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HOMOLOGY GROWTH, HYPERBOLIZATION, AND FIBERING

GRIGORI AVRAMIDI, BORIS OKUN, AND KEVIN SCHREVE

Abstract. We introduce a hyperbolic reflection group trick which builds
closed aspherical manifolds out of compact ones and preserves hyperbolicity,
residual finiteness, and—for almost all primes p—Fp-homology growth above
the middle dimension. We use this trick, embedding theory and manifold
topology to construct Gromov hyperbolic 7-manifolds that do not virtually
fiber over a circle out of graph products of large finite groups.

1. Introduction

By the Chern–Gauss–Bonnet theorem, an even dimensional hyperbolic mani-
fold always has non-zero Euler characteristic. One geometric consequence of this
is that such manifolds cannot fiber over the circle. On the other hand, all odd-
dimensional manifolds have vanishing Euler characteristic, so, at least in principle,
odd-dimensional hyperbolic manifolds can fiber. A remarkable discovery of the
last few decades is that the later possibility is actually realized in dimension three:
All closed, hyperbolic 3-manifolds have a finite cover that fibers over a circle [3].
There has been some recent progress towards determining whether or not some
analogue of this phenomenon persists in higher dimensions. In a geometric direc-
tion, Italiano, Martelli, and Migliorini constructed the first finite volume hyperbolic
5-manifolds that fiber over a circle [41]. These examples are non-compact and no
closed 5-dimensional hyperbolic manifolds are known to fiber, see however [34] for
an example which is closed nonpositively curved with isolated flats. In a more alge-
braic direction, Kielak [51] and Fisher [31] showed that for a large class of groups,
the existence of a virtual F-homological fibering is controlled by vanishing of certain
skew field Betti numbers. For F “ Q these Betti numbers are the L2-Betti num-
bers, and for general fields they have an interpretation as a measure of F-homology
growth of finite covers. But, there is a curious1 dearth of closed, odd dimensional
examples that do not virtually fiber, even if one passes from the hyperbolic to the
more flexible Gromov hyperbolic setting. The goal of the present paper is to address
this. We use Fp-homology growth (for odd p) to prove:

Theorem A. There exists a closed, odd-dimensional, aspherical manifold M with
word hyperbolic fundamental group that does not virtually fiber over a circle.

It is generally difficult to construct exotic, high dimensional, closed aspherical
manifolds with word hyperbolic fundamental group and this paper is no exception;
we can’t produce any examples above dimension 7. We have two (very similar)
constructions of such M. The first is conceptually simpler, but has the downside

1Curious, because the fiber of a hypothetical fibration would be a closed, aspherical manifold
with infinite Outpπ1q and no Z2-subgroups. There are no known examples of such manifolds (note
that the fibers in [33] have Z2-subgroups).
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of not producing anything explicit (we don’t know if the non-fibering example is
in dimension 5 or 7). The second uses a few more tools, but has the advantage of
producing explicit 7-dimensional examples.

We will refer to closed, aspherical manifolds with word hyperbolic fundamental
groups as Gromov hyperbolic manifolds, and from now on will say such groups are
hyperbolic. In dimension three they are precisely the closed manifolds that can be
given a hyperbolic structure, while in higher dimensions they form a larger class
that includes all the locally CATp´1q manifolds. Whether every Gromov hyperbolic
manifold has a locally CATp´1q metric seems to be an interesting open question.
We do not know the answer for our examples.

Relation to previous non-fibering results. Higher rank, irreducible, locally
symmetric spaces do not virtually fiber over a circle because their fundamental
groups do not surject onto Z by the Margulis normal subgroup theorem. This gives
many nonpositively curved (but no negatively curved) examples of closed aspherical
manifolds that do not fiber (e.g. the 5-manifolds obtained as finite volume quotients
of SLp3,Rq{SOp3q).

Another way to see that many of these groups do not surject onto Z is to observe
that they have Kazhdan’s Property (T). The fundamental groups of some even (but
not odd) dimensional, negatively curved, locally symmetric spaces also have this
property. Moreover, there are additional random constructions of hyperbolic groups
with Property (T) [74] and also less random ones [58], but we are not aware of any
that produce fundamental groups of odd dimensional, closed, aspherical manifolds.

In a more combinatorial direction (more relevant for the present paper), in [7]
we constructed closed, locally CAT(0) n-manifolds M0 that do not virtually fiber
in all odd dimensions n ě 7. The fundamental groups of these manifolds are finite
index subgroups of right-angled Coxeter groups and the fibering obstruction is fast
Fp-homology growth. The manifolds M0 are not Gromov hyperbolic because their
fundamental groups contain Z2.

Theorem A provides the first examples of odd dimensional, Gromov hyperbolic
manifolds that do not virtually fiber. Moreover, we can arrange π1pMq to be special
in Haglund and Wise’s sense [37, Section 3]. In particular, this implies π1pMq is
residually finite, does not have Property (T), and in fact has finite index subgroups
with arbitrarily large first Betti number.

Homology growth and virtual fibering. In the examples we produce for The-
orem A the mechanism obstructing virtual fibering is, again, fast homology growth.
To keep track of it, fix a field F, look at the infimum of normalized F-Betti numbers
of all finite covers of M1 Ñ M (normalized by the degree |M1 Ñ M| of the cover)

βinf
k pM;Fq :“ inf

M1ÑM,

|M1ÑM|ă8

bkpM1;Fq
|M1 Ñ M|

and note that virtually fibering M over a circle would give covers M1 Ñ M of
arbitrarily large degree whose F-Betti numbers bkpM1;Fq are bounded by a uni-
form constant (the sum of the F-Betti numbers of the fiber), which would imply
βinf
k pM;Fq “ 0. So, positivity of this number obstructs virtual fibering.

Relation to L2-Betti numbers. For a finite complex X with residually finite
fundamental group and coefficient field F “ Q, the numbers βinf

k pX ;Qq are closely
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related to the analytically defined L2-Betti numbers bp2q
k pXq. In that situation, the

proof of Lück’s approximation theorem implies (see Theorem 2.4)

b
p2q
k pXq “ sup

X1ÑX

βinf
k pX 1;Qq
|X 1 Ñ X |

,

where the supremum is taken over all finite covers.

Pinching homology growth. For other fields F, we replace Q by F on the right
hand side, take the resulting quantity

β
k
pX ;Fq :“ sup

X1ÑX

ˆ
inf

X2ÑX1

bkpX2;Fq
|X2 Ñ X |

˙
,

where the sup is over finite covers X 1 Ñ X and the inf is over further finite covers
X2 Ñ X 1, and call it the lower F-homology growth. It follows directly from this
max-min definition that the quantity β is multiplicative in finite covers, and that
it obstructs virtual fibering. One also has the multiplicative quantity β obtained
by interchanging the roles of inf and sup in the definition, which we call the upper
F-homology growth. For F “ Q it gives the same answer (by Theorem 2.4) but in
general we only know that βinf ď β ď β, although we are not aware of any examples
in which the second inequality is strict.

Question 1.1. Is there a finite complex X with β
k
pX ;Fpq ‰ βkpX ;Fpq for some

prime p?

Special fundamental groups. In [7] we used specific properties of right-angled
Coxeter groups to help compute Fp-homology growth for the manifolds M0. The
fundamental groups of the manifolds M we produce for Theorem A are not com-
mensurable to right-angled Coxeter groups, but they are special, hence embed in
right-angled Artin groups, and this turns out to be good enough to estimate the
homology of covers of M. For such groups, the numbers βinf have another, more
algebraic, “skew field” interpretation that is convenient for doing Mayer–Vietoris
computations and, in particular, shows that they are integers. Namely, the group
ring Fπ1pMq embeds in a nice2 skew field DFπ1pMq, one can do all the Mayer–
Vietoris arguments for homology with coefficients in that skew field, and the Betti
numbers bkpM;DFπ1pMqq obtained from this homology coincide with the infimum
of the normalized F-Betti numbers. Moreover, these algebraically defined skew
field Betti numbers are multiplicative in finite covers, which implies for subgroups
of right-angled Artin groups that we don’t need to take the sup in the definition of
β, i.e.

β
k
pM;Fq “ βinf

k pM;Fq “ bkpM;DFπ1pMqq P Z.

So, the quantity β can be thought of as a multiplicative extension of the skew
field Betti number from this special setting to situations where (nice enough) skew
fields do not exist. Using skew fields to study L2-Betti numbers (and vice-versa)
originated in work of Linnell [56] and has been recently developed by Henneke–
Kielak [39], Jaikin-Zapirain [43,44], and others. Though we haven’t seen the above
equality before in the literature, we prove it by combining a number of previously
known results, see Section 3 for more details.

2Obtained by picking a bi-invariant order on the group and taking the division closure of the
group ring in the Malcev–Neumann skew field of formal power series with well-ordered support.
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Remark. In more general situations, the inequality βinf
k pX ;Fq ď β

k
pX ;Fq is often

strict. For instance, a wedge sum X of two hyperbolic homology 3-spheres has
β
1
pX ;Qq “ b

p2q
1 pXq “ 1 but b1pX ;Qq “ 0, and hence βinf

1 pX ;Qq “ 0.

Homology growth without chains. Previous works on homology growth of a
space X usually consider descending chains of subgroups π1pXq “ G ą G1 ą G2 ą
. . . and the homology of the corresponding covers Xi. Typically, additional assump-
tions are placed on the subgroups Gi, such as normality,

Ş
i Gi “ 1, or rG : Gis

being some prime power. It was surprising to us that β
k
pXq and βkpXq worked just

as well while avoiding many of the headaches that come with using chains; with
Fp-coefficients it is generally unknown whether the normalized homology growth of
such a chain has a limit, or depends on the choice of chain, etc. Even if G is a sub-
group of a right-angled Artin group, the identification βinf

k pX ;Fq “ bkpX ;DFπ1pXqq
has no analogue for residual chains of normal finite index subgroups, though some
approximation results are known, see e.g. [14, Theorem 4.3].

The only F-homological, virtual fibering obstructions in a special setting.
A special case of a result of Fisher [31], building on work of Kielak [51], shows—for
a finite aspherical complex X whose fundamental group embeds in a right-angled
Artin group—that if the lower F-homology growth (he uses the skew field definition)
in dimensions ď k vanishes then X has a finite cover X 1 which maps to a circle
with FPkpFq homotopy fiber. So, non-vanishing of the lower F-homology growth
is the only F-homological obstruction in dimensions ď k to virtual fibering in this
setting. We observe that non-vanishing of the upper F-homology growth is also an
F-homological virtual fibering obstruction and hence Fisher’s result leads to

Theorem B. If X is a finite, aspherical complex whose fundamental group embeds
in a right-angled Artin group, then βďk

pX ;Fq “ 0 if and only if βďkpX ;Fq “ 0.

This theorem may seem quite formal, but it is useful in practice because it relates
two numbers β and β that have very different advantages.

‚ If the fundamental group embeds in a right-angled Artin group, then β
k
pX ;Fpq

are integers, and as a consequence of this integrality differ from the L2-
Betti numbers bp2q

k pXq “ β
k
pX ;Qq at only finitely many exceptional primes,

while
‚ vanishing of βkpX ;Fq controls homology of virtually all finite covers: it says

that for any δ ą 0 there is a “δ-good” finite cover X 1 Ñ X such that all

further finite covers X2 Ñ X 1 Ñ X have normalized Betti number bkpX2;Fq
|X2ÑX|

bounded by δ.

Remark. It is tempting to wonder if some of these phenomena hold for more general
fundamental groups: Higher rank, irreducible locally symmetric spaces do not fiber.
Do they have fast Fp-homology growth (in either the β or the β sense) for some
prime p?

The Singer conjecture and the F-Singer property. For closed aspherical n-
manifolds Mn, the Singer conjecture predicts that the L2-Betti numbers bp2qpMq
vanish outside the middle (“ n{2) dimension, and in particular that all the L2-Betti
numbers of a closed, odd-dimensional, aspherical manifold vanish. This conjecture
suggests that rational homology growth shouldn’t give virtual fibering obstructions
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in odd dimensions. But, the situation is different for Fp-homology growth. Let us
single out the following homology growth vanishing property for n-manifolds

‚ upper F-Singer property: βkpMn;Fq “ 0 for k ą n{2,
and similarly define the lower F-Singer property using lower homology growth. For
closed manifolds these properties imply by Poincaré duality that upper (or lower)
homology growth is concentrated in the middle dimension. If M is a closed aspher-
ical manifold with special fundamental group then, by Theorem B and Poincaré
duality, the upper and lower properties are equivalent and in this situation we will
refer to both as the F-Singer property.

In [7] we built—for every odd prime p—closed, locally CAT(0) manifolds with
special fundamental groups that do not satisfy the Fp-Singer property in all odd
dimensions ě 7 (and all even dimensions ě 14). Much of the mathematical content
of the present paper amounts to producing Gromov hyperbolic ones. Our main
result is

Theorem C.

(1) For any odd prime p, there is a closed, aspherical, n-manifold Mn of di-
mension either n “ 5 or n “ 7 with special hyperbolic fundamental group
such that β

k
pM;Fpq ą 0 for some k.

(2) For large primes, such 7-manifolds definitively exist.

Proving it turned out to be more subtle (and interesting) than we initially ex-
pected, because applying strict hyperbolization procedures (e.g. the Charney–Davis
strict hyperbolization) directly to our previous examples kills the golden goose: the
homology cycles responsible for fast growth get hyperbolized in the process and, as
a result, instead of getting a linear number of homology cycles in covers one gets a
sublinear number of more complicated cycles. To get an idea of how hyperboliza-
tion can destroy L2-Betti numbers, note that strict hyperbolization applied to a
2-dimensional cube complex (e.g. the complex 8ˆ 8) amounts to connect-summing
each square with a higher genus surface. A Mayer–Vietoris argument shows that
this process has the same effect on the second L2-Betti number as removing the
squares, leaving a 1-dimensional complex with vanishing second L2-Betti number.
There are a number of elements that go into our construction of M, which we now
describe. We shall see how ensuring that M is Gromov hyperbolic prevents us from
making examples in dimensions ą 7.

Graph products. In the construction, the starring role is played by graph prod-
ucts GL of groups modeled on a flag complex L. For each vertex v of L, pick a
group Gv and define

GL :“ ˚
v
Gv{xrg, g1s “ 1 if g P Gv, g

1 P Gv1 and v is adjacent to v1y.

Graph products of Z{2’s are right-angled Coxeter groups WL, graph products of
Z’s are right-angled Artin groups AL, but what we use are graph products of Z{m’s
for large m. They virtually embed in the corresponding right-angled Artin group
AL, and can either be thought of as deformations of WL whose homology growth
can be estimated, or deformations of AL that have a chance of being hyperbolic.

Hyperbolicity. A graph product of finite groups GL acts properly, cocompactly
on a CAT(0) cubical complex of dimension dimL` 1. If the triangulation of L has
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no empty squares, then this complex can be given a GL-invariant CATp´1q metric,
so in that case GL is CATp´1q and hence hyperbolic.

Homology. In [7] we computed the F-homology growth of right-angled Artin
groups. The computation given there works identically for β and β and shows

β
k
pAL;Fq “ b̃k´1pL;Fq “ βkpAL;Fq,

where b̃ denotes the reduced Betti number of L. In particular, β and β agree for
right-angled Artin groups and differ from the usual L2-Betti number at finitely
many primes determined by the topology of the underlying complex L.

A graph product GL of large Z{m’s has approximately the same homology growth
as the corresponding right-angled Artin group AL, i.e.

β
k
pGL;Fq „ β

k
pAL;Fq,

where the error is on the order of |L|{m (Corollary 5.2.)
Somewhat surprisingly, the argument in this paper is conceptually simpler; our

computation relies on cell counting, whereas in [7] we needed to compute some
homology. Of course, in this paper we don’t get (or need) an exact computation of
β
k
pGL;Fq.

Embedding theory. One can construct non-compact aspherical n-manifolds that
have a specified fundamental group by embedding that group in a right-angled Cox-
eter group of the form WSn´1 , as the groups WSn´1 all act properly on (topological)
Rn.

This method works well for graph products of finite groups GL because by com-
mensurability results of [46] they virtually embed in the right-angled Coxeter group
WOL, where OL is a more complicated flag complex called the octahedralization of
L, obtained from L by doubling the set of vertices and replacing each k-simplex
v0 ˚ ¨ ¨ ¨ ˚ vk by 2k`1 k-simplices v˘

0 ˚ ¨ ¨ ¨ ˚ v˘
k . With Davis, in [6] we determined, for

a d-dimensional (d ‰ 2) flag complex L, that OL embeds as a full subcomplex of
some flag triangulation of S2d if and only if HdpL;F2q “ 0. This implies that WOL

is a subgroup of WS2d . In summary, if d ‰ 2 and bdpL;F2q “ 0, then GL virtually
embeds in some WS2d .

Construction of a 7-manifold with boundary. We now exploit the fact that
embedding theory for OL only depends on F2-homology of L while Fp-homology
growth of GL is sensitive to the prime p. The 3-dimensional Moore space L “
D3 Yp S2, (p odd) has a flag no-square triangulation by [69], and for any such
triangulation it follows from what we have said that the graph product GL of large
Z{m’s

‚ is hyperbolic,
‚ has β

4
pGL;Fpq ą 0,

‚ virtually embeds in some WS6 , and hence
‚ has a finite index subgroup Γ that acts properly and freely on R7.

The quotient manifold R7{Γ has finite type but is not compact. What saves us is
that the construction of the manifold also produces, as a byproduct, a codimension
three spine. This codimension three lets us compactify a regular neighborhood of
this spine using a π-π version of Siebenmann’s thesis (Theorem 6.6.) The upshot is
a compact aspherical 7-manifold pN, BNq with hyperbolic fundamental group and
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Fp-homology growth in dimension four. It remains to produce a closed aspherical
7-manifold with these properties.

On dimensions. Why did we start with a 3-complex? On one hand, Nguyễn Phan

and the first author recently constructed examples [8] showing that the assumption
d ‰ 2 in the embedding theory cannot, in general, be avoided: there are flag 2-
complexes L with b2pL;F2q “ 0 whose octahedralizations do not PL embed in S4.
On the other hand, flag no-square triangulations of arbitrary polyhedra are only
known to exist in dimensions at most three [69]. While there are constructions
[47, 66] of flag no-square d-complexes L in all dimensions d, we do not know how
to arrange these to have bdpL;F2q “ 0 and bdpL;Fpq ‰ 0. So, we only know how to
make the method work in one dimension!

Question 1.2. Are there flag no-square d-complexes L for d ą 3 which have
bdpL;F2q “ 0 and bdpL;Fpq ‰ 0?

A hyperbolic reflection group trick. To obtain a closed manifold we do a com-
bination of the Davis reflection group trick and the Charney–Davis strict hyper-
bolization. This hyperbolic reflection group trick works in any dimension, and may
be of independent interest, because it preserves hyperbolicity, residual finiteness and
other pleasant features. The input to this trick is a compact n-manifold pN, BNq
with a flag triangulation B of the boundary BN , and a choice of Charney–Davis
hyperbolized n-cube CDn. The output is a closed manifold hPN

B , which we will
sometimes simply denote by M, obtained as follows. First, build the right-angled
Coxeter group corresponding to the flag triangulation B, and take the commutator
quotient of the corresponding Davis complex. This results in a finite cube com-
plex, which is a manifold except at finitely many singular points, which have links
isomorphic to B. Now replace the cubes of this cube complex by CDn, and then
replace small neighborhoods of the singular points by copies of N .

We summarize some of the properties of the hyperbolic reflection group trick:

Theorem D. Given a compact n-manifold pN, BNq with a flag triangulation B
of the boundary, the hyperbolic reflection group trick produces a closed n-manifold
M “ hPN

B satisfying:

(1) N is a retract of M,
(2) If N is aspherical then M is aspherical,
(3) If N is F-aspherical3 then M is F-aspherical,
(4) If π1pNq is hyperbolic then π1pMq is hyperbolic,
(5) If π1pNq is virtually special hyperbolic then π1pMq is virtually special hy-

perbolic,
(6) If π1pNq is residually finite then π1pMq is residually finite.

Note that for n ą 5 any flag triangulation of BN always has empty squares, so
the usual reflection group trick never produces a Gromov hyperbolic manifold.

The first part of Theorem C follows by applying the hyperbolic reflection group
trick to our seed manifold N7 with hyperbolic fundamental group and β

4
pN ;Fpq ‰

0. The resulting manifold M can be cut along walls down to Charney–Davis pieces
and copies of N . The walls have virtually special fundamental groups which lets
us relate their homology growth in all finite covers to homology growth in the re-
stricted class of finite covers induced from M. This lets us do a Mayer–Vietoris type

3A space is F-aspherical if its universal cover has the same F-homology as a point.
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argument and show that either M has non-vanishing β or a lower odd-dimensional
closed, locally CATp´1q manifold appearing as an intersection of walls in the con-
struction has non-vanishing β (and hence β by Theorem B). In either case, we get
a non-fibering example.

For the second part of Theorem C we need better control on homology growth of
the walls. We can achieve it by restricting our triangulation B to be a barycentric
subdivision of a triangulation of the boundary. This lets us arrange so that our
walls are themselves Charney–Davis hyperbolizations from a finite set of cubical
complexes that depends only on the dimension n. Then choosing an appropriate
CDn and applying recent work of Ontaneda shows that these walls admit Rie-
mannian metrics of sufficiently pinched negative curvature, which by a result of
Donnelly–Xavier implies that L2-Betti numbers of the walls vanish outside of the
two middle dimensions. Since the fundamental groups of these walls are virtu-
ally special, their β differs from bp2q at only finitely many primes, and the cutting
argument proves the following theorem.

Theorem E. For each dimension n there is a choice of Charney–Davis piece CDn

and a corresponding finite collection of exceptional primes Sn, such that for any
compact n-manifold with boundary pN, BNq and any triangulation B which is a
barycentric subdivision of a triangulation of the boundary, the result of the hyperbolic
reflection group trick M “ hPN

B satisfies the following inequalities for k ą n{2:
(1) b

p2q
k pNq ď b

p2q
k pMq,

(2) β
k
pN ;Qq ď β

k
pM;Qq and βkpN ;Qq ď βkpM;Qq,

(3) β
k
pN ;Fpq ď β

k
pM;Fpq and βkpN ;Fpq ď βkpM;Fpq for p R Sn.

