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Abstract

We study the unflavored Schur indices in the N = 4 super-Yang-Mills theory for the
Bn, Cn, Dn, G2 gauge groups. We explore two methods, namely the character expansion
method and the Fermi gas method, to efficiently compute the q-series expansion of the
Schur indices to some high orders. Using the available data and the modular properties,
we are able to fix the exact formulas for the general gauge groups up to some high ranks
and discover some interesting new features. We also identify some empirical modular
anomaly equations, but unlike the case of An groups, they are quite complicated and
not sufficiently useful to fix exact formulas for gauge groups of arbitrary rank.
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1 Introduction

As a type of topological invariants, Witten index is a very powerful non-perturbative tool

for supersymmetric theories [1]. In the context of superconformal quantum field theories,

such indices were first constructed in [2, 3]. For theories with a Lagrangian description,

the d-dimensional superconformal index can be computed by path integral formalism as

the supersymmetric partition function on S1 × Sd−1. If an effective Lagrangian flows to a

superconformal fixed point in the UV or IR, we can also compute the superconformal index

at the fixed point from the Lagrangian theory. There are many important applications, e.g.

providing quantitative tests of field theory dualities, and counting holographic dual black

hole microstates. We will focus on the 4d case, where the superconformal index can be

computed with an integral over the Cartan generators of the gauge algebra, counting gauge

invariant operators. For reviews see e.g. [4, 5].

For theories with extended supersymmetry, a particular specialization of the 4d su-

perconformal index, known as the Schur index [6], has some further nice mathematical
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properties. For example, in some cases it can be computed from the q-deformed 2d Yang-

Mills [7], or the vacuum character of a corresponding chiral algebra [8, 9]. The Schur index

has been studied extensively, e.g. [10, 11, 12]. For the case of N = 4 supersymmetry, be-

sides a universal fugacity parameter denoted as q, the Schur index may have an extra flavor

fugacity from the symmetry SU(2)F ⊂ SU(4)R. We will continue the study of unflavored

Schur index in the N = 4 super-Yang-Mills theory by one of the authors in [13], generalizing

the results for An gauge groups to more gauge groups Bn, Cn, Dn, G2. A modular anomaly

equation was proposed and proved in [13], inspired by similar equations in topological string

theories [14, 15]. We also explore the modular anomaly equations in this paper and find

that they are much more complicated comparing to the case of A-type gauge groups. Some

other recent studies relating to Schur index are [16, 17, 18, 19, 20, 21, 22]. The AdS/CFT

correspondence for BCD types of gauge groups was described in [23].

The paper is organized as follows. In Section 2 we introduce the general formulas for the

Schur index and discuss the modular properties for various gauge groups. We discuss how

to compute the q-series expansion and use the modular property to fix the exact formulas

for the case of G2 gauge group. In Section 3 we explore the character expansion method to

compute the q-series expansion for the BCD-type gauge groups. In Section 4 we explore

the Fermi gas method. We find that the method is more efficient for D-type gauge groups

than BC-type gauge groups. In Section 5 we use the perturbative results as well as some

empirical patterns to fix the exact modular formulas up to some high ranks, and discuss

the modular anomaly equations. Finally, in Section 6 we discuss the main results and

potential future research. In Appendix A we provide our convention for elliptic functions

and modular forms. In Appendix B we discuss the generators of modular forms of some

relevant congruence subgroups. In Appendix D we list the main results of the exact modular

formulas.

2 The Schur indices: some general properties

The 4d N = 2 superconformal index is a type of Witten index [3], as a trace over the Hilbert

space on S3 in the radial quantization. For a theory with a weakly coupled Lagrangian

description, the index is computed explicitly as a matrix integral [7]. In this paper, we

consider the Schur limit of the superconformal index, known as the Schur index, for the

4d N = 4 super-Yang-Mills theories. Alternatively, the Schur index can be derived by the

supersymmetric localization of N = 2 SCFT theory on S3×S1. For the N = 4 case, it can
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be regarded as a N = 2∗ theory with massless adjoint hypermultiplet, and we have 1

IG(q) =
(−i) rankG−dimG η(τ)3 rankG

|W | θ rankG
4

∮ rankG∏
j=1

daj
∏

ρ∈R∗
G

θ1(ρ(aj))

θ4(ρ(aj))

=
1

|W |

(
η(τ)3

θ4

) rankG ∮ rankG∏
j=1

daj
∏

ρ∈R+
G

θ1(ρ(aj))
2

θ4(ρ(aj))2
,

(2.1)

where |W | stands for the dimension of the Weyl group of the gauge group G, dimG is the

dimension of the adjoint representation, rankG is the rank of G, R∗
G is the set of non-zero

roots, and R+
G is the set of positive roots. The integrals

∮
are performed for ai from 0 to

2πi, effectively eliminating the terms ema with m ∈ Z−{0}, leaving only the constant term,

similar as a residue calculation.

The Schur index can be calculated by explicitly performing the integral (2.1). It is

usually difficult to directly compute the integrals of theta functions, see e.g. some examples

of such elaborate efforts in [10, 11]. Instead, we will expand the integrand in terms of

q = eπiτ to some high order, and integrate over the gauge fugacities ai, then we can use the

ring of quasi-modular forms in the congruence subgroups listed in Table 1, to fix the exact

modular expressions of the Schur index. More precisely, the Schur indices can be expressed

as

IG(q) = s
b(G)
0 · ĨG(q), (2.2)

where

s0 =
θ4(τ)

η(τ)3
= q−

1
4 (1− 2q + 3q2 − 6q3 + · · · ), (2.3)

and ĨG(q) can be written in terms with the second Eisenstein series and the modular

forms of the congruence subgroup Γ ⊂ SL2(Z). The subgroups Γ and the values of b(G)

are summarized in Table 1. Some properties and generators of the relevant congruence

subgroups are explained in Appendix B.

Group A2N−1 A2N BN , CN D2N−1 D2N G2

Modular group Γ Γ0(2) SL2(Z) Γ(2) Γ0(6) ∩ Γ0(2)

b(G) 0 1 N 2N − 3 2N 2

Table 1: The modular groups for N = 4 Schur indices. The modular group of G2 can be
also written as Γ0(3) ∩ Γ(2).

For example, for the U(N) group, we have

IU(N)(q) =
η(τ)3N

N ! θN4

∮ N∏
j=1

daj
∏

1≤i<j≤N

θ1(ai − aj)
2

θ4(ai − aj)2
, (2.4)

1The expression of the Schur index appears in different forms in the literature up to a factor qc(G). Here
we use a convention such that the result has nice modular properties. See Appendix A for notations of
Jacobi theta functions θi(z) and other elliptic functions.
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from which we can solve

IU(1) = s−1
0 =

η3

θ4
. (2.5)

The SU(N) Schur index can be solved from U(N) Schur index, by factoring out the U(1)

contribution, we have

ISU(N)(q) = IU(N)(q)/IU(1)(q) =
η(τ)3(N−1)

N ! θN−1
4

∮ N∏
j=1

daj
∏

1≤i<j≤N

θ1(ai − aj)
2

θ4(ai − aj)2
. (2.6)

One of the integrals in
∮ ∏N

j=1 dai is actually trivial so we have indeed N − 1 integrals

corresponding to the rank. We also use IAN−1
to denote the Schur index for the SU(N)

gauge group. For example for the low ranks, we have

IA1 =
1

2
E2 +

1

24
(θ42 + θ43), (2.7)

ĨA2 =
1

2
E2 +

1

24
. (2.8)

The formulas for AN of arbitrary rank have been determined [12, 11, 13].

Before focusing on the main examples of BCD-type gauge groups, we consider an iso-

lated but still non-trivial example of the G2 gauge group. Based on the symmetry of the

Dynkin diagram, we propose the congruence subgroup of Schur index to be Γ0(6) ∩ Γ0(2),

as shown in Table 1. In this case, the rank is quite small, and there are only two integrals

to perform. We can compute up to a very high order in the q-series expansion and fix the

exact formula in terms of the generators of the congruence subgroup with some redundant

checks. The formula is

IG2(q) =
η(τ)6

12 θ24

∮ 2∏
j=1

daj ·
θ1(a1)

2θ1(a2)
2θ1(3a1 − a2)

2

θ4(a1)2θ4(a2)2θ4(3a1 − a2)2
(2.9)

=

(
θ4
η3

)2(
I2
A1

− 1

288
(8E

(3)
2 + θ42 − 8θ43 + 3θ42θ

4
3)

)
, (2.10)

where E
(3)
2 is a weight two modular form defined in (B.10).

