects,
whereas the two monoglycosidic cardenolides—frugoside and
gofruside—were the most abundant in the defensive fluid.
These monoglycosidic cardenolides were highly toxic (IC50 < 1
µM) to an invertebrate and a sensitive vertebrate enzyme, in
comparison to the glucosylated compounds. Gofruside was
the weakest inhibitor for a putatively resistant vertebrate
predator. Glucopyranosyl calotropin, found in only 60% of
bugs, was also an effective inhibitor of sensitive vertebrate
enzymes. Our results suggest that the compounds sequestered
by O. fasciatus probably provide consistency in protection
against a range of predators and underscore the need to
consider predator communities in prey defence evolution.
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1. Introduction
Toxins and colourful warning signals characterize the defences used by aposematic species against
predators [1,2]. Aposematic animals acquire toxins by sequestering plant-specialized metabolites [3]
or by de novo synthesis [4,5]. In prey that sequester toxins, variability in the quantity and biochemi-
cal profile of chemical defences is common, both within and between species (e.g. in poison frogs,
Dendrobates tinctorius [6], Heliconius butterflies [7,8], ladybirds [9] and nudibranchs [10]). Providing and
evaluating evolutionary explanations for this variation, as well as alternative explanations, can shed
light on the ecological relevance of chemical defence composition and how natural selection constrains
or promotes toxin diversity [2].

There are a number of explanations for the variability and complexity of defensive chemicals,
including the stochastic nature of the environments within which prey organisms exist and develop,
selective sequestration of compounds, life-history effects on defences and variation in the selection
pressures exerted by predators and other natural enemies [2]. For example, the concentration of
sequestered cardenolides in monarch butterflies (Danaus plexippus) varies depending on host plant
chemistry [11,12], and host plant chemistry is impacted by environmental conditions [13]. Chemical
diversity can also be explained by selective sequestration [14–16]. Large milkweed bugs (Oncopel‐
tus fasciatus) sequester intermediate and more polar cardenolides from milkweeds (Apocynaceae:
Asclepiadoideae) and frequently diverge from those of their host plants even if the host plants have
distinct chemical profiles [17,18]. For example, O. fasciatus, when fed on seeds of the tropical milkweed,
Asclepias curassavica, sequesters higher concentrations of the cardenolides frugoside and gofruside than
are available in the seeds [19]. The greater sequestration of these compounds is not explained by their
effect on the biological activity on the bug’s target site, because the two compounds differ in potency—
frugoside is the most inhibitory, whereas gofruside is among the weakest inhibitors [19].

An alternative hypothesis for the bug’s sequestration pattern is that, just as individual plant
compounds are targeted at distinct herbivores (i.e. compound selectivity hypothesis [20,21]), the
milkweed bug’s chemical profiles might be explained by the toxicity of these chemical defences to
different natural enemies [2,22–24]. Milkweed bugs are considered partial migrants [25], which could
result in their exposure to a diversity of natural enemies. For example, in another milkweed herbivore,
the oleander aphids, Aphis nerii, Malcolm [26] identified nine predator species that varied in their
ability to exploit A. nerii as a food source. An alternative approach for exploring the potential specific-
ity of sequestered chemical defences on predators is to test isolated compounds in vitro [27]. This has
proved successful in other systems: monarch butterflies sequester cardenolides from milkweed leaves
that are less potent against their own target site than the dominant cardenolides available in the leaves,
but the sequestered cardenolides retain high potency against the target sites of sensitive vertebrate
target sites [27].

