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Exceptional points (EPs) are truly non-Hermitian (NH) degeneracies where matrices become
defective. The order of such an EP is given by the number of coalescing eigenvectors. On the one
hand, most work focusses on studying Nth-order EPs in N ≤ 4-dimensional NH Bloch Hamiltonians.
On the other hand, some works have remarked on the existence of EPs of orders scaling with systems
size in models exhibiting the NH skin effect. In this letter, we introduce a new type of EP and
provide a recipe on how to realize EPs of arbitrary order not scaling with system size. We introduce
a generalized version of the paradigmatic Hatano-Nelson model with longer-range hoppings. The
EPs existing in this system show remarkable physical features: Their associated eigenstates are
localized on a subset of sites and are exhibiting the NH skin effect. Furthermore, the EPs are robust
against generic perturbations in the hopping strengths as well as against a specific form of on-site
disorder.

Non-Hermitian (NH) operators, while violating the ax-
ioms of quantum mechanics, have many applications in
classical setups, such as electric circuits [1, 2] and op-
tical metamaterials [3], while also being highly relevant
for open quantum systems [4] and closed strongly corre-
lated systems [5, 6]. In recent years, non-Hermiticity has
been studied from the perspective of topology, revealing
rich, novel phenomena and resulting in an exciting cross-
disciplinary research field [7, 8].

While the conventional bulk-boundary correspondence
(BBC) is generally broken in NH models and needs to be
modified [9–11], an additional, truly NH BBC correspon-
dence can be established, which directly relates the spec-
tral topology under periodic boundary conditions (PBCs)
captured by a spectral winding number [12] to the piling
of bulk states on the boundaries under open boundary
conditions (OBCs) [13, 14], known as the NH skin ef-
fect (NHSE) [11]. This NHSE is always accompanied by
the appearance of exceptional points (EPs) with an or-
der scaling with system size [7, 15]. EPs are truly NH
degeneracies, at which the NH Hamiltonian is defective
and whose order is set by the number of coalescing eigen-
vectors [16]. Indeed, it is straightforward to see how such
an EP emerges in a system with skin states by consider-
ing the paradigmatic Hatano-Nelson (HN) model [17, 18].

n − r n − 1 n n + 1 n + l

tl

t−r

Figure 1. The generalized HN model with hoppings tl (t−r)
hopping l (r) sites to the left (right). Each site contains its
site index, and the model is (l + r)-partite. It reduces to the
customary HN model for l = r = 1.

In this nearest-neighbor hopping model with asymmet-
ric hopping strengths all states pile up on the boundary
as dictated by the dominant hopping parameter. In the
extreme limit where one hopping is set to zero, all states
coalesce onto one at the boundary thus forming an EP
with an order scaling with the number of sites.

EPs are ubiquitous [19], and naturally appear in any
NH system. In particular, it has been shown that sym-
metries can aid to find EPs of higher-order in lower-
dimensional systems [20–25]. In fact, it was recently
pointed out that the much weaker condition of having
a similarity has the same consequences [26]. All these
studies mainly focus on the appearance of EPs of the or-
der of the system size N . While a few remarks are made
about the appearance of EPms with m < N in Refs. 23–
25, and EP3s and EP4s are found in an SSH chain under
OBC in Ref. 27, there is not yet a systematic study of
how to generate EPs of any order m in an N -dimensional
system. In this letter, we propose a method for finding
such lower-order EPs by studying models akin to the HN
model.

In particular, we study a family of generalized HN
models, which only allow hoppings l sites to the left and
r sites to the right as sketched in Fig. 1. The generalized
HN model and similar models have mainly been studied
in the thermodynamic limit in the mathematics [28, 29]
and physics literature [30–33], especially in the context of
the generalized Brillouin zone theory [11, 34, 35]. Here,
we focus on features of these models for finite system
sizes, and reveal a generic mechanism in which EPms
appear. Interestingly, while the appearance of such EPs
depends on the system size N , its order does not scale
with it. This behavior finds its root in a generalized chi-
ral symmetry [36], which imposes a rotational symmetry
in the spectrum shown in Fig. 2, pinning the EPs to the
center of rotation.

