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Variational autoencoder (VAE) based representation learning algorithms are explored for their capability to disentan-
gle tokamak size dependence from other dependencies in a dataset of thousands of observed pedestal electron density
and temperature profiles from JET and ASDEX-Upgrade tokamaks. Representation learning aims to establish a useful
representation that characterizes the dataset. In the context of magnetic confinement fusion devices, a useful represen-
tation could be considered to map the high dimensional observations to a manifold that represents the actual degrees
of freedom of the plasma scenario. A desired property for these representations is organization of the information
into disentangled variables, enabling interpretation of the latent variables as representations of semantically meaningful
characteristics of the data. The representation learning algorithms in this work are based on VAE that encodes the
pedestal profile information into a reduced dimensionality latent space and learns to reconstruct the full profile infor-
mation given the latent representation. Attaching an auxiliary regression objective for the machine control parameter
configuration, broadly following the architecture of the domain invariant variational autoencoder (DIVA), the model
learns to associate device control parameters with the latent representation. With this multimachine dataset, the rep-
resentation does encode density scaling with device size that is qualitatively consistent with Greenwald density limit
scaling. However, if the major radius of the device is given through a common regression objective with the other
machine control parameters, the latent state of the representation struggles to clearly disentangle the device size from
changes of the other machine control parameters. When separating the device size as an independent latent variable
with dedicated regression objectives, similar to separation of domain and class labels in the original DIVA publication,
the latent space becomes well organized as a function of the device size.

I. INTRODUCTION

The standard high performance tokamak scenarios are
based on the high confinement mode (H-mode) operation with
a self-organized transport barrier and plasma pedestal at the
edge1,2. As the heat transport in tokamak core plasmas is
generally observed to be stiff, showing strong increase with
temperature gradients exceeding a critical value, the overall
achievable plasma performance becomes directly dependent
on the boundary condition provided by the pedestal, such as
the pedestal top pressure, pped. For example, simulations for
ITER plasmas indicate fusion power to scale as p2

ped
3. Fur-

thermore, in future fusion reactors, these high performance
pedestals must be compatible with the necessary power ex-
haust measures to guarantee sufficiently long component duty

a)See author list of U. Stroth et al. 2022 Nucl. Fusion 62 042006
b)See author list of´ ‘Overview of JET results for optimising ITER operation’
by J. Mailloux et al 2022 Nucl. Fusion 62 042026

cycles4. However, due to the different scalings of the pedestal
and power exhaust physics from present-day fusion devices
to reactor-scale facilities, a present-day fusion device cannot
conclusively demonstrate reactor-relevant integration of high
performance pedestal with a power exhaust solution. There-
fore, accurate and fast predictions for pedestal plasmas are
needed to design and operate the future tokamak fusion reac-
tors.

Due to the multiple relevant physical processes, and spatial
and temporal scales, predicting pedestal plasma states is ex-
tremely challenging, and pedestal transport and stability are
very active topics of research5–9. Hence, reduced models as-
suming MHD-constrained pedestal pressure profiles provide
presently the standard approach for projecting pedestal per-
formance between scenarios and devices10–13. Even though
these models have been very successful in predicting pedestal
pressures in many presently operating tokamaks, such a re-
duced model approach does increase the prediction risk when
extrapolating to a new domain, such as was observed when
the carbon wall at JET was changed to the ITER-like wall2,
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or when scaling the device size towards the reactor-scale de-
vices and integrating radiative power exhaust to the pedestal
solution. On the other hand, a more complete, high physics
fidelity predictive model for pedestal and core-edge integra-
tion would be expected to be computationally prohibitively
demanding for agile design optimization tasks or real-time
and control applications. Advancement of deep learning al-
gorithms for high-performance computers has opened a path
to a data-driven approach to overcome these gaps in predictive
capability and model throughput14–16.

In this work, representation learning algorithms are ex-
plored for pedestal profile measurements from the JET and
ASDEX-Upgrade (AUG) tokamaks17. Representation learn-
ing algorithms aim to learn a useful representation that char-
acterizes the training data. In the context of magnetic con-
finement fusion devices, a useful representation learning algo-
rithm could be considered to compress the high dimensional
experimental observations to a lower dimensional space that
represents the actual degrees of freedom of the plasma sce-
narios, such that the high dimensional observations can be
reconstructed with little loss from the low dimensional repre-
sentation. More generally, state representation learning (SRL)
algorithms aim to learn representations that are in low di-
mension, evolve in time, and are influenced by actions of
an agent17. There could be several attractive applications for
such representations, including rector and scenario design by
supplementing reduced model assumptions in systems codes
with fast, high-fidelity integrated scenario predictions and al-
lowing computationally efficient optimization of feed forward
scenario trajectories. Furthermore, such approaches could
flexibly leverage previous and current information from the
system to essentially open a pathway towards plasma scenario
digital twins with plasma state awareness and enable agility
for timely and informed decision, similar to Kalman Filter-
ing in control applications18. In this work, the representa-
tion learning algorithms are based on variational autoencoders
(VAE)19. Similar approaches have been previously discussed,
for example, in the context of divertor detachment models20,
pedestals21, and disruption predictions22.