The second part of Theorem C follows from Theorem E applied to our seed
manifold N7.

Remark. When the fundamental group of the input π1pNq is virtually special hyper-
bolic, then the fundamental group of the output π1pMq is, as well, so we have access
to the skew field DFπ1pMq. Then, the entire cutting argument can be carried out
using this ambient skew field (and its sub-skew fields corresponding to subgroups
of π1pMq) and leads to an alternate proof of the first inequality in Theorem E(3).

As explained in [63], the (usual) reflection group trick implies that the Singer con-
jecture is equivalent to the statement that L2-Betti numbers of a compact aspherical
manifold, possibly with boundary, vanish above the middle dimension. The hyper-
bolic reflection group trick recovers this and also shows that the Singer conjecture
for Gromov hyperbolic manifolds is equivalent to the statement that L2-Betti num-
bers of compact aspherical manifolds with hyperbolic fundamental groups vanish
above the middle dimension.

Rationally aspherical manifolds. When L is a flag triangulation of the 3-sphere
the graph product of large finite groups GS3 has bp2q

4 pGS3q ą 0. In this case, the van
Kampen embedding theory method does not produce a 7-dimensional thickening
since b3pS3;F2q ‰ 0, and we suspect that no such thickening exists. However, since
finite index torsion free subgroups Γ of GS3 are duality groups [21, 24], we can use
the rational homotopy method from [5] to at least produce a rational thickening, i.e.
a rationally aspherical, compact 7-manifold with boundary pN, BNq, non-vanishing

b
p2q
4 and fundamental group Γ.
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Moreover, if we start with a flag no-square triangulation of S3 (which do exist)
then the resulting group will be hyperbolic. Feeding this seed manifold N7 into the
hyperbolic reflection group trick (with barycentrically subdivided boundary) gives

Theorem F. There is a closed, rationally aspherical 7-manifold M with special

hyperbolic fundamental group and b
p2q
4 pMq ‰ 0.

Theorems C and F are quite different both in the input used to obtain the ex-
amples and in their conclusions. The first produces genuinely aspherical manifolds,
while the second produces examples in which the actual L2-Betti numbers are not
concentrated in the middle dimension. Nonetheless, forgetting some of the infor-
mation they provide, we can put them in a single context. We have obtained for
F “ Q or Fp for odd primes p an example of a closed, F-aspherical manifold that
does not satisfy the F-Singer property. The remaining case is p “ 2.

Question 1.3. Does every F2-aspherical manifold with residually finite fundamen-
tal group satisfy the (upper or lower) F2-Singer property?
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Plan of the paper. Section 2 assembles some basic facts on homology growth.
Section 3 sets up the skew field theory we need and Section 4 gives consequences
of this theory for homology growth and proves Theorem B. We estimate homology
growth of graph products in Section 5, thicken their classifying spaces to manifolds
in Section 6, construct closed aspherical manifolds via a hyperbolic reflection group
trick in Section 7 (proving Theorem D(1)–(4)), and show the results have virtually
special fundamental groups (Theorem D(5)) in Section 8. In Section 9, we derive the
Mayer–Vietoris inequalities needed for our induction arguments. Section 10 carries
out the basic inductive cutting argument and proves Theorem A and Theorem
C(1). Section 11 deals with the barycentric version of the hyperbolic reflection
group trick, proves Theorem E and uses it to establish Theorems C(2) and F. The
appendices discuss residual finiteness of the hyperbolic (and the usual) reflection
group trick (proving Theorem D(6)), the relation between L2-Betti numbers and
rational homology growth, and the embedding theory for octahedralizations.

2. Upper and lower homology growth

Our first goal is to understand the normalized Betti numbers of finite covers of a
complex X and how they vary as we pass to further covers. Somewhat surprisingly,
a number of basic but useful properties of this can be established by thinking of the
normalized Betti numbers as a function on the partially ordered4 set of all finite
covers, looking at upper and lower limits over this set, and using the fact that any
two finite covers have a further finite cover lying above both of them. In this section
we record the basic properties of such limits.

Limits over directed posets. Let pC,ăq be a partially ordered set. Suppose it
is directed (for any x, y P C there exists z P C such that x ă z and y ă z). A
subset D is cofinal if for any x P C there exists y P D such that x ď y. We want to
define various notions of limits of bounded real-valued functions on C. The basic
building blocks are taking inf or sup over a subset. There are two basic observations:
smaller subsets produce smaller sup and if the function is decreasing then inf can
be computed over any cofinal subset.

Applying sup to tails (subsets of the form Cěx “ ty P C | y ě xu) defines an
operation on bounded functions f ÞÑ f sup:

f suppxq “ sup
Cěx

f.

This converts any function to a decreasing one.
Define f inf :“ ´p´fqsup. The following is immediate from the observations:

Lemma 2.1. f :“ pf supqinf and f :“ pf infqsup are constant functions.

We will call f and f the upper and lower limits of f .
We collect in the following lemma all the properties of upper and lower limits that

we need. They will be primarily used in obtaining the Mayer–Vietoris inequalities
in Section 9.

Lemma 2.2. Let f, g be bounded functions.

(1) If f ď g, then f ď g and f ď g.

4The partial order on covers of X is defined by X2 ą X1 whenever X2 is a cover of X1.
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(2) (Almost additivity)

f ` g ď f ` g ď f ` g ď f ` g ď f ` g.

(3) (Restriction) Let D be a cofinal subset of C. Then

f ď f |D ď f |D ď f.

(4) Let T be a tail of C. Then

f “ f |T ď f |T “ f.

Proof. (1) is immediate. The last inequality in (2) follows from general subadditivity
of sup and additivity of inf for decreasing functions. Using f “ ´p´fq the following
trick then proves the third inequality in (2):

f ` g “ f ` g ´ f ´ p´fq ď f ` g ` p´fq ´ p´fq “ f ` g.

Note that setting g “ 0 in this inequality gives f ď f , which justifies the upper and
lower notation and proves the middle inequalities in (3) and (4).

Since for a subset D of C, Děx “ Cěx X D, the basic observations give the last
inequality in (3). If T is itself a tail of C, then its tails are tails of C, hence

pf |T qsup “ f sup|T ,

and we obtain the last equality in (4). The remaining (in)equalities are obtained
from these by flipping signs. �

Normalized Betti numbers as a function on a set of covers. For a complex
X , let CX denote the poset of finite covers of X . The normalized k-th F-Betti
numbers of such covers define a function on this poset, which we will denote by
βkpX ;Fq, i.e. if X 1 Ñ X is a finite cover, then

βkpX ;FqpX 1q :“ bkpX 1;Fq
|X 1 Ñ X |

.

For much of this section, k and F will be unimportant, and then we will omit one
(or both) of them from the notation. The function βkpX ;Fq is bounded by the
number of k-cells in X .

The upper and lower F-homology growth, βkpX ;Fq and β
k
pX ;Fq are the upper

and lower limits over CX of this function, more explicitly:

βkpX ;Fq :“ inf
X1ÑX

ˆ
sup

X2ÑX1

bkpX2;Fq
|X2 Ñ X |

˙
,

β
k
pX ;Fq :“ sup

X1ÑX

ˆ
inf

X2ÑX1

bkpX2;Fq
|X2 Ñ X |

˙
.

More generally, given a map h : X Ñ Y , and a finite cover π : Y 1 Ñ Y , the pullback

h˚pY 1q “ tpx, y1q : hpxq “ πpy1qu Ă X ˆ Y 1

is a finite cover of X of the same degree. We define the restricted homology growths

of X , β
Y

k pX ;Fq and βY

k
pX ;Fq, by taking the above limits over the subset of covers

pulled back from Y . Note that for Y “ X , β
XpXq “ βpXq and βXpXq “ βpXq.
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Rational homology growth and δ-good covers. We next describe a δ-pinching
theorem for normalized rational Betti numbers. It is a consequence of the proof
of Lück’s approximation theorem in [59] and can be thought of as a quantitative
variant of that theorem. Other quantitative versions of Lück approximation also
appear in [19] and [57].

We need the following basic linear algebraic lemma.

Lemma 2.3 ([59, Theorem 3.4(1)]). Suppose ∆ is an N ˆ N matrix with integer
entries. Let Nǫ be the number of eigenvalues λ with |λ| P p0, ǫs, counted with
multiplicity. If ǫ ă 1 then

Nǫ

N
ď log|∆|

logpǫ´1q
Proof. Look at the characteristic polynomial detpt ´ ∆q “ tbqptq where qptq “ś

0ăµiďǫpt ´µiq
ś

ǫăµiď|∆|pt´ µiq. Since ∆ has integer entries, the number qp0q is
a non-zero integer, hence

1 ď |qp0q| ď ǫNǫ |∆|N .

Rearranging to pǫ´1qNǫ ď |∆|N and taking logs gives Nǫ logpǫ´1q ď N log|∆|. �

Theorem 2.4 (δ-pinching Q-homology growth). Let X be a finite complex. Given
δ ą 0 there is a finite cover Xδ such that the function βkpX ;Qq is δ-pinched above
Xδ. More explicitly, if X 1 and X2 are finite covers of Xδ then

∣

∣

∣

∣

bkpX 1;Qq
|X 1 Ñ X |

´ bkpX2;Qq
|X2 Ñ X |

∣

∣

∣

∣

ď δ.

Proof. Let N be the number of k-cells of X . There is a finite constant D such that
the norm of the combinatorial Laplacian ∆1 acting on CkpX 1;Qq of finite covers
of X is uniformly bounded by D (see [59, Lemma 2.5]) independent of the cover.
Choose 0 ă ǫ ă 1 satisfying

ǫN ă δ{2, ǫ ` logD

logpǫ´1q ă δ{N.

Next choose r so that polynomial fpxq “ p1 ´ x{Dqr satisfies

fpǫq ă ǫ.

Then, since f is monotone decreasing on r0, Ds,
χ0 ď f ď χr0,ǫs ` ǫ on r0, Ds.

So, for any finite cover X 1 Ñ X we have

bkpX 1;Qq “ trχ0p∆1q ď tr fp∆1q ď trpχr0,ǫs ` ǫqp∆1q “ bkpX 1;Qq ` N 1
ǫ ` ǫN 1,

where N 1 is the number of k-cells of X 1, and N 1
ǫ is the number of eigenvalues in the

interval p0, ǫs of the Laplacian ∆1 acting on CkpX 1;Qq. Since this combinatorial
Laplacian has integer entries, Lemma 2.3 implies

N 1
ǫ ď logD

logpǫ´1qN
1.

Hence,
bkpX 1;Qq ď trpfp∆1qq ď bkpX 1;Qq ` δ|X 1 Ñ X |.

Since f is a polynomial, there is a radius R such that the support of fp∆1qe is in
the R-neighborhood of e for each cell e in X 1.
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Let X̂ Ñ X denote the universal residually finite cover and choose its finite
quotient Xδ, so that X̂ Ñ Xδ is injective on R-balls. Then any finite cover X 1 Ñ Xδ

is also injective on R-balls, hence

tr fp∆1q “ trpfp∆δqq|X 1 Ñ Xδ|.

Combining this with the above inequality shows that for any such cover X 1 the

normalized Betti numbers lie in the δ-interval
”
trpfp∆δqq
|XδÑX| ´ δ,

trpfp∆δqq
|XδÑX|

ı
, which proves

the claim. �

Corollary 2.5. For any finite complex X we have β˚pX ;Qq “ β˚pX ;Qq.

If we fix lifts ê in X̂ of k-cells e in X , then the injectivity on R-balls implies
that trpfp∆δqq{|Xδ Ñ X | “ ř

ePXpkq xfp∆̂qê, êy. As we vary the polynomial f ,
letting r Ñ 8, the quantity on the right of this equation converges to the von
Neumann dimension of the space of L2-harmonic k-cycles on X̂ (see [59, Lemma
2.7]). Therefore the k-th rational homology growth can be identified with the von
Neumann dimension of this space. In particular, if π1pXq is residually finite, then
X̂ is the universal cover, and we have

Corollary 2.6. For any finite complex X with residually finite fundamental group
we have

β˚pX ;Qq “ b
p2q
˚ pXq “ β˚pX ;Qq.

For other coefficients, we only have the inequality β˚pX ;Fq ď β˚pX ;Fq. It

follows directly from the definitions that the interval rβpX ;Fq, βpX ;Fqs has the
following interpretation: It is the smallest closed interval ra, bs such that for every
δ ą 0 there is a finite cover X 1 Ñ X such that for any further finite cover X2 Ñ X 1

the normalized Betti numbers bpX2;Fq{|X2 Ñ X | lie in the interval ra ´ δ, b ` δs.

Connectedness. If X is disconnected, then its homology growth is the sum of the
homology growth of its components, as the following lemma shows.

Lemma 2.7. If X “ Y > Z, then

βpXq “ βpY q ` βpZq,

βpXq “ βpY q ` βpZq.
Proof. Clearly, the normalized Betti numbers of a finite cover of X is the sum of
the normalized Betti numbers of its restrictions to Y and Z. The issue is that in
general finite covers Y 1 Ñ Y and Z 1 Ñ Z do not combine to a cover of X unless they
have same degree, as our definition requires the degree to be constant. However,
we can equalize degrees by replacing Y 1 with |Z 1 Ñ Z| disjoint copies of Y 1 and
replacing Z 1 with |Y 1 Ñ Y | disjoint copies of Z 1. This replacement does not change
the normalized Betti numbers, and the Lemma follows. �

It is sometimes useful to keep in mind that we can compute homology growth of
a connected finite complex either using all covers, or just the connected ones. We
record this observation here as a lemma.

Lemma 2.8. For a connected finite complex X, the upper and lower homology
growth can be computed using connected covers.
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Proof. We give the proof for upper homology growth. Suppose X is a connected
complex, let X 1 Ñ X be a finite cover and denote by X 1

i its components. Then the
normalized Betti numbers of this cover are a convex combination

βpXqpX 1q “
ÿ |X 1

i Ñ X |
|X 1 Ñ X |βpXqpX 1

iq

of the normalized Betti numbers of the components. Since the coefficients sum
to one, we conclude that βpXqpX 1q ď βpXqpX 1

iq for some i. So βpXqsup can be
computed over connected covers of X . Since βpXqsup is decreasing, its inf can be
computed over any cofinal subset. In particular, it can be computed over covers
that have identical components. Clearly, the answer of this computation is the
same as that for any of the components. Therefore βpXq of a connected complex
can be computed using only connected covers. �

Remark. The regular covers of X form a cofinal subset of CX , so Lemma 2.2(3)
provides bounds for homology growth in terms of the limits over regular covers.
We don’t know whether regular covers give an exact computation.

Finiteness. Since connected covers correspond to subgroups of the fundamental
group, we can relax finiteness assumptions on X . Recall that a connected complex
X is of type FPnpFq if the chain complex of the universal cover C˚p rX;Fq is Fπ1X-
chain homotopy equivalent to a complex P˚ of free Fπ1X-modules which have
finite rank in degrees ď n. The following lemma shows that homology growth is
well defined and finite in degrees ď n for such complexes.

Lemma 2.9. Let X be a connected complex so that the chain complex of the uni-

versal cover C˚p rX;Fq is Fπ1X-chain homotopy equivalent to a complex P˚ of Fπ1X

modules, where Pk is a free module of finite rank. Then the normalized Betti func-
tion βkpX ;Fq is bounded:

βkpX ;Fq ď rkFπ1X Pk.

Proof. By the proof of the previous Lemma it is enough to check the inequality for
connected covers. Denote G :“ π1X . Let X 1 Ñ X be a finite connected cover, and
let G1 ă G be the corresponding subgroup. Then we have

βkpX ;FqpX 1q “ dimF HkpX ;FrG{G1sq
rG : G1s “ dimFHkpP˚ bFG FrG{G1sq

rG : G1s ď rkFGpPkq.

�

Multiplicativity. If X 1 Ñ X is a finite cover, then CX1 is naturally identified with
the tail pCXqěX1 of CX , and on this tail we have βpXq|X 1 Ñ X | “ βpX 1q. Therefore,
since by Lemma 2.2(4) the limits can be computed over tails, the homology growth
is multiplicative in covers of X :

βpX 1q “ βpXq|X 1 Ñ X |,

βpX 1q “ βpXq|X 1 Ñ X |.

Homology growth as a fibering obstruction. Multiplicativity implies a variant
of Lück’s mapping torus theorem [60] for homology growth.

Theorem 2.10 (F-homology mapping torus theorem for β). Let X be a complex
of type FPnpFq, f : X Ñ X a self-homotopy equivalence and Tf its mapping torus.
Then for k ď n

βkpTf ;Fq “ 0.
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Proof. We can assume that f is a cellular map. Let K “ π1pXq and let G “
π1pTf q “ K ¸ Z. The assumption means that the chain complex C :“ C˚p rX;Fq
is FK-chain homotopy equivalent to a complex of free FK-modules P which have
finite rank in degrees ď n. Let h : C Ñ P and l : P Ñ C be the chain homotopy
equivalence and its inverse. Consider the map g “ fm for some positive integer m.
The map g induces a chain map which we will also call g : C Ñ C.

Let ĝ “ hfl : P Ñ P . The algebraic mapping telescope rTĝ of ĝ is FG-chain
homotopy equivalent to C˚p rTg;Fq. Thus, by Lemma 2.9

βkpTg;Fq ď rkFGp rTĝqk “ rkFKpPk ‘ Pk´1q.

The mapping torus Tg is homotopy equivalent to a degree m cover T 1 Ñ Tf , so
by multiplicativity

mβkpTf ;Fq “ βkpTg;Fq ď rkFKpPk ‘ Pk´1q.

Since m can be picked arbitrarily large, we are done. �

3. βinf via skew fields

In this section we will give a skew field description of βinf for complexes with
residually torsion-free nilpotent fundamental group. The proof goes by first approx-
imating the residually torsion-free nilpotent group by torsion-free nilpotent groups,
and then approximating those by finite groups. Since groups are central to this ar-
gument, we will use equivariant notation to highlight the role of the groups involved,
rather than relegating it to a subscript in a coefficient module.

Skew field Betti numbers. Let G be a group, let Y be a free cocompact G-CW
complex, and suppose we have a homomorphism φ : ZG Ñ D to a skew field. The
homomorphism makes D into a ZG-bimodule, so we can take equivariant homology
of Y with coefficients in D

HG
˚ pY ;Dq “ H˚pD bZG C˚pY qq,

and define the equivariant Betti numbers with coefficients in D of Y by taking its
dimension over D:

bG˚ pY ;Dq “ dimD HG
˚ pY ;Dq.

More explicitly,

bGi pY ;Dq “ |Y piq| ´
`
rkD φpBiq ` rkD φpBi`1q

˘
,

where φpBiq denotes the image of the matrix of the differential in D and |Y piq| is
the number of G-orbits of i-cells in Y .

Remark. When Y is the universal cover of a connected finite complex Y {G with
fundamental group G, then this definition coincides with the usual (unequivariant)
homology of Y {G with local coefficients in the ZG-module D,

HG
˚ pY ;Dq “ H˚pY {G;Dq.

On the level of skew field Betti numbers, bG˚ pY ;Dq “ b˚pY {G;Dq.
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Local homomorphisms. A nontrivial homomorphism between skew fields is nec-
essarily injective, however there is a more general notion of morphisms between
skew fields. It leads to an inequality between Betti numbers.

A local homomorphism (or subhomomorphism) between two skew fields D and
D1 is a homomorphism from a subring L of D to D1, f : L Ñ D1 whose kernel
is precisely the set of non-units of L. It follows that L is a local ring, J :“ ker f

is its unique maximal ideal, and JzL is a sub-skew field of D1. If M is a finitely
generated L-module, then by Nakayama’s lemma, cf. [30, Corollary 2.13], any
lift of a basis of JzL bL M “ JMzM to M is a generating set for M , therefore
dimD1 D1 bLM ě dimD DbLM . In terms of ranks we have an opposite inequality,
for any L-matrix A, rkD1 fpAq ď rkD A.

Thus we have the following: suppose ZG Ñ D1 extends to a local homomorphism
from D to D1, then

bG˚ pY ;Dq ď bG˚ pY ;D1q.
If D is a sub-skew field of D1, then we have obvious local homomorphisms from

D to D1 and vice versa extending the map ZG Ñ D, which gives us

Change of coefficients. If D is contained in another skew field D1, then

bG˚ pY ;Dq “ bG˚ pY ;D1q,
where the latter is computed using the composition ZG Ñ D ãÑ D1. (This is also
a consequence of C˚pY q bFG D1 “ pC˚pY q bFG Dq bD D1.)

In particular, if φ : ZG Ñ D, we can always replace D with the skew field
generated by the φpZGq, i.e. the division closure of φpZGq, without changing Betti
numbers.

Epic FG fields. There are two classical constructions (for certain amenable groups,
and for bi-orderable groups) of ZG skew fields. Both constructions depend on the
choice of a base field F (we will be mostly concerned with F “ Q or F “ Fp) and
produce canonical epic embeddings FG ãÑ DFG. (A homomorphism of FG into a
skew field D is epic if the image of FG generates D.) Moreover, both constructions
behave nicely with respect to subgroups. If H ă G then the division closure of FH
in DFG coincides with DFH . If H happens to be finite index in G, then in both cases
DFG – ‘rG:HsDFH , which implies a multiplicativity formula for the corresponding
Betti numbers. We shall use the same notation for both constructions, and let the
context distinguish them. This does not lead to confusion, as the constructions
agree when both are defined.

Of course the existence of such an embedding requires FG to have no zero divisors.
Conjecturally, FG has no zero divisors for any torsion-free group. It is known for
many classes of groups, in particular for left-orderable groups and for torsion-free
elementary amenable groups [52, Theorem 1.4].

We now discuss both constructions.