We find that all eigenstates exhibit the NHSE, includ-
ing the ones associated with the EPs, which are localized
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Figure 2. PBC (gray) and OBC (light blue) spectra of the
generalized HN model with tl = t−r = 1 and l and r as
indicated in the thermodynamic limit. Due to the (l+ r)-fold
spectral rotational symmetry we find for appropriate system
size an EP2, EP3, and EP4, in (a), (b), and (c), respectively,
marked with a blue cross.

on a specific set of sites. Indeed, the system is (l + r)-
partite so that we can subdivide the system into sublat-
tices (SLs). Furthermore, we show that it is possible to
localize the EP and the remaining eigenstates on oppo-
site ends of the chain. Lastly, we realize that the EPs
are robust against generic perturbations in the hopping
strengths [37, 38], and are thus protected by the spatial
topology of the model. The EPs are also robust against
a particular type of on-site disorder, which only exists
on certain SLs. In the following, we discuss all of these
features in detail.

Generalized Hatano-Nelson model.—The family of gen-
eralized HN models we investigate, cf. Fig. 1, is described
by

Hlr =

N∑
n=1

(
tl c

†
n cn+l + t−r c

†
n cn−r

)
, (1)

where the chain has N sites, cn (c†n) annihilates (creates)
an excitation on site n, the first (second) term describes
the hopping of l (r) sites to the left (right) with hopping
strength tl (t−r), and we consider OBCs throughout this
letter unless stated otherwise. Without loss of general-
ity, we set tl, t−r > 0 and require l ≥ r ≥ 1 coprime,
so that l and r have a greatest common divisor of one,
i.e., gcd(l, r) = 1, which we justify below. We note that
whereas the HN model is NH iff t1 ̸= t−1, the generalized
HN model is always NH even when tl = t−r as long as
l ̸= r. Let us focus on a paradigmatic example in the
following before we return to the general case.

Example: l = 2 and r = 1.—We consider H21 shown
in Fig. 3(a) with the characteristic polynomial given by

χ(E) = (−E)d
q∑

m=0

(
N − 2m

m

)(
t2t

2
−1

)m
(−E3)q−m,

where N = 3 q + d with 0 ≤ d < 3, i.e., q = ⌊N/3⌋
is the quotient and d = N mod 3 is the remainder of
the Euclidean division, see Appendix A. The spectrum
of H21 is given by {E : χ(E) = 0}, from which one
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Figure 3. Generalized HN model for l = 2 and r = 1 under
OBCs. (a) Alternative representation of Fig. 1 revealing the
3 SLs in red (SL1), yellow (SL2) and green (SL3). (b) Visual-
ization of the zero-energy eigenvector |v1⟩ (generalized eigen-
vector |v2⟩) for t2 = t−1 = 1 on the yellow (green) SL with
weights inside each node, forming the Jordan chain associated
with the EP2 when the system size satisfies N ≡ −1 mod 3.
Acting with H21 on |v1⟩ (|v2⟩) annihilates on SL1 (creates |v1⟩
on SL2) following the gray (black) arrows.

can immediately read off spectral properties. While the
factor (−E)d shows a d-fold degeneracy at zero energy,
the (−E)3 dependence dictates that the remaining eigen-
values come in triplets {E,Eω3, Eω2

3} with ω3 = e2πi/3.
Thus, the complex spectrum ofH21 exhibits a 3-fold rota-
tional symmetry as shown in Fig. 2(a). In anticipation of
the general case, we remark that the system is 3-partite.
This implies we can define three SLs, SL1, SL2 and SL3,
shown in red, yellow and green in Fig. 3(a), where the
site index n satisfies n mod 3 = 0, 2 and 1, respectively.

Looking at the eigenspace structure of the d-fold de-
generate zero-energy solutions, we uncover the following
mechanism: For d = 0, there is no associated eigenspace,
for d = 1 a single eigenvector exists, and for d = 2 one
can readily construct a Jordan chain of length 2, i.e.,
there is an eigenvector |v1⟩ and a generalized eigenvector
|v2⟩ satisfying H21|v2⟩ = |v1⟩, showing that the system
exhibits an EP2. These vectors are given by

|v1⟩ ∝
q∑

j=0

(−t)q−jc†3j+2|0⟩, (2a)

|v2⟩ ∝ (t−1)
−1

q∑
j=0

(q − j + 1)(−t)q−jc†3j+1|0⟩, (2b)

where t = t2/t−1, and are visualized in Fig. 3(b). From
their form one can see that the zero-energy eigenvector
|v1⟩ (generalized eigenvector |v2⟩) only has weight on the
yellow (green) SL, and has no weight on the red SL. Fur-
thermore, both |v1⟩ and |v2⟩ depend on the hopping ratio
t, and are thus exponentially localized on the left (right)
for t2 > t−1 (< t−1) revealing a footprint reminiscent of
the NHSE, which we further explore in the general case.

General case.—In order to generalize to larger l and r,
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we choose the matrix representation Hlr of Eq. (1) as

Hlr =



0 h1 0 . . . 0

0 0 h2
. . .