As expected from the famous S-duality of N = 4 super-Yang-Mils theory, we can check

that the Schur indices for the BN and CN groups are the same up to some low orders in the

q-series expansion. The tests can be pushed to much higher orders with the more efficient

methods in the next two sections. It is well known that the BN and CN root systems have

the same Weyl group and similar structures [24]. For low ranks we may find an explicit

isomorphic transformation between the roots of these two groups. For example for the

simple case of N = 2, the Dynkin diagrams of B2 and C2 are actually the same. In our

parametrization explained in more detail later (4.8), their roots are expressed in terms of

simple roots as follows

B2 : R∗
B2

= {±a1,±a2,±(a1 ± a2)},

C2 : R∗
C2

= {±2a′1,±2a′2,±(a′1 ± a′2)}.
(2.11)
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We can set a relation between simple roots a1 = a′1 + a′2, a2 = a′1 − a′2, transforming the

roots of B2 to C2. Since the computations of the Schur index pick out the constant terms

of the simple roots, they are the same IB2 = IC2 in this case. However, for general rank N ,

we are not aware of a universal mathematical proof of the non-trivial identity IBN
= ICN

.

3 Character expansion method

From the definition of the Witten index, the Schur index can be written as an integral of

plethystic exponential function [6], which in our context can be obtained by rewritings of

the Jacobi theta functions in (2.1). They can then be expanded as characters of the gauge

groups, see e.g. some early works [25, 26]. The formalism is nicely applied to the BCD

types of gauge groups in a recent paper [27], which provides explicit formulas in terms of

sums over 2D Young diagrams of integer partitions.

The Schur index for the (mass deformed) 4d N = 4 super-Yang-Mills theory with gauge

group G has the expression

IG(q;m) = qc(G)

∫
[da]PE

[
χG
Adj(e

α)
(
iV (q) + iH(q)(em + e−m)

)]
, (3.1)

where PE denotes the plethystic exponential function, iV (q) and iH(q) are the single letter

indices for the vector multiplet and hypermultiplet that are defined as

iV (q) =
−2q2

1− q2
, iH(q) =

q

1− q2
. (3.2)

Here χG
Adj(e

α) denotes the character of the gauge group G in the adjoint representation, it

is defined as the sum over the roots of G

χG
Adj(e

α) =
∑
ρ∈RG

eρ(ai). (3.3)

[da] is the Haar measure defined as

[da] =
1

|W |
∏
i

dai
2πi

·
∏

ρ∈R+
G

(
1− eρ(a)

)2
, (3.4)

where we used RG and R+
G denote the roots and positive roots of the lie algebra corresponds

to G.

For the massless case, the total single letter index is iN=4(q) = 2q
1+q . The integral in

(3.1) can be expanded a series of q, starting from a constant term as 1 +O(q). The factor

qc(G) can be determined by comparing with the formula (2.1), counting such powers of q

from the η, θ1 functions.

The formula (3.1) can be computed using the properties of character for the BCD types
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of groups [27, 19]. They can be expressed by the following formulas respectively

IBN
= qc(G)

∑
λ

[fλ(q)
zλ

1

2l(λ)

∑
λ̃∈Ev(λ)

(−1)l(λ̃)
∑

µ∈Rr
2N+1(2|λ|)

χS
µ(λ̃)

]
, (3.5)

ICN
= qc(G)

∑
λ

[fλ(q)
zλ

1

2l(λ)

∑
λ̃∈Ev(λ)

∑
µ∈Rc

2N (2|λ|)

χS
µ(λ̃)

]
, (3.6)

IDN
= qc(G)

∑
λ

[fλ(q)
zλ

1

2l(λ)

∑
λ̃∈Ev(λ)

(−1)l(λ̃)
∑

µ∈Rr
2N (2|λ|)∪W r

2N (2|λ|)

χS
µ(λ̃)

]
, (3.7)

fλ(q) :=

l(λ)∏
i=1

iN=4(q
λi), zλ :=

∞∏
i=1

ki!i
ki . (3.8)

We use the notations in [27], explained in the followings. The sums are over integer parti-

tions λ, depicted by 2D Young tableaux as non-increasing sequences λ1 ≥ λ2 ≥ · · · . The

usual notations l(λ), |λ| denote the number of rows and boxes and λT denote the trans-

pose of the Young tableau. km(λ) = λT
m − λT

m+1 is the number of m’s in the partition.

Ev(λ), Rr
n(|λ|),W r

n(|λ|) and Rc
n(|λ|) are the set of partitions defined by:

• Ev(λ): a set of partitions that is obtained by replacing λi with 2λi or λi, λi for all i’s,

• Rr
n(|λ|) := {µ| l(µ) ≤ n, |µ| = |λ|,∀i(µi is even)},

• W r
n(|λ|) := {µ| l(µ) = n, |µ| = |λ|, ∀i(µi is odd)},

• Rc
n(|λ|) := {µ| l(µ) ≤ n, |µ| = |λ|,∀i(µT

i is even)} .

Finally, χS
µ(λ) is the character of the symmetric group S|λ|, defined for |µ| = |λ|. It can be

computed by the Frobenius method, as the coefficient of
∏l(µ)

i=1 x
µi+l(µ)−i
i in the following

expression ∏
1≤i<j≤l(µ)

(xi − xj) ·
λ1∏
j=1

(

l(µ)∑
i=1

xji )
kj(λ). (3.9)

The character expansion method is much more efficient than directly computing (2.1).

For example, we can check the S-duality relation IBN
= ICN

to much higher orders in

q-series expansion.

When N is large, we can compute to further high orders by comparing with the N ∼ ∞
result, similar as in the more familiar AN case. It was pointed out in [27] that for the

adjoint representation, the large N results are the same for BCD types of gauge groups

(omitting the rather trivial factor qc(G) in our convention), and a simple expression was

proposed there

I∞ =
∑
λ

[fλ(q)
zλ

1

2l(λ)

∑
λ̃∈Ev(λ)

(−1)l(λ̃)
∞∏

m=1

am,km(λ̃)

]
, (3.10)
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where the coefficients are determined by the initial values and recursion relations

am,n = m(n− 1)am,n−2, am,0 = 1, am,1 = 0, if m is odd;

am,n = am,n−1 +m(n− 1)am,n−2, am,0 = am,1 = 1, if m is even.
(3.11)

The calculation of I∞ is much more efficient than the finite N formulas (3.5, 3.6, 3.7), and

one can easily compute to much higher order. It is easy to see when n ≥ |λ|, the sets are

the same Rr
n(2|λ|) = Rr

∞(2|λ|), so IBN
agrees with I∞ up to the order q2N+1, i.e.

IBN
= ICN

= qc(G)[I∞ +O(q2N+2)]. (3.12)

On the other hand, since W r
n(|λ|) = W r

∞(|λ|) = Ø for n ≥ |λ| + 1 but W r
|λ|(|λ|) ̸= Ø, the

available data from I∞ for D-type group is much fewer, only up to the order qN−1, i.e.

IDN
= qc(G)[I∞ +O(qN )]. (3.13)

Some examples are the followings. Omitting the factor qc(G), we have

I∞(q) = 1 + 3q2 − 4q3 + 15q4 − 24q5 + 62q6 − 120q7 + 270q8 +O(q9),

IB4(q) = IC4(q) ∼ 1 + 3q2 − 4q3 + 15q4 − 24q5 + 62q6 − 120q7 + 270q8 +O(q9),

IB3(q) = IC3(q) ∼ 1 + 3q2 − 4q3 + 15q4 − 24q5 + 62q6 − 120q7 + 255q8 +O(q9),

ID4(q) ∼ 1 + 3q2 − 4q3 + 20q4 − 32q5 + 86q6 − 176q7 + 415q8 +O(q9),

ID3(q) ∼ 1 + 3q2 + 9q4 − 6q5 + 22q6 − 18q7 + 51q8 +O(q9),

(3.14)

where the underlines denote the agreements with I∞(q).

4 Fermi gas method

The Fermi gas approach provides a powerful method to calculate the matrix integrals in

various contexts [28, 29, 30, 31, 32]. It was first used in [10] to calculate the N = 4 Schur

indices of unflavored SU(N) cases and was later generalized to the flavored cases [18] and

cases with line defects [33, 34, 19]. The purpose of this section is to generalize the Fermi

gas approach to the N = 4 Schur indices with the SO(N) and Sp(N) gauge groups.