Here, we build on the methods of Agrawal et al. [27] and identify and quantify the cardenolides
sequestered by individual large milkweed bug adults reared in the laboratory on tropical milkweed
seeds (A. curassavica). Asclepias curassavica is present in the migration range of milkweed bugs [28,29].
We combine this quantification with tests of the inhibitory capacity of the main compounds seques-
tered by the bugs on the Na+/K+-ATPases of three predator species that we use as a proxy for natural
enemy diversity: the black-headed grosbeak (Pheucticus melanocephalus), which feeds on thousands
of cardenolide-sequestering monarch butterflies in their large overwintering aggregations in Mexico
[30,31] and has evolved amino acid substitutions in the Na+/K+-ATPases, which may confer target
site insensitivity [32]; the zebra finch (Taeniopygia castanotis), as a comparative passerine which does
not have any putatively resistance-conferring amino acid substitutions in the Na+/K+-ATPase (gene ID
100190719); and the giant Asian mantid (Hierodula membranacea) because mantids have been repeatedly
used as predators in experiments with milkweed bugs and monarch butterflies [33–35] and because
other species of mantid (e.g. Tenodera sinensis) have been reported to vomit or regurgitate after eating
milkweed bugs [33,36]. We used the porcine Na+/K+-ATPase enzyme as reference following Agrawal et
al. [27].

We show that cardenolides sequestered into the defensive fluids of milkweed bugs are domina-
ted by two monoglycosidic cardenolides—frugoside and gofruside—and that these compounds have
differential effects on the target sites of birds and invertebrate predators. We advance the compound
selectivity hypothesis, suggesting that specialist herbivores sequester compounds that are toxic to a
range of potential enemies. Support for this hypothesis provides an explanation for the diversity of
cardenolides found in large milkweed bugs.
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2. Material and methods
2.1. Study species
Oncopeltus fasciatus were obtained from a long-term laboratory colony at the University of Giessen in
2019. This colony originates from the United States and was acquired by the University of Hamburg
in 2015. We reared the bugs on organic sunflower seeds (Alnatura, Darmstadt, Germany) in terrarium
boxes (37 × 22 × 25 cm) lined with tissue paper and provided them with ad libitum water in Eppendorf
tubes plugged with dental cotton. The boxes were equipped with pieces of cotton wool for oviposition.
The colonies were maintained in an incubator at 28°C and 70% humidity with an 18 L : 6 D cycle and a
temperature of 18°C at night (Polyklima PK 520-LED).

Asclepias curassavica seeds were obtained from Jelitto Perennial Seeds (Schwarmstedt, Germany).
Hierodula  membranacea  were  obtained from M&M Wust—Mantids  and More (Muhlheim am

Main,  Germany).  Twenty-five  individuals  were  obtained at  the  L4 stage  and reared in  individu-
ally  double-ventilated boxes  (19  ×  19  ×  19  cm).  We provided them with greenbottle  fly  pupae
as  a  food source,  twice  per  week (two pupae during the  nymph stages  and three  when they
reached the  adult  stage).  Mantids  were  sprayed with  water  every 2  days  for  hydration.  The
mantids  were  kept  in  an incubator  (Snijders  Scientific  premium,  Tilburg,  The Netherlands,  with
an Imago 500  JUMO controller,  Fulda,  Germany)  at  28°C and 70% humidity  with  an 18  L : 6  D
cycle  and a  temperature  of  18°C at  night.

Taeniopygia castanotis (zebra finch) brain tissues were obtained from a breeding colony at the
University of St Andrews, UK, under Home Office licence 70/8159. Individual brains were dissected
and flash-frozen on dry ice before being shipped from St Andrews to the Max Planck Institute for
Chemical Ecology, Jena, Germany, where they were kept at −80°C until used in the assays.

Pheucticus melanocephalus (black-headed grosbeak) ATPA1 and ATPB1 genes were synthesised
(GeneArt; Invitrogen), codon optimised for Spodoptera frugiperda and cloned by GeneArt (Invitrogen)
in pFastBac Dual plasmid with ATP1B1 under p10 promoter and ATP1A1 under PPH promoter. Final
plasmids were verified by sequencing (accession number 196465).

2.2. Sequestration behaviour, collection of dorsolateral space fluid and extraction of
cardenolides from whole bodies

For the purpose of this experiment, we established two distinct colonies of milkweed bugs by
randomly selecting individuals from our existing stock colonies during standard insect husbandry
and colony management. We selected 20 mating pairs and an additional 12 adults and 12 L5 larvae
from the stock colonies that had been reared on sunflower seeds. The new colonies were provided with
A. curassavica seeds ad libitum. These colonies and their resulting offspring were maintained on the
same batch of milkweed seeds for five generations. Seeds and water were replenished bi-weekly and
weekly, respectively.