Building on top of the previous study by Kit et al.21, the ca-
pabilities of these models to infer machine size scaling in large
databases of experimentally observed pedestal plasmas in JET
and AUG are investigated. One of the primary challenges of
data-driven algorithms is that generally these are not expected
to extrapolate beyond the data that was used for training the
model. This work aims to address this challenge by inves-
tigating methods to disentangle the learned representation of
the latent variable models into machine independent and de-
pendent features. Theoretically, the machine independent fea-
tures can extract the information that extrapolates between fu-
sion devices of various scales. A related study by Kit et al.23

investigates state representation learning algorithms that aim
to capture the dynamical evolution of the plasmas by training
a forward model together with the representation.

II. DATASET

The data used to explore the deep learning models in this
work originates from experimental measurements of outer
mid-plane (OMP) electron density, ne, and temperature, Te,
profiles. For JET these are obtained from the High Resolution
Thomson Scattering (HRTS) diagnostic24 and for AUG the
profiles produced by the Integrated Data Analysis (IDA) were
used25. The HRTS measurements are used for JET without in-
cluding profile fits and dedicated instrument function decon-
volution procedures, such that a certain level of profile smear-
ing is present in the data26. Only ITER-like wall (ILW) JET
Pulse Numbers (JPN) are included in this work, which are all
obtained after the improvement of the optical design of the
laser input system. Following the improvement of the optical
design, the profile smearing caused by the instrument function
was reduced to a level of a relatively small correction rather
than substantially changing the profile gradient and width26.
The individual profile measurements are assumed to have neg-
ligibly small measurement error relative to the plasma fluctu-
ation between individual time slices. This is expected to be a
well justified assumption for the plasmas in this study.

It is also quite usual in the HRTS measurements to see rel-
atively high scatter in Te values in the scrape-off layer (SOL)
as measured ne values are low. To avoid feeding these large
scatter Te values to the deep learning algorithms, a heuristic
approach was taken such that for any HRTS measurements
where ne is lower than 5×1018 m−3 and Te is higher than 50
eV, the Te value is replaced by Te, corr = (ne×10−18 m−3)×10
eV. Such a procedure biases the data at low Te values in the
SOL. However, for the time being this was considered a bet-
ter approach than confusing the model with a large scatter
ranging between a few eV and values beyond keV, when it is
known from scrape-off layer (SOL) physics that the expected
values are significantly below keV. In future, the plan is to
improve these SOL corrections with information from SOL
diagnostics and boundary models.

It is also well known that the magnetic equilibrium recon-
struction is often not sufficiently accurate to locate the sepa-
ratix within the profile sufficiently well considering the profile
gradient scale lengths. To obtain a common separatrix align-
ment procedure for the investigated plasmas, the separatrix is
shifted to the location where Te equals 100 eV for all plasmas
for both JET and AUG, which is of the order of the expected
values for conduction limited SOL transport in H-mode con-
ditions. However, this is an oversimplification and will be
re-evaluated in future studies, as all dependencies on power
densities, SOL conditions, and device sizes are neglected by
this approach. Nevertheless, such a procedure does align the
separatrix approximately to the location where the radially
steep gradients of the pedestal Te begin and provides a prag-
matic approach to align 104 profiles with a batch algorithm.
Reaching such level of robustness with a more sophisticated
separatrix alignment algorithms is expected to require sub-
stantially more work than was allocated here. Furthermore,
varying Te, SEP within 20 – 30 %, as observed in SOL simula-
tions of deuterium and nitrogen injection scans at JET27, does
not affect the determination of the key pedestal parameters
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significantly28. It is acknowledged that by doing this, the orig-
inal uncertainty in the equilibrium reconstruction is replaced
with the physics uncertainty of the separatrix realignment pro-
cedure. However, the latter is considered more attractive here
as it provides a controlled bias to the data that is consistent be-
tween the data points, whereas the equilibrium reconstruction
uncertainty magnitude and direction is expected to be more
uncertain between the data points when combining thousands
of measured profiles from more than one fusion devices. All
profiles were mapped to a common normalized poloidal flux,
ΨN , grid of 30 points uniformly spaced between 0.85 and
1.05.

Only deuterium plasmas without significant impurity seed-
ing, resonant magnetic perturbations, kicks or pellets were
considered in this study. For JET, the plasma discharge num-
bers are selected from the JET pedestal database2, whereas for
AUG, the algorithm selects plasma discharges that have been
flagged as useful in the operating journal, which in practice
only filters out plasma discharges that failed. Furthermore,
only plasma time slices with core Te exceeding 2 keV are se-
lected. The total resulting number of plasma discharges in the
set of data used for training the deep learning algorithms is
1280 for JET and 3724 for AUG. From these plasmas, time
periods where the total heating power exceeds 3 MW for JET
and 2 MW for AUG were selected for analysis. To reduce
the size of the dataset, the total database of measured profiles
was downsampled by randomly selecting ten time slices from
each investigated time window as well as choosing the three
time slices with the highest pedestal pressure within each time
window. The intention of the former approach is to approxi-
mately retain the statistical distribution of the full data while
downsampling, whereas the intention of the latter is to make
sure that the highest pressure profiles right before Edge Local-
ized Modes (ELMs) are retained in the training database. The
downsampling procedure also helps to balance the dataset as
there are significantly more profiles in a given AUG time win-
dow relative to a given JET time window. Since there is no
effort to filter ELMs or identify ELM cycles in this study, the
resulting scatter in the profile data is relatively large and en-
coded as stochastic variation by the model in this study. In
future studies, methods to identify fractions of ELM cycles
automatically from the data will be investigated. The dataset
reduction is expected to help with agile algorithm testing. The
total resulting number of plasma time slices is 55087, as the
average number of time slices retained for a plasma discharge
is a bit more than 11.