The key ingredient of the Fermi gas approach is the elliptic generalization of the Cauchy

determinant formula, that the integrand of the integral can be expressed as a determinant

of a density matrix ρ(ai, aj), for the U(N) theory, we have [10]∏
1≤i<j≤N

θ1(ai − aj)
2

θ4(ai − aj)2
= fN (τ) det

1≤i,j≤N
ρ(ai, aj), (4.1)

where

ρ(ai, aj) =
θ2(ai − aj)

θ4(ai − aj)
. (4.2)

The coefficient fN (τ) is a simple function defined by

fN (τ) =


θN4
θN3

, if N is even,

θN4
θ2θ

N−1
3

, if N is odd.
(4.3)

7



Equation (4.1) is a special case of the Frobenius’s determinant formula [35, 36, 37], the

θ2(ai−aj) in the numerator of ρ(ai, aj) can be replaced by either θ1(ai−aj) or θ3(ai−aj) with

a different prefactor fN (τ), due to different specializations of the Frobenius’s determinant

formula.

By using the determinant formula (4.1) and the Leibniz formula for the determinant,

the index can be written as

IU(N)(q) ∼ Z(N), Z(N) =
1

N !

∑
σ∈SN

(−1)ϵ(σ)
∫ ∏

i

θ2
(
ai − aσ(j)

)
θ4
(
ai − aσ(j)

)dai, (4.4)

where SN is the permutation group of N elements, and ϵ(σ) is the signature of the permu-

tation σ. Equation (4.4) can be treated as the canonical partition function of an ideal Fermi

gas, it can be written as a sum over conjugacy classes of the permutation group. Define the

spectral trace

Zℓ =

∫ 2πi

0
da1 · · · daℓρ(a1, a2)ρ(a2, a3) · · · ρ(aℓ−1, aℓ)ρ(aℓ, a1), (4.5)

then the partition function is given by

Z(N) =
′∑

mℓ

∏
ℓ

Zmℓ
ℓ (−1)mℓ+1

mℓ!lmℓ
, (4.6)

where the prime denotes a sum over the conjugacy class, specified by a set of non-negative

integers mℓ that satisfy
∑N

ℓ=1 ℓmℓ = N. The great benefit of the Fermi gas approach is that

the integral representation of Zℓ is relatively easy to compute, it has a close form expression

Zℓ =
∑
n∈Z

(
1

qn−
1
2 + q−(n− 1

2
)

)ℓ

. (4.7)

So, the close-form expressions of the partition function Z(N), and then the Schur index

IU(N)(q) can be written down according to (4.6) and (4.4) respectively.

4.1 Schur indices for BCD-type gauge groups

In this subsection, we generalize the Fermi gas approach to BCD-type gauge groups. The

nontrivial roots for BN , CN and DN groups are

R∗
BN

= {±aj |1 ≤ j ≤ N} ∪ {±ai ± aj |1 ≤ i < j ≤ N},

R∗
CN

= {±2aj |1 ≤ j ≤ N} ∪ {±ai ± aj |1 ≤ i < j ≤ N}, (4.8)

R∗
DN

= {±ai ± aj |1 ≤ i < j ≤ N},

respectively. Their roots are almost the same, but for B- and C-type groups, there are

additional “diagonal roots” {±δaj |1 ≤ j ≤ N} where δ = 1 when the gauge group is BN

and δ = 2 when the gauge group is CN . In the spirit of [36, 37], we propose two propositions

that will be shown to be useful for later calculations:
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Proposition 1. For the D2N group, we have the determinant formula:∏
1≤i<j≤2N

θ1(aj ± ai)
2

θ4(aj ± ai)2
= det

1≤i,j≤2N

(
θ1(aj ± ai)

θ4(aj ± ai)

)
. (4.9)

For the D2N−1 group, we have the determinant formula:∏
1≤i<j≤2N−1

θ1(aj ± ai)
2

θ4(aj ± ai)2
= det

1≤i,j≤2N
(ρij) , (4.10)

where ρij is an anti-symmetric matrix, with ρii = 0, ρij = −ρji and when i < j,

ρij =

{
θ1(aj±ai)
θ4(aj±ai)

, if i < j ≤ 2N − 1,

−1, if i = 2N, j < 2N.
(4.11)

The proof of Proposition (1) can be found in Appendix C.

As a direct consequence of Proposition 1, the determinant formulas for BC-type groups

can be written from the determinant formulas for D-type groups, we have:

Proposition 2. For the B2N or C2N group, we have the determinant formula∏
1≤i<j≤2N

θ1(δaj)
2

θ4(δaj)2
· θ1(aj ± ai)

2

θ4(aj ± ai)2
= det

1≤i,j≤2N

(
θ1(δaj)

2

θ4(δaj)2
· θ1(aj ± ai)

θ4(aj ± ai)

)
. (4.12)

where δ = 1 when the gauge group is B-type and δ = 2 when the gauge group is C-type. For

the B2N−1 or C2N−1 group, we have the determinant formula∏
1≤i<j≤2N−1

θ1(δaj)
2

θ4(δaj)2
· θ1(aj ± ai)

2

θ4(aj ± ai)2
= det

1≤i,j≤2N
(ρij) , (4.13)

where ρij is an anti-symmetric matrix, with ρii = 0 and when i ̸= j,

ρij =



θ1(δaj)
2

θ4(δaj)2
· θ1(aj±ai)
θ4(aj±ai)

, if i < j ≤ 2N − 1,

−ρji, if j < i ≤ 2N − 1,

−1, if i < 2N, j = 2N,
θ1(δaj)

2

θ4(δaj)2
, if i = 2N, j < 2N.

(4.14)

In the following subsections, we use these determinant formulas to perform the calcula-

tions on the integral representations of Schur indices.

4.1.1 Even ranks

D2N We want to use the Fermi gas approach to compute the Schur index for D2N theory,

the key part is to get the result for Zℓ defined in (4.5). By using the identities of Jacobi

elliptic functions:

θ1(z)

θ4(z)
=

θ2
θ3

sn (zθ23) =
2i

θ2θ3

∑
n∈Z

qn+
1
2 e(n+

1
2
)z

1− q2n+1
=

2i

θ2θ3

∞∑
n=0

qn+
1
2

1− q2n+1

(
e(n+

1
2
)z − e−(n+ 1

2
)z
)
,

(4.15)
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the density matrix for D2N gauge group of the Fermi gas is

ρ(a, a′) ≡ θ1(a+ a′)θ1(a− a′)

θ4(a+ a′)θ4(a− a′)
= − 4

(θ2θ3)2

∑
n,n′∈Z

qn+n′+1e(n+n′+1)a+(n−n′)a′

(1− q2n+1)(1− q2n′+1)
. (4.16)

By changing the parameters, we can rewrite the summation in a form that is convenient for

later calculations

ρ(a, a′) = − 4

(θ2θ3)2

 ∑
n,n′∈2Z

qn+1e(n+1)a+n′a′

(1− qn+n′+1)(1− qn−n′+1)
+

∑
n,n′∈2Z+1

qn+1e(n+1)a+n′a′

(1− qn+n′+1)(1− qn−n′+1)

 .

(4.17)

Define

Zℓ =

∫ 2πi

0
da1 · · · dalρ(a1, a2) · · · ρ(aℓ, a1), (4.18)

only the zero order part of aj contributes to the integral. One may then find a surprisingly

easy solution

Z2ℓ =
24ℓ+1

(θ2θ3)4ℓ

∑
nj∈Z

q2(n1+···n2ℓ)+ℓ∏ℓ
j=1(1− q2n2j−1±2n2j+1)(1− q2n2j±(2n2j+1+1))


= 2ℓ+1

(
η3

θ4

)−4ℓ
 ∑

nj∈Z≥0

q2(n1+···n2ℓ)+ℓ
∏ℓ

j=1 2
1−δ0,n2j∏ℓ

j=1(1− q2n2j−1±2n2j+1)(1− q2n2j±(2n2j+1+1))

 , (4.19)

with the notation n2ℓ+1 = n1, and

Z2ℓ+1 = 0. (4.20)

