
Article https://doi.org/10.1038/s41467-024-46275-y

Nuclei-specific hypothalamus networks
predict a dimensional marker of stress
in humans

Daria E. A. Jensen 1,2,3,4 , Klaus P. Ebmeier 3, Sana Suri3,5,
Matthew F. S. Rushworth 1,2 & Miriam C. Klein-Flügge 1,2,3

The hypothalamus is part of the hypothalamic-pituitary-adrenal axis which
activates stress responses through release of cortisol. It is a small but het-
erogeneous structure comprising multiple nuclei. In vivo human neuroima-
ging has rarely succeeded in recording signals from individual hypothalamus
nuclei. Here we use human resting-state fMRI (n = 498) with high spatial
resolution to examine relationships between the functional connectivity of
specific hypothalamic nuclei and a dimensional marker of prolonged stress.
First, we demonstrate that we can parcellate the human hypothalamus into
seven nuclei in vivo. Using the functional connectivity between these nuclei
and other subcortical structures including the amygdala, we significantly
predict stress scores out-of-sample. Predictions use 0.0015% of all possible
brain edges, are specific to stress, and improve when using nucleus-specific
compared to whole-hypothalamus connectivity. Thus, stress relates to con-
nectivity changes in precise and functionallymeaningful subcortical networks,
which may be exploited in future studies using interventions in stress
disorders.

Mental disorders present a huge global burden. Currently, treat-
ments are typically chosen based on broad symptom-based diag-
noses, rather than a mechanistic understanding of an individual’s
behavioural and brain changes1,2. A growing body of work has
therefore focused on analysing the brain changes that accompany,
predict, or result frommental illness. Recently, in addition, this type
of work has increasingly shifted towards a dimensional or trans-
diagnostic perspective3,4. In line with this, we have shown that a
dimensional approach that focuses on interpretable functions such
as sleep problems or negative emotions, as opposed to broad clas-
sifications or classes of symptoms, aids the characterisation of the
underlying brain networks5.

Prolonged periods of stress are associated with several common
psychiatric disorders including depression and anxiety6,7. Yet, the
brain changes that accompany stress are insufficiently understood.
Stress can be defined as an actual or anticipated disruption of homo-
eostasis or an anticipated threat to well-being8. Physiological and
behavioural responses to acute stress are adaptive, spatially and tem-
porally specific, and regulated by a distributed network of regions
including the prefrontal cortex, amygdala, and hippocampus9–12. When
these circuits trigger autonomic and endocrine stress responses,
brainstem centres as well as the hypothalamic-pituitary-adrenal (HPA)
are activated8,9,13. Despite the various contributions made by this
diverse set of regions, in this study, we focus on the hypothalamus. As
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part of the HPA axis, the hypothalamus is one of the key brain regions
mediating the balance of hormones in response to acute stress14–16. For
instance, the hypothalamus can directly activate the anterior pituitary
and, via the adrenal cortex, trigger the release of cortisol. However,
when stress turns into a prolonged state, it becomes maladaptive17–20

and is frequently associated with compromised well-being. Currently,
it remains unclear how human hypothalamus networks are affected by
stress, in particular prolonged periods of stress. This might partly be
because it is challenging to study the hypothalamus in vivo in humans.

The human hypothalamus is a small pea-sized structure located
deep inside the brain21, which makes it prone to signal drop-out in
functional magnetic resonance imaging (fMRI) and difficult to study at
voxel sizes commonly used in fMRI ( ~ 30 voxels at 3mm3). In addition,
the hypothalamus is not homogenous but contains an intricate sub-
structure of more than 10 nuclei22. Thus, fMRI studies conducted in
humans in vivo have typically ignored its component nuclei or ignored
the hypothalamus altogether. Research in humans related to stress has
tended to focus on larger, often cortical, regions with good signal-to-
noise10,23,24. This stands in stark contrast to animalwork on stresswhich
has focused on deep subcortical and brainstem circuits9,14,25–28. The
absence of comparable work in humans currently impedes progress in
psychiatry because prolonged periods of stress are likely to affect the
same subcortical circuits in humans.

In general, while it is established thatwhole-brain connectivity can
predict health outcomes, typically, such predictions rely on large brain
networks23,29–31. This means that they can reach impressive prediction
accuracies, but only provide limited guidance for a mechanistic
understanding of the nature of a condition and for targeting
interventions.

Here, we use a large sample of healthy young adults (n = 498) and
resting-state (rs)-fMRI data acquired with high spatial resolution and
signal-to-noise to examine whether hypothalamus functional con-
nectivity relates to a dimensional marker of prolonged stress. We
examine whether subdividing the hypothalamus into component
nuclei improves the identification of stress correlates. We focus on
connections in a small network between the hypothalamus and sub-
cortical regions including the extended amygdala32,33, nucleus
accumbens, and nuclei of the major brainstem neurotransmitter sys-
tems. We find that stress scores can be predicted in an independent
cohort based on the functional connectivity of the hypothalamus.
Predictions are improved by considering individual hypothalamic
nuclei, as opposed to the whole hypothalamus, and are functionally
specific to stress. Our study provides evidence that functional con-
nectivity in precise subcortical brain circuits relates to subclinical
variability in stress.

Results
In vivo parcellation of the human hypothalamus
The hypothalamus contains more than ten nuclei and has been char-
acterised post-mortem and, more recently, using careful processing of
high-resolution structural images22,34 (Supplementary Table 2). Tracer
work in non-human primates35–39 suggests that individual hypothala-
mus nuclei differ not only in their local structure but also in their
coupling with other brain regions. To date, however, in vivo, human
neuroimaging approaches focusing on differences in connectivity
have only distinguished a small number of hypothalamus
subdivisions40. Therefore, our first aim was to build on our recent
experience with subcortical parcellation of the amygdala5 to derive a
parcellation of the human hypothalamus that reflects its detailed
anatomical organisation but which can be performed in vivo.

We measured functional connectivity using the Human Con-
nectome Project’s (HCP’s) high-quality high-resolution rs-fMRI data. As
in our previous work, we performed additional pre-processing steps to
remove physiological confound signals that particularly affect sub-
cortical regions close tomajor vessels and pulsating fluid-filled spaces,

such as the hypothalamus (seeMethods and refs. 5, 26, 41). In an initial
step, we then characterised the connectivity of all hypothalamus
voxels to all other brain ordinates (i.e., all vertices on the cortical
surface and all voxels in the subcortex) by computing the average
functional connectivity of n = 200 young-adult HCP participants
scanned at 3 Tesla (3 T, 2mm isotropic voxel resolution; Fig. 1A; see
Methods and Supplementary Fig. 2B for participant selection). Hypo-
thalamus functional connectivity reflected connections expected from
tracer work, such as strong coupling with perigenual and subgenual
anterior cingulate cortex (pgACC, sgACC), insula, anterior temporal
cortex, ventral striatum, central amygdala and brainstem35–39. This
suggests that we succeeded in obtaining meaningful estimates of
hypothalamus resting-state coupling. The average hypothalamus
functional connectivity identified in the first 200 participants was
replicated in two additional HCP datasets (3T: n = 200; 7 T: n = 98;
Supplementary Fig. 1A, B).

Having established that our data provide reliable markers of
resting-state coupling, we next sought to identify putative subnuclei
within the hypothalamus. We performed hierarchical clustering using
our previously established procedure5. We computed a similarity
matrix that summarises, for all pairs of hypothalamus voxels, the
similarity of their absolute functional connectivity pattern with all
other brain ordinates. Thus, if two hypothalamus voxels share a similar
connectivity profile to the rest of the brain, their similarity is large, and
they are more likely to be assigned to the same cluster. Clustering of
the similarity matrix was performed using the group average hypo-
thalamus connectome and thus blind to any variability present across
participants relevant for later analyses. Cluster solutions with
increasing numbers of clusters from 2 to 14 were evaluated with
reference to previous parcellations in terms of their anatomical plau-
sibility and symmetry (Supplementary Fig. 2A; see Methods). Using
these criteria, we chose a detailed and anatomically plausible parcel-
lation that contained seven nuclei per hemisphere (Fig. 1B, C). It
identified subdivisions between anterior andposterior aswell as dorsal
and ventral parts of the hypothalamus. However, it did not distinguish
betweenmedial and lateral hypothalamus nuclei, possibly because our
2mm resolution was insufficient for separating clusters in the medial-
lateral axis. Note that the clustering algorithm was not constrained to
induce hemispheric symmetry, any aspect of cluster size, or spatial
contiguity of the voxels assigned to a given cluster. Nevertheless, the
clusters we obtained differed in size andwere spatially contiguous and
relatively symmetrical between hemispheres. Thus, these anatomically
realistic features emerged naturally. Once again, at this point in the
analysis, we checked to ensure that it was possible to replicate our
results. We closely replicated the hypothalamus parcellation derived
from the first 200 participants in two additional datasets (3 T: n = 200;
7 T: n = 98; Supplementary Fig. 3) but used the original parcellation
throughout the manuscript.

To aid comparison with prior work and the reporting of our
results, we assigned each cluster a putative nucleus label (Fig. 1D).
This process was largely guided by comparing the location of our
clusters with the nuclei described inMai et al.22, but also incorporated
other previous parcellations34,42–44. Our own and Mai et al.’s parcel-
lations are shown side by side in Supplementary Fig. 9. The most
dorsal anterior nucleus closely resembled what prior animal and
human work commonly refer to as paraventricular nucleus, some-
times denoted as Pa, PVH, or PA22,34,42–44, which we denote as PV
throughout. The cluster ventral to PV most resembled the medial
preoptic hypothalamic nucleus (MPO) across multiple previous
parcellations22,34,42–44 and the most ventral anterior cluster likely
contained the supraoptic and suprachiasmatic nuclei elsewhere
referred to as SChC, SChD, SCh, or SO and referred to as SO/SC
here22,34. Moving more posteriorly, the cluster posterior to PV was
labelled dorsomedial nucleus (DM) and the cluster ventral to DM
ventromedial nucleus (VM), both consistent with the same nuclei in
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previous parcellations22,34,42–44. The cluster posterior and ventral to
VM was most consistent with the location of the mammillary body in
Mai et al.22 (MM). Finally, the most posterior superior hypothalamus
division was labelled posterior hypothalamic nucleus (PH), again
consistent with the same nucleus in other work22,34,44. See Supple-
mentary Table 3 for a side-by-side comparison between our labels
and those of previous hypothalamus parcellations.

Nuclei-specific hypothalamus functional connectivity
Having established seven subdivisions within the hypothalamus, our
next step was to characterise the functional connectivity of hypothala-
musnuclei with regions of interest (ROIs) determined apriori (Fig. 1E, F).
We focused on a small and exclusively subcortical network that is
known to strongly connect with the hypothalamus, to regulate key
neurotransmitter systems, and play a role in stress responses45–48. This
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included the extended amygdala—seven nuclei per hemisphere within
the amygdala5 plus the bed nucleus of the stria terminalis, BNST49,50)—as
well as the locus coeruleus (LC), associated with noradrenaline, dorsal
and median raphe (RNDR, RNMR) associated with serotonin, substantia
nigra (SN) and nucleus accumbens (NAc), associated with dopamine,
and the ventrolateral and dorsal periaqueductal grey (vlPAG, dPAG)
associated with rest and digest and fight and flight responses (Fig. 1F;
see Methods for details on ROI definition). See supplementary infor-
mation for analyses that additionally included subdivisions of the hip-
pocampus, given its clear role in stress51,52.

Characterisation of the group average functional connectivity
between these 15 ROIs and the seven hypothalamus nuclei (Fig. 1F)
revealed that brainstem nuclei generally showed positive coupling
with hypothalamus nuclei which was often strongest with more pos-
terior hypothalamus (VM, MM, PH). By contrast, the functional con-
nectivity of the nucleus accumbens and amygdala was most
pronounced with anterior portions of the hypothalamus (PV,MPO and
SO/SC), especially the most ventral anterior portion (SO/SC). Within
the amygdala, the strongest coupling with the hypothalamus was with
the central amygdala. Overall, these patterns closely resemble findings
from tracer work in macaques35–39,53. Once again, at this point, we
sought to replicate the results of our analyses in the additional data-
sets. We were able to replicate the functional connectivity patterns
between hypothalamic nuclei and a priori ROIs found in the first 200
participants in two additional datasets (correlation between first con-
nectivity matrix and: (1) n = 200 3 T replication dataset: two-tailed
Pearson’s r(103) = 0.893, p = 1.748×10−37, CI = [0.85, 0.93]; (2) n = 98 7 T
replication dataset: two-tailed Pearson’s r(103) = 0.841,
p = 3.064 × 10−29, CI = [0.77, 0.89]; Supplementary Fig. 1C).

