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In Brief
Soluble HLA (sHLA) peptides are
thought to have great potential
as biomarkers for different
diseases such as cancer.
However, efficient enrichment of
sHLA peptides from body fluids
like plasma has been a
bottleneck, requiring 3 to 5 ml
per person. Here, we present
IMBAS-MS, an efficient and
automated workflow for the
enrichment of sHLA peptides
from only 200 μl plasma. In
combination with data-
independent acquisition (DIA)
and computational library-based
analysis, we acquire deep
immunopeptidomes from single
measurements, elucidating its
origins.
Highlights
• Automated one-pot enrichment of soluble HLA peptides using magnetic beads (IMBAS).• Personalized computational library generation for DIA analysis using AlphaPeptDeep.• IMBAS-MS identifies more than 5000 HLA peptides form 200 μl of plasma.• Soluble HLA peptides represent a variety of tissues including the brain.
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Wen-Feng Zeng, and Matthias Mann*
Distinction of non-self from self is the major task of the
immune system. Immunopeptidomics studies the peptide
repertoire presented by the human leukocyte antigen (HLA)
protein, usually on tissues. However, HLA peptides are also
bound to plasma soluble HLA (sHLA), but little is known
about their origin and potential for biomarker discovery in
this readily available biofluid. Currently, immunopeptido-
mics is hampered by complex workflows and limited
sensitivity, typically requiring several mL of plasma. Here,
we take advantage of recent improvements in the
throughput and sensitivity of mass spectrometry (MS)-
based proteomics to develop a highly sensitive, auto-
mated, and economical workflow for HLA peptide analysis,
termed Immunopeptidomics by Biotinylated Antibodies
and Streptavidin (IMBAS). IMBAS-MS quantifies more than
5000 HLA class I peptides from only 200 μl of plasma, in
just 30 min. Our technology revealed that the plasma
immunopeptidome of healthy donors is remarkably stable
throughout the year and strongly correlated between in-
dividuals with overlapping HLA types. Immunopeptides
originating from diverse tissues, including the brain, are
proportionately represented. We conclude that sHLAs are
a promising avenue for immunology and potentially for
precision oncology.

The immune system relies on the human leukocyte antigen
(HLA) peptide-protein complex to present immunopeptides
derived from both endogenous and exogenous sources to
circulating T-cells. These immunopeptides play a crucial role
in immune surveillance, as they enable the elimination of
abnormal or infected cells. Upon recognition of a peptide–
HLA protein complex by cytotoxic T lymphocytes (CTLs),
downstream cascades are activated, causing the presenting
cell to undergo apoptosis. This biological principle is
exploited in immunotherapeutic strategies such as CAR T-
cell treatment or mRNA peptide vaccination (1). A crucial but
challenging step is the identification of peptides specifically
presented by tumor cells. Most efforts have focused on the
enrichment of membrane-bound human leukocyte antigen
(mHLA) receptors with their bound immunopeptides from
tumor tissue. This is followed by mass spectrometric
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identification in search of tumor-specific antigens or neo-
epitopes (2, 3).
In addition to the membrane-anchored HLA proteins, a

soluble fraction (sHLA) can be enriched from blood and other
body fluids (4). sHLAs are thought to arise by shedding,
cleavage from the cell surface, or the expression of a splicing
variant lacking the membrane anchoring domain (5). Although
their function and exact release mechanisms remain unclear, it
is known to change in a disease context (6). In the case of
cancer, a disproportionate fraction of peptides in relation to
the total tumor mass may originate from tumor tissue (4),
representing a potential additional source for tumor antigens
(7). Whereas the analysis of HLA peptides from mHLAs re-
quires substantial tissue amounts from surgery, sHLAs are
rather easily accessible through minimally invasive procedures
like regular blood withdrawal without placing additional
burden on patients. However, despite the clear potential for
disease diagnosis and treatment monitoring in a clinical setup
(8–10), there are only a few studies investigating sHLAs, and
they typically only identified them from milliliters of plasma (4,
7, 8).
Beyond clinical applications, another attraction of the sHLA

immunopeptidome is that it can serve as an unlimited source
of native immunopeptides from diverse HLA backgrounds. As
importantly, an extensive repertoire of sHLA peptides from a
diversity of healthy donors could potentially serve as a
resource to improve the general knowledge about peptide
processing and presentability (10, 11). In contrast, due to
limited analytical sensitivity and tissue accessibility mHLA
data is currently restricted to a few hundred different alleles,
with on average around 5000 up to 160,000 (HLA-A0201)
associated MHC peptides identified by mass spectrometry
(12).
In this study, we address the limitations of sHLA immuno-