Amenable groups. Suppose R is a ring without zero divisors, and S is a multi-
plicatively closed subset of nonzero elements. The pair pR,Sq satisfies the (right)
Ore condition if for each r P R and s P S there are r1 P R and s1 P S with

rs1 “ sr1.

If the pair pR,Sq satisfies the Ore condition, then one can form a ring called the
Ore localization RS´1. The elements of RS´1 are equivalence classes of fractions
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r{s, r P R, s P S; the Ore condition allows one to add and multiply these expres-
sions. There is a natural injection R Ñ RS´1, given by r ÞÑ r{1. If S is the set
of all nonzero elements of R, then RS´1 is a skew field, and we get an epic em-
bedding R ãÑ RS´1. This embedding is a unique epic embedding, since any other
embedding factors through it.

For a group ring, R “ FG without zero divisors, the pair pFG;FG´ t0uq satisfies
the Ore condition if and only if G is amenable [9, Theorem A.1]. In this case we
shall denote the localization by DFG. So, to summarize, for amenable G with FG

having no zero divisors we have a unique epic embedding FG ãÑ DFG. If G is
amenable and FG has no zero divisors, then this also holds for all subgroups of G
and their group rings. Furthermore, if H ă G then we can identify DFH with the
division closure of FH inside of DFG. If G is in addition residually finite, then we
also have a version of Lück’s Approximation theorem, which is the main result of
Linnell, Lück, and Sauer [55, Theorem 0.2].

Theorem 3.1 ([55, Theorem 0.2]). Suppose G is amenable and FG has no zero
divisors. Let Gi ⊳ G be a residual sequence of finite index normal subgroups of G.
Then for any cocompact free G-CW complex Y

bG˚ pY ;DFGq “ lim
iÑ8

b˚pY {Gi;Fq
rG : Gis

.

Bi-orderable groups. As another example, suppose the group G is bi–orderable,
and fix a particular bi-invariant total order on G. The Malcev–Neumann series are
infinite linear combinations of elements in G with F coefficients, whose support is
well ordered in the induced order. They form a skew field, into which the group
ring FG naturally embeds. Let DFG denote the division closure of FG in this skew
field.

One can easily see from the construction of inverses that if a is a non-zero Malcev–
Neumann series then the support of a´1 is contained in the subgroup generated by
the support of a.

Therefore, for a subgroup H the set of elements of DFG supported on H is a
sub-skew field, and it follows that the division closure of FH in DFG is naturally
identified with DFH , coming from the induced order on H .

Since the action of G on cosets preserves the induced order, a similar picture
holds for the set of elements of DFG supported on a single coset, it has a natural
structure of a vector space over DFH . This gives an injective homomorphism of
DFH-vector spaces:

À
G{H DFH Ñ DFG.

The injectivity of this homomorphism is a (very strong) form of the so called
Hughes-free condition, so the embedding FG ãÑ DFG is Hughes-free. Hughes [40]
proved that for a given F, Hughes-free epic embeddings are unique up to an iso-
morphism over FG, thus DFG does not depend on the choice of the order, and we
obtain well-defined Betti numbers bG˚ pY ;DFGq.

We also have an approximation theorem of a different flavor.

Theorem 3.2. Let Ki be a nested residual sequence of normal subgroups in a
group G. Suppose we have bi-invariant orderings on G and on the quotients Gi “
G{Ki such that each quotient map pi : G Ñ Gi is order-preserving. Then for any
cocompact free G-complex Y there exist i0 such that for any i ě i0,

bG˚ pY ;DFGq “ bGi

˚ pY {Ki;DFGi
q.
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Proof. Following [28, 54] define a sequence of subrings tSiu of DFG with Si Ă Si`1

consisting of elements whose support has finite intersection with Ki-cosets. A slight
generalization of the Malcev–Neumann argument, cf. [54, Proposition 7.1], shows
that

Ť
Si is a skew field. Since each Si contains FG, we have

Ť
Si “ DFG. Note

that the maps pi obviously extend to maps pi : Si Ñ DFGi
.

Given a matrix A over FG, we can diagonalize A over DFG by performing column
and row operations: there exist DFG-matrices C and C 1, such that CAC 1 “ IrkDFG

A.
The entries of C and C 1 are a finite collection of elements of DFG, so they are all
contained in Si0 for some i0. Then for i ě i0, applying pi to the above diagonaliza-
tion shows that rkDFG

A “ rkDFGi
pipAq. Choosing i0 so that the above works for

all differentials in Y finishes the proof. �

Remark. The skew field
Ť

Si has been recently used by Sikorav in [71] to give a
new fibering criterion for closed aspherical 3-manifolds.

Finite index subgroups. It turns out that in both cases the equivariant Betti
numbers have an additional nice property satisfied by the usual L2-Betti numbers,
namely multiplicativity for finite index subgroups.

Lemma 3.3. Suppose G is bi-orderable or amenable with FG having no zero-
divisors, and H ă G is a finite index subgroup. Then for any G-complex Y

bH˚ pY ;DFHq “ rG : HsbG˚ pY ;DFGq.

Proof. For bi-orderable groups, if H ă G has finite index, then the full Malcev–
Neumann skew field of G is a vector space of dimension rG : Hs over the full Malcev–
Neumann skew field of H , and these skew fields give the same Betti numbers as
DFH and DFG. In particular, it follows that DFG – D

rG:Hs
FH as DFH-vector spaces.

This also holds in the amenable case, see e.g. [55, Equation 5.2] for a more general
statement. For convenience, we give the argument here assuming that there are no
zero-divisors. It is enough to consider normal subgroups. The main point is that
the pair pFG,S “ FH ´ t0uq satisfies the Ore condition [68, Lemma 13.3.5 (ii)],
so we can form the localization pFGqS´1. This is a DFH-vector space of dimension
rG : Hs which naturally injects into DFG. We claim that this is onto; it suffices
to show that each nonzero t in FG is invertible in pFGqS´1. Since t is not a zero
divisor in DFG, it is not a zero divisor in pFGqS´1, hence the left multiplication by
t induces an injective linear self-map of pFGqS´1. Therefore, this multiplication is
an isomorphism, and the preimage of 1 is the inverse of t. �

Finite generation. Note that we did not assume that the group G is finitely
generated. We now show that in both constructions we can always reduce the
computation of bGk pY ;DFGq to the case of finitely generated G.

First, we need the following observation.

Induced representation. If H ă G is a subgroup and Y0 is an H-complex, then for
Y “ G ˆH Y0 we have

bG˚ pY ;Dq “ bH˚ pY0;Dq,
where the latter is computed using the composition ZH ãÑ ZG Ñ D, since the
chain complexes used to compute the two homologies are identical:

C˚pY0q bFH D “ C˚pY0q bFH FG bFG D “ C˚pY q bFG D.
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Lemma 3.4. Suppose G is a bi-orderable or amenable group with FG having no
zero-divisors, and Y is a cocompact, free G-complex. For each connected component
of Y {G choose its lift Yi to Y , and let Gi denote the stabilizer of Yi in G. Then
each Gi is finitely generated and

bGk pY ;DFGq “
nÿ

i“1

bGi

k pYi;DFGi
q.

Proof. Since each Yi is a connected cocompact free Gi-complex, each Gi is finitely
generated. Y is a disjoint union of G-orbits of Yi, i.e. Y “ šn

i“1 GˆGi
Yi. In both

constructions the division closure of each FGi in DFG is DFGi
. Therefore

bGk pY ;DFGq “
nÿ

i“1

bGi

k pYi;DFGq “
nÿ

i“1

bGi

k pYi;DFGi
q.

�

Torsion-free nilpotent groups. Let N be a torsion-free nilpotent group. Then
N is both bi-orderable and amenable, and both constructions produce the same
skew field DFN . It will be most useful here to think of DFN as an Ore localization.

Lemma 3.5. Let N be a torsion-free nilpotent group. Then for any free, cocompact
N -CW complex Y

bN˚ pY ;DFNq ď b˚pY {N ;Fq.

Proof. By Lemma 3.4 we can assume that N is finitely generated. Let C “ xty be
a normal, infinite cyclic subgroup of N with H “ N{C torsion-free nilpotent. The
existence of such a subgroup follows from the fact that the center ZpNq of N is
infinite and N{ZpNq is torsion-free nilpotent [68, Lemma 11.1.3, p. 470].

The quotient map N Ñ H induces a map p : FN Ñ FH and ker p is the two-
sided principal ideal generated by p1 ´ tq. We claim that p extends to a local
homomorphism DFN Ñ DFH where the domain consists of elements which have a
representation with denominator not in ker p. The only nontrivial part of this claim
is that the domain is a subring of DFN , or equivalently, that pFN,S :“ FN ´ ker pq
satisfies the Ore condition.

To see this, take r P FN and s P S. Since pFN ;FN ´ t0uq satisfies the Ore
condition, there are r1, s1 P FN with rs1 “ sr1, and we need to show that s1 can be
chosen in S.

The key point is that there is a bound on the powers of p1 ´ tq that divide
s1. Indeed, take a coset of C which intersects the support of s1 nontrivially; for a
suitable choice of g P N the restriction of s1 to this coset has the form gP ptq where
P ptq is a polynomial in t. The right multiplication by p1 ´ tq preserves the coset
decomposition, hence the power of p1´ tq dividing s1 on the right is bounded above
by the degree of P ptq.

Now, if s1 P ker p, then s1r “ sr1 P ker p, and hence r1 P ker p as FH has no zero
divisors. Therefore, both s1 and r1 are divisible on the right by p1 ´ tq, and we can
cancel to get a new s1 and r1. So, we can keep cancelling powers of p1 ´ tq until
s1 P S.

Applying the same procedure to the quotient group H in place of N and com-
posing local homomorphisms eventually produces a trivial quotient and therefore a
local homomorphism DFN Ñ F extending the augmentation map. �
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Residually torsion-free nilpotent groups. From now on, we suppose that the
group G is residually torsion-free nilpotent. Then G is bi-orderable, and in fact as
explained in [28, Corollary to Lemma 4.1], any torsion-free nilpotent approximation
can be made into an bi-orderable one by a suitable choice of orders. Then the equi-
variant Betti numbers of a G-complex Y are approximated by the equivariant Betti
numbers of the torsion-free nilpotent quotients, which in turn are approximated
by normalized usual Betti numbers of finite quotients. This leads to equivalence
between the skew field definition and the infimum definition for simply connected
Y .

Theorem 3.6. Let G be a residually torsion-free nilpotent group and let Y be a
free cocompact G-complex. Then

bG˚ pY ;DFGq “ inf
HăG

rG:Hsă8

b˚pY {H ;Fq
rG : Hs .

Proof. Let H ă G be a finite index subgroup of G. Choose a torsion free nilpotent
approximation Ki ⊳ H ։ Ni. Then, using Theorem 3.2 and Lemma 3.5, for
sufficiently large i we have,

bH˚ pY ;DFHq “ bNi

˚ pY {Ki;DFNi
q ď b˚pY {H ;Fq.

The multiplicativity now implies ď inequality in the desired formula.
For the opposite inequality we first find, similar to the above, a torsion free

nilpotent quotient K ⊳ G ։ N with bG˚ pY ;DFGq “ bN˚ pY {K;DFNq and then ap-
ply Theorem 3.1 to the N -complex Y {K to find a further finite quotient so that
bN˚ pY {K;DFNq is approximated within any given ǫ by the normalized usual Betti
numbers. �

Simply connected components. When the components of the G-complex Y are
simply connected, then we can use Theorem 3.6 to relate skew field Betti numbers
to homology growth of the quotient Y {G (note that if Y is not simply connected
then the right-hand term in Theorem 3.6 is generally not equal to βinf

˚ pY {Gq).
Corollary 3.7. Suppose G is a residually torsion-free nilpotent group and Y is a
cocompact, free G-complex with simply connected components. Then

bGk pY ;DFGq “ βinf
k pY {G;Fq.

Proof. By Lemma 3.4

bGk pY ;DFGq “
nÿ

i“1

bGi

k pYi;DFGi
q.

where each Yi is a connected component of Y and Gi is its stabilizer. By assumption
each Yi is simply connected, so finite connected covers of Yi{Gi correspond to finite
index subgroups of Gi.

Therefore, Theorem 3.6 and Lemma 2.8 imply that right hand side equals
ř

i β
inf
k pYi{Gi;Fq.

Finally, additivity of βinf in disjoint unions identifies this with βinf
k pY {G;Fq. �

Remark. Droms [26] and Duchamp–Krob [27] independently showed that RAAG’s
are residually torsion-free nilpotent. Since this property passes to subgroups, the
fundamental group of any compact special cube complex in Haglund and Wise’s
sense is residually torsion-free nilpotent.
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Remarks. Many of the results in this section (and stronger versions) were previ-
ously known. The fact that for a torsion-free nilpotent group N there is a local
homomorphism DFN Ñ F extending the augmentation map follows from [72, The-
orem 2.2], which implies that the complement of the augmentation ideal in FN

satisfies the Ore condition. The local ring in this case then consists of fractions
with representatives f{g where g is not in the augmentation ideal.

More generally, a skew field D containing and generated by FG is called universal
if any homomorphism α : FG Ñ D1 can be extended to a local homomorphism
α : D Ñ D1. Of course, if D is universal, there is a local homomorphism D Ñ F

extending the augmentation map, so we obtain the same statement as in Lemma
3.5. For instance, Passman [67] showed that if G is poly-Z, then DFG is a universal
division ring for FG.

Jaikin-Zapirain [44, Corollary 1.3] proved that a residually (amenable locally in-
dicable) group has a Hughes-free epic embedding, and this embedding is universal.
The core of his construction is a very general form of the approximation theorem by
locally indicable quotients. He also observed [44, Proposition 2.2] that a recent re-
sult of Gräter [35, Corollary 8.3] that Hughes-free embeddings are strongly Hughes-
free implies multiplicativity of the equivariant Betti numbers, see also [31, Lemma
6.3] for more details. Since the Linnell–Lück–Sauer theorem applies to amenable
locally indicable groups, it follows that Theorem 3.6 holds for residually (amenable
locally indicable) groups. For these groups, Fisher, Hughes and Leary in a recent
paper independently proved one inequality in Theorem 3.6 in [32, Theorem D], and
applied this to show non-vanishing homology growth of non-virtually fibered groups
in [32, Theorem 5.1].

For F “ Q, there is another canonical construction due to Linnell of DQG that
(conjecturally) works for all torsion-free groups G. The von Neumann algebra N pGq
is known to satisfy the Ore condition with respect to the set of non-zero divisors,
and DQG is the division closure of ZG inside of OrepN pGqq. The ring OrepN pGqq
can be identified with the ring UpGq of affiliated operators on ℓ2pGq. Since N pGq
has zero-divisors, OrepN pGqq is not a skew field, so it is not obvious that DQG is
one. On the other hand, Linnell showed that DQG being a skew field is equivalent
to Atiyah’s conjecture on integrality of L2-Betti numbers for torsion-free groups,
and this is known for many classes of groups. If H ă G and the Atiyah conjecture
holds for G, then it also holds for H , DQH naturally embeds as a sub-skew field of
DQG, and DQG is strongly Hughes-free. For general fields F, Jaikin-Zapirain and
Linton have conjectured that for any torsion-free group G there is an epic, strongly
Hughes-free, skew field DFG containing FG which is unique up to FG-isomorphism
[45, Conjecture 1, p.7].

4. Applications of the skew field theory

Let us collect some consequences of the skew field theory from the last section.

Lower homology growth as skew field Betti number.

Corollary 4.1. If X is a finite complex with residually torsion-free nilpotent fun-
damental group G, then

β˚pX ;Fq “ βinf
˚ pX ;Fq “ bG˚ p rX ;DFGq P Z.
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Proof. First, note that bG˚ p rX;DFGq is a dimension of a vector space over a skew
field, so it is an integer. Second, this dimension is equal to βinf

˚ pX ;Fq by Theorem
3.6. Third, since bG˚ p rX;DFGq is multiplicative by Lemma 3.3, the normalized βinf

˚
of finite covers of X are all equal to each other. Therefore β˚ “ βinf

˚ . This finishes
the proof. �

So, since the lower homology growth β is multiplicative, it can be thought of as a
multiplicative extension of the skew field Betti number from residually torsion-free
nilpotent fundamental groups to more general settings where there is no nice skew
field around.

Relation between Q and Fp. For a finite complex X let

τkpXqpX 1q :“ logtorHkpX 1q
|X 1 Ñ X |

denote the normalized log of the cardinality of the torsion of the integral homology
as a function on the poset of covers. By a lemma of Gabber ([1, Proposition 9.1])
τkpXq is a bounded function.

The universal coefficient theorem implies that

(1) 0 ď pβkpX ;Fpq ´ βkpX ;Qqq log p ď τkpXq ` τk´1pXq.
The integrality of the skew field Betti number leads to the following corollary.

Corollary 4.2. Suppose X is a finite complex with virtually residually torsion-free
nilpotent fundamental group G. Then for sufficiently large primes p we have

β
k
pX ;Fpq “ β

k
pX ;Qq “ b

p2q
k pXq.

Proof. This follows immediately from inequalities (1) and the fact that β
k

P 1
rG:G1sZ

for some finite index residually torsion-free nilpotent subgroup G1. �

Relation between β and β. We now explain how to use a result of Fisher [31]
to reconcile vanishing of upper and lower F-homology growth for finite aspherical
complexes whose fundamental groups embed in right-angled Artin groups. More
precisely, Fisher needs the groups to be residually finite rationally solvable (RFRS),
a condition used in Agol’s fibering criterion for 3-manifolds, see [2, Definition 2.1].

The main result in Fisher’s paper [31] is:

Theorem 4.3 ([31, Theorem 6.6]). Suppose X is a finite aspherical complex whose
fundamental group G is RFRS. Then there is a finite cover X 1 Ñ X and a map

X 1 Ñ S1 with homotopy fibre5 of type FPnpFq if and only if bGk p rX ;DFGq “ 0 for
all k ď n.

In other words, the numbers bGk p rX;DFGq are the only F-homological virtual
fibering obstructions for a finite aspherical complex X in this setting. By Corollary
2.3 of [2], RAAGs are RFRS and it is not hard to see that the RFRS property
passes to subgroups. This along with Theorem 2.10 implies:

Theorem B. Suppose X is a finite aspherical complex whose fundamental group
G embeds in a right-angled Artin group. Then β

k
pX ;Fq “ 0 for all k ď n if and

only if βkpX ;Fq “ 0 for all k ď n.

5In this case, this is just the infinite cyclic cover of X1 induced by the map to S1.
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Proof. By Corollary 4.1 we have bGk p rX;DFGq “ β
k
pX ;Fq ď βkpX ;Fq. Suppose that

bGk p rX ;DFGq “ 0 for all k ď n. Then, by Fisher’s theorem there is a finite cover
X 1 Ñ X and a further regular infinite cyclic cover X̂ 1 Ñ X 1 such that X̂ 1 is of type
FPnpFq. In other words, X 1 is homotopy equivalent to the mapping torus Tg of
the covering translation g : X̂ 1 Ñ X̂ 1. Therefore for k ď n we have, by Theorem
2.10, 0 “ βkpTg;Fq “ βkpX 1;Fq, and by multiplicativity of β we conclude that
βkpX ;Fq “ 0. �

Poincaré duality implies:

Corollary 4.4. If M is a closed aspherical manifold whose fundamental group em-
beds in a right-angled Artin group, then βąkpM ;Fq “ 0 if and only if βąk

pM ;Fq “ 0.

Remark. It follows from Jaikin-Zapirain’s work in [44] that Theorem B holds more
generally for finite aspherical complexes X with RFRS fundamental group, as RFRS
groups are residually (amenable locally indicable).

5. Graph products

In this section, we estimate the homology growth of graph products of finite
groups. In low dimensions, this will give us many examples of hyperbolic groups
where we have good control over the homology growth; in particular we can con-
struct hyperbolic groups where the homological growth depends on the coefficient
field.

Graph products of finite groups. Let L be a flag complex with vertex set S,
and suppose tGsusPS is a collection of nontrivial groups indexed by S. Let GL be
the corresponding graph product. Given a simplex σ in L, we let Gσ “ ś

sPσ Gs

denote the corresponding special subgroup of GL. Any graph product GL acts
naturally on a right-angled building of type pWL, Sq, which we now describe.

Let KL be the geometric realization of the poset of simplices of L. Then KL is
isomorphic to the cone on the barycentric subdivision of L, with the empty simplex
corresponding to the cone point. Let BKL be the geometric realization of the poset
of nonempty simplices of L, which corresponds to simplices in KL not containing
the cone point. Recall that a mirrored complex consists merely of a complex X and
a collection of subcomplexes tXsusPS for some index set S. There is a canonical
mirror structure on KL with mirrors tKsusPS ; the s-mirror Ks is the geometric
realization of the subposet of simplices containing the vertex s. This is isomorphic
to the star of s in the barycentric subdivision of L.

Let x be a point in KL, and let τ be a simplex containing x. Then τ corresponds
to a chain of simplices in L; let σpxq be the smallest element in this chain. We
define

UpGL,KLq “ GL ˆ KL{ „
where pg, xq „ pg1, x1q if and only if x “ x1 and gGσpxq “ g1Gσpxq.

If W – GL is a right-angled Coxeter group, then UpGL,KLq is the Davis com-
plex [20, Chapter 7], which we denote by ΣL. If GL is any graph product, then
UpGL,KLq is a right-angled building with apartments isomorphic to ΣL. In gen-
eral, GL acts on UpGL,KLq with strict fundamental domain KL. The stabilizers
of simplices are conjugates of Gσ for σ Ă L.

From now on, we assume that the groups Gs are all finite. Then the right-angled
building admits the structure of a locally finite CAT(0) cube complex, which we now
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Figure 1. The Davis chamber KL and its cubical structure. The
cone vertex in KL corresponds to the empty simplex in L, and
BKL consists of simplices/cubes not containing the cone vertex.

describe. Firstly, KL can be naturally identified with a CAT(0) cubical subcomplex
of r0, 1sS; KL is precisely the union of subcubes of r0, 1sS containing p0, 0, . . . , 0q
corresponding to the collections of vertices which span simplices in L. Note that
the link of the vertex p0, 0, . . . , 0q is isomorphic to L, and the vertices of each cube
can be identified with vertices of the barycentric subdivision of L.