The following input machine control parameters were se-
lected for the model in this work (Table I): (1) toroidal mag-
netic field, BT, (2) safety factor at 95 % flux surface, q95, (3)
total heating power normalized by the Martin LH-threshold
scaling29, PTOT/PLH, (4) total deuterium injection rate, DTOT,
(5) major radius, R, (6) aspect ratio, A = R/a, where a is the
minor radius, (7) elongation, κ , (8) upper triangularity, δ u,
and (9) lower triangularity, δ l , of the plasma. Even though
the Martin LH-threshold scaling might not provide a fully ac-
curate LH-threshold value for all plasmas considered in this
study, the scaling provides a pragmatic approach to normal-
ize the total heating power as two devices of different scales

TABLE I. Overall ranges, means, and standard deviations, σ , of the
applied machine control inputs in the deep learning model training
in this work. |BT| stands for the absolute magnitude of the toroidal
magnetic field in units of Tesla, |q95| for the absolute value of the
safety factor at 95 % flux surface, PTOT/PLH for the total heating
power normalized with the Martin LH-threshold scaling29, DTOT for
the total deuterium gas injection rate in units of 1022 e/s, R for the
major radius of the center of the plasma in units of meters, A = R/a
for the aspect ratio, κ for the elongation, δ u for the upper triangular-
ity, and δ l for the lower triangularity of the plasma.

JET AUG
Parameter Min Max Mean σ Min Max Mean σ

|BT| (T) 1.0 3.7 2.4 0.5 1.5 3.1 2.4 0.3
|q95| 2.4 9.2 3.5 0.5 2.3 12.0 5.0 1.1
PTOT/PLH 0.2 7 1.9 0.8 0.5 12 2.6 1.3
DTOT (1022 e/s) 0 19 2.3 2.2 0 10 0.8 1.0
R (m) 2.7 3.0 2.9 0.02 1.5 1.7 1.61 0.01
A = R/a 2.8 3.4 3.1 0.1 2.7 3.8 3.3 0.1
κ 1.27 1.83 1.67 0.04 1.09 2.0 1.67 0.06
δ u 0.05 0.51 0.20 0.08 0.0 0.55 0.13 0.09
δ l 0.04 0.50 0.31 0.04 0.0 0.59 0.42 0.07

.

FIG. 1. ne and Te distributions near the pedestal top in the dataset.
The y-axis represents the number of samples in the bin.

are considered. As can be seen in Table I, the average plasma
in the investigated database is an H-mode at about 2.4 T with
a moderately low q95 of 3.5 – 5.0 and moderately low up-
per triangularity of 0.1 – 0.2. Figure 1 illustrates the distri-
butions of the ne and Te values near the pedestal top in this
dataset. The dataset used for training the model is split into
training, validation, and test sets in proportions of 70%, 20%,
and 10%. The data is further normalized by subtracting the
mean and dividing by the standard deviation of the training
set. In addition to this, two representative plasmas that have
been documented in previous publications13,30 are specifically
selected to be retained outside the dataset used for training the
model and applied for prediction testing. In the remainder
of this manuscript, these will be called the holdout plasmas.
For AUG, the plasma discharge number 33173 was selected,
which is further discussed in13. For JET, the plasma discharge
number 96202 was selected, which is further discussed in30.
The representative input machine control parameters for the
two holdout plasma discharges are shown in Table II. These
plasmas represent relatively standard operational points and,
therefore, test the models capability in interpolating between
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previously observed points within the data distribution.

TABLE II. Representative machine control parameters for the two
holdout plasma discharges.

|BT| q95 PTOT/PLH DTOT R A κ δ u δ l

(T) (1022 e/s) (m)
AUG 2.45 4.1 3.5 0.9 1.62 3.3 1.65 0.07 0.46
JET 2.3 3.5 1.7 0.8 2.91 3.1 1.63 0.13 0.33

III. MACHINE SIZE REGRESSION IN A
REPRESENTATION LEARNING MODEL

Algorithms to learn a representation with tokamak size re-
gression are explored. All approaches are based on the varia-
tional autoencoder (VAE)19, which encodes the representation
for the observed plasma profile information in this work (Fig.
2). In Section III A, a standard VAE is first trained with the
dataset to demonstrate that the representation learning model
has sufficient capacity to reconstruct the profiles well. Once
this is demonstrated, Section III B explores an approach sim-
ilar to domain invariant variational autoencoder (DIVA)31 to
connect the machine control configurations with the learned
representation, building on top of the previous work by Kit et
al.21. However, as will be discussed in Section III B, when
connecting the device size together with the machine control
parameters to the same auxiliary learning objective, the result-
ing device size regression is mixed with changes of the other
parameters. This leads to large reconstruction error for the
device size, indicating that the device size dependent features
are not well disentangled from the size independent features.
Therefore, in Section III C, a separate latent space is dedicated
to the device size regression, which is observed to facilitate
disentangled encoding of the size dependent features into this
latent variable.