peptidomics and characterize its nature over time in healthy
donors. We describe an automated workflow for efficient ‘one-
pot’ enrichment of HLA immunopeptides followed by ultra-
high sensitive mass spectrometry (MS), termed IMBAS-MS
for Immunopeptidomics by Biotinylated Antibodies and
Institute of Biochemistry, Martinsried, Germany
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Organ-specific HLA Peptide Patterns in Plasma
Streptavidin. Quantifying immunopeptides from a few hundred
microliters showed that the immunopeptidome is stable in
healthy individuals for over a year and exhibits high repro-
ducibility between overlapping HLA types. IMBAS-MS allowed
profiling of sHLA to a depth of over 10,000 peptides per
person, which were broadly representative of different tissues.
EXPERIMENTAL PROCEDURES

Plasma Collection from Healthy Donors

Plasma was obtained by withdrawing blood from eight healthy
donors (specified in supplemental Table S1) in EDTA tubes (BD
Vacutainer K2E; REF 367525). The tubes were inverted three times
and centrifuged at 2000g for 20 min at 4 ◦C. The plasma was sepa-
rated, aliquoted, snap-frozen, and stored at −80 ◦C.

To determine the HLA types of healthy donors, genomic DNA was
extracted from buccal swabs. Cotton swabs were used to obtain oral
mucosa samples, placed in protease buffer (30 mM Tris-HCl, pH 8,
0.5% Tween-20, 0.5% IGEPAL CA-630), and proteins were digested
with 100 μg proteinase K per sample for 12 min at 50 ◦C in a thermal
shaker. The enzyme was inactivated at 75 ◦C for 30 min and genomic
DNA was purified using the QIAamp DNA Micro Kit (Qiagen). HLA
class I (HLA-A, HLA-B, HLA-C) and class II (DRB1, DQB1, DPB1) loci
were amplified using the NGSgo-MX6-1 kit (GenDx), and multiplexed
sequencing libraries were prepared using the Ultra II FS DNA Library
Prep Kit for Illumina (NEB). Libraries were sequenced on a NovaSeq
6000 system (Illumina) in 150 bp paired-end mode and the genotype
data were analyzed using the NGSengine software (GenDx). Blood
was sampled from healthy donors, who provided written informed
consent, with prior approval of the ethics committee of the Max Planck
Society in accordance with the Declaration of Helsinki principles.

Affinity Purification of HLA Molecules

Plasma samples were thawed on ice, diluted 1:2 with PBS (Gibco),
and incubated overnight, shaking at 4 ◦C with variable amounts of
biotinylated W6/32 antibody (custom produced by inVivo Bioscience).
Each injection was processed in a separate well of a 96-well plate.
Captured HLA molecules were enriched using magnetic streptavidin
beads (ReSyn Bioscience) and washed first with 100 μl of 150 mM
NaCl in 10 mM Tris pH 8.5, then 100 μl of 450 mM NaCl in 10 mM Tris
pH 8.5 and finally 100 μl of 10 mM Tris pH 8.5 at 4 ◦C. The sHLA
molecules were eluted from the beads using 150 μl elution buffer
(200 mM glycine pH 2), transferred into prewetted 10 kDa MWCO
plates (Millipore), and filtered at 4000g for 20 min. The flowthrough
was directly loaded onto Evotips Pure following the recommended
standard procedure. Briefly, Evotips were activated by 1-propanol,
washed two times with 50 μl buffer B (99.9% ACN, 0.1% FA) and two
times with 50 μl buffer A (99.9% ddH2O, 0.1% FA). 70 μl buffer A was
briefly spined on the disks and sample elution was loaded by 80 s
centrifugation. Evotips were then washed with 50 μl buffer A and
stored with buffer A on top. All centrifugation steps were performed at
700g for 1 min. The whole protocol was performed in a semi-
automated fashion using the Agilent Bravo liquid handling platform.