...
...

. . .
. . . 0

0
. . . hl+r−1

hl+r 0 . . . . . . 0


, (3)

where the hj with j = 1, 2, . . . , l+ r are rectangular ma-
trices of size dj × dj+1 with dl+r+1 ≡ d1 describing the
hopping from SLj+1 to SLj . We have chosen l and r co-
prime so that Hlr is (l + r)-partite, otherwise the system
would split into gcd(l, r) decoupled subsystems, where
each individual subsystem can again be treated using our
formalism. For compactness, we drop the indices of Hlr

when we consider arbitrary l and r. We remark that a
broad class of models with Bloch Hamiltonians of the
form of Eq. (3) have been investigated in Ref. 36 in the
context of flat band physics.

The next step is to infer properties of Hl+r and map
them back to H. As H can be interpreted as a hop-
ping model through its adjacency graph, raising H to
the nth power corresponds to n steps through the ad-
jacency graph of H. From Fig. 3(a) it is clear that
H3

21 maps all states localized on SLj back to SLj for
all j, so H3

21 is block diagonal, which is a general state-
ment for all l and r taking l + r steps. To set the no-
tation, we write Hl+r = diag (H1,H2, . . . ,Hl+r) with
Hj = hj · hj+1 · · ·hl+r · h1 · · ·hj−1, where each block Hj

with dimension dj × dj describes a hopping model solely
on SLj , and without loss of generality we sort the SLs
so that d1 ≤ dj for all j. The SL sizes dj are readily
determined for all system sizes N . The small SLs such
as SL1 have size d1 = ⌊N/(l+ r)⌋, whereas the large SLs
have dj = ⌈N/(l + r)⌉, where ⌈.⌉ is the ceiling function,
such that dj = d1 + 1 if N mod (l + r) ̸= 0.
In Ref. 36 it was shown that one can diagonalize all the

blocks Hj in Hl+r as Hj |uj
s⟩ = Es|uj

s⟩, s = 1, 2, . . . , d1,
where the Es are the same for all j. For all larger
SLs with dj > d1, all remaining energies are zero, i.e.,

Hj |uj
t ⟩ = 0, t = d1 + 1, . . . , dj . In our case we have

at most one zero-energy solution per SL and we rela-
bel their corresponding eigenvectors as |uj

0⟩. Having
the full spectrum of Hl+r, the spectrum of H consists
of d =

∑l+r
j=2(dj − d1) zero energies, which is in our

case the number of large SLs, i.e., d = N mod (l + r),
and the (N − d) energies { n

√
Es, ωn

n
√
Es, . . . , ω

n−1
n

n
√
Es :

s = 1, . . . , d1}, where ωn = e2πi/n with ωn
n = 1 and

n = l + r. This was shown in Ref. 36 by leverag-
ing that Eq. (3) obeys a generalized chiral symmetry
Cn : ΓnHΓ−1

n = ω−1
n H, where the generalized chiral op-

erator is Γn = diag(1d1 , ωn1d2 , . . . , ω
n−1
n 1dn), with 1m

the m-dimensional identity matrix, satisfying ΓnΓ
−1
n =

Γn
n = 1N . In our previous example, we saw all these

implications from the characteristic polynomial.

(a) 1 2 3 4 5
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t3 t3
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h1 h2 h3 h4

h1 h3 h4

Figure 4. Determination of the EP structure of the general-
ized HN model with l = 3 and r = 2. (a) shows the hopping
model in the site basis with corresponding site index inside
each nodes and SL coloring corresponding to (b). Increas-
ing N one by one, the sizes of SL3, SL5, SL2, SL4, SL1 are
increased cyclically. Starting with N ≡ 4 mod 5 in (c), the
generalized zero-energy eigenvectors form a Jordan chain of
length 4 corresponding to an EP4. Decreasing the system
size to N ≡ 3 mod 5 in (d) removes |u4

0⟩ on SL4 and splits
the Jordan chain into one of length 1, corresponding to an
one-dimensional zero-energy subspace, and a Jordan chain
of length 2 corresponding to an EP2. For N ≡ 2 mod 5,
N ≡ 1 mod 5 and N ≡ 0 mod 5 one finds two, one and zero
one-dimensional zero-energy subspaces of H, respectively (not
depicted).