One can then compute the Schur index of D2N gauge group

ID2N
=

1

22N−1

(
η3

θ4

)2N ′∑
mℓ

∏
ℓ

Zmℓ
2ℓ (−1)mℓ

mℓ!(2l)mℓ
, (4.21)

where the prime denotes a sum over non-negative integers mℓ that satisfy
∑N

ℓ=1 ℓmℓ = N.2

2In the A-type case, the grand canonical ensemble

Ξ(κ) = 1 +

∞∑
N=1

Z(N)κN = exp

(
−

∞∑
ℓ=1

(−κ)ℓ

ℓ
Zℓ

)

has a closed form expression and was used in [10] to further simplify the result. For the D2N -type and all
other types we derive in the paper, we couldn’t find a closed form expression for it, so we don’t use the
grand canonical ensemble calculations in the paper.
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B2N and C2N Recall that the non-zero roots for BN algebra are

R∗
BN

= {±aj |1 ≤ j ≤ N} ∪ {±ai ± aj |1 ≤ i < j ≤ N}, (4.22)

and for CN algebra are

R∗
CN

= {±2aj |1 ≤ j ≤ N} ∪ {±ai ± aj |1 ≤ i < j ≤ N}, (4.23)

from which we have the density function

ρ(a, a′) ≡ θ1(δa)
2θ1(a+ a′)θ1(a− a′)

θ4(δa)2θ4(a+ a′)θ4(a− a′)

=
16

(θ2θ3)4

∑
m∈Z

 ∑
n,n′∈2Z

c(m)qn+1e(n+1+δm)a+n′a′

(1− qn+n′+1)(1− qn−n′+1)
+

∑
n,n′∈2Z+1

c(m)qn+1e(n+1+δm)a+n′a′

(1− qn+n′+1)(1− qn−n′+1)

 ,

(4.24)

where δ = 1 for B-type and δ = 2 for C-type and

c(m) =

{
mqm

1−q2m
, if m ̸= 0,

−2IA1 , if m = 0.
(4.25)

The last line in equation (4.24) can be derived by using equation (A.8) and (A.9) in Ap-

pendix A. For the C2N case, δm in (4.24) is an even number, which can be absorbed by n,

so the structure of the solution to the integral (4.18) is similar to the D2N case. We have

ZC,2ℓ =
(−1)ℓ28ℓ+1

(θ2θ3)8ℓ

 ∑
nj ,n′

j∈Z

q2(n1+···n2ℓ)+2ℓ
∏ℓ

j=1 c(n2j−1 − n2j)c(n
′
2j − n′

2j+1)∏2ℓ
j=1(1− q2nj±2n′

j+1)

 , (4.26)

with the notation n′
2ℓ+1 = n′

1 and

ZC,2ℓ+1 = 0. (4.27)

Finally, the Schur index for C2N group is

IC2N
=

1

22N

(
η3

θ4

)2N ′∑
mℓ

∏
ℓ

Zmℓ
C,2ℓ(−1)mℓ

mℓ!(2l)mℓ
, (4.28)

where the prime denotes a sum over non-negative integers mℓ that satisfy
∑N

ℓ=1 ℓmℓ = N.

Our method also applies to B2N case. However, since δ = 1, the shift δm in (4.24)

changes the even/odd properties of n in the summation. So the expression is more com-

plicated. We experimentally test the calculation by expanding the q series for the first few

ranks, we find the agreement between the B2N and C2N Schur indices.

4.1.2 Odd ranks

In this subsection, we compute the Schur indices for BCD-groups with odd ranks. We will

start with D2N−1 case and then generalize it to B2N−1 and C2N−1 cases.

11



D2N−1 According to Proposition 1, the determinant formula for D2N−1 gauge group is

represented with a N ×N matrix where the entries of the matrix are not completely in the

same pattern. To perform the integral with the help of the Fermi gas approach, we assume

that there is an additional integral
∫ 2πi
0 da2N , which does not change the result. Then if

all the ai in the integral are not equal to a2N , we have the integrals that were studied in

the last subsection. If one of the ai in the integral is a2N , let us suppose aℓ = a2N , we will

encounter the integral in the form

Z̃ℓ = −
∫ 2πi

0
da1 · · · daℓ−1ρ(a1, a2) · · · ρ(aℓ−2, aℓ−1). (4.29)

The result of the integral (4.29) is quite similar to the D2N case, we have

Z̃2ℓ+2 = − 24ℓ+1

(θ2θ3)4ℓ

 ∑
n2ℓ=0

nj<2ℓ∈Z

q2(n1+···n2ℓ−1)+ℓ∏ℓ
j=1(1− q2n2j−1±2n2j+1)(1− q2n2j±(2n2j+1+1))



= −2ℓ+1

(
η3

θ4

)−4ℓ

 ∑
n2ℓ=0

nj<2ℓ∈Z

q2(n1+···n2ℓ)+ℓ
∏ℓ

j=1 2
1−δ0,n2j∏ℓ

j=1(1− q2n2j−1±2n2j+1)(1− q2n2j±(2n2j+1+1))

 ,

(4.30)

with the notation n2ℓ+1 = n1, and

Z̃2ℓ+1 = 0. (4.31)

Then the Schur index of the gauge group D2N−1 can be calculated by using a similar

equation (4.21), but replacing one of the Z2ℓ with Z̃2ℓ in the product. We have

ID2N−1
=

1

22N−2

(
η3

θ4

)2N−1 ′∑
mℓ

∏
ℓ

Zmℓ
2ℓ (−1)mℓ

mℓ!(2ℓ)mℓ

ℓ∑
k=1

kmk
Z̃2k

Z2k
, (4.32)

where the prime denotes a sum over non-negative integers mℓ that satisfy
∑N

ℓ=1 ℓmℓ = N.

B2N−1 and C2N−1 The logic to calculate the B2N−1 and C2N−1 cases is similar to the

D2N−1. We assume that there is an additional integral
∫ 2πi
0 da2N , which does not change

the result. Then if all the ai in the integral are not equal to a2N , we have the integrals

that were studied in Section 4.1.1. If one of the ai in the integral is a2N , let us suppose

aℓ = a2N , we will encounter the integral in the form

Z̃ℓ = −
∫ 2πi

0
da1 · · · daℓ−1ρ(a1, a2) · · · ρ(aℓ−2, aℓ−1) ·

θ1(δa1)
2

θ4(δa1)2
. (4.33)

Using equations (4.24) and (A.9), we determine that for the C2N−1 case,

Z̃C,2 = −4IA1 , (4.34)
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if ℓ > 0,

Z̃C,2ℓ+2 =
(−1)ℓ28ℓ+1

(θ2θ3)8ℓ

×

 ∑
nj ,n′

j∈Z

q2(n1+···n2ℓ)+2ℓ
∏ℓ

j=1 c(n2j−1 − n2j) · c(n′
1)c(n

′
2ℓ)
∏ℓ−1

j=2 c(n
′
2j − n′

2j+1)∏2ℓ
j=1(1− q2nj±2n′

j+1)

 , (4.35)

and

Z̃C,2ℓ+1 = 0. (4.36)

Then the Schur index for C2N−1 group is

IC2N−1
=

1

22N−1

(
η3

θ4

)2N−1 ′∑
mℓ

∏
ℓ

Zmℓ
C,2ℓ(−1)mℓ

mℓ!(2ℓ)mℓ

ℓ∑
k=1

kmk
Z̃C,2k

ZC,2k
, (4.37)

where the prime denotes a sum over non-negative integers mℓ that satisfy
∑N

ℓ=1 ℓmℓ = N.

Our method also applies to B2N−1 case. However, similar to the B2N case, the expression

is more complicated so we don’t present it here. We experimentally test the calculation by

expanding the q series for the first few ranks, and we find the agreement between the B2N−1

and C2N−1 Schur indices.

5 Fixing the exact modular formulas

We shall try to fix the exact modular formulas for the BCD types of gauge groups, using the

calculations from the two methods in previous sections, as well as the modular properties

in Table 1. In this section we mostly use ĨG in (2.2), which has better modular formula

than IG. The generators of the modular group Γ(2) are θ2(q)
4, θ3(q)

4. Due to the quasi-

modularity, we also need to add the second Eisenstein series E2. Similar to the AN case,

the maximal weight can be easily read off from the formulas (2.1, 2.2) and grows linearly

in the rank N . So the number of unknown coefficients of a generic quasi-modular ansatz

goes like N3 for large N , though the scaling factor here is larger since there is no universal

symmetry between θ2(q)
4 and θ3(q)

4. Also similar to the AN case, the most significant

constraint to fix the ansatz comes from the vanishing conditions that the q-series expansion

starts from a very high power, scaling like N2 for large rank N .