Immunopeptide Fractionation

To acquire deep fractionated immunopeptidomes, 5 ml of plasma
per individual was thawed at once, distributed in ten wells of a 96-
deep-well plate, and processed with the same workflow as
described above. The final elutions were combined in one single
peptide pool without centrifugation. Fractionation was carried out on
an AssayMAP Bravo Sample Prep Platform (Agilent), using the
2 Mol Cell Proteomics (2024) 23(1) 100689
Fractionation v1.1 Protocol in the Protein Sample Prep Workbench
v3.2.0 with standard settings. 5 μl C18 Cartridges (Agilent) were used
as solid phase, six elution fractions were collected, using high-pH
buffers with increasing acetonitrile concentrations (ammonium hy-
droxide solution, pH 10; 7, 12, 15, 23, 30, and 40% acetonitrile,
respectively). The 40% acetonitrile buffer was used for priming and
7% for equilibration of the cartridges.

DDA and DIA LC-MS Acquisition

Peptides were separated with the Evosep One LC system using
predefined gradients as mentioned in each section. The majority of
data was acquired using the Whisper40 method over a 15 cm Aurora
Elite CSI column (AUR3-15075C18-CSI, IonOpticks) at 50 ◦C inside a
nanoelectrospray ion source (Captive spray source, Bruker). The
mobile phases were 0.1% FA in LC-MS grade water (buffer A) and
99.9% ACN with 0.1% FA (buffer B). For gradient testing, the 15SPD,
30SPD, and 60SPD method was used in combination with a 15 cm
PepSep (150 um ID and 1.5 um bead size, Bruker) connected to a
10um ID ZDV emitter (Bruker). The LC system was coupled to a tim-
sTOF Ultra instrument (Bruker).

When operated in dda-PASEF mode, a 10 PASEF/MSMS scan per
topN acquisition method was used with a precursor signals intensity
threshold at 500 arbitrary units. Standard polygon settings were
adapted in the m/z-IM plane to exclude adverse ions, but include
single-charge precursors based on their expected position in an m/z-
IM plane. The mass spectrometer was operated in sensitivity mode
with an accumulation and ramp time of 100 ms. Precursors were
isolated with a 2 Th window below m/z 700 and 3 Th above and
actively excluded for 0.4 min when reaching a target intensity
threshold of 20,000 arbitrary units. A range from 100 to 1700 m/z and
0.6 to 1.6 Vs cm-2 was covered with collision energy from 20 eV at
0.6 Vs cm-2 ramped linearly to 59 eV at 1.6 Vs cm-2.

When operating in dia-PASEF mode, we used optimal dia-PASEF
methods generated with our Python tool py_diAID (13). These dia-
PASEF methods optimally cover the precursor cloud in m/z-IM
plane, while being highly efficient with 1.17 s cycle time. We gener-
ated acquisition schemes specifically for dominant HLA types that
cover up to 99.9% of all precursor species including singly charged
ions, with 8 dia-PASEF scans, where each scan is divided into two ion
mobility windows. The method covers precursors within 300 to
1200 Da. Other settings remained the same as for dda-PASEF.

Raw Data Analysis

DDA data was analyzed using FragPipe 19.1 with the nonspecific
HLA workflow against a human fasta containing 40,818 entries
(UP000005640 + 50% decoy, downloaded 31.01.2022) (14–16). The
precursor and fragment mass tolerance were kept as the default
values of 20 ppm, cystinylation was set as a variable modification and
results were filtered applying a peptide FDR of 1%. The quality of
identified peptides was assessed using MHCVizPipe (v0.7.11) (17).

DIA data was analyzed using DIA-NN version 1.8.1 with standard
settings searching against sample-specific predicted libraries
generated using the AlphaPeptDeep package (https://github.com/
MannLabs/alphapeptdeep) together with the peptdeep_hla (https://
github.com/MannLabs/PeptDeep-HLA) DL model. Precursor and
fragment mass tolerance were determined automatically for each run
separately and ranged from 10 to 20 ppm. Sample specific immu-
nopeptide lists (from DDA analysis or directDIA results generated
using Spectronaut 17) were used to tune an immunopeptide deep
learning model which reports a peptide list with a high likelihood of
being a presented immunopeptide in this sample from an unspecific
in silico digest of a human fasta. The peptide list of each individual is
used for transfer learning to predict individual- or sample-specific
spectral library. Library sizes are adjustable using a precision cutoff

https://github.com/MannLabs/alphapeptdeep
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(probability ≥ 0.7) in the peptdeep_hla DL model. Exact library sizes
are detailed in supplemental Table S1. The ‘report.tsv’ table was used
for further analysis.