The large  milkweed bug has  evolved a  vacuolated double-layered integument  or  dorsolateral
space  (DLS)  where  it  accumulates  the  cardenolides  sequestered from seeds.  Upon mechanical
stress,  adult  bugs  release  a  complex mixture  of  cardenolide-rich fluid from exit  points  in  the
thin  cuticle  of  the  DLS [37,38].  After  release,  the  fluid is  held in  droplets.  This  increases  the
likelihood that  predators  come into  contact  with  the  fluid while  subjugating prey.  To collect  the
defensive  fluid,  we randomly selected 66  adults  (33  males  and 33  females,  without  controlling
for  reproductive  stage),  from the  fifth  generation of  each colony.  The adults  were  weighed,  and
then P.R.-B.  manually  stressed them by squeezing between forceps  to  elicit  the  release  of  the
defensive  fluids  [38].  P.R.-B.  collected the  defensive  fluids  from each individual  separately,  in
disposable  1–5  µl  micropipettes  made of  Duran glass  with  a  ringmark (Hirschmann Laborgeräte
GmbH, Eberstadt,  Germany).  The micropipettes  with  the  fluid were  washed thoroughly  with
100 µl  MeOH immediately  after  collection.  The solvent  was  evaporated at  ambient  temperature
under  N2  gas.  Later  the  fluid was  resuspended in  50  µl  of  MeOH for  liquid chromatography-
mass  spectrometry  (LC–MS) measurements.

After  manual  stress,  bugs  were  weighed again,  frozen at  −80°C,  and then freeze-dried
overnight  at  −85°C and 0.014  mbar  (Martin  Christ  Alpha 1–2  LD Freeze  Dryer,  Osterode am
Harz,  Germany).  We followed the  methods of  Pokharel  et  al.  [39]  to  extract  the  remaining
cardenolides  in  the  body and those  not  fully  collected from the  DLS.  The freeze-dried tissues

3
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 231735

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

25
 J

un
e 

20
24

 



of  the  adults  were  placed into  a  FastPrep matrix  tube  (MP Biomedicals  Germany GmbH,
Eschwege,  Germany)  with  approximately  450  mg of  2.3  mm zirconium/glass  pellets  (Carl  Roth
GmbH + Co.  KG,  Karlsruhe,  Germany)  and 1  ml  of  MeOH (Rotisolv  99.9%,  Carl  Roth GmbH,
Karlsruhe,  Germany).  The sample  was  homogenized in  the  FastPrep 24–5G Tissue Homogeniser
(MP Biomedicals  Germany GmbH, Eschwege,  Germany)  in  two cycles  of  45  s  at  6.5  m s-1,
with  a  pause  time of  100  s  between cycles.  The homogenate  was then centrifuged at  16  000
RCF for  3  min,  and 700  µl  of  supernatant  was  collected.  We repeated the  homogenization with
the  addition of  1  ml  of  MeOH another  two times.  The three  collected supernatants  per  bug
were  pooled and washed with  MeOH through a  Chromabond HR-X 86  µM cartridge 200  mg
(Macherey-Nagel  GmbH, Düren,  Germany).  The extracts  obtained were  dried under  N2  gas  and
weighed.  They were  then diluted in  200  µl  of  MeOH for  the  LC–MS analysis.

2.3. Liquid chromatography-mass spectrometry spectrometric quantification of Asclepias
cardenolides in dorsolateral space fluid and bodies

We analysed the  concentration of  eight  cardenolides  in  the  DLS fluid and dried tissues  of  O.
fasciatus  using a  linear  calibration method for  high-performance liquid chromatography coupled
to  high-resolution mass  spectrometry  (HPLC–HRMS;  see  Rubiano-Buitrago et  al.  [40].  We used
cardenolide  standards  derived from our  previous  isolations  from A.  curassavica  seeds  (see
Rubiano-Buitrago et  al.  [40]).  These  standards  were  glucopyranosyl-12-β-hydroxyl  coroglaucigenin,
16α-hydroxycalotropin,  allopyranosyl  coroglaucigenin,  glucopyranosyl  frugoside,  glucopyranosyl
gofruside,  glucopyranosyl  calotropin,  frugoside  and gofruside  [40].  We injected 1  µl  of  the
resuspended DLS fluid and 4  µl  of  the  dried tissue  extracts  of  O. fasciatus  into  the  HPLC–
HRMS and followed the  chromatography conditions  and quantification parameters  described by
Rubiano-Buitrago et  al.  (2023)  (see  also  the  electronic  supplementary material,  method S1)  [40].