Extracting a dimensional marker of stress
Next, we turned to the behaviour of interest. Our key goal was to
extract a dimensional score that robustly captures an individual’s
stress level. Rather than capturing the ability to respond to immediate
stress, we aimed to capture participants’ experience of stress over a
prolonged time (i.e., questionnaire scores related to stress experiences
over the last week, month or in general; see Methods). Because the
young-adult HCP database does not include individuals with a diag-
nosis of a stress or anxiety disorder, our goal was to characterise stress
on a continuum in the subclinical range. We, therefore, extracted
several available questionnaire markers that captured relevant con-
structs, such as perceived stress, self-efficacy, and fear (Fig. 2A) and ran
a factor analysis to combine them intoone factor (confirmedbyusing a
Scree test, seeMethods; Fig. 2B, C). The factor analyses on the first and
second cohorts of n = 200 3 T participants were virtually identical (see
Methods). Thus, for consistency, both cohorts were pooled, and
identical factor weights were used for all individuals. For each parti-
cipant, we weighted their individual questionnaire scores with the

factor loadings and summed them to obtain a single marker of stress.
Figure 2D shows the distribution of the obtained stress scores for all
n = 400 individuals in the 3 T cohort.

Again, we sought to replicate our results at this stage of the ana-
lysis. The factor analysis was replicated in a second, larger cohort.
Because it focuses on behavioural rather than fMRI data, it can be
derived based on all HCP participants and there is no need to restrict it
to the subset of data with the highest quality physiological recordings
(required for pre-processing the fMRI data). When the analysis was
repeated on the full set of n = 1206 3 T HCP participants minus the
previously included n = 400 participants (total of n = 806), the result-
ing stress factor was highly similar (two-tailed Pearson’s correlation
between factor loadings n = 400 vs. n = 806 3 T participants:
r(5) = 0.998; p = 1.162 × 10−07; CI = [0.99, 1]; Supplementary Fig. 4B).
Note, however, that stress scores obtained for the 7 T cohort, using the
same factor weights, resulted in a noticeably narrower range, with less
extreme stress levels compared to the 3 T cohorts (two-sample F test
of equal variances between 3 T and 7 T cohorts: F(397,96) = 1.876;
p <0.001; CI = [1.35, 2.54]; 3 T: min: −7.10, max: 7.44; 7 T: min: −4.87,
max: 4.12). This could be because individuals with heightened stress
levels may prefer not to enter a high-field MR scanner (Supplementary
Fig. 4C). This lack of variability in stress scores in the 7 T cohort may
limit or even preclude an examination of how interindividual variation
in hypothalamic connectivity relates to interindividual variability in
stress in this cohort.

Relating stress and hypothalamus nuclei connectivity
In the next step, we examined whether hypothalamus nuclei con-
nectivity carries information about individuals’ stress levels. While so
far, we considered the group average connectivity, in this step, we
were interested in interindividual (i.e., between-subject) variability in
hypothalamus connectivity and its potential relationship with inter-
individual variability in stress scores. We generated a new split of all
n = 400 3 T participants into a train and a test group with comparable
means and distributions of stress scores (Supplementary Fig. 4C and
overview in Supplementary Fig. 2B). This splitwas generated only once
with the aimof ensuring a comparable range of stress scores across the
two groups and solely based on behaviour (see Methods). It therefore
did not bias any analyses examining relationships with functional
connectivity.

To improve the reliability of the functional connectivity estimates
obtained from individual participants, we rejected three participants
with outlier connectivity values (see Methods and ref. 5). All sub-
sequent analyses thus rely on a total of n = 398 3 T participants (split
into train and test groups: n = 198 and n = 200) and n = 97 7 T
participants.

Next, we established whether relationships between nuclei-
specific hypothalamus functional connectivity and stress were

Fig. 1 | Connectivity-based parcellation of the human hypothalamus. A Group
average hypothalamus-to-whole-brain functional connectivity extracted from
resting-state fMRI data (n = 200 3 T HCP participants; colour scale: Pearson’s cor-
relation coefficient; positive/negative functional connectivity: red/blue). The
Hypothalamus outline is shown in semi-transparent colour; strong red values
within the hypothalamus indicate strong autocorrelation of activity. B Parcellation
of the human hypothalamus into seven nuclei (n = 200 3 T HCP participants): top
left—horizontal, top right—coronal, bottom—sagittal for right and left hemispheres.
The parcellation used hierarchical clustering of the similarity between hypothala-
mus voxels in terms of their whole-brain functional connectivity. Clusters show
high symmetry across hemispheres and good agreementwith prior high-resolution
andpost-mortemwork inhumans. This parcellationwasused throughout the study
but was also replicated in two independent datasets (n = 2003 T and n = 98 7 THCP
participants; Supplementary Fig. 3). C Dendrogram of the hierarchical clustering
shown in (b) shows the evolution of clusters up to depth 15. Intermediate parcel-
lation steps are shown in Supplementary Fig. 2.D Putative naming of hypothalamus

nuclei used throughout this study (illustrated for the right hemisphere at X = 4): PV
paraventricular, MPO medial preoptic, DM dorsomedial, VM ventromedial, SO/SC
supraoptic and suprachiasmatic, PH posterior, MMmammillary bodies. Number of
voxels across both hemispheres: PV = 23, MPO= 10, DM=9, VM= 28, PH = 10,
MM= 15, SO/SC= 14 (hypothalamus total: 109). E Subcortical regions of interest
(ROIs): substantia nigra (SN), bed nucleus of the stria terminalis (BNST), nucleus
accumbens (NAc), dorsal and ventrolateral periaqueductal grey (dPAG/vlPAG),
locus coeruleus (LC), dorsal and median raphe (RNDR, RNMR). For amygdala, the
main analyses used individual nuclei (Figs. 3 and4); control analyses used thewhole
amygdala (Fig. 5). F Group average functional connectivity between hypothalamus
nuclei and a priori ROIs for n = 200 3 T participants (replicated in two further
datasets: n = 200 3 T or n = 98 7 T; Supplementary Fig. 1; colour bar: Pearson’s r).
Source data for 1b-e are provided as a Source Data file. A anterior, P posterior, S
superior, I inferior, L left, R right, amygdala nuclei: Ce central, CoN cortical, B basal,
AB/BM auxiliary basal/basomedial, LaI lateral intermediate, LaD lateral dorsal, LaV/
BL lateral ventral/basolateral.
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replicated between the two independent train and test datasets. We
estimated robust regression coefficients for each of the 7 × 15 con-
nections or edges between hypothalamus nuclei and ROIs, separately
for the test and train groups, to quantify the relationship between
functional connectivity and stress across participants (Fig. 3B). If
hypothalamus connectivity carries no information about stress, then
the correlation between regression coefficients obtained in the train
and test datasets should be zero. We formally tested this using a non-
parametric permutation null distribution (n = 10,000 stress score
shuffles, functional connectivity unchanged). Indeed, by chance, the
across-dataset replication of the pattern of regression coefficients was
centred on zero (Fig. 3A). However, the similarity between train and
test group regression coefficients in the actual data was significantly
greater than chance (one-tailed Pearson’s correlation testing for a
positive relationship based on the non-parametric permutation null
distribution: r(396) = 0.305; p = 0.002, CI = [0.12, 0.47]; Fig. 3A). This
shows that relationships between hypothalamus nuclei connectivity
and stress were similar across the 3T-train and 3T-test cohorts, two
cohorts with comparable stress levels (Fig. 3A). This was not the case,
however, when comparing the 3 T with the 7 T cohort which had
considerably smaller variability in stress scores (Supplementary
Figs. 4A, C and 6A, B).

For a first insight into the anatomical circuits that particularly
contribute to the similarity across datasets, we derived a measure of
contribution for each edge.We computed the difference in correlation
coefficient between the patterns of regression coefficients in the train
and test group when the edge was included versus excluded for
computing the correlation (rDiff; Fig. 3B, third panel5), This high-
lighted, for example, the importance of functional connectivity of PV
with NAc and central amygdala, of MPO with BNST, and of SO/SC with
RNMR, auxiliary basal and cortical amygdala nuclei (CoN and AB;
Fig. 3B, third panel).

To further demonstrate the consistency of hypothalamus con-
nectivity relationships with stress, we repeated the above analyses, but
this time comparing regression coefficients extracted from two halves
of each participant’s resting-state data (the first half of each session:
run 1 and 3, versus the second half of each session: run 2 and 4). Again,
robust regression coefficients were computed for each edge but based
on thefirst and secondhalf of resting-state data. The consistency in the
pattern of robust regression coefficients was greater across experi-
mental halves than expected by chance (one-tailed Pearson’s correla-
tion testing for a positive relationship based on the non-parametric
permutation null distribution: r(396) = .0368; p < 0.001, CI = [0.19,
0.52]; Fig. 3A, B).
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Fig. 2 | Extracting a dimensionalmarkerofprolonged stress. AHistograms show
distributions for seven stress-related scores in n = 400 3 T HCP participants that
were entered into a factor analysis as shown in panel C. BCorrelations between the
seven stress-related scores across all n = 400 participants (colour bar denotes
Pearson’s r). C Factor analysis was used to extract a one-dimensional marker of
stress: shown are the loadings onto the seven stress-related scores. The highest
loadings are with perceived stress (PercStress), fear (FearAffect), self-efficacy
(SelfEff, negative loading) and the ability to cope with stress (NEORAW_11, negative

loading: When I’m under a great deal of stress, sometimes I feel like I’m going to
pieces). Intermediate loadings were with anger aggression (AngAggr, positive
loading), somatic fear (FearSomat, positive loading), and emotional support
(EmotSupp, negative loading). The factor analysiswas replicated in an independent
dataset (Supplementary Fig. 4). D Distribution of the derived dimensional marker
of stress generated from the factor analysis for all n = 400 3 T participants; the
n = 98 7T participants had reduced stress variance (see Supplementary Fig. 4).
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Fig. 3 | Relating stress to interindividual variation in hypothalamus nuclei
connectivity. A Relationships between stress scores and hypothalamus con-
nectivity were robust and replicable. We used robust regressions to characterise
relationships between the functional connectivity in each edge (7 hypothalamus
nuclei x 15 ROIs) and stress and tested whether the resulting patterns of regression
coefficients (shown in panel B) were more similar than expected by chance. This
was true (1) across two 3 T datasets (left: n = 198 train and n = 200 test participants;
one-sided p-values from a non-parametric test using permutation null distribu-
tions) and (2) within subjects when comparing patterns extracted from the 1st and
2nd half of each individual’s data (right: n = 398 combined 3 Tparticipants, run 1 + 3
versus run 2 + 4; one-sided p-values from a non-parametric test using permutation
null distributions). Null distributions were generated using 10,000 iterations of
shuffled stress scores. Note that the split into train and test groups was performed
to achieve comparable stress distributions (Supplementary Fig. 4C).BVisualisation
of robust regression coefficients capturing relationships with stress (1) across test

and train 3 T datasets (left: top andmiddle row) and (2) across run 1 + 3 vs. run 2 + 4
(right: top andmiddle row). This illustrates the similarity of the patterns statistically
evaluated in panel A. We extracted the contribution of each edge to this similarity
by calculating the difference in correlation coefficient between the patterns
obtained when excluding this edge versus including all edges (rDiff, bottom row).
Visual inspection of rDiff values highlights strong similarities between the two
replications (left vs right) and thus anatomical specificity.C Regression coefficients
estimated from the training group were applied to the functional connectivity of
the test group (left) to calculate predicted stress scores. This showed significant
out-of-sample predictions of true stress scores (independent one-sided correla-
tions to assess the positive relationship between predicted and true stress scores).
The same was true when repeating the procedure using the first and second half of
data (first half of each session: run 1 + 3 against the second half of each session: run
2 + 4). Source data for 3A, B are provided as a Source Data file. Abbreviations as
in Fig. 1.
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Out-of-sample stress prediction using hypothalamus coupling
The similarity in regression coefficients across datasets and experi-
mental halves suggests that hypothalamus nuclei connectivity con-
tains variance related to stress. Next, we asked whether it would be
sufficient to predict individual stress scores. We used all 105 (7 nuclei x
15 ROIs) robust regression coefficients estimated in the training group
(n = 198 3 T participants) and multiplied them with the functional
connectivity values measured for all 105 edges in the test group
(n = 200 3T participants, same split as above). This produced pre-
dicted stress scores for the test group which had been generated out-
of-sample. We found a significant relationship between predicted and
true stress scores in the test group (one-tailed correlation testing for a
positive relationship between predicted and true stress scores:
r(196) = 0.265; p <0.001, CI = [0.13, 0.39]; Fig. 3C). This prediction was
robust to slight changes in theweights derived from the training group
(Supplementary Results). However, when we repeated the same pro-
cedure using all n = 398 3T-participants as the train group to generate
out-of-samplepredictions for then = 97 7T-participants, theprediction
was not significant, possibly due to the lack of variance in stress scores
in the 7 T cohort (r(95) = 0.118, p =0.124, CI = [−0.08,0.31]; Supple-
mentary Fig. 6C).