Besides these spectral considerations we analyze the
eigenvectors of H. First, it is instructive to define the
padded eigenvectors |ũj

s⟩ so that they are the eigenvectors
of Hl+r. The eigenvectors |wp

s⟩ of H associated with s ̸=
0, i.e., Es ̸= 0 are given by

|wp
s⟩ ∝

l+r−1∑
ν=0

(
Ese

2πi/p
)− ν

l+r Hν |ũ1
s⟩, (4)

where p = 1, . . . , l + r and we set H0 = 1N . Compared
to the eigenvectors of Hl+r, the |wp

s⟩ have weight on all
SLs.
Coming to the zero-energy eigenvectors, we use that

Hl+r|ũj
0⟩ = 0, which shows that all |ũj

0⟩ are on the one
hand zero-energy eigenvectors ofHl+r, while on the other
hand they are generalized eigenvectors of H by defini-
tion. However, a priori it is not clear what the length
m ≤ l + r of the associated Jordan chain defining an
EPm is. As we will show, it is enough to keep track of
consecutive SLs with dj = d1 + 1 to determine m. Let
us start on SLj−1 of size dj−1 = d1 followed by SLj of

size dj = d1 + 1. Then we know that |ũj
0⟩ is a proper

eigenvector of Hl+r as Hl+r|ũj
0⟩ = hj−1|uj

0⟩ = 0. While
SLj+1 up to SLj+m have the same size dj+1 = . . . =

dj+m = d1 + 1, the Jordan chain hj |uj+1
0 ⟩ = |uj

0⟩, . . . ,
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Figure 5. Determination of the EP structure of the general-
ized HN model for arbitrary l and r = 1 similar to Fig. 4. (a)
Increasing the chain length increases the sizes of SLs cycli-
cally in (b). Starting with N ≡ −1 mod (l + 1) corresponds
to having an EPl in (c). Successively decreasing the size of
the chain always removes the generalized eigenvector with the
highest SL index as shown in (d).

hj+m−1|uj+m
0 ⟩ = |uj+m−1

0 ⟩ must continue. This comes
from the fact that all hj , . . . , hj+m−1 of size dj × dj
have trivial nullspace, i.e., there exists no |v⟩ ̸= 0 so
that hj |v⟩ = 0, as shown in Appendix B. Thus, if finally
dj+m+1 = d1, we identified a Jordan chain of length m
and thus an EPm. Therefore, determining the lengths
of all Jordan chains, i.e., the orders of all EPs, reduces
to counting the number of large SLs in sequence. We re-
mark that this procedure only depends on the existence
of the zero-energy eigenvectors of the Hj , and thus on
N mod (l + r) and not directly on the system size N .
Fig. 4 shows how to determine the Jordan chains for
l = 3 and r = 2 graphically. For completeness, we de-
fine |wp

0⟩ = |ũp
0⟩ so that the |wp

s⟩ are all (generalized)
eigenvectors of H.

General recipe towards finding EPs.—Equipped with
this algorithm we show how to engineer arbitrary low-
order EPms in the generalized HN model of sizeN . First,
for N ≡ −1 mod (l+ r) we have the l+ r− 1 generalized
eigenvectors |ũj

0⟩ with j = 2, . . . l + r forming a Jordan
chain of length l+r−1 corresponding to an EP(l + r − 1)
as shown in the example in Fig. 4(c). Conversely, one
can design a generalized HN model exhibiting an EPm
by choosing l+ r = m+1, where l > r ≥ 1 coprime, and
system size N so that N ≡ −1 mod (l + r).

Secondly, we can simplify this further by choosing
r = 1. From the previous paragraph we know that the
system can host up to EPls for N ≡ −1 mod (l + 1).
However, decreasing the system size one by one removes
subsequently |ũl+1

0 ⟩ down to |ũ2
0⟩, shortening the Jordan

chain one by one and thus reducing the order of the EP
one by one as shown in Fig. 5. Conversely, one can en-
gineer an EPm by choosing any l ≥ m and r = 1 and
choose a system size satisfying N ≡ m mod (l + 1).

The generalized HN is not restricted to featuring a
single EP as one can have more elaborate zero-energy
eigenspaces as already seen in the example l = 3 and
r = 2 in Fig. 4(d). One can also get multiple EPs, e.g.,
when considering l = 5 and r = 2, one can find two EP2s
for N ≡ 4 mod 7, and an EP2 and EP3 for N ≡ 5 mod 7.
EPs exhibiting NHSE.—Having established that the

generalized HN model can host EPs of arbitrary order for
an appropriate choice of l and r, we want to determine
further properties of their associated eigenvectors. As ex-
tensively discussed in the literature, the NHSE is directly
related to the spectral topology of NH tight-binding mod-
els, where the topological index is the spectral winding
number w(ER) =