2.4. Functional Na+/K+-ATPase assays
Preparations of Na+/K+-ATPases were obtained by homogenization of dissected brains (T. castanotis,
zebra finch, and H. membranacea, giant Asian mantid), from commercially obtained enzyme (Sus scrofa
domesticus, domestic pig), and expression of ATP1A1 and ATP1B1 subunits of the Na+/K+-ATPase of the
black-headed grosbeak in insect Sf9 cells (Invitrogen).

2.5. Preparation of lysates of zebra finch and giant Asian mantid
We sliced and weighed 5 mg from three different zebra finch brains and dissected the head capsule of
five female giant Asian mantids to obtain the central body with intact optic lobes. Neural tissues were
transferred to a 1 ml glass grinder (Wheaton Dounce tissue grinder, 1 ml, no. 357538) and homogen-
ized in 500 µl distilled water. Zebra finch homogenates were transferred to a 50 ml Falcon tube on ice
and resuspended with 15 ml resuspension buffer (0.25 M sucrose, 2 mM ethylenediaminetetraacetic
acid and 25 mM HEPES/Tris; pH 7.0). Samples were sonicated at 85 W (Fisherbrand Model 120 Sonic
Dismembrator, no. 12337338) for three 45 s intervals at 0°C, followed by centrifugation for 30 min at
10 000g (Sigma 3–18K, no. 10290) at 4°C to remove debris. The supernatant was collected and further
centrifuged for 60 min at 100 000g at 4°C (Optima Max-XP tabletop ultracentrifuge, no. 393315) to
isolate the membrane fraction. The pelleted membranes were washed twice and resuspended in 1
ml Milli-Q water (Milli-Q direct water purification system, Merck, no. C85358) and stored at −20°C.
Giant Asian mantid homogenates were frozen to −80°C and then freeze-dried overnight and then
resuspended in 1800 µl distilled water. Each sample was divided into aliquots of 600 µl and sonicated
twice in an ice water bath (Bandelin Sonorex, no. Z659584) for 5 min. Samples were centrifuged at 3000
r.p.m. for 5 min and used to perform functional assays.

2.6. Expression of black-headed grosbeak Na+/K+-ATPase
Recombinant Na+/K+-ATPases were expressed after infection of Sf9 cells with P0 virus stock following
the optimized baculovirus expression system described by Scholz and Suppmann [41]. The cells were
pelleted by centrifugation, resuspended and sonicated to disrupt membranes and further centrifuged
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to remove cell debris. Cell membranes were pelleted by ultracentrifugation of the supernatant and
finally resuspended in Milli-Q water (electronic supplementary material, method S2) [42]. Prior to
the Na+/K+-ATPase inhibition assay, the black-headed grosbeak protein was verified by SDS–PAGE/
Western blotting following the methods of Mohammadi et al. [43] (see the electronic supplementary
material, figure S1) and quantified by ELISA (see the electronic supplementary material, method S2d).

2.7. Na+/K+-ATPase inhibition assay
The inhibitory effects of increasing concentrations of four cardenolides (ouabain, glucopyranosyl
frugoside, frugoside and gofruside) on the black-headed grosbeak, zebra finch and giant Asian
mantids were determined by photometric measurement of inorganic phosphate released from
enzymatic ATP hydrolysis while subtracting the background ATPase activity following Petschenka
et al. [44] (see the electronic supplementary material, method S2e). The assessment of the inhibitory
impact of glucopyranosyl calotropin was limited to the black-headed grosbeak and zebra finch species.
This stemmed from the restricted availability of the compound, which only permitted testing on two
predator pumps. The inhibitory effects of the five compounds for the porcine ATPase were taken from
Rubiano-Buitrago et al. [19] for comparison. All assays were run in three biological replicates, and
the average of two technical replicates of each biological replicate was used for subsequent statistical
analyses. Raw data are available in the data repository [45].