Finally, we alsogeneratedpredicted stress scores using regression
coefficients estimated on the first half of resting-state data applied to
connectivity values estimated from the second half of data, across all
n = 398 3 T participants. Again, stress predictions were significant
(Fig. 3C, right panel: r(396) = 0.172, p <0.001, CI = [0.08, 0.27]).

Characterising hypothalamus networks predictive of stress
The network between hypothalamus nuclei and a priori subcortical
ROIs included here contains less than 2% of all brain ordinates (1.38%:
1262 of 91,282) and 0.0015% of all edges (105 edges of 91,282 × 91,282).
Nevertheless, wewere able to generate significant out-of-sample stress
predictions. Figure 3B already suggested that specific edges of the
network may be especially relevant for stress. Thus, in our next step,
we tested whether an even smaller network might improve stress
predictions.

To carry out this test, we iteratively added one edge at a time,
from 1 to 105, based on their order of importance (absolute regression
coefficient) in the training group. As before, we then applied training
weights to the functional connectivity of the test group to compute
out-of-sample stress predictions, only this timepredictionswere based
on a smaller number of edges (Fig. 4A). Neighbouring predictions only
differ by the inclusion of one additional edge, so rather than estab-
lishing statistical significance at each step (amounting to a total of 105
tests), we used this analysis to identify the smallest significant network
and the overall best prediction, as established in prior work (see
Methods and ref. 5).

Surprisingly, a network that included a single edge between the
most ventral and anterior part of the hypothalamus (SO/SC) and the
median raphe (RNMR) was sufficient to significantly predict stress
levels (r =0.130, Fig. 4A and Supplementary Fig. 5B). A significant
prediction with n = 1 edge was unlikely to occur by chance (one-sided
likelihood of this n-value given permutation null distribution:
p =0.053, trend-wise significant). The top prediction was achieved
using n = 22 edges (r =0.272; Fig. 4A; Supplementary Fig. 5B), and this
peak prediction was higher than expected by chance (one-sided like-
lihood of this r-value given permutation null distribution: p =0.002).
We noticed several interesting features of the resulting network
(Fig. 4B–D). Anterior ventral hypothalamus (SO/SC) coupling with
median raphe (RNMR) and several amygdala nuclei (LaI, LaD, AB, CoN)
positively predicted stress scores. In addition, coupling betweenmore
dorsal anterior hypothalamus nuclei (MPO and PV) and BNST and
central/basal amygdala was important. For BNST, coupling with MPO/
PV related negatively to stress, while for the central and basal

amygdala, relationships were positive. For PV, connectivity with NAc
and LC also negatively contributed to predicting stress levels. Finally,
hypothalamus connectivity with dPAG and RNMR tended to correlate
positively with stress. Here, coupling with more mid-to-posterior
hypothalamusnuclei VMandPHseemedmost important.Wenote that
functional connectivity was on average positive in the hypothalamus
network considered (Fig. 1F and Supplementary Fig. 5A). This means
that positive regression coefficients can be interpreted as stronger and
negative regression coefficients as weaker functional connectivity.
Thus, in brief, weaker functional connectivity between anterior hypo-
thalamus nuclei and NAc and BNST, but stronger functional con-
nectivity between anterior hypothalamus and amygdala related to
stress, while relevant functional connectivitywith brainstemstructures
dPAG and RNMR was with more mid/posterior hypothalamus nuclei
and also positively related to stress (Fig. 4C, D). For predictions of
stress scores in the 7 T cohort, using identical procedures, see Sup-
plementary Results. Similarly, for predictions including hippocampus-
subdivisions as additional ROIs, see Supplementary Results and Sup-
plementary Fig. 8.

Nuclei-specific versus whole hypothalamus predictions
To show that parcellating the hypothalamus improved stress predic-
tions, we also repeated the regression with edges from ROIs to the
entire hypothalamus (reducing it from 105 to 15 edges). All methods
were otherwise identical. Out-of-sample predictions were still sig-
nificant but slightly worse than those obtained with nuclei-specific
hypothalamus predictions (prediction using whole network: r =0.244
compared to r = 0.265, both p < 0.001, null distributions account for
the number of predictors, seeMethods, Fig. 5A, B left; peak prediction
with increasing numbers of connections: r =0.252 compared to
r =0.272; Fig. 5C left). The associated network resembled the nuclei-
specific networks in Figs. 3 and 4 closely with connections to RNMR
and the amygdala being themost important (Fig. 5D—left column).We
repeated this procedurewith the amygdalanucleimerged intooneROI
and with and without nuclei resolution in the hypothalamus (7 × 9 = 63
versus 9 edges, respectively; Fig. 5 right). When losing the nuclei
composition of both the hypothalamus and amygdala, prediction
accuracies considerably dropped, but continued to be significant
(whole-network prediction: r =0.161, p =0.011; peak prediction:
r =0.202; Fig. 5A–C, right). Hypothalamus with RNDR coupling
remained important, but amygdala-to-hypothalamus connectivity lost
its importance for predicting stress when both structures were each
treated as homogenous wholes (Fig. 5D, right).

Behavioural specificity of predictions for stress
In a second control analysis, we examined the behavioural specificity
of hypothalamus predictions for stress. We included four behavioural
dimensions extracted in prior work5 which capture interindividual
variation in (a) social and life satisfaction, (b) negative emotions, (c)
sleep problems and (d) anger/rejection. Thesedimensions are not fully
orthogonal to stress: the first two correlate strongly with stress: HCP
participants with high stress scores also tend to have low life satis-
faction (r = −0.799) and high negative emotion scores (r = 0.903;
Fig. 6D). Anger/rejection is somewhat correlated with stress
(r =0.627), but sleep problems less so (r =0.296).

Nevertheless, when repeating predictions for these four alter-
native dimensions, using identical methods, we found that hypotha-
lamus connectivity predicted stress scores better than the four
alternative dimensions. The behaviours most related to stress, life
satisfaction, negative emotions, and anger/rejection, also reached
significance, with negative emotions coming closest to stress (whole-
network prediction: r = 0.188 for negative emotions, r =0.265 for
stress; peak prediction: r = 0.244 for negative emotions (including 44
edges), r = 0.272 for stress; Fig. 6A–C).
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Discussion
Chronic stress frequently precedes the onset of mental ill-health54,55.
Thus, there is an urgent need for an improved understanding of the
biological underpinnings of prolonged stress. We investigated whe-
ther functional connectivity in a small subcortical network centred on

the hypothalamus, a key region of the HPA axis, is associated with a
dimensional marker of prolonged stress. We first parcellated the
human hypothalamus into seven anatomically plausible nuclei. Inter-
individual variation in stress was then related to functional con-
nectivity extracted from high-quality fMRI resting-state data in nearly

A Size and nature of hypothalamus nuclei networks predictive of stress
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Fig. 4 | Anatomical features of hypothalamus networks predictive of stress.
A Prediction of stress scores obtained using subsets containing between 1 and 105
edges. Edges were included in order of importance (absolute robust regression
coefficients) estimated from the training group (n = 198). As in Fig. 3, weights were
applied to test participants’ functional connectivity values to predict stress scores,
but this time with increasing numbers of edges. Prediction accuracies (coloured
bars) are shown as the correlation between true and predicted stress scores in the
test participants (n = 200), but were only statistically evaluated at the peak (black
triangle: ‘global peak’) and to derive the smallest number of edges that reached a
significant out-of-sample prediction (blackarrow, ‘smallest significant network’; see
Methods for generation of null distributions using permutation; for precise one-
sided p-values in each case, see Results); black curve indicates performance using a
given number of edges (on x) but included in random order (n = 10,000 shuffles;
error bars denote s.e.m.); black line at r =0.1167 indicates the threshold for sig-
nificance at P < .05 purely for visualisation (grey line: P < 0.1, r =0.0911). A subset

of all 105 hypothalamus-to-ROI edges was sufficient to achieve a significant out-of-
sample prediction. A significant prediction could be achieved using only the first
edge (SO/SC to RNMR). The best prediction was achieved using 22 edges (r = .272).
B Schematic for the arrangement of connectivity fingerprints. C Fingerprint high-
lights anatomical edges associated with the global peak (22 edges). Fingerprints
show hypothalamus nuclei in the centre (colour-coded); ROIs are positioned
roughly according to their anatomical location. Line width denotes the size of the
absolute regression coefficient in the training dataset; line style denotes its sign
(continuous, positive; dashed, negative). D Further fingerprints are shown for the
smallest significant network (1 edge) and for one arbitrarily chosen intermediate
step at 9 edges, and using all 105 edges, for visualisation. The mean baseline con-
nectivity for all 105 edges as well as the corresponding scatterplots are shown in
Supplementary Fig. 5. Source data for 4A, C, D are provided as a Source Data file.
Abbreviations are as in Fig. 1.
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500 participants. The functional coupling strength of connections
between individual hypothalamus nuclei and subcortical and brain-
stem ROIs was robustly related to markers of stress, achieving pre-
dictions in held-out data that were specific to stress and which were
enhanced when using nuclei as opposed to whole hypothalamus
coupling.

The hypothalamus is a small deep structure prone to signal drop-
out. Nevertheless, we found that with sufficient spatial resolution and
careful pre-processing, it was possible to identify reliable signals in the
hypothalamus. For example, the average whole-hypothalamus con-
nectivity closely resembled monosynaptic connections identified in
macaque tracer work such as coupling with pgACC and sgACC, insula,
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anterior temporal cortex, NAc, central and superficial (CoN) amygdala
and brainstem35–39 (Fig. 1).

In line with this, our parcellation of the hypothalamus into indi-
vidual nuclei largely agreed with boundaries identified in careful ana-
tomical and post-mortem work in human and non-human primates
and extended simpler parcellations based on human rs-fMRI
data22,34,40,56–58 (Fig. 1 and Supplementary Table 2). We showed the
robustness of our findings by replicating the average hypothalamus
connectivity and its parcellation in two independent datasets (Sup-
plementary Fig. 1). Our parcellation was driven by the whole-brain
connectivity pattern of each hypothalamus voxel. More precisely, we
used the absolute connectivity between each hypothalamus voxel and
the rest of the brain. When using signed connectivity values, correla-
tion coefficients will be driven by negative versus positive connectivity
differences of the studied regionwith the rest of the brain. By contrast,
when using absolute connectivity values (or just the positive or just the
negative half of all connectivity values, ignoring the other half), it will
be driven by strong versusweak connectivity differences. In our hands,
the parcellation was anatomically most plausible when using absolute
connectivity values (see Supplementary Fig. 7). Future work may
explore other parcellation approaches, for example using functional
gradients previously explored in the striatum59. For a detailed discus-
sion of our choice of nuclei labels and their relationship with previous
parcellations, see Supplementary Discussion and Supplementary
Table 3.

We found that hypothalamus nuclei coupling was robustly asso-
ciated with stress. Both chronic and immediate stress has been asso-
ciated with the HPA axis in animal models14–16,60,61, but detailed
investigations in humans have been lacking, although a general role of
the hypothalamus in mood disorders has been highlighted62,63. Here,
we build on such prior work, but extend it in several ways: first, by
using a dimensional approach in a large healthy cohort, instead of
broad disease classifications. Second, by improving the anatomical
scale and considering individual hypothalamus nuclei, thus matching
the circuit resolution typically considered in related animal work. And
third, by providing statistically robust and replicable predictions of
stress scores in independent cohorts. Using this approach, we were
able to identify functionally meaningful hypothalamus networks.

Several features of the network we identified are noteworthy.
First, the paraventricular nucleus was a key nucleus: PV’s coupling with
the nucleus accumbens, BNST and amygdala strongly contributed to
stress predictions. PV is an important autonomic centre64,65 and rat PV
neurons show increased excitability to chronic stress66. In addition,
amygdala projections to the anterior hypothalamus35,67,68 are impor-
tant for mobilising stress responses45,69,70: corticotropin-releasing
central amygdala neurons terminate in PV46 and suggestions that rat
central amygdala to PV projections mediate stress date back several
decades71. Yet so far, it has been difficult to examine the insights
derived from this body ofwork in humans.Herewefind that functional

connectivity between basal and central amygdala nuclei and PV - as
well as adjacent anterior MPO—predicts stress in humans. This aligns
well with the rodent literature and improves the anatomical detail and
spatial resolution at which these circuits are typically studied in
humans.