1
2πi

∫ π

−π
dk d

dk ln[H(k)−ER], where ER

is a reference energy and the Bloch Hamiltonian H(k) is
in our case give by H(k) = tle

ilk + t−re
−irk. The sign of

the winding number predicts that the eigenstate associ-
ated with ER is exponentially localized to the left (right)
of the system when sgnw > 0 (sgnw < 0), where we note
that an eigenstate is delocalized if its associated winding
number is ill-defined.
We find that the correspondence is valid for all eigen-

vectors of the system, including the eigenvectors associ-
ated with the EPs. In the example l = 2 and r = 1,
shown in Figs. 6(a,b,e,f), one can on the one hand de-
termine the winding number at zero energy as w(0) = 2
(−1) if t2 > t−1 (< t−1). On the other hand, the explicit
form of the eigenvector |v1⟩ in Eq. (2a) only depends on
powers of t2/t−1. Thus, the sign of w(0) correctly pre-
dicts the occurrence and exponential localization of the
NHSE associated with that state. In that example, it is
interesting to notice that one can always tune t2 and t−1

so that for a fixed s ∈ [0, d1], all eigenvectors associated
with | 3

√
Es| < |EB| are localized on one end of the chain,

while the remaining eigenvectors with | 3
√
Es| > |EB| are

localized on the opposite end, where EB is a Bloch point
[39], i.e., a self-intersection of the PBC spectrum, sep-
arating regions of positive and negative winding num-
bers. One can explicitly show this by considering the
real branch of the spectrum. There, the Bloch point is
determined by Im(EB) = Im[H(kB)] = 0, which is solved
by kB = 2arctan(

√
(2 t2 − t−1)/(2 t2 + t−1) if t−1 < 2 t2.

In the thermodynamic limit, the maximum eigenvalue of

H21 is Emax = 3 t
1/3
2 (t−1/2)

2/3 [28, 32], so the largest
eigenvalue for finite system sizes is lower than that. As
0 ≤ EB = t2[(t−1/t2)

2 − 1] ≤ Emax, we can always tune
t2 and t−1 appropriately. We can especially separate the
eigenvector associated with the EP from the rest of the
eigenvectors as shown in Figs. 6(b,c,f).
Robustness of the EPs and the NHSE.—Now, let us

review the robustness of the EPs against perturbations.
We find two types of perturbations, which leave the EPs
unaltered, namely generic perturbations to the hopping
strengths and arbitrary on-site disorder on specific SLs.
We discuss these two types of perturbation, also with
respect to the NHSE, in the following.
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Figure 6. PBC (gray) and OBC (light blue) spectra and eigenstates of the generalized HN model with l = 2, r = 1 and t−1 = 1
for different hopping strengths t2 and perturbations. OBC spectra for finite size (crosses) and associated eigenstates always
correspond to a system of size N = 20 so that the system exhibits an EP2. All eigenstates are normalized so that ⟨wp

s |wp
s ⟩ = 1

where ⟨wp
s | = (|wp

s ⟩)†. (a) Spectra for t2 = 6/5 > t−1 showing only regions of positive winding number predicting that all
eigenstates are localized on the left in (e). (b) Spectra for t2 = 9/10 < t−1 showing regions with winding numbers of opposite
sign, thus predicting that all eigenstates associated with energies inside the w = +1 (w = −1) region are localized on the left
(right). For N = 20, only the eigenstate associated with the EP is localized at the right, while all other eigenstates are localized
at the left as shown in (f). (c) Zoom-in of (b) additionally marking the Bloch points (gray crosses). (d) Spectra for t2 = 2
without perturbation (blue), with random perturbation in the hopping strengths characterized by ∆l = ∆−r = 1/2 (green)
and random on-site disorder on SL1 characterized by W = 2 (orange). In all cases, the EP2 at E = 0 stays unchanged. (e,f)
Eigenvectors associated with (a,b). To depict the localization of the states, we plot ⟨wp

s |Πn|wp
s ⟩, where Πn = c†n|0⟩⟨0|cn is the

projector onto each site in the chain. As such the phases p in Eq. (4) drop out and eigenvector are displayed in groups of three.
(g,h) Eigenstates associated to the random perturbations in the hopping and random on-site disorder on SL1, respectively, with
the spectrum in (d). One can clearly see that slight perturbations do not alter the NHSE.