2.8. Data analysis

2.8.1. Sequestration

To determine the percentage of cardenolide content measured by the available standards and the linear
calibration method, we summed all areas in the MS trace that we recognized as cardenolides based
on the fragmentation patterns and masses and calculated the percentage of the samples that were not
represented by the eight known cardenolides (electronic supplementary material, table S1 and figure
S2).

To determine the concentration of cardenolides in µg µl-1 of DLS fluid, we summed the concentra-
tions of the eight cardenolides present in the DLS fluid and then divided this sum by the volume
ascertained for each individual. To calculate the µg cardenolide mg-1 of dry weight of tissue, we
divided the sum per dried weight [46]. To compare the amount of individual cardenolides in the DLS
fluid and in the bodies of milkweed bugs, we first used Levene’s test to assess the homogeneity of
variance within a tissue type. There was significant heterogeneity of variance between compounds for
both the DLS fluid and the body tissues (F7,475 = 15.99, p < 0.0001; F7, 520 = 5.94, p < 0.0001, respectively).
We analysed the difference between the cardenolides within the DLS fluid and within the body tissues
using separate Welch’s ANOVA for unequal variances and compared the cardenolides to one another
with a Games–Howell post hoc test for unequal variances.

2.8.2. Na+/K+-ATPase inhibition

For  cardenolide  inhibition,  we converted the  calibrated absorbance  values  to  the  percentage of
non-inhibited Na+/K+-ATPase  activity  based on measurements  from the  control  wells.  We fitted
inhibition curves  by nonlinear  fitting using a  four-parameter  logistic  curve,  with  the  top and
bottom asymptotes  set  to  100  and 0,  respectively,  using the  nlsLM function of  the  minipack.lm
library  in  R [47].  From this  we calculated the  half  maximal  inhibitory  concentration (IC50)  values
for  each biological  replicate.  We compared the  log10 IC50  values  of  individual  cardenolides
for  each Na+/K+-ATPase  enzyme using a  linear  model,  testing the  interaction between predator
enzyme and cardenolide,  and compared the  inhibitory  capacity  of  each compound pairwise
using Tukey’s  post  hoc  test.  We calculated the  fold  differences  between the  IC50  values  of
individual  cardenolides  for  black-headed grosbeak,  zebra  finch and giant  Asian mantid versus
the  IC50  values  on the  porcine  enzyme.

All analyses were conducted in R (version 1.4.1717).
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3. Results
3.1. Defensive secretion volume and sequestered cardenolides in Oncopeltus fasciatus
Adults of O. fasciatus released between 0.2 and 2.0 µl of fluid from the DLS after manual stress (mean
± s.e.: 0.98 ± 0.06 µl, n = 66). Heavier bugs secreted a significantly larger volume of DLS fluid than
lighter bugs (R = 0.6, p < 0.0001; electronic supplementary material, figure S3). For the DLS fluid, the
eight cardenolides that we quantified through linear calibration corresponded to 88.4 ± 0.53% of the
total cardenolide area in the samples (electronic supplementary material, figure S2). For the extract of
the bug’s tissue, the eight cardenolides represented 72.3 ± 0.7% of the cardenolide area in the LC–MS
trace (electronic supplementary material, figure S2). Two undescribed cardenolides (compounds D and
E) were consistently more abundant in the tissue samples compared with the DLS fluid (electronic
supplementary material, figure S4).

There was a significant difference between the concentration of cardenolides in the dried tissues
after depletion of the fluid (F7,209.05 = 223, p < 0.0001). Frugoside, gofruside and glucopyranosyl
frugoside did not differ significantly in abundance (electronic supplementary material, table S3) and
were significantly more abundant than the other cardenolides in the dried tissues (figure 1; electronic
supplementary material, table S3). Glucopyranosyl gofruside was equally abundant as gofruside
(estimate = 3.63, confidence interval (CI) = −0.08–7.35, p = 0.059) but was significantly less abundant
than frugoside and glucopyranosyl frugoside (estimate = 6.86, CI = 2.91–10.8, p < 0.0001; estimate =
−5.03, CI = −8.29 to −1.78, p = 0.0001).