For the AN case, there is a simple modular anomaly equation [13], which fixes the

dependence of E2, so the number of unknown coefficients of the remaining modular ansatz

goes like N2, with a scaling factor smaller than that from the vanishing conditions. This

enables the calculations of the Schur index for arbitrary rank in the AN cases. However, for

the BCD types of gauge groups, we do not find a simple modular anomaly equation, so the

behaviors of the number of unknown coefficients N3 is eventually bigger than the available

conditions at a sufficiently large rank N .
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SO(N) 3 4 5 6 7 8 9 10 11 12 13 14

maximal weight 2 4 4 4 6 8 8 8 10 12 12 12

minimal weight 2 4 2 2 4 4 4 4 6 6 6 6

leading order q q2 q3 q4 q6 q8 q10 q12 q15 q18 q21 q24

leading order of each weight q q2 q q q2 q2 q2 q2 q3 q3 q3 q3

Table 2: Some properties of the Schur indices for the SO(N) group. There is a cyclic
pattern when N increases by 4. Because SO(4) is not a simple Lie group, its behavior is
an aberration of the usual patterns.

For the AN cases, the quasi-modular formulas have contributions from each even weight

up to the maximal weight, except for the absence of the constant term when N is odd.

For the BCD types of gauge groups, there is an interesting new phenomenon that there is

no term with weight smaller than one half of the maximal weight, so there is a non-trivial

minimal modular weight. This constraint would reduce the number of unknown coefficients

in the quasi-modular ansatz by about 1
8 .

We observe an additional pattern that at each modular weight, the q-series expansion

does not start from the generic constant term, but also from a high power at q[
N+1

4
] for the

SO(N) gauge group. If this is true, it would also provide additional conditions for helping

to fix the quasi-modular ansatz at larger N . Furthermore, there is a pattern in the quasi-

modular formulas that θ2 and θ3 are symmetric in the maximal weight terms, and further

for the next maximal weight terms when N is even. These constraints are nevertheless

much less significant than the other conditions mentioned above. Of course, the results of

q-series calculations from the previous two sections also provide additional conditions and

redundant checks.

We summarize the conditions at the Table 2 and the formulas in Appendix D. In the

following, we discuss some more details for theBC-type andD-type gauge groups separately,

and analyze some potential ansatz for modular anomaly equations.

5.1 BC-type gauge groups

Counting the power of q in the formulas (2.1, 2.2), we find the leading order in q-series

expansion

ĨBN
(q) = O(q

N(N+1)
2 ), (5.1)
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Using the conditions mentioned above, we fix some exact formulas in the following with

more results in the Appendix D

ĨB1 = ĨA1 =
E2

2
+

1

24
Θ0,1,

ĨB2 =
E2

2

4
+

E2

24
Θ0,1 +

1

48

(
4Θ0,2 − 5Θ1,1 + 18θ2(q)

4
)
,

ĨB3 =
E3

2

12
+

E2
2

48
Θ0,1 +

E2

4608

(
8Θ0,2 −Θ1,1 + 10θ2(q)

4 + 64θ3(q)
4
)
,

+
1

82944

(
4Θ0,3 − 15Θ1,2 + 15θ2(q)

8 + 96θ3(q)
8 − 33θ2(q)

4θ3(q)
4
)
,

(5.2)

where

Θr,s(q) = θ2(q)
4rθ2(q)

4s + θ2(q)
4sθ3(q)

4r. (5.3)

is the generator of Γ0(2) modular group. The case of N = 1, 2 can be obtained by using

the formula in the literature [11] to take the limit of the flavor parameter b → 0.

Analogous to the AN case [13], we test the various ansatzes for the modular anomaly

equation with the available formulas. After some trials, we observed a simplest equation

with the following form

∂E2 ĨBN
=

N∑
k=1

cNk ĨBN−k
, (5.4)

where we use the convenient initial condition ĨB0 = 1. In contrast to the AN case, the

coefficients cNk are no longer constants, but dependent on θ42 and θ43. Additionally, for the

case cN2 (E2, θ2, θ3) we also need to introduce a E2 dependence. This aberration has the

compensating effect of simplifying the higher cNk coefficients. The first few coefficients are

cN1 (θ2, θ3) =
1

2
,

cN2 (θ2, θ3) =
1

2
ĨB1 =

E2

4
+

1

48
Θ0,1,

cN3 (θ42, θ
4
3) = c1θ

4
2 + c2θ

4
3,

cN4 (θ2, θ3) = −Θ1,1

1536
.

(5.5)

We see that the coefficients cN1 , cN2 , cN4 are actually independent of N , while cN3 is a linear

combination of θ42 and θ43 with coefficients dependent on N . For example, some specific

anomaly equations are:

∂E2 ĨB2 =
1

2
ĨB1 +

1

2
ĨB1 = ĨB1 ,

∂E2 ĨB3 =
1

2
ĨB2 +

1

2
Ĩ2
B1

+
1

576
(−θ42 + 8θ43),

∂E2 ĨB4 =
1

2
ĨB3 +

1

2
ĨB2 ĨB1 +

1

576
(23θ42 − 4θ43)ĨB1 −

Θ1,1

1536
.

(5.6)

For k ≥ 4, the coefficient cNk is a polynomial of θ42 and θ43. Of course they are constrained

by the maximal and minimal weights in ĨBN
. We find that not all generic terms appear and
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many terms actually vanish. However, we do not otherwise identity any particularly simple

pattern in these higher coefficients. Overall, although this is not as nice as the AN case,

the modular anomaly is not completely random and still contains some useful information.

5.2 D-type gauge groups

Counting the power of q in the formulas (2.1, 2.2), we find the leading order in q-series

expansion

ĨD2N
= O(q2N

2
),

ĨD2N+1
= O(q2N(N+1)),

(5.7)

Despite the initial term of the q-expansion being an even number, the series also contains

odd numbers. Again, using the conditions mentioned above, we fix some exact formulas in

the following with more results in the Appendix D

ĨD1 = ĨB1 = ĨA1 =
E2

2
+

1

24
Θ0,1,

ĨD2 = Ĩ2
A1

=
E2

2

4
+

E2

24
Θ0,1 +

1

576
(Θ0,2 +Θ1,1),

ĨD3 = ĨA3 =
E2

2

8
+

E2

48
(2 + Θ0,1) +

1

1152
(Θ0,2 − 2Θ1,1 + 4Θ0,1),

ĨD4 =
E4

2

64
+

E3
2

192
Θ0,1 +

E2
2

1536
(Θ0,2 +Θ1,1 + 8Θ0,1)

+
E2

27648
(Θ0,3 + 3Θ1,2 + 24Θ0,2 + 6Θ1,1)

+
1

1327104
(Θ0,4 + 4Θ1,3 − 24Θ2,2 + 48Θ0,3 + 162Θ8

2).

(5.8)

Since the properties of the Schur indices for the DN group exhibit distinctions based on

whether N is even or odd, we treat them separately in our ansatzes for the modular anomaly

equation. The simplest equation from our search is

∂E2 ĨD2N
=

N∑
k=1

(
dNk ĨD2(N−k)

ĨD1 + eNk ĨD2(N−k)

)
,

∂E2 ĨD2N+1
=

N∑
k=1

(
fN
k ĨD2(N−k)+1

ĨD1 + gNk ĨD2(N−k)+1

)
,

(5.9)

where we use the convention ĨD0 = 1. Because there is a weight difference of 4 between

ĨD2N
and ĨD2(N−1)

, we include the term ĨDN
ĨD1 . The low order coefficients d, e, f, g are

again somewhat simple

dN1 = fN
1 =

1

2
,

eN1 = 0, gN1 =
1

24
,

dN2 ∼ Θ0,1,

fN
2 = − 1

288
+

1

96
Θ0,1.

(5.10)
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However, similar to the previous case, there seems no simple pattern in other higher coeffi-

cients as polynomials of θ42 and θ43 although many generic terms actually vanish.

6 Discussions

We develop and improve some methods for calculating the unflavored Schur index in N = 4

super-Yang-Mills theory. The main results for BCD-type groups are listed in Appendix D

and the formula for the G2 case is (2.9).

There are some remaining questions for potential future research. It would be certainly

interesting to find more constraints which would enable the complete calculations of Schur

indices for BCD-type groups of arbitrary rank, possibly from some improvements of the

modular anomaly equations.