A. VAE

A VAE is a generative model, defining a joint distribu-
tion over the observed data, x, and latent variables, z, as
pθ (x,z) = p(z)pθ (x|z). Learning representation of the data
means to learn the posterior distribution pθ1(z|x) that maps
the observations to distributions of latent variables. The gen-
erative side of the model aims to model the dataset, x, as
a conditional distribution given the latent representation, z,
pθ2(x|z). In this work, this is implemented using encoder,
qΦ(z|x), and decoder, pθ2(x|z), distribution, parameterized
by convolutional neural networks (Fig. 2). The qΦ(z|x)
represents an amortized variational approximation of the in-
tractable true posterior, pθ1(z|x). The VAE model architec-
ture in this work is shown in Table III. The encoder consists of
convolutional layers that take the radial ne and Te profiles as
input. The output from the second convolutional layer is trans-
formed into mean and standard deviation of 12 latent variables
through two dense layers. The decoder consists of transposed

convolutional layers. The last transposed convolution layer
provides two output channels, which are transformed into two
radial profiles of 30 points each through a dense layer.

TABLE III. The VAE model architecture. The inputs are experimen-
tally measured 1D profiles of ne and Te mapped to a static ΨN grid
of 30 points uniformly spaced between 0.85 and 1.05. These are the
two channels with 30 points each that enter the convolutional layers
at the first level of the encoder. Conv. and Transp. Conv. stand for
1D convolution and transposed convolution layers. The convolution
layer parameters are (number of input channels, number of output
channels, kernel width, stride). The encoder to state has two com-
ponents as the VAE parameterize the mean and standard deviation of
distribution. Since the last Trans.Conv. layer outputs two channels,
the last dense layer transforms the output to two spatial profiles of 30
points each.

Model Component Layers Activation

Encoder Conv. (2, 4, 4, 2)
Conv. (4, 8, 4, 2)

ReLU
None

Encoder to latent state Dense (48, 12), Dense (48, 12) None

Decoder

Dense (12, 48)
Transp. Conv. (48, 16, 5, 3)
Transp. Conv. (16, 8, 5, 3)
Transp. Conv. (8, 4, 6, 3)
Transp. Conv. (4, 2, 6, 3)

None
ReLU
ReLU
ReLU
ReLU

Output Dense (165, 30) None

The learning objective is to minimize the reconstruction er-
ror as well as Kullback-Leibler (KL) divergence between the
encoder distribution and a given model prior, chosen here as
N (0,1):

LVAE =−αobs.EqΦ(z|x) [logpθ (x|z)]
+βpriorKL(qΦ(z|x)||N (0,1)) .

(1)

The second term constraints the model to learn a latent rep-
resentations that resembles a Gaussian hypersphere. This con-
straint aims to regularize the learned representation towards
continuity. The EqΦ(z|x) stands for expection of the loss in-
tegrated over the amortized variational approximations of the
posterior. In practice, the reconstruction error is obtained by
sampling a reconstruction from the VAE latent posterior dis-
tribution and computing the mean squared error. βprior mul-
tiplier is used to control the strength of the KL constraint, as
motivated by the β -VAE by Higgins et al.32. Similarly, αobs.
multiplier is added in front of the reconstruction error to also
adjust the strength of the loss term. In addition to the stan-
dard objective in equation (1), a physics regularization term
is added to the objective function ∝ βpress||neTe− n̂eT̂e||2 to
add a penalty if the reconstructed static pressure, n̂eT̂e, devi-
ates from the measured static pressure, neTe. The intention is
that this term encourages reconstruction of physically mutu-
ally consistent ne and Te profiles. Such a model was trained
for 100 epochs with the adam optimizer33 using a learning
rate of 0.01 and batch size of 1024. The loss multipliers are
shown in Table IV. These hyperparameters were manually
selected based on manual testing of various hyperparameter
values. In future, a more careful hyperparameter optimization
studies will be performed. Figure 3 illustrates the reconstruc-
tion quality for the holdout plasmas and their representative
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Latent space

BT q95 DTOT … BT q95 DTOT …

𝑧𝑠

𝑧mp

𝑧size

𝑅 𝑅

Prior
𝑧mp

Prior
𝑧size

Global 
prior

VAE

Machine 
parameters

Size

𝑞(𝑧|𝑥) p(𝑥|𝑧)
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p(𝑧|𝑅) 𝑞(𝑅|𝑧)

Encoder Decoder

Measurement Reconstruction

FIG. 2. Schematic illustration of the model components in this work. In Section III A, only the VAE component is active and only the global
prior is applied to the latent space components z. The global prior stands here for the chosen VAE prior of N (0,1). There is no separation of
the different components of z in the studies in Section III A. In Section III B, the machine parameter regression model is activated. The device
size, R, is provided among the other machine parameters. The colors indicate that the prior regression module encodes a prior distribution
for zmp. It should be noted here that the auxiliary regression module, q(y|z), decodes the machine parameter configurations based on the zmp,
not based on the prior. In Section III C, the device size dependence is given a dedicated regression and latent space. The detailed network
architectures are documented in Tables III, VI. The dashed lines highlight that the regression model provided priors only apply to zmp or zsize.
The global prior always applies to all components of z, but the individual components have their own multipliers, β , in front of the term.