We did not find glucopyranosyl calotropin in 60% of samples from bugs’ DLS fluid. There was a
significant difference between the concentration of the eight cardenolides in the DLS fluid (F7, 169.99
= 43.176, p < 0.0001). Frugoside and gofruside did not differ significantly in abundance (estimate =
−1.03, CI = −8.01–5.94, p > 0.05) and were significantly more abundant than the other cardenolides in
the DLS fluid (figure 1; electronic supplementary material, table S4). Glucopyranosyl frugoside was
significantly more abundant than glucopyranosyl gofruside and glucopyranosyl calotropin (estimate
= −3.78, CI = −6.18 to −1.37, p = 0.0001; estimate = −4.88, CI = −7.17 to −2.60, p < 0.0001, respectively).
Glucopyranosyl gofruside and glucopyranosyl calotropin had equally low abundance to 16α-hydrox-
ycalotropin (estimate = 0.79, CI = −0.18–1.58, p = 0.23; estimate = −0.41, CI = −0.86–0.04, p = 0.11,
respectively), though glucopyranosyl gofruside was more abundant than glucopyranosyl calotropin
(estimate = −1.11, CI = −1.91 to −0.30, p = 0.001).

3.2. Cardenolide toxicity to predators tested by functional Na+/K+-ATPase assay
According to  the  criteria  defined by Agrawal  et  al.  [48],  which classify  molecules  with  IC50  >
100  µM as  nontoxic,  10  to  100  µM as  moderately  toxic,  IC50  <  10  µM as  toxic  and IC50  <  1
µM as  highly  toxic  (also  refer  [49]),  we found that  the  coroglaucigenin cardenolides  (glucopyra-
nosyl  frugoside  and frugoside)  are  toxic  (IC50< 10  µM) for  black-headed grosbeak and highly
toxic  (IC50< 1  µM) for  zebra  finch.  For  the  invertebrate  predator,  the  giant  Asian mantid,  the
monoglycosidic  cardenolides  (frugoside  and gofruside)  were  highly  toxic  (IC50  <  1  µM;  figure  2;
electronic  supplementary  material,  table  S5).

We found a significant interaction between cardenolide and predator Na+/K+-ATPase (F9,70 = 30.06,
p < 0.0001) and therefore analysed how different species were affected by each cardenolide, splitting
the dataset by compound. We found a significant difference between the species’ responses to ouabain
(F3,18 = 41.76, p < 0.0001). Ouabain was 18.9 times less inhibitory for black-headed grosbeak than for pig
(estimate 1.28, CI = 0.95–1.62, p < 0.0001), 4.3 times less inhibitory for the giant Asian mantid (estimate =
0.62, CI = 0.31–0.92, p =0.0001) and 6.8 times less inhibitory for the zebra finch enzyme (estimate = 0.81,
CI = 0.51–1.12, p < 0.0001).

Glucopyranosyl frugoside had significantly different effects on the predator Na+/K+-ATPase (F3,16
= 40.52, p < 0.0001; electronic supplementary material, figure S7). It was 28.3 times more inhibitory to
zebra finch than to pig (estimate = −1.46, CI = −1.88 to −1.04; p < 0.0001) and 2.3 times more inhibitory
to the giant Asian mantid, though this was not significant at the alpha 0.05 level (estimate −0.38, CI =
−0.80–0.04, p = 0.08). It was not significantly different in potency for black-headed grosbeak (estimate =
−0.004, CI = −0.45–0.44, p = 0.99).

Frugoside had significantly different effects on the predators’ sodium pumps (F3,18 = 23.43, p <
0.0001). It was 6.8 times less inhibitory for black-headed grosbeak than for pig (estimate = 0.80, CI =
0.45–1.16, p < 0.0001) and 2.6 times less inhibitory for zebra finch, though this was not significant at the
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alpha 0.05 level (estimate = 0.30, CI = −0.04–0.64, p = 0.09). It was not significantly different in potency to
the giant Asian mantid (estimate = −0.23, CI = −0.58–0.13, p = 0.31).