It would be interesting to derive the various empirical features for the formulas in Ap-

pendix D. In particular, the existence of a minimal modular weight, which is one half of

the maximal weight, is an intriguing new feature which does not appear in the AN case,

and seems deserving further study. Some mathematical techniques e.g. in the review paper

[4] may be useful to provide a proof of the non-trivial identity IBN
= ICN

expected from

S-duality.

The calculation for the G2 case is simple due to the smallness of its rank. Further

improvements in computational techniques are needed in order to fix the exact formulas for

F4, E6,7,8 gauge groups, completing the picture for exceptional groups.

For the AN case, the Schur index is related to the generalized MacMahon’s sum-of-

divisors functions [38, 39, 40]. However, the congruence subgroups in [39] do not match

those of the Schur indices of BCD-type groups. It would be interesting to search for more

generalizations of such MacMahon’s sum-of-divisors functions that could give the Schur

indices in this paper.
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A Elliptic functions and modular forms

In this appendix, we summarize some basic definitions for various elliptic functions that we

have used in the main text.
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Jacobi theta functions The Jacobi theta functions θi(z; τ), i = 1, · · · , 4, are defined as

follows:

θ1(z; τ) = i
∑
n∈Z

(−1)nq(n+
1
2
)2e(n+

1
2
)z, (A.1)

θ2(z; τ) =
∑
n∈Z

q(n+
1
2
)2e(n+

1
2
)z, (A.2)

θ3(z; τ) =
∑
n∈Z

qn
2
enz, (A.3)

θ4(z; τ) =
∑
n∈Z

(−1)nq
1
2
n2
enz, (A.4)

where q = eπiτ . We denote θi = θi(0; τ), i = 2, 3, 4 as theta constants.

Dedekind eta function The Dedekind eta function is defined by

η(τ) = q
1
12

∞∏
n=1

(1− q2n). (A.5)

It is related to the theta constants by

η(τ)3 =
1

2
θ2θ3θ4. (A.6)

If there is no confusion regarding notations, we also use η to denote the Dedekind eta

function.

Jacobi elliptic functions The Jacobi elliptic functions are a set of basic elliptic functions.

In this section, we will focus on the elliptic sine function sn(z, k), and review some of its

properties which can also be found in the textbook [41]. The elliptic sine function can be

defined from the Jacobi theta functions as 3:

sn(zθ23) =
θ3
θ2

θ1(z)

θ4(z)
=

2i

θ22

∑
n∈Z

qn+
1
2 e(n+

1
2
)z

1− q2n+1
, (A.7)

so we can derive the expansion

θ1(z)

θ4(z)
=

2i

θ2θ3

∑
n∈Z

qn+
1
2 e(n+

1
2
)z

1− q2n+1
. (A.8)

Similarly, we can derive the expansion

θ1(z)
2

θ4(z)2
= − 4

θ22θ
2
3

(
−2IA1 +

∞∑
n=1

nqn

(1− q2n)
(enz + e−nz)

)
, (A.9)

where IA1 is the N = 4 Schur index for SU(2) gauge group, it has the expression

IA1 = ISU(2) =
∞∑
n=1

q2n−1

(1− q2n−1)2
=

1

2
E2 +

1

24
(θ42 + θ43). (A.10)

3Here we don’t use the standard notation, in order to avoid unnecessary additional definitions.
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B Ring of modular forms under congruence subgroups of
SL2(Z)

We summarize some known facts about modular forms of congruence subgroups. Some

recent references are [42, 43, 44].

Modular form of SL2(Z) A modular form of weight k is a holomorphic function f : H →
C on the upper-half plane that satisfying:

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), (B.1)

for all

(
a b
c d

)
∈ SL2(Z). The modular group SL2(Z) is defined as

SL2(Z) :=
{(

a b
c d

) ∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
. (B.2)

Define the Eisenstein series

E2k(τ) = − B2k

(2k)!

(
1 +

4k

B2k

∞∑
n=1

n2k−1q2n

1− q2n

)
, k > 0 (B.3)

where q = eiπτ and B2k is Bernoulli number with the values B2 =
1
6 , B4 = − 1

30 , B6 =
1
42 , · · · ,

for k = 1, 2, 3, · · · . Then the even weight modular formsM∗(SL2(Z), τ) =
∞⊕
k=0

M2k(SL2(Z), τ)

of SL2(Z) are finitely generated by the fourth and sixth Eisenstein series

M∗(SL2(Z), τ) = C[E4(τ), E6(τ)]. (B.4)

The second Eisenstein series E2(τ) is not a modular form; however, it admits a non-

holomorphic completion

Ê2(τ, τ̄) = E2(τ) +
1

4π Imτ
, (B.5)

which transforms as a weight-two modular form. We call Ê2(τ, τ̄) the almost-holomorphic

modular form, and the holomorphic part E2(τ) is called the quasi-modular form. The ring

of quasi-modular form for a congruence subgroup is consistent of the ring of modular form

together with E2(τ).

Modular form of congruence subgroups A modular form of weight k, level n is a

holomorphic function f : H → C satisfying:

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), (B.6)

for all

(
a b
c d

)
∈ Γ0(n). The subgroup Γ0(n) ∈ SL2(Z), which are called the Hecke congru-

ence subgroup of level n, is defined as

Γ0(n) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod n)

}
. (B.7)
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Γ0(n) :=

{(
a b
c d

)
∈ SL2(Z) : b ≡ 0 (mod n)

}
. (B.8)

We also encounter the intersection of the congruence subgroups

Γ0(n1) ∩ Γ0(n2) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod n1) & b ≡ 0 (mod n2)

}
. (B.9)

It is clear to see, if f(τ) is a modular form of Γ0(n1n2), then f(τ/n2) is a modular form of

Γ0(n1) ∩ Γ0(n2). Define

E
(n)
2 (τ) = − 24

n− 1
q∂q log

η(τ)

η(nτ)
, (B.10)

the rings of the even weight modular forms M∗(Γ, τ) =
∞⊕
k=0

M2k(Γ, τ) provided in SageMath

[45] can be expressed as

M∗(Γ0(2), τ) = C[E(2)
2 (τ), E4(τ)], (B.11)

M∗(Γ0(3), τ) = C[E(3)
2 (τ), E4(τ), E6(τ)], (B.12)

M∗(Γ0(4), τ) = C[E(2)
2 (τ), E

(4)
2 (τ)], (B.13)

M∗(Γ0(6), τ) = C[E(2)
2 (τ), E

(3)
2 (τ), E

(6)
2 (τ)], (B.14)

M∗(Γ0(12), τ) = C[E(2)
2 (τ), E

(3)
2 (τ), E

(4)
2 (τ), E

(6)
2 (τ), E

(12)
2 (τ)], (B.15)

and

M∗(Γ0(n) ∩ Γ0(2), τ) = M∗(Γ0(2n),
1

2
τ). (B.16)

C Proof of Proposition 1

Denote the functions on the left-hand side and on the right-hand side of equation (4.9)

as fL(a1, · · · , a2N ) and fR(a1, · · · , a2N ) respectively. It is easy to see that fL(a1, · · · , a2N )

and fR(a1, · · · , a2N ) are elliptic functions with the same arguments. The denominator of

fL(a1, · · · , a2N ) is divisible by the denominator of each term in the determinant expres-

sion of fR(a1, · · · , a2N ). So the poles of fL(a1, · · · , a2N ) contain those of fR(a1, · · · , a2N )

including multiplicity. We note that the converse is not obviously true since the poles in

fR(a1, · · · , a2N ) may cancel among different terms in the determinant. In the followings we

also prove that the zero points of fR contain those of fL including multiplicity, so fR/fL

would be an analytic function with no pole. According to Liouville’s theorem on elliptic

functions, it would be just a constant.

It is easy to see that all the zero points of fL(a1, · · · , a2N ) are of degree two and they

are located at the points

ai = ±aj , j ̸= i. (C.1)

Now we show that the fR has the same zero points which are at least of degree two. Denote

the entry of the matrix in the determinant to be

ρ(ai, aj) ≡
θ1(aj ± ai)

θ4(aj ± ai)
, (C.2)
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then fR can be expanded as

fR(a1, · · · , a2N ) =
∑

i1,··· ,i2N

εi1···i2Nρ(a1, ai1)ρ(a2, ai2) · · · ρ(a2N , ai2N ), (C.3)

where εi1···i2N is the Levi-Civita symbol. If a1 = a2, then (C.3) is zero due to the antisym-

metric summation. If we exchange a1 and a2, the determinant is obviously invariant. So the

zero at a1 = a2 must be of even degree, implying it is at least of degree two. By performing

the reflection action a2 → −a2 and permutation action on the variables aj , we find that all

the zero points in (C.1) are also at least degree two zero points of fR. We can conclude

fR/fL is analytic and thus is a constant. By using the asymptotic behavior of fR/fL, we

find fR/fL = 1, which finish the proof of equation (4.9). The proof of equation (4.10) can

be done in the same manner that we have done.