TABLE IV. Loss hyperparameters in the VAE model.
αobs. βprior βpress
100 0.01 0.01

locations within a 2D cut of the learned 12 dimensional la-
tent representation. The overall reconstruction errors are very
small throughout the profiles, which indicates that the present
model setup has the necessary capacity to represent the pro-
files in the investigated dataset (Table V).

TABLE V. The mean absolute errors of the reconstructions for the
test dataset. ne values are in units of 1019 m−3 and the Te values
are in units of eV. <> represents profile integral, PED stands for
pedestal top, and SEP for separatrix.

< ne > < Te > ne, PED Te, PED ne, SEP Te, SEP
0.1 12 0.1 19 0.1 1

Since there are no other learning objectives than the recon-
struction error and the overall shape of the latent representa-
tion through the KL constraint, the information may be entan-
gled between the latent variables in this learned representa-
tion. To generate a useful representation, a desired property is
organization of the information into disentangled latent vari-
ables, enabling interpretation of the latent variables as rep-
resentations of certain, semantically-meaningful characteris-
tics of the dataset31,34–37. To achieve disentangled latent vari-

ables, semi-supervision of the learning task is explored31,35,37.
By introducing auxiliary learning objectives to a selection of
the latent variables, the learning algorithm is given an incen-
tive to encode the semantic information related to the learn-
ing objective to those latent variables. Attaching the auxil-
iary learning objective to the machine parameter configuration
of the plasma discharge, a connection is also established be-
tween the machine configuration and the state of the plasma.
The first approach, discussed in Section III B, follows broadly
the structure of the domain invariant variational autoencoder
(DIVA)31. In Section III C, this approach is extended by sep-
arating a dedicated latent space to represent the scaling with
the machine size. The latter approach is actually closer to
the original DIVA publication, where the machine size can
be considered to represent a class label and the machine pa-
rameter configuration a domain label. However, the machine
size in this work is treated as a continuous rather than discrete
variable.

B. DIVA

The original DIVA publication by Ilse et al. discusses split-
ting the latent space of a VAE to three sub-spaces: (1) domain,
(2) class, and (3) residual variations31. The motivation is to
disentangle the latent representation to domain variant and in-
variant features, such that the domain invariant features could
potentially be applicable to new, previously unseen domains.
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Reconstruction for JET: 96202 Reconstruction for AUG: 33713

Observation

Reconstruction

FIG. 3. Example of VAE reconstructed (red) ne and Te profiles for selected measured time slices (black dots) of the holdout plasma discharges
and their representative locations for a 2D cut of the latent space. The selection of latent dimensions 3 and 7 is arbitrary here and any other 2D
cut could have been selected equally well. The color coding of the latent space indicates the inferred pedestal top electron density value. Since
the latent space color coding is established for an average latent space representation for the profiles within the training set, the exact pedestal
density values are not same as those for the reconstructed holdout plasma discharges.

In this work, this approach is applied for JET and AUG exper-
imental data with the aim to learn a representation for which
certain latent features are independent of the device size. Fun-
damentally, the idea is that if it is possible to disentangle the
features that are dependent and independent on device size,
these tools could be used to infer fundamental device size scal-
ings in the experimental databases and potentially also to build
machine learning models that are transferable to new device
sizes with relatively small amounts of training data at scale.

TABLE VI. The architecture of the machine parameter prior regres-
sion and auxiliary regression and their connection to the VAE latent
space. The input dimensionality of the machine parameter vector is
nine. The latent space dimensionality allocated for the prior regres-
sion is nine and the stochastic latent space is allocated three dimen-
sions, such that the total dimensionality of z is twelve and the struc-
ture of the VAE (Table III) does not change other than the encoder to
latent space layers being split to two different latent spaces.

Model Component Layers Activation

Prior regressor
Dense (9, 30)
Dense (30, 30)
Dense (30, 48)

ReLU
ReLU
None

Prior regressor to latent state Dense (48, 9), Dense (48, 9) None
Decoder Dense (9, 30) ReLU
Output Dense (30, 9) None

In this first test, all of the nine machine parameters, ymp,
(Table I) considered in this study are given as an input to a
prior regression distribution, pmp, prior(zmp|ymp), parameter-
ized via a fully connected neural network (Table VI). The

learning objective (eq. 1) is modified by a reconstruction loss
for the machine parameter configuration and a KL constraint
between the prior regressor distribution and the VAE posterior
for the machine parameter latent space, qΦ(zmp|x):

LDIVA-like = LVAE

−αmpEqΦ(zmp |x)

[
logqθ , mp(ymp|zmp)

]
+βmpKL(qΦ(zmp|x)||pmp, prior(zmp|ymp)).