Statistical Analysis

All data analysis was performed using R. Unless stated differ-
ently, only peptides predicted to bind to any of the donors' HLA-
types were used for downstream analysis. Peptides were defined
to be binders as provided by MHCVizPipe interfacing NetMHCpan
4.1. Binder Frequency (BF) scores were reported as provided by
MHCVizPipe. The BF score describes the fraction of peptides
predicted to bind the provided HLA Alleles within the expected
length range. The UpSet plots were generated using a custom
function only displaying intersections larger than 10% of the
smallest dataset

Experimental Design and Statistical Rational

All experiments were done using human plasma obtained as
described above. Altogether, the dataset including raw data files and
search results was uploaded to MassIVE (see below). We used the
same plasma batch for the benchmarking and technical evaluation. In
brief, measurements with different gradients, input amounts, or from
different donors were acquired in triplicates unless mentioned differ-
ently. The experimental design and statistical rational are described in
the respective figure legends. Workflow replicates were acquired to
evaluate reproducibility and quantitative accuracy.

RESULTS

IMBAS-MS Design and Evaluation

Earlier sHLA workflows have used several milliliters of
plasma for enrichment, limiting throughput and applicability.
We aimed to develop a workflow that is highly reproducible,
sensitive, and allows for deep immunopeptidome coverage,
without neglecting throughput and cost. To accommodate all
these aspects, we optimized IMBAS (Immunopeptidomics by
Biotinylated Antibodies and Streptavidin) in a 96-well format
that could be processed in parallel. We automated the
immunoaffinity enrichment on a Bravo liquid handling robot
(Agilent) with less than 2 h of hands-on time for the entire
procedure (Fig. 1A). The workflow was designed to be flexible,
thus the enrichment can either be performed by hand or by
any robot with a magnetic plate and a cooled plate station.
IMBAS-MS is modular and although not demonstrated here,
can directly be applied to cell lysates or biopsy samples by
adding a homogenization and lysis step up front. The
enrichment, washing, and elution steps take place within the
same well, minimizing transfer steps and reducing sample loss
due to plastic contact. A key aspect of IMBAS is the
replacement of the commonly used ProteinA/G-IgG domain
interaction between the antibody and bead matrix. To achieve
this, we chose to use biotinylated antibodies which can be
captured with streptavidin beads. The high specificity and
stability of the streptavidin-biotin interaction allow to omit
chemical crosslinking of the desired anti-HLA-antibody to the
slurry upfront of the enrichment protocol, saving time and
material while still eliminating a plasma preclearance step.
Following the enrichment, the eluent is molecular-weight
filtered and the resulting, separated peptides are loaded
onto Evotips. In this way, an entire 96-well plate can be pre-
pared and MS-data acquired within 3 days with minimal re-
agent preparation and cost. For technical details of the
protocol see Experimental Methods.
To evaluate IMBAS-MS, we first identified and quantified

immunopeptides from 200 μl plasma from the same donor at
different HPLC flowrates and gradient lengths, from 21 min up
to 88 min long gradients (termed 60–15 Samples Per Day
(SPD)). The standard methods on the Evosep system have
1 μl/min down to 0.22 μl/min flow rates with throughputs of 15,
30, and 60 SPD. We reasoned that the recently introduced
very low flow gradients of only 100 nl/min (Whisper gradients
20 or 40) that had substantially boosted sensitivity for single-
cell analysis (18) would also be beneficial for HLA peptides.
Indeed, the nanoflow gradients substantially outperformed the
standard gradients with more than 3000 immunopeptide
identifications in data-dependent acquisition (DDA) (Fig. 1B).
The Whisper20 gradient identified only 10% more peptides
than the Whisper20 gradient, at the cost of doubled mea-
surement time (Fig. 1B). With a focus on maximizing depth and
throughput, we chose the Whisper40 gradient (31 min length)
for all subsequent experiments.
A key advantage of our workflow is that it needs much less

plasma input than the milliliters used before. To investigate
input requirements and tradeoffs, we enriched sHLA from only
10 μl up to 500 μl of plasma. Volumes from 10 μl to 100 μl
plasma can be processed in a standard 96-well plate. They
required only 1 μg of antibody for efficient enrichment and did
not benefit from increasing the antibody amount 10-fold
(Fig. 1C). For higher volumes—for instance 200 μl—higher
antibody amounts boosted immunopeptide identifications
about 20%. Over the entire tested input range, we identified
from 500 to 4500 immunopeptides in data-dependent acqui-
sition (DDA).
To investigate the purity of our immunopeptidomes, we