For a vertex s the mirror Ks is the intersection of KL with the hyperplane xs “ 1.
It is naturally isomorphic to the cubical complex KLkpsq. There is another parallel
embedding of KLkpsq into KL as a subchamber, given by the intersection with the
coordinate hyperplane xs “ 0. We will use both embeddings in the paper.

This cubical structure extends to UpGL,KLq. The link of any vertex in UpGL,KLq
is isomorphic to the multiple join Lkpσq˚F1 ˚¨ ¨ ¨˚Fdimσ`1 of a link of some simplex
σ in L with finite discrete sets Fi (it suffices to consider vertices in KL, in which
case the vertex is the barycentre of σ and the sets Fi come from translates of KL

by the local group Gσ “
ś

sPσ Gs). These are all flag complexes since L is flag. By
[20, Theorem 18.3.1], UpGL,KLq is simply connected, hence UpGL,KLq is CAT(0)
by Gromov’s criterion.

Estimating homology growth of graph products.

Theorem 5.1. Let GL be a graph product of finite groups. Suppose Γ ă GL is a
torsion free finite index subgroup and let n denote its index. Then

|bipΓ;Fq{n ´ b̃i´1pL;Fq| ď 2|BKL|{min|Gs|

where |BKL| is the number of cubes in BKL and b̃˚ are the reduced Betti numbers.
Furthermore, if i “ dimL ` 1, then

bipΓ;Fq{n ď bi´1pL;Fq
Proof. Since all GL stabilizers are finite, Γ acts freely on U , so we want to estimate
the homology of X “ U{Γ. Let p : X Ñ KL denote the projection and let Y “
p´1pBKLq. X is tiled by copies of KL intersecting along Y .

For a cube σ in KL the number of preimages |p´1pσq| is n{|Gminσ|, where minσ

is the smallest element in the chain corresponding to σ, and Gminσ is the corre-
sponding special subgroup. In particular, the cubes in KL ´ BKL have n preimages,
and the cubes in BKL have at most n{min|Gs| preimages. Thus in the long exact
sequence

¨ ¨ ¨ Ñ HipY ;Fq Ñ HipX ;Fq Ñ HipX,Y ;Fq Ñ Hi´1pY ;Fq Ñ . . .
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the dimensions of the first and the last terms are bounded by |Y | ď n|BKL|{min|Gs|
and the relative term is isomorphic to ‘nHipKL, BKL;Fq, so its dimension is
nb̃i´1pL;Fq. Therefore,

|bipX ;Fq{n ´ b̃i´1pL;Fq| ď 2|BKL|{min|Gs|.

If i “ dimL ` 1, then HipY ;Fq “ 0 so we get bipΓ;Fq{n ď bi´1pL;Fq. �

Corollary 5.2. If GL is a graph product of finite groups, then

|β
i
pGL;Fq ´ b̃i´1pL;Fq| ď 2|BKL|{min|Gs|.

Remarks. A similar estimate in terms of thickness holds for torsion free uniform
lattices in chamber transitive buildings. For sufficiently large thickness L2-Betti
numbers of such buildings were computed in [22, Theorems 10.4(ii) and 13.8]. The
exact formula there has extra terms involving homology of certain subcomplexes of
BKL, however their contribution is of order 1/thickness.

For right-angled Artin groups AL, [7] gives the exact computation β
i
pAL;Fq “

b̃i´1pL;Fq, so |β
i
pGL;Fq ´ β

i
pAL;Fq| ď 2|BKL|{min |Gs|. We conclude that the

homology growth of a graph product of finite groups converges to the homology
growth of the corresponding right-angled Artin group as the minimum orders of
the groups go to infinity.

Flag no-square triangulations. A flag simplicial complex L is no-square if each
simplicial cycle of length four has a diagonal. If L is equipped with a piecewise
spherical metric with all edge lengths = π{2 (i.e. L is all right), then the flag no-
square condition is equivalent to L not having any closed geodesics of length ď 2π.
Suppose L is a flag no-square simplicial complex, and GL is a graph product of
finite groups based on L. In this case, the right-angled building UpGL,KLq admits
a GL-equivariant CATp´1q metric, and in particular, GL is a hyperbolic group
[61], see also [20, Corollary 18.3.10]. Note that any graph product of nontrivial
groups based on a 4-cycle contains free abelian subgroups of rank 2, hence if L is
not no-square then GL is not hyperbolic. The construction of the flag no-square
triangulations we require is due to Przytycki and Świątkowski.

Theorem 5.3 ([69, Corollary 2.14]). Let L be a simplicial complex of dimension
ď 3. Then there is a subdivision L1 of L which is flag no-square.

Remark. Theorem 5.3 only holds in dimensions ď 3, for instance there is no flag no-
square triangulation of any 4-dimensional homology sphere [20, Proposition I.6.6].
In this generality, this is due to Moussong. Vinberg had earlier shown the non-
existence of compact right-angled convex polytopes in hyperbolic n-space for n ą 4

(the dual of the boundary would be a flag no-square triangulation of Sn for n ą 3).

Dependence on the coefficient field. Note that combining Theorem 5.1 with
Theorem 5.3 immediately gives some low-dimensional hyperbolic groups with β

i
pG;Fpq ą

β
i
pG;Qq (for example for p “ 2, we can take GL to be a graph product of large

finite groups over a flag no-square triangulation of RP 2). In fact, a construction of
flag no-square triangulations due to Osajda [66] gives examples in all dimensions:

Theorem 5.4. For any prime p and i ě 2 there is a hyperbolic right-angled Coxeter
group W with

β
i
pW ;Fpq ą β

i
pW ;Qq.



26 GRIGORI AVRAMIDI, BORIS OKUN, AND KEVIN SCHREVE

Proof. Suppose that we have a flag no-square L with bipL;Fpq ą bipL;Qq. If GL

is a graph product of pZ{2qN over L, then for N " 0 we have β
i`1

pGL;Fpq ą
β
i`1

pGL;Qq by Theorem 5.1. The group GL is also a right-angled Coxeter group
with flag no-square nerve L1 (obtained from L by replacing each vertex with an
pN ´ 1q-simplex). The commutator subgroup of GL is the fundamental group of a
locally CATp´1q cube complex XL1 where the links are all isomorphic to L1. By
Theorem 5.1 we have that bi`1pXL1 ;Fpq ą bi`1pXL1 ;Qq.

Now, the “simplicial thickening” of a cube complex C is a simplicial complex
ThpCq with the same vertex set, where vertices span a simplex if and only if they
are contained in the same cube. It is easy to see that ThpCq is homotopy equivalent
to C. Osajda showed that if the link of each vertex in C is flag no-square, then
the link of each vertex in ThpCq is flag no-square [66, Lemma 3.2]. Therefore,
the thickening ThpXL1 q has flag no-square links. By passing to a further finite
cover, we can assume that the injectivity radius is large, which implies it is flag
no-square. Therefore, we can use ThpXL1 q as our next nerve to get dependence on
field coefficients in one higher dimension. �

Remark. Theorem 5.3 only holds in dimensions ď 3, for instance there is no flag no-
square triangulation of any 4-dimensional homology sphere [20, Proposition I.6.6].
In this generality, this is due to Moussong. Vinberg had earlier shown the non-
existence of compact right-angled convex polytopes in hyperbolic n-space for n ą 4

(the dual of the boundary would be a flag no-square triangulation of Sn for n ą 3).
This is a barrier to producing higher dimensional hyperbolic examples without

the Fp-Singer property. On the other hand, in [47], Januszkiewicz and Świątkowski
constructed flag no-square triangulations of n-dimensional pseudomanifolds for any
degree n. A corollary is the existence of word-hyperbolic right-angled Coxeter
groups of arbitrarily high cohomological dimension.

The top-dimensional homology of the examples in [47] does not depend on the
coefficient field. It would be interesting if one could construct d-dimensional, flag
no-square L with HdpL;Fpq ‰ 0 and HdpL,Qq “ 0. Osajda [66] describes a simple
construction of flag no-square L with HkpLq ‰ 0 for any given k, however this
homology does not occur in the top dimension of L.

Virtual duality groups. We also recall the criterion for a graph product of finite
groups to be a virtual duality group. This will be used in the proof of Theorem F.

Theorem 5.5 ([24, Corollary 6.4]). A graph product GL of finite groups over a flag
complex L is a virtual duality group of dimension n if and only if for every simplex
σ of L (including the empty simplex), H˚pL´σ;Zq is torsion-free and concentrated
in dimension n ´ 1.

In particular, for any flag triangulation of S3, a graph product of finite groups
GS3 is a virtual duality group of dimension 4.

6. Thickenings

In this section we construct our seed manifold N by building a manifold model
for the classifying space of a sufficiently deep torsion free finite index subgroup in
an appropriately chosen graph product. We begin with a general statement, which
tells us when we can thicken these classifying spaces to manifolds of less than twice
their dimension.
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Theorem 6.1. Let GL be a graph product of finite groups based on a pd ´ 1q-
dimensional flag complex L. If d ą 3 and Hd´1pL;F2q “ 0 then GL has a finite
index subgroup ΓL which is the fundamental group of a compact aspherical p2d´1q-
manifold with boundary.

Before proving this theorem, we need to recall a number of previous results and
constructions. We will construct aspherical manifolds using the reflection group
method. To that end, the first step is to embed a finite index subgroup of the graph
product GL into a right-angled Coxeter group based on a flag complex OL, the
octahedralization of L as in the Introduction. This leads to the first key ingredient
in our construction, which is commensurability between different graph products
over the same flag complex. Recall that two groups G and H are commensurable if
they have isomorphic finite index subgroups. They are strongly commensurable if
these finite index subgroups have the same index in G and H . Januszkiewicz and
Świątkowski proved the following:

Theorem 6.2 ([46, Theorem 1]). Suppose that GL and G1
L are two graph products

of groups over the same flag complex L. Suppose that for all v P S, the group Gv is
strongly commensurable to G1

v. Then GL is strongly commensurable to G1
L.

We shall also need the following lemma, which follows immediately from the
normal form for graph products.

Lemma 6.3. Suppose that GL is a graph product of groups over a flag complex L,
with vertex set S. For each s P S, choose a subgroup Hs of Gs. Then the graph
product HL corresponding to the Hs embeds as a subgroup of GL.

These imply the following corollary.

Corollary 6.4. A graph product GL of finite groups over a flag complex L has a
torsion free finite index subgroup ΓL which embeds into WOL.

Proof. By Lemma 6.3 GL embeds into the graph product over L of direct products
Gv ˆ D8, which by Theorem 6.2 is strongly commensurable to the graph product
over L of D8 of infinite dihedral groups, since both Gv ˆ D8 and D8 contain Z

as a subgroup of index 2|Gv|. The graph product of D8 has a natural structure
of a right-angled Coxeter group WOL, hence its commutator subgroup has finite
index and torsion-free. Therefore intersecting a common finite index subgroup of
the latter two graph products with this commutator subgroup and then further
intersecting with GL produces the desired ΓL. �

In order to construct a contractible n-manifold on which the reflection group
WOL (and hence ΓL) acts, we embed this group into the reflection group of a
flag triangulation of an pn ´ 1q-sphere WSn´1 . This brings us to the second key
ingredient, which is a van Kampen style embedding theory for octahedralizations.
To construct “low-dimensional” manifold models for BΓL, we use the “if” direction
of the following embedding theorem for octahedralizations that we proved with
Davis in [6]:

Theorem 6.5 ([6]). Let L be a pd ´ 1q-dimensional flag complex. If d ‰ 3,
OL embeds as a full subcomplex of a flag triangulation of S2d´2 if and only if
Hd´1pL;F2q “ 0.
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Note that this theorem implies an embedding in one less dimension than general
position guarantees. Since the group ΓL will have infinite index in the Coxeter
groups used to build the contractible manifold, the construction naturally leads
to non-compact aspherical manifolds. To perform the reflection trick in the next
section, we need to compactify such manifolds by adding a boundary. A complete
obstruction for doing so was developed by Siebenmann in his thesis [70]. Fortu-
nately, when d ą 3, one arrives at a manifold whose end has the same fundamental
group as its interior and the following theorem shows that the obstruction vanishes.

Theorem 6.6 (π–π compactification theorem). Suppose Nn is a one-ended PL
manifold, n ą 5. Also suppose π1 of the end ǫ is stable and the natural map
π1pǫq Ñ π1pNq is an isomorphism. Then Nn is PL homeomorphic to the interior
of a compact PL manifold with boundary if and only if it has finite homotopy type.

The π–π theorem follows directly from the results in [70] but is not explicitly
stated there, so we give the derivation below.

Proof of Theorem 6.6. The only if direction is clear, so we suppose that N has finite
homotopy type. Then our isomorphism assumption implies that π1pǫq is finitely
presented, and by [70, Theorem 3.10] the end has arbitrarily small 1-neighborhoods.
This means that we have an arbitrarily small connected submanifold pV, BV q with
connected boundary and compact complement of the interior, and the inclusions
induce isomorphisms

π1pBV q – π1pV q – π1pǫq.
Since π1pǫq – π1pNq by our assumption, the van Kampen theorem applied to the
decomposition N “ pN ´ V̊ q YBV V shows that also π1pN ´ V̊ q – π1pBV q. Then
[70, Complement 6.6(b)] implies that V is finitely dominated, and [70, The Sum
Theorem 6.5] implies that the finiteness obstruction for V vanishes, and the claim
follows from the Main Theorem of [70]. �

Remark. We want to emphasize that in the π–π situation one does not need to
assume that the end is finitely dominated, but gets it for free when the interior is
finitely dominated.

We are now ready for the proof of the thickening theorem.

Proof of Theorem 6.1. By Corollary 6.4, we have a torsion free finite index sub-
group ΓL of GL which is also a subgroup of WOL. Theorem 6.5 gives us an embed-
ding of OL as a full subcomplex of a flag triangulated sphere S2d´2. Since OL is a
full subcomplex, WOL is a subgroup of WS2d´2 and on the level of Davis complexes
ΣOL Ă ΣS2d´2 is a WOL-stable subspace.

The quotient N :“ ΣS2d´2{ΓL is an aspherical p2d ´ 1q-manifold with funda-
mental group ΓL. This manifold has finite type since it is homotopy equivalent to
the finite complex UpGL,KLq{ΓL, but the manifold is not itself compact. To fix
this, we will use the fact that N has another d-dimensional classifying space for ΓL

embedded inside of it, namely the d-complex Y :“ ΣOL{ΓL.
Pick an exhaustion Ci of Y by finite subcomplexes. For each Ci pick a closed

PL regular neighborhood Ui in N such that Ui is contained in the interior of Ui`1.
Then N 1 “ Ť

Ui is an open p2d ´ 1q-manifold containing Y and the embedding
Y ãÑ N 1 is a homotopy equivalence. Since d ą 3, Ci has codimension ě 3 in N 1, so
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the map pN 1 ´Ciq Ñ N 1 is an isomorphism on π1, and the same is true for the map
from the complement of the regular neighborhood pN 1 ´ Uiq Ñ N 1. Therefore π1

of the end ǫ of N 1 is stable and the natural map π1pǫq Ñ π1pN 1q is an isomorphism.
Moreover the dimension 2d ´ 1 is greater than five, and N 1 is homotopy equivalent
to Y and hence to N , so it has finite type. Therefore, it follows from Theorem
6.6 that N 1 is PL homeomorphic to the interior of a compact PL manifold with
boundary. This finishes the proof. �

The last paragraph of the proof only uses the fact that Y has finite type and has
codimension three inside a manifold of dimension greater than five. So, it gives the
following result which may be of independent interest.

Proposition 6.7. Fix n ą 5. Let Y d be a complex of dimension d ď n ´ 3. If Y
has finite type and PL embeds in an n-manifold, then Y is homotopy equivalent to
a compact PL n-manifold with boundary.

Construction of the 7-dimensional seed manifold. Finally, combining Corol-
lary 5.2, Theorem 5.3, and Theorem 6.1 gives the following:

Theorem 6.8. For any odd prime p, there is a compact, aspherical 7-manifold with
boundary pN, BNq such that π1pNq is special hyperbolic and β

4
pπ1pNq;Fpq ‰ 0.

Proof. Let L be a flag no-square triangulation of the complex S2 Yp D
3, where D3

is glued onto S2 by a degree p map. This triangulation exists by Theorem 5.3. Let
GL be a graph product of large finite groups over this L. Then GL is virtually
special hyperbolic and for any finite index subgroup ΓL we have β

4
pΓL;Fpq “

β
4
pGL;Fpq|GL{ΓL| ‰ 0 by Corollary 5.2. We can pick ΓL to be special and, by

Theorem 6.1, to be π1 of a compact aspherical 7-manifold N7. �

7. A hyperbolic reflection group trick

In this section, we describe how to build a closed, aspherical manifold M out
of copies of a compact aspherical manifold with boundary N . The idea is to com-
bine the Davis reflection group trick with the strict hyperbolization procedure of
Charney–Davis [18]; it has the advantage of preserving hyperbolicity (and as we
shall see, a host of other properties including virtual specialness). The output is
very similar to the relative strict hyperbolization procedure of Belegradek [10, 11],
which combines the relative hyperbolization of Davis–Januszkiewicz–Weinberger
[23] with strict hyperbolization. Our hyperbolic reflection group trick has one ma-
jor difference with Belegradek’s procedure: our output has many disjoint copies of
the input N , whereas his output has only one. This makes our construction easier
to work with, but doesn’t give all of the applications in [10, 11].

Strict hyperbolization. Charney and Davis define a hyperbolization procedure
that converts any piecewise Euclidean, locally CAT(0), cube complex K of dimen-
sion ď n into a piecewise hyperbolic, locally CATp´1q, polyhedron hK (the output
hK depends on n). Roughly speaking, this replaces every n-cube with a hyper-
bolic n-manifold with boundary so that k-cubes are replaced by totally geodesic
k-dimensional submanifolds. Charney and Davis construct the hyperbolized n-cube
CDn by cutting a closed arithmetic hyperbolic n-manifold An along a suitable col-
lection of codimension-one totally geodesic submanifolds. Let Bn denote the finite
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Coxeter group of type Bn—the symmetry group of the cube r0, 1sn. More precisely,
Charney and Davis prove:

Theorem 7.1 ([18, Theorem 6.1]). For each n ą 0, there is a closed connected
hyperbolic n-manifold An, a collection W1, . . . ,Wn of codimension-one closed con-
nected submanifolds, and an isometric action of Bn on An satisfying:

‚ Wi is a component of the fixed set of a standard generator of Bn.
‚ Each Wi is totally geodesic.
‚ The Wi’s intersect orthogonally.
‚ An and Wi are orientable.
‚ W1 X ¨ ¨ ¨ X Wn is a single point tyu.
‚ Bn fixes y and the representation on TyA

n is equivalent to the standard
representation.

Cutting An along the tWiu leaves a compact, connected, orientable hyperbolic
n-manifold with corners CDn with isometric Bn action. Each Wi is itself cut by
other Wj ’s, the boundary of CDn contains two disjoint copies of each cut-open Wi

and is covered by these copies. A codimension k face of CDn is a nonempty k-fold
intersection of these cut-open copies.

Theorem 7.2 ([18, Corollary 6.2]). The manifold CDn has the following properties:

‚ There is a degree one map f : CDn Ñ r0, 1sn which induces a Bn-equivariant
isomorphism between the face posets of CDn and r0, 1sn.

‚ Each codimension-one face of CDn is connected and totally geodesic, and
the faces intersect orthogonally.

‚ Each 0-dimensional face is a single point.

Note that although Wi are totally geodesic and connected, they are not nec-
essarily convex because the geodesics between points in An are not unique. So
lower-dimensional faces of CDn are totally geodesic submanifolds, which however
are generally not connected.

Given a cube complex K of dimension ď n, thought of as a collection of cubes
glued via isometries between faces, Charney and Davis define the n-dimensional
hyperbolization hK of K by gluing via isometries copies of faces of CDn in the
same combinatorial pattern. In general this relies on the Bn isometric action and
the equivariance of the face posets isomorphism. If K is foldable, i.e. K admits a
cellular map p : K Ñ r0, 1sn such that the restriction to any cell is a combinatorial
isomorphism, then hK is the same piecewise hyperbolic polyhedron as the fiber
product

hK “ tpk, xq P K ˆ CDn | ppkq “ fpxqu
Of course, there is a choice of CDn, but for any such choice the hyperbolization

procedure satisfies the following:

Theorem 7.3 (Charney–Davis [18, Corollary 7.1.]). Let K be a locally CAT p0q
cube complex of dimension ď n. Then there is a piecewise hyperbolic, locally
CATp´1q space hK, and a map q : hK Ñ K such that:

(1) For each k-cube Ck in K, q´1pCkq is isometric to a k-dimensional face of
CDn. If J is a subcomplex of K, then q´1pJq is isometric to hJ .

(2) The link of q´1pCkq is isometric to the link of Ck in K.
(3) h(a point) = a point.
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(4) If J is a totally geodesic subcomplex of K, then hJ is totally geodesic in
hK.

Recall that if K is a locally CAT(0) cube complex and J a subcomplex, then
there is an easy to verify link condition to check that J is totally geodesic. In
particular, J is totally geodesic if for each vertex v P K, LkJpvq is a full subcomplex
of LkKpvq; i.e. if the vertices of a simplex are contained in LkJ pvq, then that simplex
is contained in LkJ pvq.
A hyperbolic reflection group trick. Suppose pN, BNq is a manifold with
boundary, and BN is triangulated as a flag simplicial complex (this can always
be ensured by taking a barycentric subdivision). For the moment, we forget about
the manifold N , and concentrate on the flag triangulation of the boundary, which
we will denote by B. It determines a right-angled Coxeter group WB, and hence
a locally CAT(0) cube complex PB whose fundamental group is the commutator
subgroup of WB. The complex PB can be also described as the basic construction
UppZ{2q|B0|,KBq, so it folds onto the Davis chamber KB.