When considering hypothalamus connectivity with brainstem
nuclei, we discovered an interesting dichotomy: coupling between
hypothalamus and dPAG as well as median raphe tended to relate
positively to stress, while coupling between hypothalamus and vlPAG
as well as dorsal raphe tended to relate more weakly to stress. Median
raphe generally inhibits, while dorsal raphe generally facilitates stress
behaviours47. The stronger coupling between the median raphe and
hypothalamus that we observed as a function of stress may reflect a
process of down-regulation of serotonin stress responses. The con-
nection between SO/SC and median raphe particularly stood out as
one of the strongest predictors of stress. However, the opposite effect
was observed in PAG. DPAG and vlPAG typically activate versus inhibit
active coping strategies, respectively72. However, coupling between
dPAG and the hypothalamus was stronger in people with higher stress
scores, suggesting prolonged stress maymean an over-usage of active
coping mechanisms mediated by this circuit. Here, important edges
centred around posterior hypothalamus nucleus PH, consistent with
animal work highlighting these pathways47,48,73,74. Given our analyses
relied on healthy volunteers, our interpretation of the underlying cir-
cuit changes should be confirmed in studies using longitudinal designs
or direct interventions in clinical populations to establish causality.

The hippocampus is affected by stress, in particular early life
adversity, which can have lasting effects on its structure and
function75,76. It is therefore an important subcortical region not inclu-
ded a priori here. We did not want to treat the hippocampus as a
homogenous region; however, since starting this work, Tian and
colleagues59 published a detailed hippocampus parcellation, which we
included a posteriori in our analyses for comparison (Supplementary
Information and Supplementary Fig. 8). Surprisingly, the inclusion of
the hippocampus subregions as additional ROIs did not improve stress
predictions. While these new analyses do not question the importance
of the hippocampus in stress predictions per se, they do suggest
functional connectivity between specific hippocampus-subdivisions to
hypothalamus-nuclei does not carry additional predictive variance for
stress. We note, however, that the marker of stress used in this study
was derived from subjective questionnaire items such as perceived
stress and fear. As part of the HCP dataset, we did not have access to a
true chronic stress item (e.g., burnout) or a validated stress marker
such as the cortisol response. Coupling between the hippocampus and
regions other than the hypothalamus, or as a function of objective
stress markers, should be considered in future work.

We found that stress predictions were better when considering
nuclei as opposed to whole hypothalamus connectivity, and they were
behaviourally specific. In our healthy cohort, we captured

Fig. 5 | Parcellating the hypothalamus improves predictions of stress. Sensi-
tivity of whole-hypothalamus as opposed to nuclei-specific hypothalamus con-
nectivity was established using two control analyses: (1) using the original 15 ROIs
(left column) and (2) using the original ROIs but replacing 7 amygdala nuclei by one
whole amygdala mask (9 ROIs, right column). A Out-of-sample predictions of test
groupparticipants usingweights estimated on the training group (as in Figs. 3C and
4A, n = 198 and n = 200) were significant based on whole-hypothalamus con-
nectivity both when using amygdala nuclei or whole amygdala connectivity (one-
sided correlations to assess positive relationships). B However, regression coeffi-
cients were reduced in both cases (bottom row) compared to the equivalent pre-
diction using hypothalamus nuclei-specific functional connectivity (top row), even
when correcting for the difference in the number of predictors (one-sided p-values
from non-parametric test using permutation null distributions, see Methods). C As
in Fig. 4A we generated predictions using increasing numbers of edges (coloured
bars): left: whole hypothalamus x ROIs (1 × 15) vs. nuclei version (7 × 15 = 105); right:

whole hypothalamus +whole amygdala ROIs (1 × 9) vs. nuclei version (7 × 9 = 63).
Peak predictions were higher in both cases when using hypothalamus nuclei and
highest overall when subdividing both hypothalamus and amygdala into their
component nuclei (left: 22 edges: r =0.272; right: 36 edges, r =0.282).
D Fingerprints associatedwith the predictions using all 15 (left) and 9 (right) whole-
hypothalamus edges; on the right, the amygdala was also treated as a single
structure. The highest contributing edgewas hypothalamus couplingwith RNMR in
both cases. Source data for 5B–D are provided as a Source Data file. rnd rando-
mised, NAc nucleus accumbens, BNST bed nucleus of the stria terminalis, SN
substantia nigra, dPAG dorsal periaqueductal grey, vlPAG ventrolateral PAG, RNDR
dorsal raphe nuclei, RNMR median raphe nuclei, LC locus coeruleus, Ce central
amygdala nucleus, CoN cortical amygdala nuclei, B basal amygdala nucleus, AB/BM
auxiliary basal or basomedial amygdala nucleus, LaI lateral intermediate amygdala
nuclei, LaD lateral dorsal amygdala nuclei, LaV/BL lateral ventral portion containing
portions of basolateral amygdala nucleus.
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interindividual variability in stress along a continuous subclinical
dimension which reflected longer-term stress rather than an immedi-
ate short-lived hormonal stress reaction. High stress scores correlated
with negative emotions and anger/rejection, and inversely with social
and life satisfaction. As expected, these alternative mental health
dimensions could also be predicted from hypothalamus coupling.
However, predictions were consistently strongest for stress (Fig. 6).
Given our work solely relied on healthy participant’s data, future
longitudinal work should examine whether changes in hypothalamus
coupling may be a precursor to mental illness and whether targeted
interventions such as those using transcranial ultrasonic stimulation
(TUS77,78) might be able to rebalance the hypothalamus networks
identified here79–81.

Direct insight into process abnormalities in stress disorders such
as PTSD cannot be gained from our work with healthy participants. An
important question for futurework is thereforewhether brain changes
in stress disorders such as PTSD are categorically different from
healthy controls, or just vary further along the continuum examined in
a healthy population here. In addition, it would be interesting to
examine whether the same networks studied at rest here would be
affected during an external or internal stress challenge, as well as after
prolonged exposure to stress.

Importantly, from the work presented here, we can only conclude
that predictions of stress can be achieved when based on hypothala-
mus functional connectivity. We cannot draw conclusions about the
contributions of other brain hubs not investigated here. Previous work
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Fig. 6 | Behavioural specificity of hypothalamus connectivity predictions for
stress. A Out-of-sample predictions were achieved using nuclei-specific hypotha-
lamus connectivity (all 105 edges as in Fig. 3C) for four alternative mental health
dimensions: life satisfaction (LifeSat), negative emotions (NegEmot), Sleep and
Anger (see ref. 5 for details). Significant predictions were achieved for Lifesat,
NegEmot, and Anger, but not Sleep (one-sided correlations to assess positive
relationships).BHowever, in all cases, prediction accuracies were lower than those
achieved for stress, showing hypothalamus connectivity is particularly meaningful

for stress. C Predictions achieved with increasing numbers of connections (as in
Figs. 4A and 5C) show overall greater predictions for stress (turquoise line) com-
pared to the four alternative dimensional scoreswhen considering thepeak and the
smallest predictive network. D Correlations between dimensional control scores
and stress scores show some shared variance, in particular for life satisfaction
(negative) and negative emotions. Source data for 6B, C are provided as a Source
Data file.
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has shownmore widespread whole-brain as well as specific amygdala/
hippocampus contributions in the context of acute stress82–85. This
study was designed around the hypothalamus, a region that has been
relatively neglected in human neuroimaging, to examine whether this
small subcortical circuit carries relevance for predicting stress. How-
ever, similar predictionmay be possible using other circuits. Indeed, it
is likely that other regions known to play a role in the context of stress,
both in the subcortex (e.g., amygdala, hippocampus) and cortex (e.g.,
ACC) contribute to stress predictions and could improve prediction
accuracies. Related to this, the signal-to-noise ratio can vary con-
siderably across regions, and this would need to be considered when
making any comparison between the predictive information about
stress in cortically- and subcortically-centred networks.

Wenote several limitations of ourwork. Our parcellation achieved
good subdivisions of the hypothalamus in the anterior-to-posterior
and dorsal-to-ventral axis. However, at a higher spatial resolution, it
might be possible to identify lateral and medial subdivisions of the
hypothalamus86 which was not possible here. The lateral nucleus is
particularly important in the context of feeding behaviour and for
acquiring and expressing cue-reward associations. It thus has an
important role in learning87. It has been identified in previous human
work at higher resolution, including post-mortem studies22,34,42. Its
importance in stress and its functional connectivity fingerprint should
be considered in future investigations when data acquired at higher
spatial resolutions and with better signal-to-noise become available. In
our main parcellation (Fig. 1), the lateral hypothalamus was likely part
of the paraventricular nucleus. A lateral nucleus appeared at a reso-
lution of 1.6mm at 7 T (Supplementary Fig. 3a). However, the 7 T data
suffered fromother problems such as a lack of variance in stress scores
and missing physiological recordings required for data clean-up. We
also note that while our work shows the importance of focusing on
functionally relevant circuits, future work might additionally consider
functionally relevant states, instead of the resting state, potentially
including internal and external stress challenges or longitudinal mea-
sures of stress, which might further aid predictions88. In general, all
predictions here are based on cross-sectional data and longitudinal
work will be vital in helping establish causality and in clarifying the
direction of relationships between brain and stress markers. Finally, in
normal population data, we are likely to underestimate effect sizes
compared to clinical samples, so replication of our results in the latter
will be important.

In summary, we examined whether a subcortical brain network is
associated with stress scores in a large healthy human population.
Rather than identifying an extensive network for maximal prediction
accuracy, we focused on a small network centred on the hypothalamus
which involved less than 2% of brain ordinates and 0.0015% of brain
edges. We characterised hypothalamus connectivity at the scale of its
individual subnuclei. Using this nucleus-specific functional con-
nectivity, we were able to significantly predict stress scores in an
independent cohort. Predictions were behaviourally specific,
improved by nucleus level resolution (as opposed to whole hypotha-
lamus level resolution) and were consistent with a large body of work
in animal models. Future interventional studies should explore whe-
ther inducing changes in precise hypothalamus networks may alter an
individual’s experience of stress. Exploring this in both healthy and
clinical populations could have implications for treating a range of
mental health disorderswhose onset is often preceded by a prolonged
experience of stress.

Methods
Participants
Data and ethics were provided by the Human Connectome Project
(https://www.humanconnectome.org/), WU-Minn Consortium (Princi-
pal Investigators: David Van Essen andKamil Ugurbil; 1U54MH091657),
funded by the 16 NIH Institutes and Centres that support the NIH

Blueprint for NeuroscienceResearch; and by theMcDonnell Centre for
Systems Neuroscience at Washington University. All participants gave
informed consent and were reimbursed for their time ($450 for 3 T
MRI + interview, $400 for 7 T MRI) and travel. HCP participants were
scanned at the McDonnell Centre for Systems Neuroscience at
Washington University, University of Minnesota (WU-Minn), USA, on a
Siemens Skyra 3 Tesla scanner and on a 7 T Siemens Magnetom
scanner (for details see refs. 89, 90).

We included three cohorts from the full young-adult HCP dataset
(Supplementary Fig. 2B): an initial dataset of n = 200 3T participants
(D1), a replication dataset of the same size (n = 200, 3 T; R1), and a third
dataset containing all non-overlapping n = 98 participants scanned at
7 T (R2). These datasets are identical to those included in our prior
work where we explain the participant inclusion criteria in depth5. For
completeness, we will reproduce the resulting demographics and a
brief description of our inclusion criteria here: D1: mean age 29 ±0.26;
age range 22–36; 108 females;R1:meanage 28 ±0.28; age range 22–36;
99 females; R2: mean age 29 ± 0.33; age range 23–36; 59 females. In
brief, we included participants with four complete resting-state runs
and good-quality recordings of both cardiac and respiratory activity.
These were not available for all individuals from the larger dataset of
n = 1206 HCP participants, but they were important because one key
aspect of our additional data pre-processing was to correct rs-fMRI
data for physiological noise5,26,41. Physiological noise recordings were
not available in the 7 T data, but the higher field strength improved the
tSNR in subcortical regions, so all 7 T participants not already included
in the 3 T cohort were included in our third (second replication)
dataset. Finally, 3 T participants were selected to achieve a widespread
in their mental well-being scores (for more details, see ref. 5).

Data and data pre-processing
Four runs of rs-fMRI data were acquired in each participant, lasting
14.4minper run at 3 T and 16minper run at 7 T. For the 3 Tdata, twoof
these runs had a right-left encoding direction and two had a left-right
encoding direction (TR of 720ms, TE of 33ms, isotropic resolution of
2mm, 72 slices, multiband factor of 8 resulting in 1200 time points).
For the 7 T data, two of these runs had an anterior-posterior encoding
direction and two had a posterior-anterior encoding direction (TR of
1 s, TE of 22.2ms, isotropic resolution of 1.6mm, 85 slices, multiband
factor of 5 resulting in 900 time points, in-plane acceleration
factor of 2).