In contrast to the AN case, we can not simply change the numerator of ρ(ai, aj) to

θ2,3(ai ± aj). If we do this, it would give additional poles θ4(2ai) = 0 from the diagonal

matrix elements so that fR/fL may not be analytic.

D Schur Indices for SO(N) Groups up to N = 17

This appendix presents the Schur indices ĨSO(N) for the SO(N) groups up to N = 17. This

includes the B and D types of gauge groups. The results for the C type symplectic gauge

groups are the same as those of the B types with the same ranks. Some sporadic results on

low ranks have appeared in the literature, e.g. [11, 20]. To show the symmetry of θ2 and

θ3 near the maximal weight, we also use the notation Θi,j ≡ θ4i2 θ4j3 + θ4i3 θ4j2 .

ĨSO(3) = ĨSU(2) =
E2

2
+

1

24
Θ0,1,

ĨSO(4) = (ĨSU(2))
2 =

E2
2

4
+

E2

24
Θ0,1 +

1

576
(Θ0,2 +Θ1,1),

ĨSO(5) =
E2

2

4
+

E2

24
Θ0,1 +

1

1152

(
2Θ0,2 − 5θ42θ

4
3 + 9θ42

)
,

ĨSO(6) = ĨSU(4) =
E2

2

8
+

E2

48
(2 + Θ0,1) +

1

1152
(Θ0,2 − 2Θ1,1 + 4Θ0,1),

ĨSO(7) =
E3

2

12
+

E2
2

48
Θ0,1 +

E2

4608

(
8Θ0,2 −Θ1,1 + 10θ42 + 64θ43

)
+

1

82944

(
4Θ0,3 − 15Θ1,2 + 15θ82 + 96θ83 − 33θ42θ

4
3

)
,

ĨSO(8) =
E4

2

64
+

E3
2

192
Θ0,1 +

E2
2

1536
(Θ0,2 +Θ1,1 + 8Θ0,1)

+
E2

27648
(Θ0,3 + 3Θ1,2 + 24Θ0,2 + 6Θ1,1)

+
1

1327104
(Θ0,4 + 4Θ1,3 − 24Θ2,2 + 48Θ0,3 + 162θ82),

(D.1)

21



ĨSO(9) =
5E4

2

192
+

5E3
2

576
Θ0,1 +

E2
2

9216
(10Θ0,2 +Θ1,1 + 106θ42 + 16θ43)

+
E2

82944
(5Θ0,3 − 12Θ1,2 + 159θ82 + 24θ83 + 3θ42θ

4
3)

+
1

15925248
(20Θ0,4 − 136Θ1,3 + 87Θ2,2 + 1272θ122

+ 192θ123 − 1116θ82θ
4
3 − 1224θ42θ

8
3 + 4374θ82),

ĨSO(10) =
E4

2

128
+

E3
2

384
(2 + Θ0,1) +

E2
2

3072
(12Θ0,1 +Θ0,2)+

E2

276480
(5Θ0,3 − 15Θ1,2 + 150Θ0,2 − 30Θ1,1 + 36θ42 + 576θ43)

+
1

13271040
(5Θ0,4 − 40Θ1,3 + 36Θ2,2 + 280Θ0,3 − 600Θ1,2 − 504Θ1,1 + 954θ82 + 2304θ83),

ĨSO(11) =
13E5

2

1920
+

13E4
2

4608
Θ0,1 +

E3
2

27648
(13Θ0,2 + 4Θ1,1 + 6θ42 + 168θ43)

+
E2

2

331776
(13Θ0,3 − 15Θ1,2 + 18θ82 + 504θ83 + 162θ42θ

4
3)

+
E2

398131200
(650Θ0,4 − 2800Θ1,3 − 825θ82θ

8
3 + 1800θ122

+ 50400θ123 − 24750θ82θ
4
3 − 12600θ42θ

8
3 + 459θ82 + 221184θ83 + 63936θ42θ

4
3)

+
1

4777574400
(130Θ0,5 − 1150Θ1,4 + 1975Θ2,3 + 600θ162 + 16800θ163

− 24150θ122 θ43 − 28200θ42θ
12
3 − 4950θ82θ

8
3 + 459θ122 + 221184θ123 − 72981θ82θ

4
3 − 46656θ42θ

8
3),

ĨSO(12) =
E6

2

1536
+

E5
2

3072
Θ0,1 +

E4
2

73728
(48Θ0,1 + 5Θ0,2 + 5Θ1,1)

+
E3

2

663552
(5Θ0,3 + 15Θ1,2 + 144Θ0,2 + 90Θ1,1)

+
E2

2

53084160
(25Θ0,4 + 100Θ1,3 − 60Θ2,2 + 1440Θ0,3

+ 2160Θ1,2 + 4224Θ1,1 + 16842θ82 + 3072θ83)

+
E2

318504960
(5Θ0,5 + 25Θ1,4 − 220Θ2,3 + 480Θ0,4 + 840Θ1,3

− 720Θ2,2 + 16842θ122 + 3072θ123 + 1242θ82θ
4
3 + 6912θ42θ

8
3)

+
1

22932357120
(5Θ0,6 + 30Θ1,5 − 735Θ2,4 + 1184Θ3,3 + 720Θ0,5 + 1440Θ1,4 − 12240Θ2,3

+ 50526θ162 + 9216θ163 − 17892θ122 θ43 + 16128θ42θ
12
3 − 40770θ82θ

8
3 + 174960θ122 ),

(D.2)
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ĨSO(13) =
19E6

2

11520
+

19E5
2

23040
Θ0,1 +

E4
2

221184
(38Θ0,2 + 31θ42θ

4
3 + 589θ42 − 32θ43)

+
E3

2

1990656
(38Θ0,3 − 21Θ1,2 + 1767θ82 − 96θ83 + 735θ42θ

4
3)

+
E2

2

796262400
(950Θ0,4 − 2950Θ1,3 − 1725θ82θ

8
3 + 88350θ122

− 4800θ123 + 6750θ82θ
4
3 − 25650θ42θ

8
3 + 435099θ82 − 24576θ83 + 162096θ42θ

4
3)

+
E2

4777574400
(190Θ0,5 − 1300Θ1,4 + 1225Θ2,3 + 29450θ162 − 1600θ163

− 31600θ122 θ43 − 32950θ42θ
12
3 − 11400θ82θ

8
3 + 435099θ122 − 24576θ123 + 45027θ82θ

4
3 − 74448θ42θ

8
3)

+
1

687970713600
(380Θ0,6 − 4470Θ1,5 + 15150Θ2,4 − 14675Θ3,3 + 88350θ202 − 4800θ203

− 267900θ162 θ43 − 182850θ42θ
16
3 + 161925θ122 θ83 + 176100θ82θ

12
3 + 2610594θ162 − 147456θ163

− 1908477θ122 θ43 − 1865952θ42θ
12
3 − 614142θ82θ

8
3 + 8365275θ122 ),

ĨSO(14) =
E6

2

3072
+

E5
2

6144
(2 + Θ0,1) +

E4
2

147456
(68Θ0,1 + 5Θ0,2 + 2Θ1,1)+

E3
2

6635520
(25Θ0,3 − 15Θ1,2 + 870Θ0,2 + 330Θ1,1 − 3492θ42 + 6768θ43)

+
E2

2

106168320
(25Θ0,4 − 80Θ1,3 − 24Θ2,2 + 1640Θ0,3

− 840Θ1,2 + 6168Θ1,1 + 2874θ82 + 30144θ83)

+
E2

4459069440
(35Θ0,5 − 245Θ1,4 + 224Θ2,3 + 3710Θ0,4 − 10360Θ1,3 − 840Θ2,2 + 69006θ122

+ 116256θ123 − 20664θ42θ
8
3 − 67914θ82θ

4
3 − 60372θ82 + 442368θ83 + 145152θ42θ

4
3),

+
1

321052999680
(35Θ0,6 − 420Θ1,5 + 1407Θ2,4 − 568Θ3,3 + 5460Θ0,5 − 33180Θ1,4

+ 31920Θ2,3 + 255906θ162 + 254016θ163 − 579096θ122 θ43 − 480816θ42θ
12
3 − 16254θ82θ