(2)

This learning objective aims to encode information from the
machine parameter configuration into the latent variable, zy,
together with the observed ne and Te profile information. As
the neural network generated prior distribution depends con-
ditionally on the machine parameter configuration, the algo-
rithm is given incentive to encode such a latent representation
that also conditionally depend on the machine parameter con-
figuration. Furthermore, the machine parameter reconstruc-
tion objective also incentives the algorithm to encode such a
latent representation that the information content is sufficient
to reconstruct the machine parameter configuration. There-
fore, correlations with plasma state and machine parameters
would be expected to be preferentially encoded to zmp, while
any residual variations would be expected to be encoded to
the residual stochastic part of the latent space, zs. To retain
the same latent space dimensionality as in the initial VAE ex-
ample, zmp = 9 and zs = 3 were selected in this study. For
the original VAE model, the only change is that for those nine
latent dimensions, the prior distribution is given primarily by
the neural network model rather than the static N (0,1) prior.
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Prediction for JET: 96202

Observations

Prediction

Prediction for AUG: 33713

FIG. 4. Illustration of the performance of the DIVA-like model for the holdout plasma discharges and their respective locations in a 2D cut
of the latent space, as predicted by the machine parameter prior regression. The contour colors show the inferred pedestal ne (upper) and R
(lower). The error bars illustrate one standard deviation of the distribution mapped by the prior regression module and the profile uncertainties
are obtained through collecting conditionally generated samples. The solid red lines in the profile figures show reconstructions for the means
of the latent distributions. A few observed time slices are shown for each of the holdout plasmas. The reason to show multiple time slices
here is that those time slices represent the temporal fluctuation of the plasmas. When testing the prediction performance of the model, it is
meaningful to compare the predicted distribution (red shaded area) to the scatter of the experimentally observed profiles. In Figure 3, the aim
is to demonstrate the reconstruction capacity of the VAE for individual time slices.

For the remaining three latent dimension, the prior is simply
the static N (0,1). The chosen latent space dimensionality is
small relative to the dimensionality of the profiles, but not rel-
ative to the dimensionality of the machine parameters. This
is intended, as the machine parameters are supposed to pro-
vide the independent control parameters of the system. If
this would be exactly the case, then one would not be able
to compres the information any more than is the dimensional-
ity of the control parameter vector. In practice this is not the
necessarily the case as the experimental databases have cross-
correlations within them.

TABLE VII. Loss hyperparameters in the DIVA model. The βprior mp
stands for the multiplier in front of the global prior term, while the
βmp prior reg. stands for the multiplier in front of the prior regression
term.

αobs. αmp βprior stoch. βprior mp βmp prior reg. βpress.
1000 500 0.5 0.00001 1.0 0.01

The loss multipliers are shown in Table VII. The βprior mp
stands for a small static prior loss on N (0,1) applied for the
machine parameter latent space. This is a regularizing term

in this model setup. The multiplier value is set low as this
loss should not dominate over the prior regression loss for the
model to work as intended. Overall these hyperparameters
resulted from simple manual scan and represent values that
lead to reasonable model performance. A more systematic hy-
perparameter optimization would probably improve the model
performance further but was not considered in this study.

Figure 4 illustrates prediction performance of the trained
model for the holdout plasmas. By providing the machine
control parameters of the holdout plasmas through the prior
regression module, a conditional distribution is obtained in the
latent representation. This conditional distribution is showed
with stars and error bars in Figure 4. From this conditional
distribution, full profile samples can be generated with the de-
coder of the VAE. As can be seen, the generated profiles are
broadly in line with the observations, although the detailed
profile shapes are not necessarily fully reproduced and the pre-
diction uncertainties are quite large. One of the leading rea-
sons for both of these shortcomings of the model is presum-
ably the fact that ELM cycles are averaged by the model in this
work. Therefore, stochastic variation below the ELM fluctu-
ations would not be expected through the generative model
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with this model setup. In future studies, focus will be given to
more directly encode ELM information into the latent repre-
sentation, which is expected to improve the prediction quality.

For a more quantitative performance test, mean absolute er-
rors for reconstructions and conditional generation or predic-
tion for the test set were calculated (Tables VIII, IX). There is
no noticable loss of reconstruction accuracy in the VAE model
even though some of the VAE capacity is allocated for the ad-
ditional training objectives (Tables V, VIII). The conditional
generation or prediction error is about a factor of 5 – 10 larger
than the reconstruction error (Table VIII), which is expected
as solely based on the machine parameters there is no infor-
mation about the fraction of the ELM cycle at which the target
profile is measured. Considering this challenge, the prediction
error is also relatively small. Actually, comparing to Figure 4,
it can be seen that the prediction error is of the order of the
standard deviation of the predicted distribution, which is ex-
pected. Therefore, when predicting an individual time slice
with this model, one would not expect the model to be more
accurate than this. Same arguments apply for the reconstruc-
tions of the machine parameters (Table IX). In future, further
development of the model to encode information about the
ELM cycle is expected to reduce both the prediction error and
the machine parameter reconstruction error.