If we remove a neighborhood of each cone vertex and replace with a copy of N ,
this is precisely the output of a right-angled Davis reflection group trick. However,
the fundamental group will generally not be hyperbolic.

Instead, we first apply the Charney–Davis strict hyperbolization procedure to
PB. This produces a piecewise hyperbolic locally CATp´1q polyhedron hPB. Since
the strict hyperbolization preserves vertices and links it has the same number of
singular vertices as PB and the link of each one is still isomorphic to B.

We now choose ǫ small enough so that in CDn the ǫ-ball around a vertex is
isometric to the intersection of the ǫ-ball in Hn with an octant. We resolve the
singularities by removing ǫ-neighborhoods of each vertex in hPB and replacing them
with copies of N .

This produces a closed manifold M equipped with a map to hPB. When we want
to emphasize the building blocks involved in the construction of M, we will also
denote it by hPN

B .
In some sense, the rest of the paper is concerned with showing that, for an

appropriate choice of Charney–Davis piece CDn and triangulation B, the ambient
manifold M inherits many properties from its seed N .

Resolved chambers. We let hKN
B denote the hyperbolized Davis chamber hKB

with a ǫ-neighborhood of the cone point replaced with a copy of N , and similarly
we denote by KN

B the same procedure applied to the original Davis chamber. We
will refer to these as resolved (hyperbolized) Davis chambers.

The symmetry of PB lifts to M, so M can be described as a basic construction
obtained by reflecting around hKN

B using pZ{2q|B0|. The mirrors are hyperboliza-
tions of the mirrors Kv of the Davis chamber for v P B, and we will denote them by
hpKvq. They are isomorphic to hKLkpvq.

Universal cover of M. Since M is a basic construction UppZ{2q|B0|, hKN
B q, its

universal cover ĂM is itself a basic construction, where the base space is the universal
cover of hKN

B and the mirror structure is lifted from the mirror structure downstairs.
This is a general fact about basic constructions, and we review the general statement.
Let pX, tXsusPSq be a mirrored space, W the corresponding RACG, and UpW,Xq
the associated basic construction. Let π : rX Ñ X be the universal cover of X , and
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pN, BNq
PB

hPB hPN
B

Figure 2. The construction of hPN
B . Starting with a triangulation

of B, we first construct a locally CAT(0) cube complex PB and
then a locally CAT(-1) space hPB where the vertices all have links
isomorphic to BN . Then, each of these links is replaced with a
copy of N to form hPN

B .

let rS be the set of components of preimages of Xs over all s P S. We will denote
such a component of π´1pXsq by s̃. The map π induces a natural map rS Ñ S

sending each s̃ to s. We define a RACG ĂW with generating set rS as follows: for
s̃ ‰ t̃, set ms̃t̃ “ 2 if the lifts s̃ and t̃ intersect, and set ms̃t̃ “ 8 otherwise; it is
clear that π determines a group homomorphism ĂW Ñ W . Let rU “ UpĂW, rXq be
the corresponding basic construction.

By [20, Theorem 9.1.3], rU is simply connected, and the map pπ, πq : rU Ñ
UpW,Xq is the universal covering map.

The π1pXq-action on rX induces an action of π1pXq on ĂW by automorphisms, so
we can form the semidirect product ĂW ¸ π1pXq. This semidirect product acts on
rU by setting

pw̃, gq ¨ pw̃1, xq “ pw̃gpw̃1q, gxq.
in fact, the semidirect product is precisely the group of lifts of the W -action to rU .
Therefore, there is an exact sequence

1 Ñ π1pUpW,Xqq Ñ ĂW ¸ π1pXq Ñ W Ñ 1.

Note that for M, the group W is finite, so π1pMq is finite index in ĂW ¸π1phKN
B q.



HOMOLOGY GROWTH, HYPERBOLIZATION, AND FIBERING 33

Basic properties of the hyperbolic reflection group trick (Proof of The-
orem D(1)–(4)). We collect some basic properties of the hyperbolic reflection
group trick in the theorem below. It follows from previous work of Davis–Januszkiewicz–
Weinberger [23] and Belegradek [11], but since our construction is slightly different,
we provide a sketch of the proof.

Theorem D(1)–(4). The manifold M satisfies the following properties:

(1) M retracts onto N , hence π1pNq injects into π1pMq.
(2) If N is aspherical, then M is aspherical.
(3) If N is F-aspherical, then M is F-aspherical.
(4) π1pMq is relatively hyperbolic relative to the collection of subgroups corre-

sponding to the 2|B
0| copies of N . Therefore, if π1pNq is hyperbolic, then

π1pMq is hyperbolic.

Proof. The manifold M folds onto hKN
B , which maps onto KN

B fixing N , which in
turn deformation retracts onto N . This induces a retraction of M onto N , and
hence an injection π1pNq Ñ π1pMq.

Thus, in the universal cover ĂM of M, N lifts to copies of its universal cover
rN . If we replace each copy of rN with a cone on its boundary B rN , we obtain a
branched cover hP B of hPB, and π1pMq now acts with cone vertex stabilizers equal
to conjugates of π1pNq. Since rN is simply connected, the map ĂM Ñ hP B collapsing
copies of rN to cone points is a π1-isomorphism, so hP B is simply connected.

Lifting the metric from hPB gives hP B the structure of a piecewise hyperbolic
space. The links of the cone vertices are disjoint copies of B rN , which covers BN ,
and hence are flag complexes. Therefore, hP B is locally CATp´1q as away from
the cone points hP B is locally isometric to hPB. Since hP B it is simply connected
it is CATp´1q and therefore contractible. Now, if N is aspherical, then each rN is
contractible and the collapse map is a homotopy equivalence, so ĂM is contractible,
and therefore M is aspherical.

Similarly, if N is F-aspherical, then each rN is F-acyclic and the collapse map is
an F-homology equivalence, so ĂM is F-acyclic, which means that M is F-aspherical.

Next, since the 1-skeleton of hP B of quasi-isometric to hP B, it is a δ-hyperbolic
graph. To prove relative hyperbolicity we need to show that this graph is fine in
the sense of Bowditch [15]. This amounts to showing that for each cone, if we delete
the cone point from the graph, then in the metric of the deleted graph any bounded
subset of the vertices in the link hP B is finite. Since the cones are convex in hP B
(they are ǫ-balls), and since the nearest point projection onto a convex subset of a
CATp´1q space is distance decreasing, the distance in the deleted graph is bounded
from below by the inner metric on B rN . The claim now follows from the fact that
π1pNq acts properly and cocompactly on B rN .

Finally, if π1pNq is hyperbolic, and π1pMq is hyperbolic relative to π1pNq, it
follows [29, p. 822] that π1pMq is hyperbolic. �

8. Virtual specialness of π1pMq
A group G is cocompact special if it is the fundamental group of a compact special

cube complex in Haglund and Wise’s sense [37]. All our special cube complexes
will be compact, so following [36] we will drop the word ‘cocompact’. We will be
mostly concerned with virtually special hyperbolic groups. By Agol’s theorem [3],
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these are precisely the hyperbolic groups which admit cocompact proper actions
on CAT(0) cube complexes. For example, the hyperbolic graph products of finite
groups considered in Section 5 are virtually special.

In this section, we will show that the fundamental groups of strict hyperboliza-
tions hPL are virtually special. We also show that if a seed manifold N has virtually
special hyperbolic fundamental group then so does the manifold M obtained via
the hyperbolic reflection group trick. One utility of this is that a virtually special
hyperbolic group G virtually retracts onto any quasi-convex subgroup H ă G. This
will let us do cutting arguments and estimate the homology growth of M from that
of its constituent pieces in Section 9.

Virtual specialness of Charney–Davis pieces. We start by recalling that the
arithmetic manifold An, and hence CDn, has virtually special fundamental group.
The manifold An is constructed via arithmetic methods, and involves some number
of choices. We can take it to be the quotient of the hyperbolic space Hn by a
congruence subgroup of the orthogonal group of the quadratic form

´1 `
?
5

2
x2
0 ` x2

1 ` x2
2 ` ¨ ¨ ¨ ` x2

n

over the ring Z

”
1`

?
5

2

ı
. This is a uniform arithmetic lattice of simplest type (we

give a definition and discuss some properties of such lattices in Section 10.)
Moreover, as pointed out in [17], for n ď 7 the orthogonal group is virtually

a Coxeter group. The manifolds Wi that we cut An along are images under the
covering projection of hyperplanes in Hn given by setting xi “ 0 for 1 ď i ď n.
Charney and Davis showed that if Γ is any torsion-free congruence subgroup of the
orthogonal group, then all the conditions of Theorem 7.1 hold. In [38], Haglund
and Wise showed virtual specialness for such lattices, see also [13] for an alternative
approach.

Theorem 8.1 ([38],[13]). Uniform arithmetic lattices in Hn of simplest type are
virtually special.

The group π1pCDnq acts on a right-angled convex polyhedron in Hn with in-
finitely many sides, precisely the intersection of halfspaces bounded by certain
translates of the hyperplanes xi “ 0. This implies that π1pCDnq is a quasicon-
vex subgroup of π1pAnq, see also [53, Lemma 5.8]. Since quasiconvex subgroups of
hyperbolic virtually special groups are virtually special, we have

Corollary 8.2. The fundamental group of a Charney–Davis piece is virtually spe-
cial.

Virtual specialness of hyperbolized cones. Our manifold M is constructed
by reflecting hKN

B ; so we first show that π1phKN
B q is virtually special. We begin

by showing that the fundamental groups of strictly hyperbolized cones are virtually
special, and then do the resolved case.

Let L be a flag complex, and let hKL be the corresponding hyperbolized cone.
If A Ă L is a full subcomplex, then by the Link Condition, KA is a totally geodesic
cubical subcomplex of KL. Hence, by Theorem 7.3(4), hKA is a totally geodesic
subspace of hKL, and even though KA and KL are contractible, the hyperboliza-
tions hKA and hKL have quite complicated topology.
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Note that if v is a vertex of L, then the above subcomplex hKLkpvq is different
than the mirror hpKvq used to reflect the hyperbolized Davis chamber around in
the previous section. Indeed, that subcomplex was a hyperbolization of the cubical
star of the vertex rvs in BKL, whereas this is the hyperbolization of the subcomplex
of cubes containing the cone point and corresponding to simplices in Lkpvq.
Theorem 8.3. Let L be a finite pk ´ 1q-dimensional flag complex, and suppose
that hKL is obtained by applying the n-hyperbolization procedure to KL with n ě k.
Then the connected components of hKL have virtually special fundamental group.

To prove this, we use the following result of Groves and Manning, which gener-
alizes Wise’s notion of a quasiconvex hierarchy for virtually special groups.

Theorem 8.4 (Groves–Manning [36, Theorems A and D]). Suppose that G is a
hyperbolic group acting cocompactly on a CATp0q cube complex X so that vertex
stabilizers are quasi-convex and virtually special. Then G is virtually special.

Proof of Theorem 8.3. We induct on the number of vertices of L. If L is a simplex,
then KL is a single cube. Therefore, the fundamental group of each component of
hKL is a Charney–Davis piece (or face of such), and so by assumption is virtually
special. Otherwise, we can find a vertex s such that Stpsq is not equal to L, which
gives us a decomposition of L into proper full subcomplexes:

L “ Stpsq YLkpsq pL ´ sq.
This decomposition induces a decomposition of KL into totally geodesic cubical
subcomplexes

KL “ KStpsq YKLkpsq
KL´S,

and hence a decomposition of hKL into totally geodesic subcomplexes

hKL “ hKStpsq YhKLkpsq
hKL´s.

Now, take a connected component of hKL. This is a union of components of
hKStpsq and hKL´s meeting along components of hKLkpsq. This union gives us
a graph of groups decomposition with vertex groups the fundamental groups of
components of hKStpsq and components of hKL´s, and edge groups the fundamental
groups of components of hKLkpsq. By induction on the number of vertices, these
fundamental groups are virtually special, and they are all quasiconvex as they
correspond to totally geodesic subcomplexes of hKL. The action on the associated
Bass–Serre tree and Theorem 8.4 imply that each component of hKL has virtually
special fundamental group. �

Unnatural embeddings. We now adapt the argument in the previous subsec-
tion to the resolved case. The idea is exactly the same; we inductively cut along
hyperbolized walls hKLkpvq for v a vertex of B.

In general, there is no canonical way of embedding hKLkpvq into hKN
B . However,

given any vertex v of B, there is an “unnatural” embedding hKLkpvq Ñ hKN
B which

sends the cone point of hKLkpvq to v (and a neighborhood of the cone point to the
star of v in B).

To describe the result of the cutting we need to consider a more general situation.
Each full subcomplex A of B determines a subspace hKN

A of hKN
B , obtained by

replacing an ǫ-neighborhood of the cone point in hKA with a copy of N glued
along A.
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v

Figure 3. An “unnaturally” embedded hKLkpvq inside of hKN
B .

As before, given any vertex v of A, there is again an unnatural embedding of
hKLkApvq into hKN

A (and hence into hKN
B ) sending the cone point of hKLkApvq to

v.

Lemma 8.5. For any full subcomplex A of B and any vertex v P A, the compo-
nents of the unnaturally embedded walls hKLkApvq are π1-injective in hKN

B , and the
corresponding subgroups are quasiconvex.

Proof. A priori hKLkApvq may be disconnected, and hence the image of the un-
natural embedding into hKN

B may be disconnected as well. However there is a
distinguished component of the image containing v. This component is unnatu-
rally embedded, and the embeddings of the other components are unchanged, i.e.
including these into hKN

B and composing with the collapse map q : hKN
B Ñ hKB

agrees with the natural embedding into hKB. The intersection of the distinguished
component with N is the subcomplex Stpvq, which is contractible, and therefore
the composition with the collapse map is homotopic to the natural embedding into
hKB. Therefore, the restriction of q˚ : π1phKN

B q Ñ π1phKBq to π1phKLkApvqq is an
isomorphism for each component of hKLkApvq.

Since the groups π1phKN
B q and π1phKBq are hyperbolic and hKLkApvq is totally

geodesic in hKd, the quasiconvexity claim follows from the following general lemma:

Lemma 8.6. Let G and H be hyperbolic groups, φ : G Ñ H a homomorphism, and
K a subgroup of G. If φpKq is quasiconvex in H and φ|K is an isomorphism, then
K is quasiconvex in G.

Proof. Note that K – φpKq which is quasiconvex in H and hence finitely generated.
Given any subgroup K of G, the inclusion map is Lipschitz with respect to the
word metrics, so we only have to check lower bounds. Let k and k1 be elements
in K. Then dGpk, k1q is linearly bounded from below by dHpφpkq, φpk1qq. Since
φpKq is quasiconvex, dHpφpkq, φpk1qq is bounded from below by a linear function in
dφpKqpφpkq, φpk1qq. Since φ|K is an isomorphism it induces a quasi-isometry between
K and φpKq. These combine to give a lower bound for dGpk, k1q by a linear function
in dφpKqpφpkq, φpk1qq. �

Virtual specialness of resolved hyperbolic cones. To extend Theorem 8.3 to
the resolved case, we need the following well-known lemma:
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Lemma 8.7 ([16, Proposition 1.2]). Let G be a hyperbolic group which splits as a
finite graph of groups. If each edge group is quasiconvex, then each vertex group is
quasiconvex.

Theorem 8.8. If π1pNq is a virtually special hyperbolic group, then π1phKN
B q is

virtually special hyperbolic.

Proof. We inductively cut along these unnaturally embedded walls in hKN
B . At

each inductive step, we are cutting hKN
A along an unnaturally embedded hKLkApvq

for some full subcomplex A. Let XA denote the component of hKN
A containing

N . The components of hKN
A other than XA are the same as components of hKA,

and hence have virtually special fundamental group by Theorem 8.3. Therefore, we
focus on the cutting’s effect on XA.

Removing hKLkApvq decomposes XA into a graph of spaces where the edge
spaces are components of hKLkApvq, and the vertex spaces are either components of
hKStApvq or XA´v. The components of hKLkApvq and hKStApvq again have virtually
special π1 by Theorem 8.3, and π1pXA´vq is virtually special by induction on the
number of vertices; the base case here is when A is a disjoint union of simplices, so
π1pXAq is a free product of π1pNq and fundamental groups of Charney–Davis pieces,
and hence is hyperbolic and virtually special. By Lemma 8.5 the edge groups are
quasiconvex, and hence by Lemma 8.7 so are the vertex groups. Again, by Theorem
8.4 we are done. �

Hyperbolic reflection group trick preserves virtual specialness (Proof of
Theorem D(5)). We now extend this to our hyperbolic reflection group trick M.

Theorem D (5). If π1pNq is virtually special hyperbolic, then π1pMq is virtually
special hyperbolic.

Proof. We have that M is obtained by reflecting around hKN
B using pZ{2q|BN0|.

We saw in Section 7 that ĂM is a basic construction obtained by reflecting around
the universal cover of hKN

B , where the RACG ĂW has generators corresponding to
components of preimages of mirrors in hKN

B . There is a natural action of π1phKN
B q

on ĂW induced by the action on the universal cover of hKN
B , and π1pMq is a finite

index subgroup of ĂW ¸ π1phKN
B q.

Now, let rΣ denote the corresponding Davis complex for ĂW , equipped with its
Coxeter cellulation (in particular, the 1-skeleton of rΣ is identified with the Cayley
graph of ĂW ). This gives rΣ the structure of a finite dimensional, locally infinite,
CAT(0) cube complex.

The group π1phKN
B q acts on rΣ via its action permuting the generators of ĂW ,

and this extends to an action of ĂW ¸π1phKN
B q on rΣ. There is one orbit of vertices,

and a finite number of orbits of edges since there are a finite number of π1phKN
B q-

orbits of mirrors upstairs. Since rΣ is finite dimensional this implies the action is
cocompact. The stabilizer of a vertex is conjugate to π1phKN

B q. We have shown
that this is virtually special, and since ĂW ¸ π1phKN

B q retracts onto π1phKN
B q, it is

quasiconvex. Therefore, we are done by Theorem 8.4. �

Virtual retractions. The same argument applied to hKL in place of hKN
B shows

that the fundamental group of each hPL is hyperbolic and virtually special. We
record a corollary of the fact that the hPL have virtually special fundamental groups
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and work of Haglund–Wise [37, Sections 6 and 7] that we will use in the next section
in order to prove Mayer–Vietoris inequalities for homology growth of manifolds
obtained by the hyperbolic reflection group trick.

We need a few simple observations, which are true for general complexes. Given
a map f : Z Ñ X we say that Z is a virtual retract of X if there exist a finite cover
p : Xr Ñ X , an injective lift g : Z ãÑ Xr of f , and a retraction r : Xr Ñ Z such
that rg “ idZ .

Lemma 8.9. Suppose f : Z Ñ X and Z consists of finitely many components Zi.
If each Zi is a virtual retract of X, then Z is a virtual retract of X.

Proof. By assumption, there are finite covers Xi Ñ X , lifts gi : Zi ãÑ Xi and
retractions ri : Xi Ñ Zi. These assemble to a lift Z “ š

Zi ãÑ š
Xi “: Xr and a

retraction Xr Ñ Z. �

Lemma 8.10. Suppose f : Z Ñ X is a virtual retract. Then, in the notation of
the above definition:

(1) If q : X 1 Ñ X is a finite cover of X, then the pullback q˚pZq “ f˚pX 1q is
a virtual retract of X 1.

(2) If t : Z 1 Ñ Z is a finite cover of Z, then Z 1 is a virtual retract of Xr.
(3) f˚pCXq is a cofinal subset of CZ .
(4) If f : Z ãÑ X is a retract of X, then f˚pCXq “ CZ .

Proof. Under the assumptions of (1), the pullback q˚pXrq “ p˚pX 1q is a cover of
X 1 which retracts onto q˚pZq via q˚prq. This proves (1).

Under the assumptions of (2), the pullback t˚pXrq “ r˚pZ 1q is a finite cover of
Xr which retracts onto Z 1 via t˚prq. This proves (2).

Starting with a finite cover Z 1 of Z, we can think of r˚pZ 1q as a finite cover of
X . Let X 1 be a further regular cover of X . Since X 1 is regular and covers Xr,
p˚pX 1q is a disjoint union of copies of X 1 covering Xr. Since g˚pr˚pZ 1qq “ Z 1,
regarding X 1 as a cover of Xr, g˚pX 1q is a cover of Z which covers Z 1. Therefore,
f˚pX 1q “ g˚p˚pX 1q “ š

g˚pX 1q covers Z 1 as well. This proves (3).
If Z is a retract of X , then Z 1 “ f˚r˚pZ 1q for any finite cover Z 1 of Z, hence

p4q. �

The following lemma is a direct consequence of the homotopy extension property.

Lemma 8.11. A subcomplex i : Z ãÑ X is a retract if and only if the inclusion i

has a left homotopy inverse r : X Ñ Z.

Our source of virtual retracts is provided by work of Haglund–Wise.

Theorem 8.12 ([37, Theorem 7.3]). Let G be a hyperbolic virtually special group
and H ă G a quasiconvex subgroup. Then there is a finite index subgroup of G

which retracts onto H.

Corollary 8.13. If A Ă L is a full subcomplex, then hPA is a virtual retract of
hPL.

Proof. By Lemma 8.9, it is enough to show that each component of hPA is a
virtual retract, and since the components of all the spaces involved are aspherical,
Lemma 8.11 implies that it is enough to construct a virtual retract on the level of
fundamental groups. Since each component hPA is a totally geodesic subspace of
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hPL, its fundamental group H is a quasiconvex subgroup of the fundamental group
G of hPL. So, we are done by Theorem 8.12. �

Corollary 8.14. For a full subcomplex A of a link in B, let hPA ãÑ hPN
B be the

unnatural embedding. Then hPA is a virtual retract of hPN
B .