inspected their length distribution, their calculated binder
scores, and the presence of singly charged precursors.
Identified peptides retained expected features such as a
strong preference for nonameric peptides and a significant
proportion of singly charged precursors (supplemental
Fig. S1). The fraction of peptides with high binding scores
(BF) within the expected length range was 0.9, further indi-
cating high purity of the enriched and identified peptides (see
Experimental Procedures).
IMBAS-MS also demonstrates high quantitative reproduc-

ibility between replicates at 500 μl (Pearson correlation of
0.97). Even with ten-fold reduced input, reproducibility is
largely retained with a Pearson correlation of 0.81 (Fig. 1, D
and E).
Based on the results above, in particular the purity and

depth of the immunopeptide fraction, we chose a sample
volume of 200 μl as an optimal combination for data quality,
sample availability, ease of handling, and cost-effectiveness.
Mol Cell Proteomics (2024) 23(1) 100689 3
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FIG. 1. IMBAS-MS design and evaluation. A, schematic representation of the sHLA IMBAS-MS workflow. Plasma is incubated with anti-HLA
antibody (W6/32) and subjected to our automated bead-based enrichment workflow on a liquid handling robot (Agilent Bravo). Eluted peptides
are loaded onto StageTips (Evotips) and measured by ultra-high sensitivity LC-MS/MS (Evosep and Bruker timsTOF Ultra). B, immunopeptide
identifications from enrichment of 200 μl plasma using different gradient types and lengths. Low-flow gradients (Whisper40 and 20 on the
Evosep, dark blue) show an increased sensitivity by identifying over 3000 immunopeptides. The total uniquely identified immunopeptides per
triplicate (light bar) as well as the average and standard deviation (SD) per replicate (black lines) is plotted. C, evaluation of various input amounts
using 1 ug (purple) or 10 ug (blue) of W6/32 antibody. The ‘*’ indicates that this data point was not acquired due to plasma/antibody re-
quirements. For unique peptide number determination see B); dw: deep-well plate. D, quantification correlation shows high reproducibility
between workflow replicates using 500 μl plasma. E, Pearson correlation between 50 μl and 500 μl of the same plasma sample.
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Predicted Library-Based DIA for Immunopeptidomics

Having evaluated IMBAS-MS with data-dependent acqui-
sition (DDA) methods, we set out to couple it with data-
independent acquisition (DIA) based mass spectrometry,
which promises much greater depth and higher data
completeness between experiments (19, 20). A major chal-
lenge for efficient and comprehensive analysis of DIA data is
the selection or generation of a suitable spectral library. Three
different strategies are commonly used: experimental libraries,
typically acquired by DDA; pseudospectra-based libraries
extracted by directDIA as introduced by DIA-Umpire (21) and
implemented in Spectronaut; and libraries in which fragment
intensities are predicted by deep learning (19, 22). In
connection with the latter approach, we recently introduced a
deep learning-based framework called AlphaPeptDeep, which
predicts spectral libraries tailored for different MS platforms,
only based on a database file of the proteome in FASTA
format or just a peptide list as input (23). It contains the
PeptDeep-HLA model which makes use of the inherent simi-
larity of immunopeptides present within one person based on
their HLA type. Given a preliminary list of identified peptides,
this package then predicts a large subset of HLA peptides that
are potentially present in this allelotype(s). Here, we compared
three different modes of library generation in AlphaPeptDeep,
purely experimental libraries and pseudospectra-extracted li-
braries (Fig. 2A).
First, we built an experimental DDA library using MSFragger

(14–16) on the above-described dilution series files, which
resulted in nearly 7000 identified precursors. Spectronaut
internally builds a directDIA extracted list of peptides, in this
case containing around 2000 identified precursors from the
replicates searched in parallel. Using AlphaPeptDeep, we
predicted the fragment intensities of the set of immunopep-
tides constituting the ‘pan library’, with around 385,000 pre-
cursors (MSV000084172;PXD004894). The PeptDeep-HLA
model only needs about 1000 identified immunopeptides to
learn how to extract potential immunopeptides from a FASTA
for the allelotypes in question. For this, we compare two
strategies, using either peptides identified in DDA experiments
or from a directDIA search of the same file. On this basis,
AlphaPeptDeep generated two large libraries (about 1 and 0.5
million precursors, respectively). Figure 2B compares the
different DIA library sizes and their overlap.
With the exception of the directDIA strategy as currently