Regarding the disorder in the hopping strengths, we
remind ourselves that the generalized chiral symmetry
only depends on the form Eq. (3), thus perturbing the
hoppings ta → ta,n, a = l,−r, does not break this sym-
metry. As such, the occurrence and order of the EPs
only depends on the sizes of the SLs and is thus pro-
tected by the topology of the adjacency graph. If this
topology is unaltered, i.e., ta,n ̸= 0 for all n, the EPs
stay unaltered. For a change in the graph topology, i.e.,
setting some ta,n = 0, the matter is more subtle. For
example, splitting the system in smaller ones can leave
the EP unchanged, e.g., removing all hoppings from and
to the first red and yellow site in Fig. 3(a) splits the
system of size N with N mod 3 = 2 into subsystems of
size N1 = 3 and N2 = N − 3, where the former sub-
system does not introduce new zero-energy solutions and
the latter subsystem still exhibits an EP2. Another ex-
ample would be to remove all the hoppings from a red
site to green one via t2 in Fig. 3(a). In any case, the oc-
currence of the NHSE crucially depends on the specific

values of the ta,n. We find that introducing a random
perturbation in the hoppings as ta,n = ta(1 +∆a,n) with
∆a,n uniform in [−∆a,+∆a] does not destroy the NHSE
for slight hopping disorders ∆a, an insight carrying over
from the customary HN model [40, 41]. A spectrum and
its associated eigenvectors for a realization of such a ran-
dom perturbation is shown in Figs. 6(d,g).

Let us now consider the second type of perturbation,
on-site disorder. While the NHSE has been shown to be
robust against on-site disorder up to a certain threshold
as result of the spectral topology in case of the conven-
tional HN model [12, 40, 41], EPs are not known to be
stable against such perturbations. However, for the gen-
eralized HN model we showed that all generalized eigen-
vectors in a Jordan chain associated with a specific EP
have weight only on specific SLs (in the example l = 2
and r = 1 on SL2 and SL3), but not on others (SL1).
Thus, any perturbation on the latter SLs will not affect
the occurrence or order of that EP, even though it breaks
the generalized chiral symmetry of H. We show an ex-
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ample for l = 2 and r = 1 with random on-site disorder
on SL1 modeled by Hpert =

∑
n t0,nδn mod 3,0c

†
ncn where

t0,n uniform in [−W,+W ] depicted in Figs. 6(d,h).

Not only is the EP robust against this form of pertur-
bation, but one can also use on-site disorder as a mecha-
nism to reduce the order of an EP by altering its Jordan
chain. For example, for l = 3, r = 1 and N ≡ −1 mod 4
one has an EP3 with associated Jordan chain H31|ũ4

0⟩ =
|ũ3

0⟩, H31|ũ3
0⟩ = |ũ2

0⟩ and H31|ũ2
0⟩ = 0. We introduce

on-site disorder on SL4 on which initially only |ũ4
0⟩ has

weight, as Hpert =
∑

n t0,nδn mod 4,3c
†
ncn, with δ the Kro-

necker delta. We find that |ũ4
0⟩ is no longer a generalized

eigenvector as (H31+Hpert)|ũ4
0⟩ = |ũ3

0⟩+Hpert|ũ4
0⟩ ≠ |ũ3

0⟩.
Introducing such an on-site term shifts one eigenvalue
away from zero while keeping the remainder of the Jor-
dan chain, thus reducing the EP3 to an EP2. Introducing
on-site disorder on SLs associated with generalized eigen-
vectors within a Jordan chain, e.g., on SL3 where |ũ3

0⟩
has weight, the matter is more subtle: One might falsely
guess that this splits the EP3 into two one-dimensional
zero-energy eigenspaces plus another non-zero subspace.
However, in that example one can construct a new gener-
alized eigenvector |v⟩ with weight on SL3 and SL4 which
satisfying (H31 +Hpert)|v⟩ = |ũ2

0⟩, showing that the per-
turbed system still exhibits an EP2.

Discussion.—In this letter, we introduced the general-
ized HN model, where setting the hopping ranges l and r
to the left and right, respectively, allows generating EPs
of arbitrary order. In contrast to previously studied uni-
directional models, the EPs we find do not scale with
system size, while their existence does crucially depend
on the system size. To the best of our knowledge, these
type of system-size dependent EPs with system-size in-
dependent orders have not been systematically studied
so far.

We find that the EPs in our system show remark-
able features. Firstly, the eigenstates corresponding to
the EPs are localized on a subset of sites we identified
as SLs, independent of their hopping strengths. Tuning
these hopping strengths, we are able to manipulate the
NHSE so that the eigenstates associated with the EPs
localize on a different end as compared to the remaining
eigenstates of the system. Furthermore, as a result of the
generalized chiral symmetry, the EPs are robust against
generic perturbations in the hopping strength thus sig-
nalling that their occurence finds its root in the spatial
topology of the model. When we break the generalized
chiral symmetry by introducing on-site disorder on spe-
cific SLs the EPs are either left unchanged or demoted
in their order. We find that the NHSE does not van-
ish for any of the aforementioned perturbations for small
perturbation strengths.