TABLE VIII. Mean absolute errors of the reconstructions and pre-
diction for the test dataset. ne values are in units of 1019 m−3 and
the Te values are in units of eV. <> represents profile integral, PED
stands for pedestal top, and SEP for separatrix.

< ne > < Te > ne, PED Te, PED ne, SEP Te, SEP
Reconstruction 0.1 13 0.1 21 0.1 1

Prediction 0.8 97 0.9 152 0.8 5

TABLE IX. Mean absolute errors of the reconstructions of the ma-
chine parameters for the test dataset. The names of the parameters
and units are given the in caption of Table I.
|BT| |q95| PTOT/PLH DTOT R A κ δ u δ l

(T) (1022 e/s) (m)
0.4 0.7 0.7 0.8 0.24 0.07 0.04 0.07 0.04

As a test of the capability of the generative model to predict
the impact of R on the pedestal ne and Te, the following ex-
periment was conducted. The machine parameter inputs were
set to representative values near the mean of the training set:
|BT | = 2.25 T, q95 = 4.7, PTOT/PLH = 2.4, DTOT = 1022 e/s,
A = 3.2, κ = 1.67, δ u = 0.14, δ l = 0.4. Then R was scanned
from 1.6 to 2.9 m (Fig. 5). It is observed that the model does
encode a scaling of reduced pedestal density as R is increased,
which is consistent with the scaling of the empirical Green-
wald density limit in tokamaks38, nGW =

Ip
πa2 ∝

BT
R , where the

latter relation assumes constant plasma shape and q95 when
scaling the device size. However, as can be observed from
the reconstructed R, the internal representation of the model
is not fully consistent with the scan of the major radius (Fig.
5). As there are more AUG time slices than JET time slices
in the training database, it seems that the average represen-

FIG. 5. Test of conditional generation for various device sizes while
keeping other input parameters constant. Upper row shows the re-
constructed R, the dashed line shows the line with no reconstruc-
tion error. The lower figure shows the predicted ne, PED (black) and
Te, PED (red).

tation is weighted towards smaller device sizes. As in this
model construction, all the machine parameters are encoded
and reconstructed through a common fully connected neural
network, the machine parameters end up being entangled with
each other. Therefore, even though the model does learn the
correlation of reduction of average pedestal top ne with device
size, this correlation is mixed with changes of other param-
eters, such that the internal state of the model is entangled.
As a result, when the machine parameters are reconstructed
from latent distribution, the machine parameter reconstruc-
tion model mixes the original drivers of the posterior latent
distribution, leading to large reconstruction error on the de-
vice size. Therefore, although the results are already quite
promising in terms of connecting machine parameters to the
learned representation, the information organization is not yet
quite as disentangled as would be needed to fully disentangle
the machine size dependence from the other dependencies in
the dataset. Therefore, in Section III C, a separate latent space
is dedicated for the machine size.

C. DIVA with dedicated latent space for device size

A dedicated latent space of dimensionality of one was al-
located for the machine size regression model. To retain
the same latent space dimensionality as previously, the latent
space dimensions were set as zmp = 8, zsize = 1 and zs = 3.
The machine parameter and size regression architectures are
similar to that presented in Table VI. The primary difference
is that the input, output, and latent space dimensionality of the
machine parameter regression is reduced to eight, and the rep-
resentative dimensionality for the size regression is one. The
loss is similar to eq. (2) with the machine size reconstruc-
tion loss and KL constraint separated from the other machine
parameters. The loss multipliers are shown in Table X. As
before, these hyperparameters are obtained through a man-
ual search and a more systematic hyperparameter optimiza-
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Prediction for JET: 96202

Observations

Prediction

Prediction for AUG: 33713

FIG. 6. Illustration of the performance of the DIVA-like model with the dedicated latent space for size dependence for the holdout plasma
discharges and their respective locations in a 2D cut of the latent space, as predicted by the machine parameter prior regression. The contour
colors show the inferred pedestal ne (upper) and R (lower). The error bars illustrate one standard deviation of the distribution mapped by the
prior regression module and the profile uncertainties are obtained through collecting conditionally generated samples. The solid red lines in
the profile figures show reconstructions for the means of the latent distributions. A few observed time slices are shown for each of the holdout
plasmas. Latent dimension eight is associated with device size, but the y-axis could have been plotted for any of the other machine parameter
dependent latent dimensions, which do not have access to device size information directly.

tion could potentially improve the model performance further.

TABLE X. Loss hyperparameters in the DIVA model with a dedi-
cated latent space for device size.

αobs. αmp αsize βprior stoch. βprior mp/size βmp/size prior reg. βpress.
1000 500 500 0.5 10−5 1.0 0.01

A clear qualitative feature that can be seen with this model
setup is that the R scaling is now well organized into latent
dimensions eight (Fig. 6). As the latent dimension eight is
scanned from 4 to -4, the inferred tokamak major radius in-
creases from mid-sized 1.5 m to large 3.0 m. Also the Green-
wald like density scaling can now clearly be seen when com-
paring the upper and lower latent space contour plots in Fig-
ure 6, where the smaller device size is associated with higher
pedestal ne values.