We used all four runs per participant and downloaded the mini-
mally pre-processed data91. Among other steps, the minimal pre-
processing pipeline included distortion correction, temporal filtering,
projection onto a surface reconstruction obtained from the T1-
weighted image while keeping subcortical voxels in volume space
(cifti format), and minimal smoothing. These steps were achieved
using tools fromFMRIB’s software library (FSL, version 6.0), FreeSurfer
(version 5.2) and Connectome Workbench (version 1.3.2). A multi-
modal areal-feature-based surface registration (MSMall) method was
used to achieve registration across participants (for more details, see
refs. 91, 92). Unless otherwise stated, the 2mm subsampled 7 T data
was used to match the resolution of the 3 T data.

In addition to minimal pre-processing, we corrected rs-fMRI data
for physiological noise. This was a key aspect of our pre-processing as
physiological noise particularly affects subcortical and brainstem
regions and thus, the hypothalamus and its connected regions. This
step and its resulting benefits in terms of the achieved temporal signal-
to-noise (tSNR) ratio are explained in more depth in our prior work5,
but we summarise the key aspects again here: recorded raw physio-
logical traces were processed using the Physiological Noise Modelling
(PNM) toolbox93,94 to generate 33 physiological regressors. The phy-
siological regressors were created based on voxel x,y,z = [0,0,0] given
sliceswere acquired interleaved andwith a very short TR (720ms). The
variance explained by these regressors was then removed from the rs-

Article https://doi.org/10.1038/s41467-024-46275-y

Nature Communications |         (2024) 15:2426 12

https://www.humanconnectome.org/


fMRI data. As described before5, we also corrected for motion and
noise detected using independent component analysis (ICA). The
resulting rs-fMRI data were demeaned and the variance of the noise in
the data was normalised as described in ref. 92, i.e., the normalisation
factor was estimated on unstructured noise after the strongest PCA
components containing structured signal/noise were removed.

Once data clean-up was complete, we concatenated the four
resting-state runs from each participant. We obtained time courses of
all brain-ordinates of all 400 3 T participants (D1: n = 200; R1: n = 200;
91,282 × 4800 from the four combined runs of 1200 time points each)
and all 98 7 T participants (R2: n = 98; 91,282 × 3600 from the four
combined runs of 900-time points each). For the creation of each of
the three group connectomes (D1, R1, and R2), we applied additional
smoothing to the surface, but not to subcortical structures (sigma=
5mm). Analyses on individual time series did not involve any further
smoothing.

To obtain a group average connectome for each dataset, the
individual time series of all participants included in D1, R1, or R2,
respectively, were combined using the following procedure: first, we
generated the group average time series using the algorithm MIGP,
which creates an average time series using a group-level principal
component analysis95. Second, we created a dense connectome (i.e.,
including the connectivity from each brain-ordinate to each other
brain-ordinate) by generating correlations of the group average time
series (using a Pearson’s correlation between each pair of brain ordi-
nates followed by a transformation to Fisher’s z). Ringing artefacts
were corrected using Wishart RollOff92. This produced three group
dense connectomes containing n = 200 (D1, R1) or n = 98 (R2)
participants.

Group dense connectome and hypothalamus similarity matrix
The average dense group connectome (91,282 × 91,282 brain-ordi-
nates) was restricted to the connectivity between all hypothalamus
voxels and the rest of the brain (109 voxels x 91,282 brain-ordinates)
using a hypothalamus mask extracted from Zhou96. Out of the 91,282
brain vertices, 31,870 were subcortical voxels and 59,412 were cortical
vertices. Figure 1A shows the group mean functional connectivity for
the entire hypothalamus for D1, whereby positive functional con-
nectivity values are shown in red-yellow colours and negative func-
tional connectivity values in blue-green colours (see Supplementary
Fig. 1A, B for the corresponding plots in R1 and R2). For illustration
purposes, we corrected Fig. 1A and Supplementary Fig. 1A, B for global
absolute signal strength5: raw connectivity values in each brain-
ordinate were divided by themean absolute connectivity of this brain-
ordinate to the whole brain as a proxy for its signal strength. Next,
absolute values of the restricted hypothalamus-to-all dense con-
nectome were converted into a similarity matrix that summarised the
similarity between any pair of hypothalamus voxels in terms of their
absolute functional connectivity to all other brain-ordinates (calcu-
lated using Pearson’s correlation coefficient in FSLnets function
nets_netmats, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). The self-
connectivity of the hypothalamus was included for generating this
similarity matrix because it might be informative for parcellating the
hypothalamus into finer subdivisions. Using absolute values meant
that the clustering was driven by similarities and differences in high
versus low functional connectivity, rather than positive versus nega-
tive functional connectivity values. Note that almost identical clusters
were obtained when using only positive connectivity values to par-
cellate the hypothalamus. By contrast, a parcellation using signed
values was less anatomically plausible, lacking symmetry and produ-
cing unequal numbers of nuclei across hemispheres. For computing
absolute values, the negative 46.65% of the connectivity matrix was
flipped in its sign. Overall, the hypothalamus parcellation was thus
driven by similarities and differences between hypothalamus voxels’
absolute connectivity to the rest of the brain.

Parcellation of the hypothalamus
Hierarchical clustering (function nets_hierarchy.mpart of FSLnets)was
thenperformedon the similaritymatrix.As hierarchical clustering is an
agglomerative approach related to similarity values, voxelswith similar
connectivity profiles should end up in the same cluster, while voxels
with different connectivity profiles should end up in separate clusters.
We chose the most anatomically plausible parcellation by comparing
each higher-order clustering step with the previous clustering step
(see Supplementary Fig. 2) and by comparing the location and size of
the clusters obtained at increasing levels of depths to known anato-
mical subdivisions of the hypothalamus. In other words, while the
clustering itself was fully automated, the depth of clustering at which
we decided to stop was subjective and based on anatomical con-
siderations. We expected reasonable symmetry across hemispheres
and focused on identifying divisions between anterior-posterior and
medial-lateral clusterswithin the hypothalamus.We therefore stopped
at the clustering depth where these criteria started to break down. To
evaluate the quality of the clustering, we compared clusters with
existing post-mortem images58, and MRI work34,40,42,43,57,94,97 as well as
with atlases22,42,98 to identify similarities in their anatomy. Supple-
mentary Fig. 9 and Supplementary Table 3 summarise similarities and
differences between our and other existing parcellations.

To replicate the parcellation, we repeated the same procedure
on the second 3 T dataset, R1, and on the n = 98 7 T participants in R2,
for the latter using the improved resolution of 1.6mm to examine
whether we could additionally achieve a medial-lateral division of the
hypothalamus (Supplementary Fig. 1C). We quantified the similarity
between the two 2mm-parcellations obtained for D1 and R1 as
described by Klein-Flügge and collegues5 using the mean distance
between cluster centroids and the percentage of voxel overlap with
the same label. The overlap between the original parcellation in D1
and the 3 T replication in R1 was 60.55% (meanDist = 0.7715, which is
unlikely by chance: non-parametric tests using permutation null
distribution p = 0.00001 and p = 0.0004, respectively, see Supple-
mentary Fig. 3B, C). Throughout the manuscript, we used the par-
cellation derived from D1 for all cohorts. This meant that the same
hypothalamus clusters were used across all participants and datasets.
Also, because this parcellation was derived from the groupmean, the
choice of parcellation could not bias any key analyses focusing on
individual differences. See Supplementary Fig. 2B for an overview of
the data used for each step of analysis.

Naming of clusters
The naming of our clusters is based on the nomenclature of the clus-
ters in theAtlasof theHumanBrainbyMai and collegues22 (http://atlas.
thehumanbrain.info/) and the veryfine-grainedMRI-basedparcellation
by Neudorfer and collegues34. We compared the similarities between
our labelling and the labels of other parcellations from existing post-
mortem images58, andMRI work34,40,42–44,57,94,97,99 as well as with atlases22

and summarised similarities in Supplementary Table 3. All clusters are
shownwith their corresponding labels in Fig. 1D. Overall, we identified
a good correspondence between the position and labelling of our
nuclei and those reported in refs. 22, 34, 42–44, 57, 58, 99.

ROI selection for nuclei-specific hypothalamus connectivity
This study focused on the connectivity of the hypothalamus with
subcortical regions. All ROIs were chosen a priori based on the litera-
ture in rodents35–39,100,101, monkeys35,37,38,102 and humans103. More speci-
fically, we selected forebrain subcortical and brainstem ROIs which
have been shown in tracer studies to be strongly connected to the
hypothalamus, such as the amygdala35–39, nucleus accumbens (Nac104),
andPAG100–102,105. In addition,we includedROIs that havebeen linked to
stress-related functions and/or form part of the major neuro-
transmitter systems. In the brainstem, this includes the ventral teg-
mental area (VTA), substantia nigra (SN), locus coeruleus (LC) and
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raphe nucleus (RN). The critical forebrain subcortical structures
include Nac and BNST50,106–109.

Masks of all ROIswere extracted frompublished atlases or studies
on specific regions (see Supplementary Table 4 and Fig. 1E). As done
before5, all masks were visually inspected to ensure they traced the
structure of interest well. The following choices were made: the SN
probabilistic mask110 was binarized and included all voxels above a
probability threshold of >0.25. The Nac probabilistic mask was binar-
ized as well, but because of the large size of the ROI, we used a prob-
ability threshold of >0.75.We used binarymasks of BNST, PAG, LC and
RN111–114 and subsampled them to 2mm.After subsampling, only voxels
exceeding >0.25 were included in the masks. ROIs of the raphe nuclei
were adjusted tomaximise anatomical plausibility using a threshold of
>0.6 and >0.72 for dorsal and median raphe, respectively5.

In a posteriori analyses, we also included five subdivisions of the
hippocampus as additional ROIs: tail, body, head-l, head-m1, head-m2.
Themasks for these hippocampal subdivisions were taken fromTian &
colleagues59).

Stress-related behavioural markers
Our goal was to capture interindividual variation in stress levels
experienced over a prolonged time period. We therefore inspected all
behavioural and questionnaire markers acquired as part of the young-
adult HCP dataset and included all variables that captured relevant
elements of stress. A total of seven scores were included. Six of those
measureswere extracted from theNIH toolbox emotion battery (www.
nihtoolbox.org115,116). Of these, two were from the stress and self-
efficacy sub-toolbox: Perceived stress (PercStress) and Self-efficacy
(SelfEff). Three measures captured negative affect: anger aggression
(AngAggr), fear affect (FearAffect) and fear somatic (FearSomat). The
sixth score was a measure of emotional support (EmotSupp) from the
social relationship toolbox because a lack of emotional support can
contribute to individuals’ stress levels. The seventh score was the
response to the following question from the NEO-Five-Factor Inven-
tory (FFI): When I’m under a great deal of stress, sometimes I feel like
I’m going to pieces (NEORAW_11117). Individuals were asked to choose
on a five-point scale how strongly they agreed or disagreed with the
statement (SA=Strongly Agree, A=Agree, N=Neither Agree, or Dis-
agree, D=Disagree, SD=Strongly Disagree). All questions related to a
prolonged time period, they asked how true statements were in gen-
eral (SelfEff, AngAggr), in the past 7 days (FearAffect, FearSomat), or in
the past month (EmotSupp, PercStress). Thus, our final list included
seven variables (PercStress, SelfEff, AngAggr, FearAffect, FearSomat,
EmotSupp, and NEORAW_11) all of which showed sufficient inter-
individual variance in the 3 T cohorts D1 and R1 (see distributions in
Fig. 2A and Supplementary Fig. 4), but reduced variance within the 7 T
cohort, R2 (Supplementary Fig. 4A).

Factor analysis for extracting a dimensional stress marker
Next, we conducted a factor analysis on the seven scores (z-scored)
using Matlab’s function ‘factoran’, with a ‘promax’ rotation (MATLAB
version R2021a). The factor analysis on the D1 and R1 was virtually
identical (similarity between seven factor loadings comparing D1 and
R1: Pearson’s r(5) = 0.996; p = 7.90 × 10−7; CI = [0.97, 1]). Thus, for con-
sistency, both cohorts were pooled, and identical factor weights were
used for all individuals throughout the manuscript (Fig. 2B). A Scree
test based on all n = 400 3 T participants suggested one factor (nFac-
tors package in R (version 4.2.1, in RStudio version 2022.12.0 + 353)
with function nScree118). Wemultiplied the loadings from the resulting
factor onto each individual’s original seven scores to construct a one-
dimensionalmarker of stress per participant (Fig. 2C, D). Wewere able
to closely replicate the factor analysis when including all non-
overlapping n = 1206 – 400= 806 HCP 3 T participants (Supplemen-
tary Fig. 4B). However, when the factor loadings were applied to the
n = 98 7 T dataset (R2), therewasmarkedly reduced variability in stress

scores in this dataset which compromised our ability to examine stress
in this cohort (see Supplementary Figs. 4C and 6). Thismay be due to a
selection bias because more anxious participants may prefer not to
enter a high-field scanner.