Other than the low-order EPs discussed in the main
text, the generalized HN model exhibits another type of
EP, which occurs when relaxing the constraint tl, t−r > 0
to also allow vanishing hopping strengths. Setting t−r =

0 (tl = 0) the generalized HN model decouples into l (r)
unidirectional chains corresponding to EPs scaling with
system size, which can be seen in Fig. 3(a) for t−1 = 0
(t2 = 0).
We emphasize that the methods developed in this let-

ter are applicable to any other model under OBCs, which
can be brought into the form of Eq. (3). In this context, it
is especially relevant to use the robustness against generic
perturbations in the hopping strengths as well as the ro-
bustness against on-site disorder on specific SLs for the
spectral features.
In this letter we inferred the spectrum and eigenvectors

of H from Hl+r=n, which is the parent Hamiltonian in
the context of nth-root topological phases [36, 42–46].
Deeper connections, such as how the spectral topology
of both models is connected, fall outside the scope of this
work, and remain an open question. Another fascinating
direction is an analysis of our model in the context of
topological graph theory. We find that the generalized
HN model under OBCs (PBCs) can always be embedded
onto a cylinder (torus). As such, our work is connected
to so-called helical lattices [47–53].
Our generalized HN model can readily be implemented

in experiment. There are several platforms, which al-
low for the implementation of unidirectional couplings,
such as photonic ring systems [54], topoelectric cir-
cuits [1, 2], single-photon interferometry experiments
simulating non-unitary quantum walks [55], and fiber
loops modeling synthetic frequency dimensions [56, 57].
The realization of our model in the lab would allow for
a rigorous study of the properties of EPs unaffected by
perturbations.
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Appendix A: The characteristic polynomial for l = 2 and r = 1

We proof the form of the characteristic polynomial of H21 of the main text, which we repeat here for convenience

χN (E) = (−E)d
q∑

m=0

(
N − 2m

m

)(
t2t

2
−1

)m
(−E3)q−m, (5)

where N = 3 q + d with 0 ≤ d < 3, where q = ⌊N/3⌋ is the quotient and d = N mod 3 is the remainder of the
Euclidean division. We proof it in three steps: (i) writing down a linear recurrence equation, (ii) solving the linear
recurrence relation in terms of generating functions, and (iii) rewriting this solution in the form presented in the main
text.

To write down a linear recursion relation for the characteristic polynomial, we choose the N -dimensional matrix
representation Hs

N,21, where the label s signifies that we write it in the site basis,

Hs
N,21 =



0 0 t2
t−1 0 0 t2

t−1 0 0 t2
. . .

. . .
. . .

. . .

t−1 0 0 t2
t−1 0 0

t−1 0


. (6)

Then

χN (E) = det
(
Hs

N,21 − EIN
)
= (−E) det

(
Hs

N−1,21 − EIN−1

)
+ t2 det

(
A B
0 Hs

N−3,21 − EIN−3

)
. (7)

To find the equality, we use the Laplace expansion along the first row for the second equality, and

A =

(
t−1 −E
0 t−1

)
, B =

(
t2 0 0 · · · 0
0 t2 0 · · · 0

)
. (8)
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Using a determinant identity for block matrices

det

(
A B
0 D

)
= det(A) det(D) = det

(
A 0
C D

)
, (9)

where A, B, C and D are rectangular blocks, we can immediately determine the second determinant to find

χN (E) = (−E)χN−1(E) + t2t
2
−1χN−3(E). (10)

As the recursion formula has an N − 3 dependence we need to determine three base cases. They are

χ1(E) = (−E)1, χ2(E) = (−E)2, χ3(E) = (−E)3 + t2t
2
−1. (11)

Even though it seems nonsensical to define the characteristic polynomial for N = 0, it will be useful to define
χ0(E) = (−E)0 = 1, which is consistent with the recursion relation and χ3(E) from the previous equation, and use
χ0(E), χ1(E) and χ2(E) as base cases.
The next step is to find a generating function for χN (E) satisfying

S(x,E) =

∞∑
N=0

χN (E)xN , (12)

so that

χN (E) =
1

N !

dNS(x,E)

dxN

∣∣∣∣
x=0

. (13)

Multiplying the recurrence relation by xN and summing over N we find an equation for S(x,E),