8
3

+ 862488θ122 + 2654208θ123 − 1295352θ82θ
4
3 − 456192θ42θ

8
3),

(D.3)
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ĨSO(15) =
29E7

2

80640
+

29E6
2

138240
Θ0,1 +

E5
2

2211840
(116Θ0,2 + 115θ42θ

4
3 − 367θ42 + 2144θ43)

+
E4

2

15925248
(116Θ0,3 − 3Θ1,2 − 1101θ82 + 6432θ83 + 2883θ42θ

4
3)

+
E3

2

2388787200
(1450Θ0,4 − 2975Θ1,3 − 2775θ82θ

8
3 − 27525θ122

+ 160800θ123 − 20700θ82θ
4
3 + 58275θ42θ

8
3 − 163089θ82 + 827136θ83 + 318744θ42θ

4
3)

+
E2

2

9555148800
(290Θ0,5 − 1475Θ1,4 + 200Θ2,3 − 9175θ162 + 53600θ163

− 39175θ122 θ43 − 22975θ42θ
12
3 − 25575θ82θ

8
3 − 163089θ122 + 827136θ123

− 29313θ82θ
4
3 + 329112θ42θ

8
3)

+
E2

67421129932800
(56840Θ0,6 − 518910Θ1,5 + 984900Θ2,4 + 442225θ122 θ123

− 2697450θ202 + 15758400θ203 − 21403200θ162 θ43 − 30333450θ42θ
16
3 + 3156825θ122 θ83

− 117600θ82θ
12
3 − 95896332θ162 + 486355968θ163 − 222500817θ122 θ43

− 93012192θ42θ
12
3 − 141703884θ82θ

8
3 − 109024137θ122

+ 1719926784θ123 + 236475936θ82θ
4
3 + 555393024θ42θ

8
3)

+
1

809053559193600
(8120Θ0,7 − 115150Θ1,6 + 501270Θ2,5

− 542675Θ3,4 − 539490θ242 + 3151680θ243 − 6337170θ202 θ43

− 13005090θ42θ
20
3 + 13858425θ162 θ83 + 13560750θ82θ

16
3 + 6508425θ122 θ123

− 31965444θ202 + 162118656θ203 − 142790949θ162 θ43 − 224056224θ42θ
16
3 + 8038107θ122 θ83

− 10120068θ82θ
12
3 − 109024137θ162 + 1719926784θ163 − 492641433θ122 θ43

− 304570368θ42θ
12
3 − 363706848θ82θ

8
3),

(D.4)
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ĨSO(16) =
E8

2

49152
+

E7
2

73728
Θ0,1 +

E6
2

1769472
(72Θ0,1 + 7Θ0,2 + 7Θ1,1)

+
E5

2

10616832
(7Θ0,3 + 21Θ1,2 + 216Θ0,2 + 162Θ1,1)

+
E4

2

2548039680
(175Θ0,4 + 700Θ1,3 + 120Θ2,2 + 10800Θ0,3

+ 21600Θ1,2 + 85248θ42θ
4
3 + 219582θ82 − 67968θ83)

+
E3

2

7644119040
(35Θ0,5 + 175Θ1,4 − 460Θ2,3 + 3600Θ0,4 + 9000Θ1,3

+ 2160Θ2,2 + 219582θ122 − 67968θ123 + 133056θ42θ
8
3 + 51246θ82θ

4
3),

+
E2

2

321052999680
(245Θ0,6 + 1470Θ1,5 − 13335Θ2,4 − 1904Θ3,3 + 37800Θ0,5 + 113400Θ1,4

− 257040Θ2,3 + 4611222θ162 − 1427328θ163 + 362124θ122 θ43 + 3798144θ42θ
12
3 + 1121526θ82θ

8
3

+ 24867648θ122 − 3981312θ123 + 10734768θ82θ
4
3 −+5971968θ42θ

8
3),

+
E2

7705271992320
(35Θ0,7 + 245Θ1,6 − 4935Θ2,5 + 11431Θ3,4

+ 7560Θ0,6 + 26460Θ1,5 − 234360Θ2,4 + 24192Θ3,3

+ 1537074θ202 − 475776θ203 − 117306θ162 θ43

+ 1600704θ42θ
16
3 − 2311722θ122 θ83 − 1030302θ82θ

12
3

+ 24867648θ162 − 3981312θ163 + 138024θ122 θ43 + 7962624θ42θ
12
3 + 2150064θ82θ

8
3)

1

739706111262720
(35Θ0,8 + 280Θ1,7 − 10360Θ2,6 + 65464Θ3,5 − 136546Θ4,4

+ 10080Θ0,7 + 40320Θ1,6 − 846720Θ2,5 + 1574496Θ3,4

+ 3074148θ242 − 951552θ243 − 710640θ202 θ43 + 3870720θ42θ
20
3 − 16414272θ162 θ83

− 12932892θ82θ
16
3 + 2805264θ122 θ123 + 99470592θ202 − 15925248θ203 − 41834880θ162 θ43

+ 39813120θ42θ
16
3 − 69999552θ122 θ83 − 29719872θ82θ

12
3 + 322407540θ162 ),

(D.5)
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ĨSO(17) =
191E8

2

2580480
+

191E7
2

3870720
Θ0,1 +

E6
2

13271040
(191Θ0,2 + 211θ42θ

4
3 + 4191θ42 − 1128θ43)

+
E5

2

79626240
(191Θ0,3 + 60Θ1,212573θ

8
2 − 3384θ83 + 5553θ42θ

4
3)

+
E4

2

38220595200
(9550Θ0,4 − 13100Θ1,3 − 14925θ82θ

8
3 + 1257300θ122

− 338400θ123 + 653850θ82θ
4
3 − 103500θ42θ

8
3 + 6783327θ82 − 2043648θ83 + 2553408θ42θ

4
3)

+
E3

2

114661785600
(1910Θ0,5 − 7550Θ1,4 − 1825Θ2,3 + 419100θ162 − 112800θ163

− 14250θ122 θ43 − 239700θ42θ
12
3 − 139050θ82θ

8
3 + 6783327θ122 − 2043648θ123

+ 3698703θ82θ
4
3 − 171072θ42θ

8
3)

+
E2

2

134842259865600
(+93590Θ0,6 − 695310Θ1,5 + 841575Θ2,4 + 581875θ122 θ123

+ 30803850θ202 − 8290800θ203 − 37595250θ162 θ43 − 31641750θ42θ
16
3 − 11499075θ122 θ83

− 6637050θ82θ
12
3 + 997149069θ162 − 300416256θ163 + 136431729θ122 θ43

− 393132096θ42θ
12
3 − 154834659θ82θ

8
3 + 3739608567θ122

− 602505216θ123 + 1539809352θ82θ
4
3 + 722608128θ42θ

8
3)

+
E2

809053559193600
(13370Θ0,7 − 157780Θ1,6 + 512295Θ2,5

− 259700Θ3,4 + 6160770θ242 − 1658160θ243 − 18724860θ202 θ43

− 8921430θ42θ
20
3 + 12160575θ162 θ83 + 15038100θ82θ

16
3 + 5766075θ122 θ123

+ 332383023θ202 − 100138752θ203 − 282160620θ162 θ43 − 242867520θ42θ
16
3 − 74943540θ122 θ83

− 53213265θ82θ
12
3 + 3739608567θ162 − 602505216θ163 + 382624803θ122 θ43

− 696066048θ42θ
12
3 − 247053240θ82θ

8
3),

+
1

155338283365171200
(26740Θ0,8 − 456400Θ1,7 + 2680300Θ2,6

− 6175960Θ3,5 + 5432875θ162 θ163

+ 16428720θ282 − 4421760θ283 − 90205080θ242 θ43 − 30140880θ42θ
24
3 + 171302040θ202 θ83

+ 155108520θ82θ
20
3 − 72691500θ162 θ123 − 73353000θ122 θ163

+ 1329532092θ242 − 400555008θ243 − 3206708568θ202 θ43

− 1375411968θ42θ
20
3 + 1608045642θ162 θ83 + 1957516092θ82θ

16
3 + 458968104θ122 θ123

+ 29916868536θ202 − 4820041728θ203 − 20952823068θ162 θ43 − 16917921792θ42θ
16
3

− 5785406856θ122 θ83 − 3716922816θ82θ
12
3 + 92227156875θ162 ).

(D.6)
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