As the model becomes more regularized through splitting
of the latent space, there is a small, less than factor of 2, in-
crease of the VAE reconstruction error (Tables VIII, XI). The
prediction errors remain almost the same between the mod-
els with and without the separate latent space for device size
(Tables VIII, XI). For most of the machine parameters, recon-

struction errors remain the same with the exception that the
reconstruction error on R is reduced by a factor of 2, as might
be expected (Table IX, XII).

TABLE XI. Mean absolute errors of the reconstructions and predic-
tion for the test dataset. ne values are in units of 1019 m−3 and the Te
values are in units of eV. <> represents profile integral, PED stands
for pedestal top, and SEP for separatrix.

< ne > < Te > ne, PED Te, PED ne, SEP Te, SEP
Reconstruction 0.1 21 0.1 28 0.1 2

Prediction 0.8 98 0.9 151 0.7 5

TABLE XII. Mean absolute errors of the reconstructions of the ma-
chine parameters for the test dataset. The names of the parameters
and units are given the in caption of Table I.
|BTF| |q95| PTOT/PLH DTOT R A κ δ u δ l

(T) (1022 e/s) (m)
0.4 0.7 0.7 0.7 0.14 0.07 0.04 0.06 0.04

Finally, the test on the capability of the generative model to
predict depence of pedestal ne and Te on machine size shows



Representation learning algorithms for inferring machine independent latent features in pedestals in JET and AUG 10

FIG. 7. Test of conditional generation for various device sizes while
keeping other input parameters constant. Upper row shows the re-
constructed R, the dashed line shows the line with no reconstruc-
tion error. The lower figure shows the predicted ne, PED (black) and
Te, PED (red).

that the internal representation now captures the size depen-
dence significantly better (Figs. 5, 6). As the input R ap-
proaches JET sized values, the internal state also approaches
these numbers, which was not the case when R was mixed
in the same latent space with the other machine parameters
(Figs. 5, 6). Furthermore, similar test were done by scanning
the size from the latent representation of each of the hold-
out plasma discharges. When scanning from the AUG case,
the dependence was very similar to that observed in Figure 7.
From the JET case, the dependence was significantly weaker,
which indicates that further research is needed to fully under-
stand how the size dependence emerges globally in the latent
space.

IV. DISCUSSION

Variational autoencoder based representation learning algo-
rithms are explored for datasets of thousands of experimen-
tally observed pedestal ne and Te profiles at JET and AUG
tokamaks. Representation learning aims to establish a useful
representation that characterizes the dataset. In the context of
magnetic confinement fusion devices, a useful representation
could be considered to map the high dimensional observations
to a lower dimensional manifold that represents the actual de-
grees of freedom of the plasma scenarios. In this work, the ca-
pability of these algorithms to infer tokamak size dependence
in multimachine databases is investigated.

Using VAE based representation learning models and fol-
lowing broadly the architecture of DIVA to connect the ma-
chine parameter configuration with the learned representation,
the model learns joint probability distributions that associate
a certain device size and machine control configuration with a
certain pedestal ne and Te. Since ELM fluctuations are treated
as stochastic variations of the profiles and not taken into ac-
count in the model design, the prediction variances for profiles
and machine parameters remain quite large. Given this short-

coming, the performances for predicting pedestal ne and Te
profiles based on the machine control configuration and de-
vice size within the test sets are quite good.

It was observed that when connecting the device size to-
gether with the machine control parameters to a common re-
gression objective and latent space, the model ended up entan-
gling the machine parameters within each other. As a result,
conditional latent distributions with a certain device size were
mixed with other device size and machine parameter configu-
rations. By separating the device size to a dedicated regression
objective and latent space, similar to separation of domain and
class labels in the original DIVA publication31, the device size
information becomes well organized and disentangled from
the other machine parameters. This highlights the importance
of properly designing the learning algorithm structure appro-
priately to appropriately encode the information into semanti-
cally meaningful latent variables.

For these multimachine datasets, the representation does
encode density scaling with a device size that is qualitatively
consistent with Greenwald density limit scaling38. Since the
training dataset consists of data from AUG and JET, it should
be noted that there are no training observations at values in
between the two extremes. Therefore, for a good fraction
of the scan in Figure 7, the model is interpolating in a do-
main where there is no training data, and this interpolation
seems quite stable, which is not necessarily given when oper-
ating with overparameterized models capable for overfitting.
The features that the model learns to be independent on de-
vice size, could in principle extrapolate beyond the training
domain. In future studies, such interpolation and extrapola-
tion performance could be explored by training the model on
JET and TCV, for example, and testing the interpolation per-
formance for AUG, or extrapolation performance by training
on TCV and AUG and extrapolating to JET. How much real
data is needed at scale and whether simulations can be used
to supplement the real data at scale are interesting research
questions to be addressed in future.
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