Proof. Pull back the virtual retraction produced in the previous corollary by the
collapse map hPN

B Ñ hPB. �

Remark. A recent result [53] of Lafont and Ruffoni also shows that the manifolds
hPSr have virtually special fundamental groups. In fact, since any flag complex L

embeds as a full subcomplex of some flag SN , the components of hPL are totally
geodesic inside of hPSN , and hence their results show these have virtually special
fundamental groups. More generally, they show that if X is an n-dimensional locally
CAT(0) cube complex with each cube contained in an n-cube, and every pn ´ 1q-
cube contained in at least two n-cubes, then hX is virtually special. To do this,
they show that the fundamental group of the hyperbolization hX acts on a certain
cube complex with stabilizers that are quasi-convex subgroups in the arithmetic
hyperbolic n-manifolds An, prove that cube complex is CAT(0), and apply Theo-
rem 8.4. Our argument does not construct such a complex. Instead, we observe
that (since the initial complex has the form PL) the fundamental group of hPL

acts on a Davis complex (which is definitely a CAT(0) cube complex) with vertex
stabilizers that are retracts (hence quasi-convex) and isomorphic to fundamental
groups of hyperbolized cones hKL (which may not embed in arithmetic hyperbolic
n-manifolds), show these stabilizers are virtually special by the cutting argument
in Theorem 8.3, and then apply Theorem 8.4.

9. Mayer–Vietoris arguments

Our goal in this section is to control the homology growth of a space X in terms
of the homology growth of simpler pieces the space can be cut into. This will be
used to compute the homology growth of the manifold M that we constructed in
Section 7 in terms of the seed manifold N .

Mayer–Vietoris inequalities for homology growth.

Lemma 9.1 (Restricted Mayer–Vietoris inequalities). Suppose X “ A1 YB A2.

(1) If β
X

k´1pBq “ 0 then

βkpXq ď β
X

k pA1q ` β
X

k pA2q.

(2) If β
X

k pBq “ 0 then

βX

k
pAiq ď β

k
pXq,

β
X

k pAiq ď βkpXq.

Proof. For any cover X 1 Ñ X denote the induced covers by 1. The Mayer–Vietoris
sequence

¨ ¨ ¨ Ñ HkpB1q Ñ HkpA1
1q ‘ HkpA1

2q Ñ HkpX 1q Ñ Hk´1pB1q Ñ . . .

implies that on the poset CX the normalized Betti functions satisfy

βkpXq ď βkpA1q ` βkpA2q ` βk´1pBq.
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Taking the upper limit of this inequality over CX and noting that β
X

k´1pBq “ 0

proves part (1) of the lemma. The same Mayer–Vietoris sequence implies that on
CX

βkpA1q ` βkpA2q ď βkpBq ` βkpXq.
Taking the upper or lower limit of this inequality over CX and using β

X

k pBq “ 0

and subadditivity Lemma 2.2(2) proves (2). �

Applying the second part of the above Lemma repeatedly gives the following.

Corollary 9.2. Suppose X has a filtration A0 “ X0 Ă X1 Ă ¨ ¨ ¨ Ă Xm “ X with

Xi “ Xi´1 YBi
Ai. If β

X

k pBiq “ 0 for all i, then

βX

k
pA0q ď β

k
pXq,

β
X

k pA0q ď βkpXq.
These inequalities are only useful when we can get rid of restriction on the covers,

and this is one thing the virtual retractions from Section 8 are good for. Parts (3)
and (4) of Lemma 8.10 together with Lemma 2.2(3) imply:

Corollary 9.3 (Virtual retractions). Suppose A is a virtual retract of X. Then

βpAq ď βXpAq ď β
XpAq ď βpAq.

If A is a retract of X, then the left and right inequalities are equalities.

Applying Corollary 9.3 to Lemma 9.1 and Corollary 9.2 results in the following
two corollaries about homology growth that we will use later in the paper.

Corollary 9.4 (Absolute Mayer–Vietoris inequalities). Suppose X “ A1 YB A2.
Suppose further that A1, A2 and B are virtual retracts of X. Let d be the degree of
a cover of X which retracts to A1.

(1) If βk´1pBq “ 0, then

βkpXq ď βkpA1q ` βkpA2q.
(2) If βkpBq “ 0, then

β
k
pAiq ď β

k
pXq,

and
βkpA1q ď d ¨ βkpXq.

Proof. (1) and the first inequality in (2) follows immediately from the restricted
version and Corollary 9.3 applied to Ai and B.

For the second part of (2), pass to a finite cover Xr Ñ X which retracts onto
A1. Then the induced cover A1

1 Ñ A1 has a section. In other words, A1
1 contains a

copy of A1, so

β
Xr

k pA1q ď β
Xr

k pA1
1q.

Since A1 is a retract of Xr, β
Xr

k pA1q “ βkpA1q. Now apply restricted version to
decomposition Xr “ A1

1 YB1 A1
2 and use multiplicativity to get

βkpA1q ď β
Xr

k pA1
1q ď βkpXrq “ d ¨ βkpXq.

�
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Corollary 9.5 (Cutting down to a virtual retract). Suppose that X has a filtration
A0 “ X0 Ă X1 Ă ¨ ¨ ¨ Ă Xm “ X with Xi “ Xi´1 YBi

Ai, and that A0 and each Bi

are virtual retracts of X. Let d be the degree of a cover of X which retracts to A0.
If βkpBiq “ 0 for all i, then

β
k
pA0q ď β

k
pXq,

βkpA0q ď d ¨ βkpXq.

In particular, if βkpA0q ‰ 0 then βkpXq ‰ 0.

Mayer–Vietoris inequalities via skew fields. One of the nice features of the
skew field DFG described in Section 3 is that—in situations when it is available—it
provides a simple, alternate framework for doing Mayer–Vietoris cutting arguments.
We record this here. (It is not needed in the proofs below, but can be used as an
alternative to the inequalities above in special cases.)

Suppose X has residually torsion-free nilpotent fundamental group G and let
D “ DFG be the skew field from Section 3. If X “ A1 YB A2 then (only in this
subsection) useˆto denote the induced G-covers. Then we have a Mayer–Vietoris
sequence

¨ ¨ ¨ Ñ HG
k pB̂;Dq Ñ HG

k pÂ1;Dq ‘ HG
k pÂ2;Dq Ñ HG

k pX̂;Dq Ñ HG
k´1pB̂;Dq Ñ . . .

for homology with coefficients in D. If B ãÑ X is π1-injective, then the Ai are as
well, and then we can identify the D-dimensions of the D-vector spaces appearing
in this sequence with lower homology growth by Corollary 3.7:

bGk pB̂;Dq “ β
k
pB;Fq,

bGk pÂi;Dq “ β
k
pAi;Fq.

Therefore, the Mayer–Vietoris sequence gives the usual inequalities ((1) and (2) be-
low) for lower homology growth. Using multiplicativity of β extends these inequal-
ities to complexes X with virtually residually torsion-free nilpotent fundamental
groups. In summary, we get

Lemma 9.6. Suppose a finite complex X with virtually residually torsion-free nilpo-
tent fundamental group decomposes as a union X “ A1 YB A2 with π1-injective
intersection.

(1) If β
k´1

pB;Fq “ 0 then β
k
pX ;Fq ď β

k
pA1;Fq ` β

k
pA2;Fq,

(2) If β
k
pB;Fq “ 0 then β

k
pX ;Fq ě β

k
pA1;Fq ` β

k
pA2;Fq.

Iterating the second part of the lemma gives

Corollary 9.7. Suppose a finite complex X with virtually residually torsion-free
nilpotent fundamental group has a filtration A0 “ X0 Ă X1 Ă ¨ ¨ ¨ Ă Xm “ X with
Xi “ Xi´1 YBi

Ai, and that each Bi ãÑ X is π1-injective. If β
k
pBi;Fq “ 0 for all

i, then

β
k
pA0;Fq ď β

k
pX ;Fq.
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A spectral sequence in even dimensions. If we have a large collection of sub-
complexes, it is more convenient to use a spectral sequence rather than inductively
cutting and using Mayer–Vietoris. We record the spectral sequence we will use
below, in our setting we only need to consider an ambient manifold and a collection
of codimension-one submanifolds.

Suppose M is a closed manifold, and tXsu is a finite collection of closed codimension-
one submanifolds, such that the pair pM,

Ť
Xsq looks locally like a hyperplane

arrangement in Rn.
Removing a regular neighborhood of

Ť
Xs from M produces a manifold with

boundary pZ, BZq, the cut-open M . We call the collection tXsu tractable if, in
addition, the inclusions of Z and of each intersection XJ of the walls into M are
virtual retractions. Note that by Lemma 8.9 this is equivalent to the disjoint union
of Z and all XJ being a virtual retract.

Lemma 9.8 (Even chopping). Let pM2n, tXsuq be a tractable collection of codi-
mension one submanifolds and pZ, BZq the resulting cut-open manifold. Suppose all
intersections of walls have the upper F-Singer property, and that Z is a retract of
a d-fold cover of M . Then for k ą n,

βkpM ;Fq ď βkpZ;Fq ď d ¨ βkpM ;Fq,
and

β
k
pZ;Fq ď β

k
pM ;Fq.

In particular, M2n has the upper F-Singer property if and only if Z2n has.

Proof. Let X :“
Ť

Xs and XJ :“
Ş

sPJ Xs. First we claim that β
M

k pXq “ 0 in
degrees k ă n.

To see this, consider the spectral sequence for the homology of the union X “Ť
Xs. Then the k-th Betti number of X is bounded from above by the sum of

dimensions of the terms E1
i,j “ À

|J|“j`1 HipXJ ;Fq with i ` j “ k. Taking covers,
normalizing and taking the upper limit over CM gives

β
M

k pXq ď
ÿ

i`j“k

ÿ

|J|“j`1

β
M

i pXJq.

Since all XJ are virtual retracts of M , we have

β
M

k pXq ď
ÿ

i`j“k

ÿ

|J|“j`1

βipXJq.

Since all Xs are odd-dimensional and have the upper F-Singer property, all the
terms in this sum with j “ 0 are 0. Similarly, since the components of a pj`1q-fold
intersection XJ are manifolds of dimension ě 2n ´ pj ` 1q and have the upper
F-Singer property, for j ě 1, βipXJq “ 0 for i ă p2n ´ pj ` 1qq{2. This inequality
is equivalent to i ` j ă n ` pj ´ 1q{2, and the claim follows.

Next, let NpXq denote a closed regular neighborhood of X and note that the
pair pM,NpXqq excises to pZ, BZq, so by Lemma 2.2 and the long exact sequence

Ñ HkpXq Ñ HkpMq Ñ HkpZ, BZq Ñ Hk´1pXq Ñ
we have

βkpMq ď β
M

k pXq ` β
M

k pZ, BZq,
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and

β
M

k pZ, BZq ď βkpMq ` β
M

k´1pXq,

βM

k
pZ, BZq ď β

k
pMq ` β

M

k´1pXq.
By the above claim the terms with X vanish for k ă n. Thus, for k ă n,

β
M

k pZ, BZq “ βkpMq, βM

k
pZ, BZq ď β

k
pMq.

Therefore by Poincaré duality, for k ą n,

β
M

k pZq “ βkpMq, βM

k
pZq ď β

k
pMq.

Since Z is a virtual retract of M , Corollary 9.3 implies βkpMq ď βkpZq and β
k
pZq ď

β
k
pMq for k ą n.
For the remaining inequality, we first pass to a degree d cover M r which retracts

onto Z. By Lemma 8.10(1) the preimage of tXsu is a tractable collection in M r. It
cuts down M r to the preimage Z 1 of Z, which consists of Z and other components.
A similar argument as above shows that for k ą n,

βkpZq “ β
Mr

k pZq ď β
Mr

k pZ 1q “ βkpM rq “ d ¨ βkpMq.
�

A β-acyclic covering lemma. There is a class of spaces, generalizing Salvetti
complexes of right-angled Artin groups, for which a Mayer–Vietoris argument gives
a complete computation of both upper and lower homology growth, and shows that
these computations agree. We record this here. The proof is essentially the one
given in [7].

Lemma 9.9. Suppose X is a complex covered by finitely many subcomplexes tUiu
and let N be the nerve of this cover. Suppose each non-empty intersection Uσ :“Ş

iPσ Ui is either β
X

-acyclic or a point. Let L be the subcomplex of the nerve

consisting of simplices σ with β
X

-acyclic Uσ. Then

β
k
pX ;Fq “ bkpN ,L;Fq “ βkpX ;Fq.

Proof. It is enough to consider connected covers. Let X 1 Ñ X be a finite connected
cover of X . The Mayer–Vietoris spectral sequence for the finite covering tU 1

iu of
X 1 by preimages of the Ui converges to H˚pX 1;Fq and the assumptions imply that
its E1 page

E1
j,kpX 1q “ CjpN ;HkpU 1

σ;Fqq
is concentrated on the E1

j,0 line up to an error that is sublinear in the degree
|X 1 Ñ X |. Set

V 1
σ :“

#
H0pU 1

σ;Fq if Uσ is a point,

0 if Uσ is β
X

-acyclic.

The chain map CjpN ;H0pU 1
σ;Fqq Ñ CjpN ;V 1

σq which collapses the β
X

-acyclic
part of the coefficients is onto and has kernel of dimension that is sublinear in
|X 1 Ñ X |. Putting these two observations together shows that βpX ;Fq and βpX ;Fq
are the upper and lower limits of the normalized Betti numbers b˚pN ;V 1

σq{|X 1 Ñ
X |. Finally, the chain complex C˚pN ;V 1

σq can be identified with C˚pN ,L;Fq bF

Frπ1pXq{π1pX 1qs, so these normalized Betti numbers are all equal to b˚pN ,L;Fq
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independent of the choice of X 1 Ñ X . This implies the equations in the statement
of the lemma. �

If the Uσ are virtual retracts of X then Corollary 9.3 implies that we can replace

β
X

-acyclic by β-acyclic. The basic example to which this Lemma applies is the
cover of the Salvetti complex of a right angled Artin group AL by maximal tori. In
that case all intersections are retracts, either non-trivial tori (hence β-acyclic) or
points, the nerve is contractible, and the subcomplex L is homotopy equivalent to
L. This gives the computation from [7] mentioned in the introduction:

β
k
pAL;Fq “ b̃k´1pL;Fq “ βkpAL;Fq.

If one only has β
X

-acyclicity up to an error δ, then the equalities in Lemma 9.9
hold up to an error on the order of |N |δ. Applying this to the classifying space of a
graph product GL of finite groups Z{m (and noting that each of the vertex groups
Gv – Z{m is a retract of GL and β-acyclic up to error 1{m) gives an alternative
way of obtaining estimates for homology growth of these graph products similar to
the ones we got in Section 5.

10. Inductive structure of F-Singer

Suppose that pN, BNq is a compact n-manifold with boundary, B is a flag trian-
gulation of the boundary and M “ hPN

B is the closed n-manifold constructed from
this data via the hyperbolic reflection group trick.

Proposition 10.1. Either β
k
pN ;Fq ď β

k
pM;Fq or there is a full subcomplex L of

a flag triangulated Sn´2 such that βkphPL;Fq ‰ 0.

Proof. Removing vertices of B one at time (and using the unnatural embedding of
hPLkpvq to cut) shows, by Corollary 9.5, that β

k
pM;Fq ě β

k
pN ;Fq ą 0 as long

as βkphPL;Fq “ 0 for all full subcomplexes L of links of vertices Lkpvq “ Sn´2 in
B. �

So, to prove Theorem C(1), we need to understand the upper homology growth
of the hyperbolizations hPL. That is one of the main subjects of this section. But,
before we get there, we first analyze some special hyperbolic manifolds.

On F-Singer for hyperbolic manifolds of simplest type. Let us start by
showing for the class of closed arithmetic hyperbolic manifolds of simplest type
that if there is a counterexample to upper F-Singer property, the smallest one
occurs in odd dimension.

We recall the definition. Let k ă R be a totally real algebraic number field, let
O denote its ring of integers. Suppose pV,Qq a quadratic vector space over k of
dimension pn ` 1q, such that pV bkσ R, Qσq is positive definite for each nontrivial
place σ, and have signature pn, 1q for the trivial one. Let L be a Z-lattice in V , i.e.
L is a free abelian subgroup V such that LbQ “ V . Following [73, p. 217] we will
call a group Γ an arithmetic group of simplest type6 if Γ is commensurable to the
stabilizer StabOpQqpLq. In fact, this definition is independent of the choice of the
lattice L as the following lemma shows.

6Also called of simple type, Type I, or standard.
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Lemma 10.2. If L and L1 are Z-lattices in V , then StabOpQqpLq is commensurable
to StabOpQqpL1q.
Proof. By taking intersections, it is enough to consider the case when L1 ă L.
Then a finite index subgroup of StabOpQqpLq stabilizes L1. Since there exists m P N

such that mL ă L1, and StabOpQqpLq “ StabOpQqpmLq, a finite index subgroup of
StabOpQqpL1q stabilizes L, and the claim follows. �

We also need the following.

Lemma 10.3. Let Γ ă OpQq be an arithmetic group of simplest type. If U is a
k-subspace of V such that Q|UK is positive definite, then StabΓpUq is an arithmetic
group of simplest type.

Proof. Let L1 ă U and L2 ă UK be Z-lattices. Then L “ L1 ‘ L2 is a Z-lattice in
V . Therefore Γ1 :“ StabOpQqpLq is commensurable with Γ. We have StabΓ1 pUq “
StabOpQ|U qpL1qˆStabOpQ|

UK qpL2q. Since Q|UK is positive definite, the second factor
is finite, and we are done. �

In particular, if we identify V with kn`1, scale the form Q so that it has coeffi-
cients in O and take L “ On`1, the stabilizer StabOpQqpOn`1q gets identified with
the orthogonal group OpQ,Oq of matrices preserving the form with entries in O.
Thus, up to commensurability, we recover the definition in [38].

Note that, by taking the trivial place, OpQq ă Opn, 1q, and StabOpQqpLq is a
lattice in Opn, 1q. A standard application of Mahler’s compactness criterion, cf.
[64, Proposition 5.3.4], shows that this lattice is uniform if and only if 0 is the only
solution in On`1 to the equation Qpxq “ 0.

We will say that a hyperbolic manifold H “ Hn{Γ is of simplest type if Γ is an
arithmetic group of simplest type.

Lemma 10.4. Let H be a compact hyperbolic manifold of simplest type. Then
there is a finite cover of H with a tractable collection of codimension-one submani-
folds of simplest type whose complement is a disjoint union of open discs, and each
intersection in this collection is also a manifold of simplest type.

Proof. Suppose Γ “ π1pHq is associated to a quadratic space pV,Qq over a field k.
Choose v P V with Qpvq ă 0, and identify Hn with the sheet of the hyperboloid
Qpxq “ Qpvq in V bk R containing v. Consider the Dirichlet domain corresponding
to the orbit Γv which contains v. The bounding hyperplanes of this domain come
from linear hyperplanes in V bk R whose normal vectors has the form γv ´ v.
Therefore these linear hyperplanes are k-rational subspaces (have the form U bk R

for U a subspace of V ). Hence the Γ-stabilizers of the bounding hyperplanes are
cocompact arithmetic groups of simplest type and the bounding hyperplanes project
to immersed compact submanifolds of H . Hence, taking the full preimage i.e. all Γ-
translates of these bounding hyperplanes, gives a locally finite Γ-invariant collection
of k-rational hyperplanes.

Since the stabilizers of hyperplanes are quasiconvex subgroups, by Theorem 8.12
each is a virtual retract of Γ1. This implies that by passing to a further finite
cover H 1, we can arrange that each hyperplane from this collection maps to an
embedded submanifold and is a virtual retract. Note that the components of the
complement of this collection in Hn are all disks as they are finite intersections
of halfspaces. Since each component is contained in a translate of the Dirichlet
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domain, it is bounded, and hence each component of the complement downstairs
in H 1 is also a disk. Thus we obtain a tractable collection in H 1. Finally, we note
that the intersection of k-rational hyperplanes is k-rational, so all intersections in
this collection are hyperbolic manifolds of simplest type. �

Remark. As explained in [12], in general not all totally geodesic closed submanfolds
of H arise from k-rational subspaces. Such submanifolds are still of simplest type,
but the field of definition of the restricted quadratic form may increase.

Applying Lemma 9.8 and noting that vanishing of β is a commensurability in-
variant gives

Corollary 10.5. If there is a closed arithmetic hyperbolic manifold of simplest type
that does not have the upper F-Singer property, then there is such a manifold of odd
dimension.

By Agol’s fibering theorem for closed hyperbolic 3-manifolds, the dimension of
a potential counterexample is at least 5. Now we are ready to discuss hyperboliza-
tions.

On F-Singer property for hyperbolizations. If L is a full subcomplex of a flag
triangulated sphere Sm´1, then hPL has a natural thickening in hPSm´1 , which
is an m-manifold with boundary. We do not know whether or not there are hy-
perbolizations hPL that do not have upper F-Singer property, but we will show
that if there are such examples then the lowest dimensional ones can be realized by
closed manifolds of the form hPSn´1 . Moreover, if the lowest dimension n is even,
then hPO∆n´1 does not have upper F-Singer property. To that end fix an initial
Charney–Davis piece of some large dimension N , a field F, and for n ď N consider
the progressively stronger statements

(1n) βkphPO∆n´1 ;Fq “ 0 for k ą n{2,
(2n) βkphPSn´1 ;Fq “ 0 for k ą n{2, for flag triangulated spheres Sn´1,
(3n) βkphPL;Fq “ 0 for k ą n{2, for full subcomplexes L in flag Sn´1.

Statement 2n is the upper F-Singer property for the closed manifolds hPSn´1 ,
while 3n is the upper F-Singer property for a thickening of hPL inside of hPSn´1 .

Finally, since hPO∆n´1 is just a finite cover of the initial Charney–Davis manifold
An, statement 1n is the F-Singer property for a particular arithmetic hyperbolic
n-manifold of simplest type.

As a consequence of the Mayer–Vietoris inequalities given in Corollary 9.4 we
get the following proposition.

Proposition 10.6. In all dimensions n we have

2ďn ðñ 3ďn,

and in even dimensions we have

3ă2d and 12d ðñ 3ď2d.