implemented in Spectronaut, DIA always substantially out-
performed DDA, as expected (Fig. 2C). Although a directDIA-
based analysis strategy as a standalone solution is not able to
outperform a DDA immunopeptidomics analysis, a combina-
tion of directDIA with AlphaPeptDeep increased the depth by
up to 67% compared to the DDA experiment (Fig. 2C).
Importantly, this increase in depth did not come at the
expense of the quality of the data, as judged by the peptide
length distribution and the binder scores which ranged from
0.9 for the experimental library to 0.98 for the DDA tuned li-
brary (Supplements). All three computational libraries, the pan
library as well as the sample specific libraries outperform the
experimental library while retaining the vast majority of pep-
tides (Fig. 2D). Given the small difference between the results
from predicting the library based on DDA data or extracted
peptides by directDIA, we suggest that the latter strategy will
be attractive for immunopeptidomics in the future as no
additional DDA experiments are required any more.
We conclude that the combination of directDIA and Alpha-

PeptDeep enables us to acquire deep DIA-based immuno-
peptidomes from a single measurement of a sample.

Deep Soluble Immunopeptidomics in Comparison to
mHLA Immunopeptidomics

Previous state-of-the-art reports used around 10 ml plasma
per donor to reach a median depth of around 1000 unique
immunopeptides with a maximum of 2500 for healthy donors
(4, 7–9). With our sample-specific predicted spectral libraries
and DIA acquisition IMBAS-MS, surpassed those results with
just 2% of the input material (200 μl of plasma) (Fig. 3A). From
one blood withdrawal that yielded 5 ml of plasma, we quan-
tified up to 13,000 immunopeptides from six fractions per in-
dividual, six-fold higher than before (Fig. 3A). (Note that the
previous studies employed Q Exactive instruments rather than
the latest generation Bruker timsTOFs.)
In total, the experiment above covered nearly 40,000 unique

immunopeptides from 28 different alleles in six donors
(Fig. 3B, for distribution per person, see supplemental Fig. S2).
This is a large number, as evidenced by the fact that in some
cases (e.g. HLA-C0401) this data surpasses the number of
epitopes reported by the community database Immune
Epitope Database & Tools (IEDB) which for this allelotype
contains around 5000 peptides identified by mass spectrom-
etry compared to our 8000 (https://www.iedb.org/result_v3.
php?cookie_id=13cd62).
Next, we used our in-depth data to assess whether the

soluble immunopeptidome displayed similar physicochemical
properties as those described for their membrane-bound
equivalents.
We noted that immunopeptides identified from sHLA show

a strong enrichment of nonameric peptides, similar to what is
known for immunopeptides from membrane-bound equiva-
lents (Fig. 3C).
Comparing the ratio of peptides which bind strongly (%Rank

<0.5) to their cognate HLA protein to those that bind weakly
(0.5< %Rank <2), we did not find significant differences in
pairwise comparisons of HLA types present in our sHLA dataset
or an mHLA dataset (2) (Fig. 3D). Given the easy accessibility of
the sHLA peptidome by IMBAS-MS and its close correspon-
dence to the mHLA peptidome, we conclude that plasma is a
Mol Cell Proteomics (2024) 23(1) 100689 5
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very attractive source to increase our general knowledge of
immunopeptides not only in a disease background.

Tissue Origin of sHLA Peptides

A fundamental and still an open question is to what degree
each organ contributes to the sHLA peptidome and we
reasoned that our deep and unbiased dataset on healthy
donors could shed light on this. To infer the origin of the
soluble immunopeptidome we compare our immunopepti-
dome data to a recent and deep proteome atlas of 29 healthy
tissues (24). In that proteome dataset, each gene was clas-
sified into one of four groups, namely (i) expressed in all
tissues, (ii) group enriched, (iii) tissue enhanced and (iv) tissue
enriched. We transferred these classifications to our deep,
fractionated sHLA peptidome to assign organ specificity to it.
Next, we compared the frequency of group-enriched, tissue-
enhanced, and tissue-enriched genes represented in the
immunopeptidome to the frequency of those groups within
the proteome of each tissue. Note that this assumes that
proteins expressed in different organs have a similar chance
of being presented by HLA proteins. That would make the
fraction of genes assigned to each organ within the immu-
nopeptidome a good estimate of the overall representation of
that organ.
Mol Cell Proteomics (2024) 23(1) 100689 7
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We observed that the median frequency of classified genes
in our immunopeptidome dataset correlates well with the
frequency of those within the organ proteome dataset (R2