Gofruside also had significantly different effects on the pumps (F3,18= 48.80, p < 0.00001). It was
352.5 times less inhibitory for black-headed grosbeak than the pig (estimate = 2.30, CI = 1.62–2.97, p
< 0.0001). Gofruside was 12.7 times less inhibitory to zebra finch than the pig (estimate = 1.15, CI =
0.50–1.79, p = 0.0005) and did not differ in inhibitory potential between the pig and the giant Asian
mantid (estimate = −0.40, CI = −1.08–0.27, p = 0.36).

The IC50 values also differed significantly for glucopyranosyl calotropin (figure 3; F2, 13 = 10.55, p =
0.002). Glucopyranosyl calotropin was 15.1 times less inhibitory for black-headed grosbeak than for pig
(estimate = 1.08, CI = 0.45–1.71, p = 0.002) and 3.4 times less inhibitory to zebra finch than the porcine
enzyme, but this was not statistically significant at the alpha 0.05 level (estimate = 0.32, CI = −0.31–0.95,
p = 0.41).
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Figure 1. Cardenolides (µg per bug) in O. fasciatus adults in the DLS fluid (green) and in the body tissue after depletion of the fluid
(blue; x indicates the mean, n = 66). Compounds are arranged from polar to non-polar based on HPLC retention times. Note that the
y-axis is in pseudo-log scale.
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4. Discussion
We investigated the nature and function of chemical defence diversity in large milkweed bugs, testing
the hypothesis that compound diversity represents differential toxicity to different natural enemies.
We observed an order-of-magnitude difference in the variability of cardenolide concentrations in
the defensive secretions and body tissues of milkweed bugs. This within-population variation in the
quantity of secondary metabolites is a typical feature of aposematic animals [2] and can be maintained
if predators are more willing to eat prey with a consistent level of defence, compared to prey with
variability in their defences [50]. We also identified variability in the biochemical profile between
individuals. Among the eight compounds that we quantified, which collectively constitute 88% of
the cardenolides present in the defensive fluid, a specific compound (glucopyranosyl calotropin) was
detectable only in a subset of individuals. Several hypotheses have been put forward to explain the
variability observed in defensive profiles, including competition, life history and additional functions
of defensive substances [2]. Our tests of the multiple enemy hypothesis involved measuring the
inhibitory properties of a subset of the individual components against the target sites of several
predators. We found that frugoside, which is one of the most abundant sequestered compounds in
the defensive fluid, acts as a robust defence against invertebrate and sensitive vertebrate enzymes.
Gofruside, another of the most abundant sequestered compounds in the defensive fluid, varied in
enzyme inhibition among various predators, exerting its strongest inhibitory effects on an invertebrate
predator, while demonstrating comparatively weaker inhibition towards the target site of the resistant
predator. Glycosylated cardenolides are generally considered to be more toxic than corresponding
genins in whole organism vertebrate assays [19], but our one comparison found the deglycosylated
version of glucopyranosyl frugoside was more inhibitory for two out of four enzymes. While defence
against predators is perhaps the function most often associated with sequestration and defensive
secretions, our results add to the growing literature showing the ecological relevance of the chemi-
cal composition of sequestered defences [51–53] and reveal the evolutionary explanations for toxin
diversity [2].

The total cardenolide concentration of the bugs measured in this study ranged from 25.4 to 208.7
µg per bug. This range is similar to that reported by Isman [18], who found that some milkweed
bugs lack cardenolides (or have levels of cardenolides below the detectable limit of the measuring
equipment), whereas others contain up to 375 µg. The variability in the bug’s sequestration behaviour
in our study cannot alone be accounted for by the cardenolide content of the host plant because
the bugs in our study were provided with an ad libitum supply of seeds of A. curassavica. This
within population variation may reflect genetic differences in the individuals’ capacity to sequester
[54], differences in individual physiological state [55,56] or the absence of predation pressure and the
relaxed selection in the laboratory [53]. The higher variance in the concentration of cardenolides in the
defensive fluid could also be owing to the fact that we were only able to collect a fraction of the DLS
content during manual stress. Duffey and Scudder [14] suggested that only half of the DLS content
is collectable or released upon manual stress and the total vacuolar volume is difficult to determine
[14,37]. The concentration that we measured does, however, control for the volume collected. The
variance could also reflect sex differences in sequestration, but we found no differences between male
and female cardenolide concentrations in the DLS fluid (see the electronic supplementary material,
S6 and also Moore and Scudder [17]). We did not control for insects’ reproductive stage, or age,
which might contribute to variation [56]. Testing whether predators are able to detect the variation
present in the chemical defence will be important for understanding if such variation is subject to
differential selection and therefore how intraspecific variation in chemical defence concentration can be
maintained [6].