Proof. First, note that for a full subcomplex L of Sn´1, removing the vertices of
Sn´1 that are not contained in L one at a time and applying Corollary 9.4(2) at
each step shows that

‚ if hPSn´1 satisfies upper F-Singer, and
‚ for full subcomplexes L1 of links in Sn´1, hPL1 satisfies upper F-Singer,
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then hPL does as well. In other words,

3ăn and 2n ùñ 3ďn.

Inductively, starting with the fact that 31 is true, this shows

2ďn ùñ 3ďn.

The other direction is clear. This proves the first part of the proposition.
Now, look in even dimensions n “ 2d. Suppose 3ă2d is true, and observe two

things.
First, if there is a counterexample L Ă S2d´1 to 32d then there is a counterexam-

ple to 32d that is a p2d´ 1q-simplex: If L is not a simplex, then it contains a vertex
v P L such that Stpvq is a proper subcomplex of L. Now, 3ă2d and Corollary 9.4(1)
implies that either Stpvq or L ´ v is a counterexample to 32d with fewer vertices.
Repeating this, we obtain a counterexample that is a simplex. Since 3ă2d is true,
the simplex must have dimension 2d ´ 1. Second, removing vertices from O∆2d´1

that are not contained in ∆2d´1 one at a time and applying Corollary 9.4(2) using
3ă2d at each step, we conclude that hP∆2d´1 satisfies upper F-Singer if hPO∆2d´1

does. Thus,
3ă2d and 12d ùñ 32d.

The converse is clear. �

Since hPO∆2d´1 is an arithmetic hyperbolic p2dq-manifold of simplest type, Corol-
lary 10.5 implies that if 12d does not hold, then there is an odd-dimensional arith-
metic hyperbolic manifold of simplest type that does not satisfy upper F-Singer.
Together with Agol’s fibering theorem this implies:

Corollary 10.7. If there is a full subcomplex L in a flag triangulated sphere Sm´1

such that βkphPL;Fq ą 0 for some k ą m{2, then there is a closed n-manifold
either of the form hPSn´1 , or arithmetic hyperbolic of simplest type, that does not
satisfy the upper F-Singer property, for some odd n in the interval r5,ms.
Proofs of Theorems C(1) and A. Now we can prove the first part of our main
theorem:

Theorem C(1). For any odd prime p, there is a closed, aspherical, n-manifold
Mn of dimension either n “ 5 or n “ 7 with special hyperbolic fundamental group
such that β

k
pM;Fpq ą 0 for some k.

Proof. Fix an odd prime p. Let pN, BNq be the compact aspherical 7-manifold
with boundary provided by Theorem 6.8. It has special hyperbolic fundamental
group and β

4
pN ;Fpq ą 0. Pick a flag triangulation of the boundary B and let

M “ hPN
B be the result of applying the hyperbolic reflection group trick using this

triangulation. We showed that this is a closed aspherical 7-manifold with virtually
special hyperbolic fundamental group.

By Proposition 10.1, either this manifold has β
4
pM;Fpq ě β

4
pN ;Fpq ą 0, or

there is a full subcomplex L of a flag triangulation of S5, such that β4phPL;Fpq ą 0.
In the latter case, by Corollary 10.7, there is a closed aspherical 5-manifold H5 with
virtually special hyperbolic fundamental group, which doesn’t have upper Fp-Singer
property. So, in summary, after passing to a special finite cover, we obtain a closed
aspherical manifold of dimension 7 (if it is M) or 5 (if it is H5) with special
hyperbolic fundamental group and non-vanishing lower Fp homology growth (if it
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is M) or upper Fp-homology growth (if it is H5). Therefore, Corollaries 4.1 and
4.4 imply Theorem C(1). �

Theorem 2.10 then immediately implies:

Theorem A. There exists a closed, odd-dimensional, aspherical manifold M with
special hyperbolic fundamental group that does not virtually fiber over a circle.

One somewhat unsatisfying aspect of this line of argument is that it does not
say a given odd dimensional manifold does not virtually fiber, but only that there
is a such a manifold of a potentially lower odd dimension. The last section of the
paper is occupied with addressing this problem.

11. Hyperbolic reflection group trick via barycentric subdivisions

We have enough information from the skew field approach to give—for large
primes p—explicit 7-dimensional, aspherical examples that do not satisfy Fp-Singer,
and also 7-dimensional Q-aspherical examples that do not satisfy Q-Singer.

The tool for doing this is a version of the hyperbolic reflection group trick that
preserves Q-homology growth above the middle dimension, and also Fp-homology
growth above the middle dimension for large primes.

Theorem E (Better hyperbolic reflection group trick). For each dimension n there
is a choice of Charney–Davis piece CDn and a corresponding finite collection of
exceptional primes Sn, such that for any compact n-manifold with boundary pN, BNq
and any triangulation B which is a barycentric subdivision of a triangulation of the
boundary, the hyperbolic reflection group trick M “ hPN

B satisfies the following
inequalities for k ą n{2:

(1) b
p2q
k pNq ď b

p2q
k pMq,

(2) β
k
pN ;Qq ď β

k
pM;Qq and βkpN ;Qq ď βkpM;Qq,

(3) β
k
pN ;Fpq ď β

k
pM;Fpq and βkpN ;Fpq ď βkpM;Fpq for p R Sn.

Proof. When the triangulation of BN is a barycentric subdivision of another tri-
angulation, i.e. B “ bT , then the vertex removal process in Proposition 10.1 can
be carried out by removing centers vσ of simplices σ of T , starting by removing
barycenters of all n ´ 1 simplices of T , then barycenters of all n ´ 2 simplices of
T , and so on. The links that appear in this process are precisely the barycentric
subdivisions of the boundaries of these simplices σ embedded as full subcomplexes
in the link of the vertex vσ in the ambient manifold B i.e.

bBσi “ LkbT piq pvσiq Ă LkBpσiq “ Sn´2

where T piq is the i-skeleton of the triangulation T , and bT piq is its barycentric
subdivision, and σi is some i-simplex.

Note that the hPbBσ are hyperbolizations of a particular finite collection of man-
ifolds (they are called Tomei manifolds) of dimension ď n ´ 1. It follows from
the smooth hyperbolization technology of Ontaneda [65, Main Theorem] that for
any ǫ ą 0 we can pick an appropriate7 initial Charney–Davis piece CDn for which
all these manifolds will have smooth Riemannian metrics whose sectional curva-
ture is pinched between ´1 and ´1 ´ ǫ. When ǫ is sufficiently small, a result of

7The normal injectivity radius of all walls needs to be large, the existence of such a CDn is in
[65, Theorem 9.1].
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Donnelly–Xavier [25] implies that the even dimensional hPbBσ satisfy the Singer
conjecture while the odd dimensional hPbBσ satisfy it except possibly in the middle
two dimensions. Consequently for all these manifolds of dimension ď n ´ 1, we
have

b
p2q
ąn{2phPbBσq “ 0,

We conclude by Corollaries 4.2 and 4.4 and virtual specialness of the π1phPbBσq that
for large primes p,

βąn{2phPbBσ;Fpq “ βąn{2phPbBσ ;Fpq “ βąn{2phPbBσ ;Qq “ 0.

After cutting along the hPbBσ, we are left with copies of N and copies of hPbσ.
Each copy of N is a retract of M by Theorem D, and hPbBσ and hPbσ are quasi-
convex in M by Lemma 8.6. Hence the end result of the cutting procedure and
the components of hPbBσ are virtual retracts of M by Corollary 8.14. We apply
Corollary 9.5 to finish the proof of (2) and (3).

For (1) we use an L2-version of Corollary 9.7, which works for any fundamental
group. �

Theorem C (2). For large primes, there is a closed, aspherical, 7-manifold M7

with special hyperbolic fundamental group such that β
k
pM;Fpq ą 0 for some k.

Proof. Let N7 be the seed manifold obtained form Theorem 6.8 for a prime p R S7.
It has special hyperbolic fundamental group and β

4
pN ;Fpq ‰ 0, so applying the

hyperbolic reflection group trick with barycentrically subdivided boundary gives
a closed, aspherical 7-manifold M with virtually special hyperbolic fundamental
group and β

4
pM;Fpq ‰ 0. Passing to a finite cover, if necessary, gives such a

manifold M1 with special fundamental group and with β
4
pM1;Fpq ‰ 0. �

Note that this proof avoids the inductive arguments of Section 10. We now prove
Theorem F.

Theorem F. There is a closed, rationally aspherical 7-manifold M with virtually

special hyperbolic fundamental group and b
p2q
4 pMq ‰ 0.

Proof. By Theorem 5.3 there is a flag no-square triangulation of the 3-sphere. De-
note it by S3. By Corollary 5.2, if the finite groups used to define the graph product
GS3 are large enough then β

4
pGS3 ;Qq ą 0. Fix such a graph product GS3 . Note

that it is virtually of finite type, and a virtual 4-dimensional duality group by The-
orem 5.5. Therefore, [5, Theorem 18] implies that there is a compact Q-aspherical
7-manifold with boundary pN7, Bq whose fundamental group is a finite index torsion-
free subgroup Γ ă GS3 . Let M7 “ hPN

B be the result of applying the hyperbolic
reflection group trick (with barycentric subdivisions) to this manifold. Then

β
4
pM;Qq ě β

4
pN ;Qq “ β

4
pΓ;Qq “ rGS3 : Γsβ

4
pGS3 ;Qq ą 0,

where the first inequality is Theorem E(1) and the first equality follows because
the rational homology of Γ can be computed from the action on a Q-acyclic instead
of contractible complex. Finally, since the triangulation we picked was no-square,
the group GS3 (and hence Γ) is hyperbolic and virtually special. So by Theorem
8, the fundamental group of M is hyperbolic and virtually special. In particular,
it is residually finite, so Lück approximation implies b

p2q
4 pMq “ β

4
pM;Qq ą 0.

Replacing M by a finite cover if necessary, we obtain such a manifold with special
fundamental group. �
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Appendix I. Rational homology growth and L2, qualitatively

The connection between Q-Betti number growth and L2 rests on two pillars. The
first is Kazhdan’s crucial observation that if the Q-Betti numbers grow fast in a
chain of regular finite covers converging to the universal cover, then the universal
cover has a non-vanishing L2-harmonic cycle. The second is Lück’s converse to
Kazhdan’s criterion. Lück showed, by an ingenious approximation argument, that
L2-harmonic cycles in the universal cover lead to fast Q-Betti number growth in
any chain of regular finite covers converging to it. He also obtained a quantitative
statement, showing that the analytically defined L2-Betti numbers agree with the
limit of the normalized Q-Betti numbers of any such chain [59].

In this appendix we sketch qualitative versions of these two arguments, in order
to highlight the basic ideas behind them. The natural setting for these arguments
are not chains of regular finite covers, but covers of sufficiently large universal8

injectivity radius.

Kazhdan’s criterion. We start with the following (obvious) linear algebraic lemma.

Lemma I.1. Any n-dimensional subspace of RN has a unit vector with a coordinate
of size ě n{N .

Proof. Let vi be an orthonormal basis for RN and P be the orthogonal projection
to the n-dimensional subspace. Its trace is n “ řN

i“1xPvi, viy, so at least one of
vectors Pvi has a coordinate of size ě n{N . The unit vector Pvi{||Pvi|| has a
bigger coordinate. �

The Lemma implies that if the dimensions of spaces of harmonic cycles grow
linearly in the degree of the cover, then in each cover we can find such cycles of
unit norm and uniformly bounded away from zero on some cell.

Now, suppose we have a sequence of finite covers Xk Ñ X , each with a unit norm
harmonic cycle zk and a cell ek such that xzk, eky ě c ą 0. Pick a subsequence so
that all the cells ek lie over the same cell e in X . Suppose, in addition, that the
covering map rX Ñ Xk is injective on balls of radius k. Then, we have an isometry
of k-neighborhoods φ : Bkpreq – Bkprekq – Bkpekq, where the first map is a covering
translation and the second map is the projection rX Ñ Xk. Using this isometry we
pick lifts rzk “ φ´1pzkq. They have L2-norm “ 1 and satisfy xrzk, rey “ xzk, eky ě c.
The rzk may not be harmonic (in fact, they are just chains, not cycles), but since
zk is harmonic, this failure happens outside the pk ´ 1q-neighborhood of re. So, we
can pick a subsequence of rzk that converges to a harmonic cycle of L2-norm ď 1

and non-vanishing at re. We have proved

Theorem I.2 (Kazhdan’s criterion [48]). Let X be a finite complex and Xk Ñ X

a sequence of finite covers whose universal injectivity radius goes to infinity. If the
ith-Betti number grows linearly, i.e.

lim sup
k

bipXk;Qq
|Xk Ñ X |

ą 0,

then the universal cover rX has an non-zero L2 harmonic i-cycle.

8The universal injectivity radius is the smallest R such that the map from the universal cover
rX Ñ X is injective on R-balls.
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Lück approximation. Lück proved a converse to Kazhdan’s criterion:

‚ L2 harmonic cycles on the universal cover produce linear Betti number
growth.

The goal is to bound below the trace of the orthogonal projection to the kernel of
the Laplacian in covers, and Lück’s idea is to approximate the orthogonal projection
by polynomials in the combinatorial Laplacian, and exploit that this Laplacian is
a bounded operator with integer entries.

Let X be a finite complex with fundamental group G “ π1pXq and Xk Ñ X

a finite cover for which π : rX Ñ Xk is injective on k-balls. Running our earlier
argument backwards, if there are L2-harmonic cycles, then there is a i-cell re such
that, for the orthogonal projection rP to the space of harmonic L2 chains we have
x rPre, rey ą c ą 0. Approximate rP by a polynomial fp r∆q in the combinatorial
Laplacian r∆. Since it is a bounded operator, we can do this with fp0q “ 1 and
f ě 0 on the spectrum of r∆, so we also get xfp r∆qre, rey ě c. The advantage of
polynomials in r∆ over the orthogonal projection rP is that fp r∆qre is a finite chain,
so if the injectivity radius k of Xk is greater than the diameter of fp r∆qre, then all the
translates fp r∆qγre embed isometrically in Xk. This implies xfp∆kqπpγreq, πpγreqy ě c

for all γ P G. There are |Xk Ñ X | different i-cells of the form πpγreq in Xk.
Summing over all of them, we get a lower bound for the normalized trace

trpfp∆kqq
|Xk Ñ X |

ě c.

We are almost done. We just need to get back to the orthogonal projection Pk

in the finite cover. For this, one needs an estimate the number Nǫ,k of small but
nonzero eigenvalues (ď ǫ) of ∆k compared to the number of i-cells Nk in the cover.
This is given by another linear algebraic lemma, namely Lemma 2.3 in Section 2.
The final important point is that—for a finite complex X—the norms of both the
combinatorial Laplacian in the universal cover and the combinatorial Laplacians
in all the finite covers are bounded by a single finite constant D (see [59, Lemma
2.5.]). Therefore, the upper bound on the normalized number of ǫ-small, nonzero
eigenvalues coming from Lemma 2.3 does not depend on the cover. From here it is
easy to see that the normalized trace of fp∆kq is close to the normalized trace of
the orthogonal projection Pk once f is close enough to the characteristic function
χ0 on the spectrum of ∆k.

Appendix II. Residual finiteness

In this appendix, we show that if our seed manifold pN, BNq has residually finite
fundamental group then the output M of our hyperbolic reflection group trick has
residually finite fundamental group as well. In particular, we don’t need to assume
that π1pNq is hyperbolic and virtually special. Along the way, we give a general
criterion for basic constructions of mirrored spaces to be residually finite.

Profinite topology. The profinite topology on a group G has as a basis the
collection of cosets of finite index normal subgroups of G. Multiplication by a
group element and taking inverses induce continuous maps with this topology.

A subset C of G is called separable if it is closed in the profinite topology, i.e. for
any g P G´C there is a finite index normal subgroup N such that Cg´1 XN “ H.
We will express this by saying g can be separated from C.
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If H is a subgroup of G then separability is equivalent to the statement that H is
an intersection of finite index subgroups of G, i.e. for any g P G´H there is a finite
index subgroup N such that H Ă N and g R N . In particular, G is residually finite
if and only if t1u is separable (or, equivalently, the profinite topology is Hausdorff.)

We shall need the following theorem, which combines work of Haglund–Wise [37]
and Minasyan [62].

Theorem II.1 ([37]+[62]). If G is a hyperbolic, virtually special group, then every
quasiconvex subgroup is separable. Furthermore, if H and K are two quasiconvex
subgroups, then the double coset HK is separable.

Note that, since conjugation preserves quasiconvexity in hyperbolic groups [42,
Lemma 1.9], this theorem implies that the double cosets HgK are also separable
for each g P G.

We shall also need the following easy lemma.

Lemma II.2. Suppose that G is a residually finite group, and H is a closed subset
of G in the profinite topology. Let Φ be a finite subset of G ´ H. Then there is a
finite index normal subgroup Γ⊳G such that Φ X HΓ “ H.

Proof. Since H is closed, for each ϕ P Φ the translate Hϕ´1 is closed and does not
contain the identity. Therefore, there is a finite index normal subgroup Γϕ such
that Hϕ´1 X Γϕ “ H. Since Γϕ is normal, ΓϕH “ HΓϕ, hence ϕ R HΓϕ. Taking
Γ “ Ş

Φ Γϕ works. �

On residual finiteness of basic constructions. Recall from Section 7 that if
X is a mirrored complex, then the universal cover of X is also a mirrored complex.
The mirrors in the universal cover are precisely the path components of preimages
of mirrors in X . Let pW,Sq be the RACG corresponding to the mirrored complex
X , and pĂW, rSq the RACG corresponding to the universal cover.

Theorem II.3. Let X be a finite mirrored complex and W the associated right-

angled Coxeter group. Let rS and ĂW as above. Suppose G “ π1pXq is residually

finite, and that all the double cosets Stabps̃qStabpt̃q for s̃, t̃ P rS are separable in G.

Then ĂW ¸ G is residually finite.

Proof. Let g P ĂW ¸G. If g maps nontrivially to G, then since G is residually finite
we can find a finite quotient of G where g survives. So, we can assume that g P ĂW .
Write g as a product of generators of ĂW , and let rT Ă rS denote the finite set of
generators appearing in the product. Hence g is contained in the finitely generated
special subgroup W rT .

We claim that there is a finite index subgroup Γ of G which preserves disjointness
of the mirrors in this collection, i.e. if s̃, t̃ P rT and s̃ X t̃ “ H then s̃ X γt̃ “ H for
all γ P Γ.

Since rT is finite, it is enough to find such a subgroup for each pair s̃, t̃ P rT , then
we can take Γ to be the intersection of all these subgroups.

So, suppose we have two disjoint mirrors s̃ and t̃. Since the stabilizer Stabps̃q acts
cocompactly on s̃, up to Stabps̃q-action there are at most finitely many G-translates
of t̃ which intersect s̃. Choose a finite set Φ Ă G of group elements representing
these translates.

Note that Φ X Stabps̃qStabpt̃q “ H, since if ϕ “ gs̃gt̃ where gs̃ P Stabps̃q and
gt̃ P Stabpt̃q, then ϕt̃ “ gs̃t̃, and gs̃ preserves disjointness between s̃ and t̃.



HOMOLOGY GROWTH, HYPERBOLIZATION, AND FIBERING 53

Since the double coset Stabps̃qStabpt̃q is separable by assumption, Lemma II.2
implies that we can find a finite index Γ⊳G so that

Φ X Stabps̃qStabpt̃qΓ “ H.

Since Γ is normal, Stabps̃qStabpt̃qΓ “ Stabps̃qΓStabpt̃q, and hence

Γ X Stabps̃qΦStabpt̃q “ H.

We claim that s̃Xγt̃ “ H for each γ P Γ. Indeed, if γt̃ intersects s̃, then γt̃ “ gϕt̃

for some ϕ P Φ, and g P Stabps̃q. Therefore, ϕ´1g´1γ P Stabpt̃q, so γ is contained
in the double coset Stabps̃qϕStabpt̃q.

So, now we have a finite index normal subgroup Γ of G which preserves dis-
jointness of mirrors corresponding to generators in the finitely generated Coxeter
subgroup W rT . Let S be the set of Γ-orbits of elements of rS. For s̄ ‰ t̄ P S define
ms̄t̄ “ 2 if there exist representatives of s̄ and t̄ which intersect, and set ms̄t̄ “ 8
otherwise. Let W be the corresponding finitely generated RACG.

The natural quotient homomorphism ĂW Ñ W is Γ-equivariant with respect to
the left action of Γ on ĂW and the trivial action on W . Therefore, it induces a map
ĂW ¸ Γ Ñ W ˆ Γ. Composing with the projection onto the first factor gives a map
ĂW ¸ Γ Ñ W , which by construction is injective on W rT , and in particular maps g

nontrivially. Since W is a finitely generated RACG, it is residually finite, hence
we can detect the image of g in a finite quotient. This induces a finite quotient of
ĂW ¸ Γ where g survives. Since ĂW ¸ Γ is a finite index subgroup of ĂW ¸ G, this
induces a finite quotient of ĂW ¸ G where g survives, so we are done. �

Remark. If X has only one mirror Xs, then UpW,Xq is the double of X over Xs.
Therefore, this theorem can be seen as a generalization of the classical fact that the
double G ˚H G of a residually finite group over a separable subgroup is residually
finite.

Davis trick preserves residual finiteness. If W is infinite, then π1pUpW,Xqq
is infinitely generated if X is not simply connected. In this case, a finite index
torsion-free subgroup Γ of W still acts properly and cocompactly on UpW,Xq, and
we can form the quotient Y “ UpW,Xq{Γ. If X is a compact aspherical manifold
with boundary and the Xs are dual cells to a flag PL triangulation of BX , then Y

is a closed aspherical manifold. This construction of Y is called the Davis reflection

group trick applied to X . In any case, π1pY q is finite index in ĂW ¸π1pXq. Explicitly,
let π : ĂW Ñ W as above, and set rΓ “ π´1pΓq. Then rΓ is torsion-free, finite index
in ĂW , and stable under the action of π1pXq. It turns out that π1pY q is precisely
the semi-direct product rΓ ¸ π1pXq.