between 0.8 and 0.84). As an example, around 7.5% of all
genes identified in the duodenum proteome were classified as
group enriched (24). This is very close to the value of 8% of all
genes in our soluble immunopeptidomes. As can be seen in
Figure 4A, ‘tissue enriched genes’ are less frequent in the
proteome and the immunopeptidome than genes belonging to
the two less enriched groups.
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A notable exception from the above general observation is
enriched genes. They are represented at around 3% within the
immunopeptidomes, while encompassing around 5% of the
brain proteome (Fig. 4A). We speculate that sHLA-protein-
peptide complexes may be partially filtered by the blood–
brain barrier or that brain-specific genes are somewhat less
likely to be presented, perhaps due to slow protein turnover.
Another reason could be a lack of peptides originating from
those proteins that have an affinity to one of the analyzed
alleles in our dataset.
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In addition, we assessed whether the immunopeptidome
quantified from the measurement of only 200 μl has sufficient
depth to infer organ-specific gene ontology enrichment terms.
Indeed, applying the above gene classification strategy allows
to discern organ function-specific gene sets represented by
immunopeptides as illustrated for donor#1 for liver-enriched
genes and brain-enriched genes (Fig. 4B).
Interestingly in view of the different sizes of the organs, on a

quantitative level, peptides representing all organs are
distributed equally over the peptide abundance range with no
clear trend of specific organs being represented by more
highly abundant species or vice versa. For example, both brain
and liver-assigned immunopeptides cover all three orders of
magnitude in peptide intensities (Fig. 4C, other organs see
supplemental Fig. S2).
Among the set of tissue-enriched liver genes common to

three donors with shared HLA types, the trend of immuno-
peptide intensities is generally similar (Fig. 4D). However, there
are clear differences in the presentation of Cytochrome-P-
Oxygenase 2A6 (CYP) and CYP3A4, which are involved in
the metabolization of nicotine and pharmaceutical drugs,
respectively (red arrows). This may be attributable to lifestyle
differences or genetic differences between donors.
Our results demonstrate that the soluble immunopeptidome

is overall representative of the organs constituting the body.
They also suggest a considerable potential of plasma immu-
nopeptidome analysis for studying system-wide changes in
the human proteome and in providing novel insights into
physiological and pathological processes that are presented
to the immune system.

sHLA Immunopeptidomic Reproducability Over Time and
Between Donors

While the immunopeptidome is thought to change consid-
erably upon disease, little is known about its stability in healthy
persons over time. To address this fundamental question, we
followed an initially healthy person over a year. We sampled
plasma at and shortly after the initial time point (16 h apart) to
gauge short-term biological variation, at the 5-month mark
and at the end of the year. At about 11 months, the donor
contracted COVID-19, and we sampled their immunopepti-
dome as soon as they were not positive any more
(supplemental Table S1).
Throughout the entire time period more than half of all sHLA

peptides were detectable and quantifiable, with 88 to 93%
being shared in at least two time points (Fig. 5A). Remarkably,
quantitative reproducibility over the entire year was very high
(Pearson correlation of 0.97 between the first and the last time
point (Fig. 5B)). The first two sampling points were only 16 h
apart, also agreed very well with each other, suggesting that
time of day did not have a large influence. Even the immu-
nopeptidome shortly after a mild COVID-19 infection did not
show large variations at a global scale. We note in passing
10 Mol Cell Proteomics (2024) 23(1) 100689
that the impact of a COVID-19 infection on the immuno-
peptidome as well as the soluble immunopeptidome was
studied in great detail here (25, 26).
Having established temporal stability of the sHLA pepti-

dome in a single healthy donor, we next compared the
immunopeptidomes of eight healthy donors (supplemental
Table S1).
A Principal Component Analysis (PCA) clearly clustered

workflow replicates of the same donor but next grouped do-
nors by shared types or supertypes (Fig. 5C). Supporting this,
a similar grouping emerged from pairwise Jaccard distances,
which also revealed up to 50% overlap of identified peptide
sequences between different donors with overlapping or
similar presenting alleles (Fig. 5D).
Overall, the immunopeptidome of the different donors at

best exhibited only a loose correlation (Fig. 5E). However,
when selecting donors with a Jaccard similarity of more than
30%, the pairwise quantitative correlation significantly
improved (Fig. 5F). Interestingly, donor 1 and donor 3 have a
low Jaccard similarity (3%) between them—despite sharing
one HLA-type (HLA-C0304); nonetheless, those 3% peptides
show a high Pearson correlation.
These findings highlight the consistency and stability of the

plasma immunopeptidome, further supporting its usefulness
for insights into potential commonalities and variations among
individuals.
DISCUSSION AND OUTLOOK