The diversity of defence compounds that we report in the defensive secretion and bodies of large
milkweed bugs is characteristic of many aposematic animals including poison frogs, Lepidoptera [51,57–
59], nudibranchs [10,60], Coleoptera [61,62] and Orthoptera [63]. That specialist herbivores concentrate
some toxins while not sequestering others has long been known [64,65]. A common question about
defensive variability is whether it represents ‘ecological noise’, variation caused by the stochastic
nature of prey environments, or is of no adaptive evolutionary significance [2,66]. We previously
reported higher concentrations of the cardenolides frugoside and gofruside in the bugs than is
available in the seeds on which they feed [19,40]. These two compounds have contrasting potency
towards the O. fasciatus target site Na+/K+-ATPase: frugoside is the most inhibitory, whereas gofruside
is among the weakest inhibitors. Our present results, which demonstrate that frugoside has similar
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levels of toxicity against both resistant and sensitive predator enzymes, could explain why the bugs
sequester a more potent inhibitor specific to their own target site. Our results are consistent with those
reported by Lawrence et al. [52], who found core alkaloids in poison frog defences that may provide
the consistency in protection necessary for aposematic warning signals to be maintained. Gofruside,
characterized as a modest inhibitor of the bug’s target site, is toxic to predators with sensitive target
sites but is a weaker inhibitor of resistant enzymes. Understanding how Oncopeltus accumulated its
enemy fauna over the course of evolutionary time could be linked to the inhibition assays of predator
target sites to understand the order of assembly of its defence arsenal [67,68].

The differential effect of cardenolides on the different predator enzymes supports the idea that
natural enemies can foster defence diversification and that the assembly of sequestered defensives
might depend on which selection pressure predators impose [51,68]. We did not test predator
responses to isolated chemical defences (e.g. [26]). In the wood tiger moth, Arctia plantaginis, the
defensive neck fluids are a more effective defence against bird predators than against invertebrates,
and abdominal fluids provide greater defence against invertebrates than against birds [51]. We suggest
that tests of single compounds and defensive mixture will be useful for understanding how toxic-
ity relates to predator deterrence [69,70] and whether compounds act synergistically, additively or
antagonistically [53,71]. We did not test non-sequestered cardenolides on predator enzymes because
we were unable to isolate them in sufficient concentration or purity [40]. Testing the effects of
the non-sequestered compounds on predators and the bug’s target sites would also provide more
information on the costs or other constraints on sequestration (e.g. [27]). For example, certain cardeno-
lides can be detrimental to insect growth [72], as well as redox state [56]. Sequestration might also be
constrained by transport and modification of specific compounds [48,73]. Testing the uptake, transport,
modification and accumulation of the cardenolides that we found in similar concentrations in the body
and defensive fluid (i.e. 16α-hydroxycalotropin), and comparing to those that were more abundant in
the bugs than the seeds (frugoside and gofruside; [40]), would be useful for establishing which key
metabolic process the bugs use when feeding on Asclepias (refer to Agrawal et al. [48]).

5. Conclusion
The results of the present study suggest that the sequestration of cardenolides by O. fasciatus is shaped
by the forces of predation pressure. While cardenolides have long been known for their role in shaping
predator–prey interactions, this is among the first tests in vitro of specific cardenolides sequestered by
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milkweed herbivores on the target site of a range of predators (see also [27]). Tests of whether chemical
variation in large milkweed bugs correlates with measured predation pressure will be important for
understanding if natural selection drives investment in chemical defences in this species.
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