∞∑
N=3

χNxN =

∞∑
N=3

(−EχN−1 + TχN−3)x
N , (14)

where T = t2t
2
−1 and we start the sum at N = 3 for reasons that become apparent below, and we drop the E

dependence of χ for readability. After some index shifts, we have

∞∑
N=3

χNxN = −Ex

∞∑
N=2

χNxN + Tx3
∞∑

N=0

χNxN . (15)

To get back S(x,E), we subtract and add the appropriate terms as

∞∑
N=0

χNxN =

m−1∑
N=0

χNxN +

∞∑
N=m

χNxN (16)

to find

S(x,E)−
2∑

N=0

χNxN = −Ex

[
S(x,E)−

1∑
N=0

χNxN

]
+ Tx3S(x,E). (17)

Using the base cases χn = (−E)n for n = 0, 1, 2 and rearranging we find the generating function

S(x,E) =
1

1 + Ex− Tx3
. (18)

Finally, we want to prove that the generating function S(x,E) generates Eq. (5), which we repeat in a slightly
different form here

χN (E) =

⌊N/3⌋∑
m=0

(
N − 2m

m

)(
t2t

2
−1

)m
(−E)N−3m. (19)
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3, 1(a) 2, 1 1, 1 3, 2 2, 2 1, 2 3, 3 2, 3

t−1 t−1 t−1 t−1 t−1 t−1 t−1

t2 t2 t2 t2 t2 t2

1, 1(b) 1, 2 2, 1 2, 2 2, 3 3, 1 3, 2 3, 3

Figure 7. Generalized HN model for l = 2, r = 1 and N = 8. Each node contains j, i, where j refers to SLj and i to the index
within each SL. (a) Model in site basis. (b) Model in the transformed basis. Red, yellow and green arrows correspond to entries
in h1, h2 and h3, respectively. Hoppings above (below) the chain corresponds to t2 (t−1).

Setting N = 3q+d via Euclidean division proofs Eq. (5). We can expand the generating function using the geometric
series as

S(x,E) =
1

1− (−Ex+ Tx3)
=

∞∑
n=0

(
−Ex+ Tx3

)n
=

∞∑
N=0

χN (E)xN (20)

To determine the characteristic polynomial we need to match terms. We start by considering the coefficient of Ek

multiplying xN , i.e., the coefficient of Ek in χN (E). First off, notice that unless k ≡ N mod 3, the coefficient will be
0. This is because all the terms will be products of −Ex and Tx3, and multiplying an expression by −Ex increases
the exponent of both E and x by 1, while multiplying by Tx3 raises the exponent of x by 3. Next, note that the
coefficient of EN multiplying xN is simply (−1)N , since the only product which achieves an ENxN term is (−Ex)N .
The coefficient of EN−3 is T (−1)N−1(N − 2). This is because EN−3xN is achieved by multiplying (N − 3) terms
of −Ex with 1 term of Tx3. There are (N − 2) terms in total, so there are

(
N−2
N−3

)
= N − 2 ways to order them.

The term with exponent EN−3mxN is achieved by multiplying (N − 3m) terms of −Ex with m terms of Tx3. There
are (N − 2m) terms in total, and therefore

(
N−2m

m

)
different ways to form a product with exponent EN−3mxN . The

coefficient is therefore Tm(−1)N−3m
(
N−2m

m

)
, concluding the proof.

A similar analysis could find expressions for any rational function in terms of binomial coefficients.

Appendix B: Properties of hj

In order to state some general properties of the hj we start again by considering the generalized HN model. Let us
start by considering it in the site basis so that its matrix elements are given by (Hs

lr)m,n = tlδm,n−l + t−rδm,n+r. Hs
lr

is similar to Hlr using a permutation matrix. Without loss of generality, we choose the permutation matrix, which
keeps the order within each SL unchanged, i.e., the ith site on SLj in the site basis gets mapped to the ith site on
SLj in the transformed basis. Over all, one can convince oneself that that one can either hop from SL index i to i
and from i + 1 to i, or one can hop from i to i and i to i + 1, cf. Fig. 7(b). By carefully considering the individual
SL sizes and hopping strengths, one can find that the matrix elements of hj are either (hj)m,n = t−rδm,n + tlδm,n−1

or (hj)m,n = t−rδm,n+1 + tlδm,n. An example for l = 2, r = 1 and N = 8 is shown in Fig. 7.
In the main text we use that the hj of size dj × dj have trivial nullspace, i.e., there exists no |v⟩ ≠ 0 so that

hj |v⟩ = 0. From the explicit form of hj in that case it is clear that it has full rank as tl, t−r ̸= 0. Thus, by the
rank-nullity theorem we have rank(hj) + nullity(hj) = dj , and we find hj has trivial nullspace.
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