Relating stress and hypothalamus nuclei connectivity
In our key analyses, the functional connectivity between specific
hypothalamus nuclei and a priori ROIs were used to predict the
dimensional stress score across subjects using a previously established
procedure5. For each participant, we extracted the functional con-
nectivity between each of the seven hypothalamus nuclei and each of
the 15 a priori ROIs. This resulted in 105 functional connectivity values
per participant. These connectivity values formed the matrix of
potential predictors X that could be used to predict the dimensional
stress score y. For simplicity, we refer to predictors in the X as edges or
connections, although functional connectivity is a proxy for and does
not perfectly capture anatomical connectivity119.

Upon inspection of the stress scores y in our original split of the
n = 400 3 T participants into D1 and R1, we noticed that stress scores
were not comparable (trend-wise difference in the group means:
t(394) = 0.991; p = 0.066; CI = [−0.03,1]).We thus generated a new split
of all n = 400 3T participants into a train and a test group (n = 200
each) which had comparable means and variances of stress scores
(Supplementary Fig. 4C). This split was generated once and solely
based on the stress marker y.

To improve the reliability of hypothalamus functional con-
nectivity estimates in X, we rejected outlier participants if more than
10% of their functional connectivity values across all edges deviated
more than 3.5 standard deviations from themean across participants5.
Using this procedure, two outliers were identified in the 3 T train
cohort, leaving n = 198 and n = 200 participants in the train and test
groups, respectively, and one outlier was excluded from the 7 T R2
cohort, leaving n = 97 participants in R2. Thus, from this point
onwards, all key analyses looking at interindividual variation were
performed on n = 398 3T participants (Figs. 3–5) and supplementary
analyses were performed on n = 97 7 T participants (Supplementary
Fig. 6 and Fig. 2B).

Next, confound variables (whole brain volume, motion, and
intracranial volume)were regressedout of the connectivitymatrix X as
described in refs. 5, 120. Additional confounds included the sex, age in
years, body-mass index (BMI), race, ethnicity, and years of education
completed (see Supplementary Table 1). A total of 11 confounds were
thus regressed out of X. This was done to ensure that our results would
not be driven by remaining differences between participants (e.g.,
differences in the quality of motion correction). Nevertheless, we
confirmed that key results held without inclusion of these confounds,
especially given BMI’s potential relationship with stress. In general,
across analyses, z-scoring was applied to regressors in the functional
connectivity matrix X of the training group before running regression
analyses. To achieve unbiased predictions in the test group, the
z-scoring from the training group was applied to the test group using
the mean and standard deviation from the training group.

In the first step, to establish whether hypothalamus connectivity
captured meaningful variance related to stress, we estimated robust
linear regression weights (function robustfit in MATLAB), separately
for all functional connectivity edges in X (105) to capture their rela-
tionship with the stress scores in y. This first step was performed to
train robust regression weights for individual edges, but not used to
evaluate predictions. Following a procedure established previously5,
we then tested whether these regression weights were (1) similar
between 3 T datasets (‘across-subject’; Fig. 3A, B, left) and (2) similar
between halves of fMRI data of each participant (‘within-subject’;
Fig. 3A, B, right). Inotherwords,wefit robust regressions for eachedge
separately for train and test participants (Fig. 3A, B, left), or separately
for functional connectivity estimates extracted from just the first or
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second half of resting-state data (run 1 + 3 corresponding to the first
half of each session, versus run 2 + 4 corresponding to the second half
of each session, using test+train; Fig. 3A, B, right). The resulting
regression weights are shown in Fig. 3B. Next, we computed Pearson’s
correlation coefficient between the overall pattern of regression
weights, i.e., establishing whether across or within subjects, when
estimated on separate parts of the data, theseweights were robust and
replicable and thus likely meaningful. We evaluated whether these
patterns were more similar than expected by chance with a permuta-
tion null distribution generated by shuffling the stress vector y
n = 10,000 times (while keeping the functional connectivity values
unchanged) and recomputing the correlation coefficient between
the overall pattern of regression coefficients for each shuffle (Fig. 3A).
Finally, to visualise the contribution of each edge, we computed
rDiff, the difference in the correlation coefficient between the
patterns of robust regression coefficients obtained when a single edge
was left out of X, compared to when all edges were included in X
(which was repeated once for each of the 105 edges; Fig. 3B,
bottom row).

Out-of-sample stress prediction using hypothalamus coupling
Having tested the robustness of hypothalamus connectivity relation-
ships with stress, we moved on to our key analysis to establish if
hypothalamus nuclei connectivity was sufficient to predict stress in an
independent cohort. To test this, we applied the robust regression
coefficients estimated independently for all 105 edges in the training
group to the functional connectivity estimates from the test group,
using a weighted sum of all edge’s weights and all edges’ individual
connectivity values, to derive individual predicted stress scores for all
participants. We used Pearson’s correlation to establish the similarity
between predicted and true stress scores in the test group (Fig. 3C,
left). For consistency and replicability, the equivalent testwas repeated
using robust regressionweights trained on run 1 + 3 and applied to the
connectivity estimates from run 2 + 4, across all participants (test
+train; Fig. 3C, right).

Throughout themanuscript, analyses probing whether functional
connectivity could predict stress examined whether there was a posi-
tive relationship between two patterns of robust regression coeffi-
cients (Fig. 3A, B) or between predicted and true behavioural scores
(Figs. 3–5). p-values for these analyses were accordingly one-tailed.

Characterising hypothalamus networks predictive of stress
So far, the generated out-of-sample predictions used all 105 edges. To
examine whether predictions of stress levels in an independent cohort
were possible with fewer edges, we repeated the same procedure by
iteratively including an increasing number of edges from 1 to 105
(Fig. 4A). We sorted edges in the order of their absolute robust
regression weights based on the training group and then applied
between 1 and 105 trainweights to the connectivity of the test group to
generate predicted stress scores for the test group. Figure 4A shows
the goodness of fit, i.e., the correlation between predicted and true
stress scores in the test group going from 1 to 105 edges. For visuali-
sation, lines are shown to indicate trend-wise and p <0.05 significance
levels, which correspond to Pearson’s r-values of r =0.091 and
r = 0.117 (given n = 200, one-sided). The first 30 edges that were
included are spelt out in the Supplementary Methods. To avoid con-
ducting many tests, we followed our previously established
procedure5: the obtained correlation coefficients were used to per-
form only two tests to identify (a) the smallest number of edges
(smallest n-value) that led to a significant out-of-sample prediction
(i.e., where r > 0.117); and (b) the best possible out-of-sample predic-
tion (maximum r-value). To establish significance, we generated two
permutation null distributions. We repeated the above procedure of
including 1 to 105 edges n = 10,000 times but based on shuffled
behavioural scores. In each iteration, we determined the size n of the

smallest network that reached significance (if no significant predic-
tions were achieved for a given iteration, we used a conservative score
of n = 106, i.e., the maximum number of edges plus 1) and the max-
imum Pearson’s r achieved. One p-value was then extracted from each
of these two null distributions.

To illustrate the quality of the prediction and the contributing
edges, scatterplots and fingerprints were generated for the smallest
network that reached significance and for the global peak (Fig. 4B–D
and Supplementary Fig. 5B) and fingerprints were included for a few
arbitrarily chosen intermediate steps for visualisation of the important
edges (Fig. 4D). Fingerprints show the size of the train regression
coefficient for each edge as the width of the line, its sign for predicting
stress as the line style (continuous = positive; dashed=negative) and
the colour reflects the hypothalamus nucleus. Supplementary Fig. 5A
in addition shows whether functional connectivity was on average
positive, negative, or close to zero for each edge.

Equivalent analyses using all edges or increasing the number of
edges (Figs. 3 and 4) were performed with n = 398 3 T participants as
the training group and n = 97 7 T participants as the test group and are
reported in Supplementary Fig. 6.

Nuclei-specific versus whole hypothalamus predictions
To examine whether parcellating the hypothalamus (and amygdala)
led to improved prediction accuracies, we repeated the regression
procedure, once with edges from the 15 ROIs to the entire hypothala-
mus instead of its individual nuclei (n = 15 edges instead of
n = 7 × 15 = 105 edges; Fig. 5A–D, left), and once with edges from the
same ROIs but with the amygdala included as a whole instead of its
individual nuclei (15-6 = 9 ROIs) both for the whole and the parcellated
hypothalamus (n = 9 edges or n = 7 × 9 = 63 edges, respectively;
Fig. 5A–D, right). In other words, compared to previous analyses, no
change was done to any ROIs except the hypothalamus and/or
amygdala. Relationships with stress were established between the
hypothalamus and the same set of ROIs as before (e.g., NAc, LC, etc),
just changing the spatial precision with which the hypothalamus (and
amygdala) were represented. As before, robust regression coefficients
obtained from the training group were applied to the test group’s
functional connectivity to predict the test group’s stress scores. We
note that typically, a larger number of predictors should perform
better. However, here, the edges captured the same information in
both cases, namely functional connectivity with all hypothalamus and
all amygdala voxels. It is conceivable that (a) BOLD measurements in
smaller sets of voxels are noisier and as a result, predictions generated
from the functional connectivity of hypothalamic nuclei, as opposed
to the hypothalamus as a whole, might be worse, or that (b) hypo-
thalamus subdivisions into nuclei are meaningful and increase the
prediction accuracy for stress scores. Nevertheless, to make predic-
tions from whole and nuclei-specific hypothalamus functional con-
nectivitymore comparable, we generated null distributions for all four
cases (amygdala whole/nuclei x hypothalamus whole/nuclei). We
shuffled the order of participants’ stress scores in both test and train
datasets and repeated the procedure of predicting test stress scores
from train weights 10,000 times. The p-values extracted from the
respective null distributions account for the number of predictors,
allowing a direct comparison (Fig. 5B). Thus, this test established if
parcellating the hypothalamus and amygdala into nuclei helped us
improve the accuracy of our predictions.

Behavioural specificity of predictions for stress
A second control analysis was performed to assess the behavioural
specificity of our predictions for stress as opposed to other subclinical
mental health dimensions. Building on our prior work5, we compared
the predictions of individuals’ stress scores with predictions achieved
for four related mental health scores capturing ‘social and life
satisfaction’, ‘negative emotions’, ‘sleep problems’, and ‘anger and
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rejection’. These were extracted using factor analysis from a larger set
of 33 questionnaire scores as described in ref. 5. The four alternative
dimensional scores were not fully orthogonal to stress (Fig. 6D).
Nevertheless, we hypothesised that functional connectivity in hypo-
thalamus nuclei networks may better predict stress scores compared
to related mental health scores. Predictions for these four alternative
scores were generated using all n = 105 edges (Fig. 6A) or increasing
number of edges (Fig. 6C) using identical procedures as before.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The neuroimaging data used in this study are available from the
Human Connectome Project (www.humanconnectome.org). Users
must apply for access and agree to the HCP data use terms (for details
see https://www.humanconnectome.org/study/hcp-young-adult/data-
use-terms). Here, we used both Open Access and Restricted data. The
masks of all ROIs used in this study as well as all individual hypotha-
lamus nuclei generated here and further Source data to figures are
provided in the SourceData file and are available in the OSF repository
http://osf.io/bq3fd. Source data are provided in this paper.

Code availability
Code that allows HCP users to replicate analyses, including plotting all
figures presented in the manuscript is provided in the OSF repository
http://osf.io/bq3fd. Intermediate analysis outputs can be made avail-
able to registered HCP users. Please see the README file in the Scripts
folder for further details.

References
1. Scangos, K. W., State, M.W., Miller, A. H., Baker, J. T. &Williams, L.

M. New and emerging approaches to treat psychiatric disorders.
Nat. Med. 29, 317–333 (2023).

2. Huys, Q. J. M., Maia, T. V. & Frank, M. J. Computational psychiatry
as a bridge from neuroscience to clinical applications. Nat. Neu-
rosci. 19, 404–413 (2016).

3. Insel, T. et al. Research domain criteria (RDoC): toward a new
classification framework for research on mental disorders. Am. J.
Psychiatry 167, 748–751 (2010).

4. Marquand, A. F. et al. Conceptualizing mental disorders as
deviations from normative functioning. Mol. Psychiatry 24,
1415–1424 (2019).

5. Klein-Flügge, M. C. et al. Relationship between nuclei-specific
amygdala connectivity and mental health dimensions in humans.
Nat. Hum. Behav. https://doi.org/10.1038/s41562-022-01434-3
(2022).

6. Schmidt, M. V., Sterlemann, V. & Müller, M. B. Chronic stress and
individual vulnerability. Ann. N. Y. Acad. Sci. 1148, 174–183
(2008).