Note that for the usual reflection group trick, the mirrors Xs are contractible,
so we get an immediate corollary:

Corollary II.4. Let X be a compact aspherical manifold with boundary with π1pXq
residually finite. Then the fundamental group of any Davis reflection trick Y applied
to X is residually finite.

Hyperbolic reflection group trick preserves residual finiteness. Let L be
a flag complex. We know from Theorem 8.3 that hKL has hyperbolic and virtually
special fundamental group (we’ll assume that hKL is connected, otherwise take the
component containing the cone vertex).
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rN
hK

ĂN
L̂L̂

N hKN
L

Figure 4. The space hKN
L and its π1pNq-cover.

Now, let N be a simplicial complex containing L. Similarly to Section 8, let hKN
L

be obtained from the hyperbolized cone hKL by removing a small enough ǫ-ball
centered at the cone vertex o and gluing in N . As in the proof of Theorem D(1),
hKN

L retracts onto N , so its fundamental group splits as a semidirect product:

π1phKN
L q “ π1phKĂN

pL q ¸ π1pNq,
where rN Ñ N is the universal cover of N and pL Ñ L is the induced cover of L.
Note that π1phKĂN

pL q “ π1phKpLq, since rN is simply connected.

The space hK
ĂN
pL looks like a bunch of hyperbolic row-houses sitting on pL in rN ,

see Figure 4. Note that a cover N 1 Ñ N induces a cover hKN 1

L1 Ñ hKN
L of the same

degree.

Proposition II.5. Let N be a finite complex with residually finite fundamental
group and L Ă N a flag subcomplex. Let s, t be vertices of L, and let Hs and Ht

denote any conjugates of the fundamental groups of components of the hyperbolized
mirrors hpKsq and hpKtq respectively. Then we have:

(1) π1phKN
L q is residually finite.

(2) Hs, Ht and HsHt are separable subsets in π1phKN
L q.

Proof. We first prove statement (1). Let γ P π1phKN
L q, γ ‰ 1. We want to sepa-

rate γ from 1 by a finite index subgroup. Let p : π1phKN
L q Ñ π1pNq denote the

retraction. We have two cases:
Case 1. γ R ker p. Then we can separate ppγq from 1 in π1pNq, which is residually

finite, and take preimages.
Case 2. γ P ker p.
Then γ lifts to a nontrivial loop pγ in π1phKĂN

pL q “ π1phKpLq, which is contained
in a finite union of row houses. We think of this union as hKQ for a finite full
subcomplex Q of pL. Since π1pNq is residually finite, we can choose a finite cover
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N 1 Ñ N , so that Q projects injectively onto a full subcomplex of the induced cover
L1 Ñ L.

Let γ2 denote the image of pγ in π1phKN 1

L1 q. Then we have a commutative diagram:

γ γ1 ‰ 1

π1phKQq π1phKL1q

pγ π1phKpLq

pγ π1phKĂN
pL q

π1phKN
L q π1phKN 1

L1 q

γ γ2

P Q

P

P

f.i.

P Q

By construction of Q the element pγ is in the image of the top left vertical map, let
γ denote its preimage. The top horizontal map is injective since Q maps injectively
to a full subcomplex of L1, therefore γ maps to a non-trivial element γ1 in π1phKL1q.
By Theorem 8.3 π1phKL1q is virtually special, hence residually finite, so we can
separate γ1 from 1. Since the diagram commutes, γ1 is also the image of γ2 under the
right vertical map, so taking preimages we get a finite index subgroup of π1phKN 1

L1 q
separating γ2 from 1. Finally, since π1phKN 1

L1 q is a finite index subgroup of π1phKN
L q

and γ2 maps to γ under the bottom map, the same subgroup separates γ from 1 in
π1phKN

L q.
For statement (2), we will only prove the statement for Hs, as the double coset

argument is identical. We have that Hs is contained in ker p and γ P π1phKN
L q´Hs.

Again, we have two cases:
If γ R ker p, then γ is separated from Hs by ker qp, where q is a finite quotient

of π1pNq such that qpppγqq ‰ 1.
So, we assume that γ P ker p. Since Hs is generated by finitely many loops, by

the same argument as above we have that Hs and γ are contained in π1phKQq for
some finite, full subcomplex Q of pL, Hence, Hs and γ map injectively with distinct
images to π1phKL1 q for a certain finite cover L1 of L. The image of hpKsq is totally
geodesic in hKL1 , hence the image H 1

s of Hs is a quasiconvex subgroup of π1phKL1q.
By Theorem II.1 the image γ1 can be separated from H 1

s (or from the image of a
double coset) by a finite index subgroup of π1phKL1q. This pulls back to a finite
index subgroup of π1phKN 1

L1 q which separates γ and Hs, and the same subgroup
separates γ from Hs in π1phKN

L q. �

Proof of Theorem D(6). We now prove

Theorem D(6). Suppose N is a compact aspherical manifold with a flag trian-
gulation B of the boundary, and π1pNq is residually finite. Let M be the result of
applying the hyperbolic reflection group trick. Then π1pMq is residually finite.

Proof. The manifold M is a basic construction, where the seed manifold is hKN
B ,

the Coxeter group is pZ{2q|Bp0q|, and for each s P Bp0q, the s-mirror is hKLk s. By
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Proposition II.5 hKN
B has residually finite fundamental group, and each component

of the mirrors has separable fundamental group inside of π1phKN
B q. The stabilizers

of components of lifts of mirrors in the universal cover of hKN
B are conjugates of

these subgroups; therefore we can apply Theorem II.3 to conclude that π1pMq is
residually finite. �

Appendix III. Embedding Octahedralizations

Recall that the octahedralization OL of a flag complex L is the complex which
has 2k`1 k-simplices v˘

0 ˚ ¨ ¨ ¨ ˚ v˘
k for each k-simplex v0 ˚ ¨ ¨ ¨ ˚ vk of L. Alternatively,

it is the link of the special vertex in the Salvetti complex
Ť

v0˚¨¨¨˚vkĂL S1
v0

ˆ¨ ¨ ¨ˆS1
vk

of the right-angled Artin group AL. In this appendix, we will sketch an alternate
proof of the following result from [6], which is the main step in constructing low
dimensional thickenings of Salvetti complexes.

Theorem III.1 ([6]). If d ‰ 2 and L is a d-dimensional flag complex with bdpL;F2q “
0, then OL piecewise linearly embeds in S2d.

From here, a “codimension three local unknotting” result of Akin [4] shows that
the triangulation of OL can be extended to a triangulation of the S2d, and then
partially subdivided to obtain OL embedded inside a flag triangulation of S2d as a
full subcomplex. That is precisely the “if” direction of Theorem 6.5.

The proof given here avoids configuration spaces in favor of van Kampen’s earlier
(equivalent) approach to embedding obstructions, and clarifies the role that the
moment map immersion plays in [6], replacing it with a special class of immersions
of OL that are obtained from a generic, linear immersion of the underlying complex
L by a small linear perturbation.

Classical embedding theory (van Kampen + Whitney trick). Everywhere
in this section all maps are piecewise linear and we assume that d ‰ 2. (When
d “ 2 things are more subtle.)

Let L be a d-dimensional complex. We want to determine whether it embeds in
R2d. To that end, start with a generic immersion f : L Ñ R2d, pick orientations on
all the d-simplices in L and look at the (signed) intersection numbers of images of
disjoint d-simplices σ and τ in L:

Vf,σ,τ :“ fpσq X fpτq.
This is called the intersection vector of f . The intersection vector is symmetric
when d is even and anti-symmetric when d is odd, i.e. Vf,σ,τ “ p´1qdVf,τ,σ.

Proposition III.2 ([33, 49]). If Vf “ 0 then there is an embedding of L in R2d.

Proof idea. For disjoint d-simplices σ and τ , one cancels pairs of intersections with
opposite intersection numbers using the Whitney trick (this requires d ‰ 2). At
the end, one is only left with self intersections of fpσq and intersections between
adjacent simplices. It turns out that these can be cancelled as well (but this requires
extra arguments, see [49] and the erratum [50]9or [33]). �

So, we need ways to modify an immersion f so as to make the intersection vector
equal to zero.

9For an annotated English translation, see https://sites.google.com/site/tutamnguyenphan/home-1

https://sites.google.com/site/tutamnguyenphan/home-1
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Finger moves. We can push a d-simplex σ with a finger to make it go around a
pd´1q-simplex e. In fact, we can do this to several pd´1q-simplices or do it several
times to the same simplex. In general, a function assigning an integer to every
pd ´ 1q-simplex ρ : Cd´1pLq Ñ Z specifies a way to modify an immersion f on a
given d-simplex σ (while keeping it fixed on all other simplices). Call the resulting
immersion rf . The effect the modification has on the intersection vector is given by
the following formula

V rf,σ,τ “ Vf,σ,τ ` ρpBτq.
If we interchange σ and τ then (anti)-symmetry of intersection vectors gives

V rf,τ,σ “ Vf,σ,τ ` p´1qdρpBτq.

Finally, for a pair of simplices τ and τ 1 that are both different from σ, the intersec-
tion vector is unaffected by a finger move applied to σ:

V rf,τ,τ 1 “ Vf,τ,τ 1 .

Note that ρpBτq “ pδρqpτq where δ is the coboundary operator in cohomology.
So, the above formulas hint at a close connection between embedding theory and
cohomology. In fact, a quick consequence is the following.

Proposition III.3. If HdpLq “ 0 then L embeds in R2d.

Proof. Fix a d-simplex σ1 in L and look at the function given by intersections with
the image of the simplex fpσ1q X fp´q : CdpLq Ñ Z. Since HdpLq “ 0 this function
is a coboundary, i.e. fpσ1q X fp´q “ δρ for some ρ. Now, do the finger move
specified by ´ρ to σ1 to get a new immersion rf with

(2) V rf,σ,τ “

$
’&
’%

0 if σ “ σ1,

0 if τ “ σ1,

Vf,σ,τ else.

Now repeat for all d-simplices of L to obtain an immersion with zero intersection
vector and apply the previous proposition. �

The next proposition says that on the level of intersection vectors we can get
from any immersion to any other one via finger moves.

Proposition III.4 ([49]). For two immersions f and g there is a sequence of finger
moves which changes f to an immersion with the same intersection vector as g.

Proof idea. By general position, we can assume that f and g agree on the pd ´ 1q-
skeleton of L. Since we can move between any two such immersions by modifying
them one d-simplex at a time, it is enough to prove the proposition when f and
g only differ on a single d-simplex σ. In that situation, there is a homotopy F :

L ˆ I Ñ R2d with F |Lˆ0 “ f and F |Lˆ1 “ g and F pp, tq a constant function of t
for any point p not in the interior of σ. Now, the finger move we need to do to σ is
given by looking at the intersection number F pσ ˆ Iq X fp´q : Cd´1pLq Ñ Z. �

Example. The utilities graph K3,3 does not embed in the plane: Pick an immersion
f : K3,3 Ñ R2 for which

ř
fpσqXfpτq “ 1 (mod 2), where the sum is taken over all

unordered, disjoint pairs of edges tσ, τu. Note that this expression does not change
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if we apply finger moves to f .10 Therefore, there is no immersion with vanishing
intersection vector.

An odd fact. The reason F2 is special in embedding theory is because we can
replace the immersion f by another immersion f 1 whose intersection vector is any
odd multiple of the original intersection vector:

Proposition III.5. p2k ` 1qVf “ Vf 1 for some immersion f 1.

Proof. Let r : R2d Ñ R2d be a reflection. The immersion r ˝ f has intersection
vector Vr˝f “ ´Vf since changing the orientation of the ambient space changes the
sign of the intersection number. On the other hand, there is a sequence of finger
moves that takes the immersion r ˝ f to one with the same intersection vector as f .
Algebraically this sequence of finger moves takes ´Vf to Vf . Applying this sequence
of finger moves to f produces an immersion with intersection vector 3Vf . Applying
it to f k-times produces an immersion f 1 with intersection vector p2k ` 1qVf . �

Corollary III.6. If HdpLq is finite and of odd order, then L embeds in R2d.

Proof. Let 2k ` 1 “ |HdpLq| be the order of the cohomology group. By the odd
fact, we can choose an initial immersion f whose intersection vector is divisible by
2k ` 1. Then we have fpσ1q X fp´q “ p2k ` 1qφ for some cocycle φ : CdpLq Ñ Z,
which implies that fpσ1q X fp´q is a coboundary, and we can proceed as in the
proof of Proposition III.3. �

Some special generic immersions for octahedralizations. All this embedding
theory is very classical. It doesn’t directly help embed the octahedralization OL

because HdpOLq is never finite: The octahedralizations of top dimensional simplices
give infinite order homology, and thus also cohomology, in the top dimension. The
extra idea we used in [6] was to start with an initial immersion f : OL Ñ S2d that
is amenable to computation, namely the moment map specified by a particular11

ordering on OL. Re-examining the proof in [6], we discovered that all we used
was that it is a generic immersion with the following invariance property: Let
π : OL Ñ L be the projection map. Then, for any d-simplices σ, τ, and τ 1 such that
σ is disjoint from both τ and τ 1

(3) fpσq X fpτq “ fpσq X fpτ 1q whenever πpτq “ πpτ 1q.
Given any such generic immersion, we can prove the first main result of this Ap-
pendix.

Proof of Theorem III.1. The assumption bdpL;F2q “ 0 implies that the top
cohomology of L is odd torsion, i.e. |HdpLq| “ 2k ` 1. Let π : OL Ñ L be the
projection map. Start with an immersion of L in S2d whose intersection vector is
divisible by 2k`1 and perturb it to get an immersion f : OL Ñ S2d. Its intersection
vector is divisible by 2k ` 1 and has the additional property (3).

Look at a d-simplex σ1 of OL. Property (3) implies that

fpσ1q X fp´q : CdpOLq Ñ Z

10The reason is that the collection of edges disjoint from a given edge σ form a cycle.
11One first picks an ordering ă on L and then an ordering ă on OL for which the projection

π : OL Ñ L is an order-preserving map. The moment map immersion OL Ñ R2d is then defined
on vertices by sending the i-th vertex in this ordering to pi, i2, . . . , i2dq and extending linearly to
all of OL.
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factors through the projection to L as CdpOLq πÑ CdpLq ϕÑ Z. The map ϕ is
divisible by 2k ` 1 so, since |HdpLq| “ 2k ` 1, it is a coboundary (i.e φ “ δρ), and
thus fpσ1q Y fp´q “ π˚ϕ is a coboundary, as well. Applying the finger move ´π˚ρ

to σ1 we obtain a new immersion rf whose intersection vector is given by (2). The
new immersion rf no longer satisfies property (3) for all σ in OL,12 but it does so
for all d-simplices σ projecting to πpσ1q. (The key point here is that there is only
one d-simplex lying over π1pσ1q and disjoint from σ1.) So, we can repeat the same
argument for all the d-simplices projecting to πpσ1q to obtain a new immersion f̂

with intersection vector

Vf̂ ,σ,τ “

$
’&
’%

0 if πpσq “ πpσ1q,
0 if πpτq “ πpσ1q,
Vf,σ,τ else.

The immersion f̂ does satisfy (3) for all d-simplices σ in OL, so we can repeat the
argument for all simplices of OL, obtain an immersion with zero intersection vector
and finally apply Proposition III.2 to get an embedding. This finishes the proof of
Theorem III.1.

2-dimensional octahedralizations. One might wonder if there is a more natural
way to embed OL in S2d. Recently Tâm Nguyễn Phan and the first author showed
that the d ‰ 2 restriction in Theorem III.1 cannot be removed.

Theorem III.7 ([8]). For a sufficiently fine flag triangulation of the 2-complex
D2 Y3 S

1, the octahedralization OpD2 Y3 S
1q does not PL embed in S4.

This seems to be evidence against the existence of a more natural or canonical
embedding of OL in higher dimensions.

Immersions of OL via perturbation. The goal of the remainder of this appendix
is to show that we don’t really need orderings or the moment map to obtain a
generic immersion satisfying the invariance property (3). A small, generic, linear
perturbation of a generic linear immersion of L will do!

Suppose L is linearly immersed in R2d. For each vertex v pick a vector Xv in
R2d. For a simplex σ and subset of its vertices A, we will denote by σǫA the linear
simplex in R2d obtained from the image of σ by moving each vertex v in A by the
vector ǫXv. Denote by σǫA the plane spanned by this simplex.

The collection of vectors tXvu is a generic linear perturbation of L Ñ R2d if
for every pair of d-simplices σ and τ in L and partition containing their common
vertices

Lp0q Ą A
ž

B Ą pσ X τqp0q

there is an ǫ1 ą 0 such that for each 0 ă ǫ ď ǫ1 the following two conditions hold.

‚ σǫA and τǫB are d-planes that intersect in a single point pǫ, and
‚ pǫ does not lie on the boundaries of the simplicies: pǫ R BσǫA Y BτǫB.

In particular, for a pair of simplices σ and τ that are disjoint in L, this is saying
that their intersection in R2d is transverse.

It is easy to see that generic linear perturbations of generic immersions exist,
and in fact form an open dense subset of all possible choices of vectors tXvu.

12To see why, pick σ1

1
‰ σ1 with πpσ1

1
q “ πpσ1q and look at a simplex σ disjoint from both σ1

and σ1

1
. Then rfpσq X rfpσ1q “ 0 while rfpσq X rfpσ1

1
q “ fpσq X fpσ1

1
q “ fpσq X fpσ1q may not be.
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Genericity has several important consequences.

(1) The intersections form a half-open linear interval prǫ1,0q (because everything
defining it is linear) converging to a point ps Ñ p0 P R2d. In other words,
there is a vector W in R2d such that for 0 ă ǫ ď ǫ1 we have pǫ “ p0 ` ǫW .
Next, pick a vertex v of τ that is not contained in A

š
B and look at what

happens to the intersection as we vary τǫB by moving the vertex v in the
direction tXv. This varies the vector W linearly in t, i.e. we have for small
enough t that

σǫA X τtvYǫB “ p0 ` ǫpW ` tV q “ pǫ ` ǫtV

for some vector V which can be expressed infinitesimally as

V :“ 1

ǫ

dpσǫA X τtvYǫBq
dt

∣

∣

t“0
.

In particular, for small enough ǫ, the intersection between the planes spanned
by σǫA and τǫpvYBq occurs at pǫ ` ǫ2V .

(2) There is linear isomorphism π : σǫA – σ that identifies σǫA with σ and is
bilipschitz, with bilipschitz constant tending to one as ǫ Ñ 0. The image
πpprǫ1,0qq is a linear family in σ that does not meet Bσ, which implies there
is a constant C 1 such that dpπppǫq, Bσq ą C 1ǫ for all 0 ă ǫ ď ǫ1. The same
statement holds with σǫA and σ replaced by τǫB and τ . Therefore, there is
a positive constant C such that

(4) dppǫ, BσǫA Y BτǫBq ą Cǫ.

Now, let P :“ P d`1 be the pd ` 1q-plane spanned by τǫB and τǫpvYBq, (or, equiv-
alently, by τǫB and Xv). Parametrize P X σǫA as a line Lpsq with Lp0q “ pǫ and
Lp1q “ pǫ ` ǫ2V . Note that

‚ for small enough ǫ it follows from (4) that Lp0q P σǫA if and only if Lp1q P
σǫA.

We will need an analogous statement involving τǫB and τǫpvYBq. To that end,
note that P has linear retractions

τǫB
r1ÐÝ Pǫ

r2ÝÑ τǫpvYBq

whose Lipschitz constants are uniformly bounded as ǫ Ñ 0 and which restrict to
inverse isomorphisms r2|τǫB “ r´1

1 |τǫpvYBq
identifying τǫB with τǫpvYBq.

Lemma III.8. For small enough ǫ ą 0, we have Lp0q P τǫB if and only if Lp1q P
τǫpvYBq.

Proof. Note that pǫ “ Lp0q “ r1pLp0qq and that dpr1pLp0qq, r1pLp1qqq ď |r1||V |ǫ2.
Since |r1||V | is uniformly bounded independent of ǫ, (4) implies for small enough
ǫ that pǫ is in τǫB if and only if r1pLp1qq is in τǫB. This happens if and only if
r2r1pLp1qq “ Lp1q is in τǫpvYBq. So, we are done. �

Corollary III.9. For small enough ǫ ą 0, σǫA intersects τǫB if and only if σǫA

intersects τǫpBYvq. Moreover, the signs of the intersections are the same.

Proof. The bullet point and lemma above imply that for small enough ǫ we have
Lp0q P σǫA X τǫB if and only if Lp1q P σǫA X τǫpvYBq, which proves the first part.
The second statement is clear because (for small enough ǫ and 0 ď t ď ǫ) the signed
intersection number σǫA X τtvYǫB is defined and independent of t. �



HOMOLOGY GROWTH, HYPERBOLIZATION, AND FIBERING 61

Proposition III.10 (Invariance property). Suppose f : L Ñ R2d is a generic linear
immersion. Then for any generic linear perturbation tXvu there is an ε ą 0 such
that the linear immersion fε : OL Ñ R2d defined on vertices by v` ÞÑ fpvq, v´ ÞÑ
fpvq ` ǫXv is generic and its signed intersection numbers satisfy

fǫpσq X fǫpτq “ fǫpσq X fǫpτ 1q
whenever σ, τ and τ 1 are d-simplices, τ and τ 1 are disjoint from σ and πpτq “ πpτ 1q.

Proof. Given σ, τ and τ 1 as in the statement of the proposition, fǫpσq “ σǫA,

fǫpτq “ τǫB and fǫpτ 1q “ τǫB1 for some A
š

B Ą pσ X τqp0q Ă A
š

B1. Repeatedly
using the Corollary we conclude that for small enough ǫ there are equalities of
signed intersection numbers

σǫA X τǫB “ σǫA X τǫpBYB1q “ σǫA X τǫB1

which proves the proposition. �

Remark. The embedding OL ãÑ S2d produced by the methods of this appendix
appears quite exotic from a metric perspective, because it starts with an immersion
of OL obtained by perturbing an immersion of L. In this immersion, two vertices
v` and v´ that correspond to the positive and negative directions of the loop S1

v

are put very close together, as opposed to being antipodal in the sphere S2d.
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