Here we developed and applied IMBAS-MS, an improved
approach to immunopeptidomics, with drastically enhanced
sensitivity. This user-friendly and adaptable workflow replaces
the traditional ProteinA/G affinity-based capture of anti-HLA
antibodies (27) with a streptavidin-biotin one. This enables
generic use of any biotinylated antibody, regardless of their
immunoglobulin type, and greatly simplifies plasma-based
immunopeptidomics by eliminating the need for plasma pre-
clearance with its associated losses without introducing a
time-consuming crosslinking step.
IMBAS-MS also eliminates nearly all hands-on time, in turn

enabling the rapid preparation and acquisition of a large
number of samples, which will be especially important in
clinical environments. Without the need of specialized equip-
ment as suggested in other automated immunopeptidomics
platforms (28–32), IMBAS-MS can be used efficiently simply
with a magnet and is thereby equally accessible to specialized
immunopeptidomics laboratories as well as regular mass
spectrometry-focused laboratories or MS-facilities. We expect
IMBAS-MS to have the same advantages in tissue-based
immunopeptidomics and we plan to explore this aspect in
the future.
As part of our workflow, we have also implemented Data

Independent Acquisition (DIA) to expand the depth of the
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immunopeptidomic data. To tackle the challenge of creating a
suitable search space for immunopeptidomics, we employed
personalized HLA peptide libraries (23). This considerably re-
duces the number of potential 9mers to 12mers in a human
FASTA to be searched, increasing the number of significant
identifications. In contrast to other library generation strate-
gies (33, 34), our approach eliminates the need for any upfront
measurements and can be transferred between MS platforms.
It also avoids building a library from DDA runs and could be
adapted to supertype or study-specific libraries, potentially
incorporating common post-translational modifications. This
significantly reduces both the measurement time and material
required as each sample serves as a base for its own pre-
dicted library and discovery based analysis at the same time.
As a next step, we envision combining IMBAS-MS with

multiplexed DIA and in particular to use one of the channels as
a reference channel (35, 36). Chemical labeling strategies
allow for the combined measurement of otherwise separately
acquired samples, where each label represents one possible
channel. A reference channel could be used to decouple
identification and quantification, improving immunopeptido-
mic depth, sensitivity and comparability between samples as it
was shown for single-cell proteomics experiments (35, 36).
Our results highlight the potential diagnostic applicability

beyond identifying cancer neoepitopes. They demonstrate the
presence of very large numbers of immunopeptides in plasma
samples, further supporting the notion of plasma as a valu-
able, non-invasive source of immunopeptides (4, 10, 37).
We observed that the immunopeptides found in plasma are

mostly representative of the tissue proteome. However, brain-
associated proteins were less represented and it would be
interesting to investigate mechanisms of presentation of these
sHLAs in the plasma. We also demonstrated the existence of a
stable healthy plasma immunopeptidome, both quantitatively
and qualitatively, across different healthy individuals,
expanding on what was described earlier (4). This finding is
highly relevant for clinical applications, as it suggests that a
general baseline healthy immunopeptidome can be estab-
lished. In turn, this could significantly facilitate the identifica-
tion of disease-specific immunopeptide signatures and aid in
the development of novel diagnostic markers and therapeutic
strategies. Such an approach could extend the diagnostic
potential of plasma immunopeptidome profiling within and
beyond the search for neoepitopes in the context of cancer.
This may provide insights into a wide range of pathological
conditions that involve alterations in immune responses, such
as autoimmune disorders, infectious diseases or inflammatory
conditions. In this context, the minimal-invasive nature of
plasma-based immunopeptidome profiling combined with the
streamlined IMBAS-MS technology could enable a patient-
friendly approach to disease monitoring and personalized
medicine, facilitating earlier intervention and more effective
treatment strategies. Clearly, future studies are needed to
expand upon these exciting findings by investigating basic
aspects of sHLA generation and presentation and the diag-
nostic capabilities of plasma immunopeptide signatures in
specific disease states. Combined with the ongoing devel-
opment of the underlying analytical technology, sHLA pepti-
domics may become an important addition to the arsenal of
precision medicine.
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