7. Agid, O., Kohn, Y. & Lerer, B. Environmental stress and psychiatric
illness. Biomed. Pharmacother. 54, 135–141 (2000).

8. Ulrich-Lai, Y.M. &Herman, J. P. Neural regulation of endocrine and
autonomic stress responses. Nat. Rev. Neurosci. 10,
397–409 (2009).

9. McEwen, B. S. et al. Mechanisms of stress in the brain. Nat. Neu-
rosci. 18, 1353–1363 (2015).

10. Hermans, E. J., Henckens, M. J. A. G., Joëls, M. & Fernández, G.
Dynamic adaptation of large-scale brain networks in response to
acute stressors. Trends Neurosci. 37, 304–314 (2014).

11. McEwen, B. S. & Gianaros, P. J. Central role of the brain in stress
and adaptation: links to socioeconomic status, health, and dis-
ease. Ann. N. Y. Acad. Sci. 1186, 190–222 (2010).

12. Hermans, E. J. et al. Stress-related noradrenergic activity prompts
large-scale neural network reconfiguration. Science 334,
1151–1153 (2011).

13. Myers, B., McKlveen, J. M. & Herman, J. P. Neural regulation of the
stress response: themany faces of feedback.Cell. Mol. Neurobiol.
32, 683–694. (2012).

14. Zhang, G.-W. et al. Medial preoptic area antagonistically mediates
stress-induced anxiety and parental behavior. Nat. Neurosci. 24,
516–528 (2021).

15. Herman, J. P., Flak, J. & Jankord, R. Chronic stress plasticity in the
hypothalamic paraventricular nucleus. Prog. Brain Res. 170,
353–364 (2008).

16. Bao, A.-M., Meynen, G. & Swaab, D. F. The stress system in
depression and neurodegeneration: focus on the human hypo-
thalamus. Brain Res. Rev. 57, 531–553 (2008).

17. de Kloet, E. R., Joëls, M. & Holsboer, F. Stress and the brain: from
adaptation to disease. Nat. Rev. Neurosci. 6, 463–475 (2005).

18. Arnsten, A. F. T. Stress signalling pathways that impair prefrontal
cortex structure and function. Nat. Rev. Neurosci. 10,
410–422 (2009).

19. Roozendaal, B., McEwen, B. S. & Chattarji, S. Stress, memory and
the amygdala. Nat. Rev. Neurosci. 10, 423–433 (2009).

20. Schwabe, L., Hermans, E. J., Joëls, M. & Roozendaal, B. Mechan-
isms of memory under stress. Neuron 110, 1450–1467 (2022).

21. Saper, C. B. & Lowell, B. B. The hypothalamus. Curr. Biol. 24,
R1111–R1116 (2014).

22. Mai, J. K., Majtanik, M., & Paxinos, G. Atlas of the Human Brain
(Academic Press, 2015).

23. Krause, F. et al. Self-regulation of stress-related large-scale brain
network balance using real-time fMRI neurofeedback. Neuro-
Image 243, 118527 (2021).

24. Tutunji, R. et al. Changes in large-scale neural networks under
stress are linked to affective reactivity to stress in real life. Preprint
at bioRxiv, https://doi.org/10.1101/2023.03.28.534537
(2023).

25. Ramot, A. et al. Hypothalamic CRFR1 is essential for HPA axis
regulation following chronic stress. Nat. Neurosci. 20,
385–388 (2017).

26. Harrison, O. K., Guell, X., Klein-Flügge, M. C. & Barry, R. L. Struc-
tural and resting state functional connectivity beyond the cortex.
NeuroImage 240, 118379 (2021).

27. Jensen, D. E. A., Leoni, V., Klein-Flügge,M.C., Ebmeier, K. P. & Suri,
S. Associations of dietary markers with brain volume and con-
nectivity: a systematic review of MRI studies. Ageing Res. Rev. 70,
101360 (2021).

28. Herman, J. P. Neural control of chronic stress adaptation. Front.
Behav. Neurosci. 7, 61 (2013).

29. Reggente, N. et al. Multivariate resting-state functional con-
nectivity predicts response to cognitive behavioral therapy in
obsessive–compulsive disorder. Proc. Natl. Acad. Sci. USA 115,
2222–2227 (2018).

30. Drysdale, A. T. et al. Resting-state connectivity biomarkers define
neurophysiological subtypes of depression. Nat. Med. 23,
28–38 (2017).

31. Zeng, L.-L. et al. Identifying major depression using whole-brain
functional connectivity: a multivariate pattern analysis. Brain J.
Neurol. 135, 1498–1507 (2012).

32. Fudge, J. L. & Emiliano, A. B. The extended amygdala and the
dopamine system: another piece of the dopamine puzzle. J.
Neuropsychiatry Clin. Neurosci. 15, 306–316 (2003).

33. Hossein, S. et al. Effects of acute stress and depression on func-
tional connectivity between prefrontal cortex and the amygdala.
Mol. Psychiatry 1–11 https://doi.org/10.1038/s41380-023-02056-5
(2023).

Article https://doi.org/10.1038/s41467-024-46275-y

Nature Communications |         (2024) 15:2426 16

http://www.humanconnectome.org
https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms
https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms
http://osf.io/bq3fd
http://osf.io/bq3fd
https://doi.org/10.1038/s41562-022-01434-3
https://doi.org/10.1101/2023.03.28.534537
https://doi.org/10.1038/s41380-023-02056-5


34. Neudorfer, C. et al. A high-resolution in vivo magnetic resonance
imaging atlas of the human hypothalamic region. Sci. Data 7,
305 (2020).

35. Ghashghaei, H. T. & Barbas, H. Pathways for emotion: interactions
of prefrontal and anterior temporal pathways in the amygdala of
the rhesus monkey. Neuroscience 115, 1261–1279 (2002).

36. Reppucci, C. J. & Petrovich, G. D. Organization of connections
between the amygdala, medial prefrontal cortex, and lateral
hypothalamus: a single and double retrograde tracing study in
rats. Brain Struct. Funct. 221, 2937–2962 (2016).

37. Ongür, D., An, X. & Price, J. L. Prefrontal cortical projections to the
hypothalamus in macaque monkeys. J. Comp. Neurol. 401,
480–505 (1998).

38. Rempel-Clower, N. L. & Barbas, H. Topographic organization of
connections between the hypothalamus and prefrontal cortex in
the rhesus monkey. J. Comp. Neurol 398, 393–419 (1998).

39. Averbeck, B. B. & Murray, E. A. Hypothalamic interactions with
large-scale neural circuits underlying reinforcement learning and
motivated behavior. Trends Neurosci 43, 681–694 (2020).

40. Kullmann, S. et al. Resting-state functional connectivity of the
human hypothalamus. Hum. Brain Mapp. 35, 6088–6096 (2014).

41. Krentz, M. et al. A comparison of fMRI data-derived and physio-
logical data-derived methods for physiological noise correction.
Preprint at bioRxiv https://doi.org/10.1101/2023.02.22.
529506 (2023).

42. Baroncini, M. et al. MRI atlas of the human hypothalamus. Neuro-
Image 59, 168–180 (2012).

43. Lechan, R. M. & Toni, R. Functional Anatomy of the Hypothalamus
and Pituitary (MDText.com, Inc., 2000).

44. Ogawa, A. et al. Connectivity-based localization of human hypo-
thalamic nuclei in functional images of standard voxel size. Neu-
roImage 221, 117205 (2020).

45. Buijs, R. M. & Van Eden, C. G. The integration of stress by the
hypothalamus, amygdala and prefrontal cortex: balance between
the autonomic nervous system and the neuroendocrine system.
Prog. Brain Res. 126, 117–132 (2000).

46. Gray, T. S. Amygdaloid CRF pathways. Role in autonomic, neu-
roendocrine, and behavioral responses to stress. Ann. N. Y. Acad.
Sci. 697, 53–60 (1993).

47. Lowry, C. A. Functional subsets of serotonergic neurones: impli-
cations for control of the hypothalamic-pituitary-adrenal axis. J.
Neuroendocrinol. 14, 911–923 (2002).

48. Fontes, Ma. P., Xavier, C. H., de Menezes, R. C. A. & Dimicco, J. A.
The dorsomedial hypothalamus and the central pathways
involved in the cardiovascular response to emotional stress.
Neuroscience 184, 64–74 (2011).

49. Kalin, N. H., Shelton, S. E., Fox, A. S., Oakes, T. R. & Davidson, R. J.
Brain regions associated with the expression and contextual reg-
ulation of anxiety in primates. Biol. Psychiatry 58, 796–804
(2005).

50. Fox, A. S., Oler, J. A., Tromp, D. P. M., Fudge, J. L. & Kalin, N. H.
Extending the amygdala in theories of threat processing. Trends
Neurosci 38, 319–329 (2015).

51. McEwen, B. S., Nasca, C. & Gray, J. D. Stress effects on neuronal
structure: hippocampus, amygdala, and prefrontal cortex. Neu-
ropsychopharmacology 41, 3–23 (2016).

52. Levone, B. R., Cryan, J. F. & O’Leary, O. F. Role of adult hippo-
campal neurogenesis in stress resilience. Neurobiol. Stress 1,
147–155 (2014).

53. Haber, S. N. & Knutson, B. The reward circuit: linking primate
anatomy and human imaging. Neuropsychopharmacology 35,
4–26 (2010).

54. Johnson, S. In times of adversity: a neuroscience perspective on
stress, health, and implications for society post-pandemic. Yale J.
Biol. Med. 95, 165–170 (2022).

55. O’Connor, D. B., Thayer, J. F. & Vedhara, K. Stress and health: a
review of psychobiological processes. Annu. Rev. Psychol. 72,
663–688 (2021).

56. Osada, T. et al. Functional subdivisions of the hypothalamus using
areal parcellation and their signal changes related to glucose
metabolism. NeuroImage 162, 1–12 (2017).

57. Schönknecht, P. et al. Diffusion imaging-based subdivision of the
human hypothalamus: a magnetic resonance study with clinical
implications. Eur. Arch. Psychiatry Clin. Neurosci. 263,
497–508 (2013).

58. Makris, N. et al. Volumetric parcellation methodology of the
human hypothalamus in neuroimaging: normative data and sex
differences. NeuroImage 69, 1–10 (2013).

59. Tian, Y., Margulies, D. S., Breakspear, M. & Zalesky, A. Topographic
organization of the human subcortex unveiled with functional
connectivity gradients. Nat. Neurosci. 23, 1421–1432 (2020).

60. Gómez, F., Lahmame, A., de Kloet, E. R. & Armario, A.
Hypothalamic-pituitary-adrenal response to chronic stress in five
inbred rat strains: differential responses are mainly located at the
adrenocortical level. Neuroendocrinology 63, 327–337 (1996).

61. Roman, O., Seres, J., Pometlova, M. & Jurcovicova, J. Neu-
roendocrine or behavioral effects of acute or chronic emotional
stress in Wistar Kyoto (WKY) and spontaneously hypertensive
(SHR) rats. Endocr. Regul. 38, 151–155 (2004).

62. Schindler, S. et al. Hypothalamus enlargement inmooddisorders.
Acta Psychiatr. Scand. 139, 56–67 (2019).

63. Sudheimer, K. et al. Decreased hypothalamic functional con-
nectivity with subgenual cortex in psychotic major depression.
Neuropsychopharmacology 40, 849–860 (2015).

64. Ferguson, A. V., Latchford, K. J. & Samson, W. K. The para-
ventricular nucleus of the hypothalamus - a potential target for
integrative treatment of autonomic dysfunction. Expert Opin.
Ther. Targets 12, 717–727 (2008).

65. Nishioka, T., Anselmo-Franci, J. A., Li, P., Callahan, M. F. & Morris,
M. Stress increases oxytocin release within the hypothalamic
paraventricular nucleus. Brain Res. 781, 57–61 (1998).

66. Franco, A. J. et al. Sensitization of the hypothalamic-pituitary-
adrenal axis in amale rat chronic stressmodel. Endocrinology 157,
2346–2355 (2016).

67. Heimer, L. & Nauta, W. J. H. The hypothalamic distribution of the
stria terminalis in the rat. Brain Res. 13, 284–297 (1969).

68. Leonard, C. M. & Scott, J. W. Origin and distribution of the
amygdalofugal pathways in the rat: An experimental neuronato-
mical study. J. Comp. Neurol. 141, 313–329 (1971).

69. Kalin, N. H., Shelton, S. E. & Davidson, R. J. The role of the
central nucleus of the amygdala inmediating fear and anxiety in
the primate. J. Neurosci. Off. J. Soc. Neurosci. 24,
5506–5515 (2004).

70. Kalin, N. H., Takahashi, L. K. & Chen, F.-L. Restraint stress increases
corticotropin-releasing hormone mRNA content in the amygdala
and paraventricular nucleus. Brain Res. 656, 182–186 (1994).

71. Gray, T. S., Carney,M. E. &Magnuson, D. J. Direct projections from
the central amygdaloid nucleus to the hypothalamic para-
ventricular nucleus: possible role in stress-induced adrenocorti-
cotropin release. Neuroendocrinology 50, 433–446 (1989).

72. Keay, K. A. & Bandler, R. In The Rat Nervous System (4th edn) (ed.
Paxinos, G.) 207–221 (Academic Press, 2015) https://doi.org/10.
1016/B978-0-12-374245-2.00010-3.

73. Çavdar, S. et al. The afferent connections of the posterior hypo-
thalamic nucleus in the rat using horseradish peroxidase. J. Anat.
198, 463–472 (2001).

74. Veazey, R. B., Amaral, D. G. & Cowan, W. M. The morphology and
connections of the posterior hypothalamus in the cynomolgus
monkey (Macaca fascicularis). II. Efferent connections. J. Comp.
Neurol. 207, 135–156 (1982).

Article https://doi.org/10.1038/s41467-024-46275-y

Nature Communications |         (2024) 15:2426 17

https://doi.org/10.1101/2023.02.22.529506
https://doi.org/10.1101/2023.02.22.529506
https://doi.org/10.1016/B978-0-12-374245-2.00010-3
https://doi.org/10.1016/B978-0-12-374245-2.00010-3


75. McLaughlin, K. A., Weissman, D. & Bitrán, D. Childhood adversity
and neural development: a systematic review. Annu. Rev. Dev.
Psychol. 1, 277–312 (2019).

76. Wang, H. et al. Mild early-life stress exaggerates the impact of
acute stress oncorticolimbic resting-state functional connectivity.
Eur. J. Neurosci. 55, 2122–2141 (2022).

77. Verhagen, L. et al. Offline impact of transcranial focused ultra-
sound on cortical activation in primates. eLife 8, e4054 (2019).

78. Bongioanni, A. et al. Activation and disruption of a neural
mechanism for novel choice in monkeys. Nature 1–5. https://doi.
org/10.1038/s41586-020-03115-5 (2021).

79. Huys,Q. J.M.,Maia, T. V.&Paulus,M. P.Computational psychiatry:
frommechanistic insights to the development of new treatments.
Biol. Psychiatry Cogn. Neurosci. Neuroimaging 1, 382–385 (2016).

80. Hamani, C. et al. The subcallosal cingulate gyrus in the context of
major depression. Biol. Psychiatry 69, 301–308 (2011).

81. Haber, S. N., Lehman, J., Maffei, C. & Yendiki, A. The rostral zona
incerta: a subcortical integrative hub and potential deep brain
stimulation target for obsessive-compulsive disorder. Biol. Psy-
chiatry https://doi.org/10.1016/j.biopsych.2023.01.006 (2023).

82. Kühnel, A. et al. Spatiotemporal dynamics of stress-induced net-
work reconfigurations reflect negative affectivity. Biol. Psychiatry
92, 158–169 (2022).

83. Kiem, S. A. et al. Resting state functionalMRI connectivity predicts
hypothalamus-pituitary-axis status in healthy males. Psychoneur-
oendocrinology 38, 1338–1348 (2013).

84. Veer, I. M. et al. Beyond acute social stress: increased functional
connectivity between amygdala and cortical midline structures.
NeuroImage 57, 1534–1541 (2011).

85. Veer, I. M. et al. Endogenous cortisol is associated with functional
connectivity between the amygdala andmedial prefrontal cortex.
Psychoneuroendocrinology 37, 1039–1047 (2012).

86. Haynes, W. I. A. & Haber, S. N. The organization of prefrontal-
subthalamic inputs in primates provides an anatomical substrate
for both functional specificity and integration: implications for
basal ganglia models and deep brain stimulation. J. Neurosci. 33,
4804–4814 (2013).

87. Sharpe, M. J. The cognitive (lateral) hypothalamus. Trends Cogn.
Sci. https://doi.org/10.1016/j.tics.2023.08.019 (2023).

88. Misaki, M., Tsuchiyagaito, A., Guinjoan, S. M., Rohan, M. L. & Pau-
lus, M. P. Trait repetitive negative thinking in depression is asso-
ciated with functional connectivity in negative thinking state, not
resting state. Preprint at bioRxiv, https://doi.org/10.1101/2023.03.
23.533932 (2023).

89. Van Essen, D. C. et al. The WU-Minn Human Connectome Project:
an overview. NeuroImage 80, 62–79 (2013).

90. Smith, S. M. et al. Resting-state fMRI in the Human Connectome
Project. NeuroImage 80, 144–168 (2013).

91. Glasser, M. F. et al. The minimal preprocessing pipelines for the
Human Connectome Project. NeuroImage 80, 105–124 (2013).

92. Glasser, M. F. et al. A multi-modal parcellation of human cerebral
cortex. Nature 536, 171–178 (2016).

93. Brooks, J. C. W. et al. Physiological noise modelling for spinal
functional magnetic resonance imaging studies. NeuroImage 39,
680–692 (2008).

94. Lemaire, J.-J. et al. White matter connectivity of human hypotha-
lamus. Brain Res. 1371, 43–64 (2011).

95. Smith, S. M., Hyvärinen, A., Varoquaux, G., Miller, K. L. & Beck-
mann, C. F. Group-PCA for very large fMRI datasets. Neuroimage
101, 738–749 (2014).

96. Zhou, Y. Abnormal structural and functional hypothalamic con-
nectivity in mild traumatic brain injury. J. Magn. Reson. Imaging
45, 1105–1112 (2017).

97. Bocchetta, M. et al. Detailed volumetric analysis of the hypotha-
lamus in behavioral variant frontotemporal dementia. J. Neurol.
262, 2635 (2015).

98. Nieuwenhuys, R., Voogd, J. & van Huijzen, C. (eds). The Human
Central Nervous System, Diencephalon: Hypothalamus (Springer,
2008) https://doi.org/10.1007/978-3-540-34686-9_10.

99. Billot, B. et al. Automated segmentation of the hypothalamus and
associated subunits in brain MRI. NeuroImage 223, 117287
(2020).

100. Papp, R. S. & Palkovits, M. Brainstem projections of neurons
located in various subdivisions of the dorsolateral hypothalamic
area—an anterograde tract-tracing study. Front. Neuroanat. 8,
34 (2014).

101. Thompson, R. H., Canteras, N. S. & Swanson, L. W. Organization
of projections from the dorsomedial nucleus of the hypotha-
lamus: A PHA-L study in the rat. J. Comp. Neurol 376,
143–173 (1996).

102. Floyd, N. S., Price, J. L., Ferry, A. T., Keay, K. A. & Bandler, R.
Orbitomedial prefrontal cortical projections to hypothalamus in
the rat. J. Comp. Neurol. 432, 307–328 (2001).

103. Dai, J., Swaab, D. F., Van der Vliet, J. & Buijs, R. M. Postmortem
tracing reveals theorganizationof hypothalamicprojectionsof the
suprachiasmatic nucleus in the human brain. J. Comp. Neurol
400, 87–102 (1998).

104. Nauta, W. J. H., Smith, G. P., Faull, R. L. M. & Domesick, V. B.
Efferent connections and nigral afferents of the nucleus accum-
bens septi in the rat. Neuroscience 3, 385–401 (1978).

105. Semenenko, F. M. & Lumb, B. M. Projections of anterior hypotha-
lamic neurones to the dorsal and ventral periaqueductal grey in
the rat. Brain Res. 582, 237–245 (1992).

106. Saper, C. B. Organization of cerebral cortical afferent systems in
the rat. II. Hypothalamocortical projections. J. Comp. Neurol. 237,
21–46 (1985).

107. Tanaka,M., Nagashima, K.,McAllen, R.M.&Kanosue, K. Role of the
medullary raphé in thermoregulatory vasomotor control in rats. J.
Physiol. 540, 657–664 (2002).

108. Herman, J. P., Cullinan, W. E. & Watson, S. J. Involvement of the
bed nucleus of the stria terminalis in tonic regulation of para-
ventricular hypothalamic CRH and AVP mRNA expression. J.
Neuroendocrinol. 6, 433–442 (1994).

109. Hagan, J. J. et al. Orexin A activates locus coeruleus cell firing and
increases arousal in the rat. Proc. Natl. Acad. Sci. USA. 96,
10911–10916 (1999).

110. Keuken, M. C. et al. Quantifying inter-individual anatomical varia-
bility in the subcortex using 7 T structural MRI. NeuroImage 94,
40–46 (2014).

111. Betts, M. J., Cardenas-Blanco, A., Kanowski, M., Jessen, F. & Düzel,
E. In vivo MRI assessment of the human locus coeruleus along its
rostrocaudal extent in young and older adults. NeuroImage 163,
150–159 (2017).

112. Edlow, B. L. et al. Neuroanatomic connectivity of the human
ascending arousal system critical to consciousness and its dis-
orders. J. Neuropathol. Exp. Neurol. 71, 531–546 (2012).

113. Faull, O. K., Jenkinson, M., Ezra, M. & Pattinson, K. T. Conditioned
respiratory threat in the subdivisions of the human periaqueductal
gray. eLife 5, e12047 (2016).

114. Folloni, D. et al. Dichotomous organization of amygdala/temporal-
prefrontal bundles in both humans and monkeys. eLife 8,
e47175 (2019).

115. Gershon, R. C. et al. NIH toolbox for assessment of neurological
and behavioral function. Neurology 80, S2–S6 (2013).

116. Salsman, J. M. et al. Emotion assessment using the NIH Toolbox.
Neurology 80, S76–S86 (2013).

Article https://doi.org/10.1038/s41467-024-46275-y

Nature Communications |         (2024) 15:2426 18

https://doi.org/10.1038/s41586-020-03115-5
https://doi.org/10.1038/s41586-020-03115-5
https://doi.org/10.1016/j.biopsych.2023.01.006
https://doi.org/10.1016/j.tics.2023.08.019
https://doi.org/10.1101/2023.03.23.533932
https://doi.org/10.1101/2023.03.23.533932
https://doi.org/10.1007/978-3-540-34686-9_10


117. Costa, P. T. & McCrae, R. R. The five-factor model of personality
and its relevance to personality disorders. J. Personal. Disord. 6,
343–359 (1992).

118. Cattell, R. B. The screen test for the number of factors. Multivar.
Behav. Res. 1, 245–276 (1966).

119. O’Reilly, J. X. et al. Causal effect of disconnection lesions on
interhemispheric functional connectivity in rhesusmonkeys. Proc.
Natl. Acad. Sci. USA 110, 13982–13987 (2013).

120. Smith, S. M. et al. A positive-negative mode of population covar-
iation links brain connectivity, demographics and behavior. Nat.
Neurosci. 18, 1565–1567 (2015).

Acknowledgements
This research was funded in part by Sir HenryWellcome and Henry Dale
Fellowships awarded to MKF (103184/Z/13/Z and 223263/Z/21/Z), an
MRC grant and the Wellcome Senior Investigator Award awarded to
MFSR (MR/P024955/1 and 221794/Z/20/Z), and a grant from the HDH
Wills 1965 Charitable Trust (REGISTERED CHARITY NO. 1117747, PI: KPE).
This research was funded in whole, or in part, by the Wellcome Trust
[203139/Z/16/Z and 203139/A/16/Z]. For the purpose of Open Access,
the author has applied a CC BY public copyright licence to any Author
Accepted Manuscript (AAM) version arising from this submission.

Author contributions
D.E.A.J. and M.C.K.F. designed the study. D.E.A.J., M.F.S.R. and M.C.K.F.
conceived analyses, inspired by our prior work using similar methods to
investigate amygdala circuits. D.E.A.J. andM.C.K.F. wrote analysis code.
M.F.S.R. gave analysis advice, and all authors (D.E.A.J., M.C.K.F.,
M.F.S.R., S.S., K.P.E.) edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-46275-y.

Correspondence and requests for materials should be addressed to
Daria E. A. Jensen or Miriam C. Klein-Flügge.

Peer review information Nature Communications thanks Seiki Konishi,
Martin Paulus and Philipp Sämann for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-46275-y

Nature Communications |         (2024) 15:2426 19

https://doi.org/10.1038/s41467-024-46275-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Nuclei-specific hypothalamus networks predict a dimensional marker of stress in�humans
	Results
	In vivo parcellation of the human hypothalamus
	Nuclei-specific hypothalamus functional connectivity
	Extracting a dimensional marker of�stress
	Relating stress and hypothalamus nuclei connectivity
	Out-of-sample stress prediction using hypothalamus coupling
	Characterising hypothalamus networks predictive of�stress
	Nuclei-specific versus whole hypothalamus predictions
	Behavioural specificity of predictions for�stress

	Discussion
	Methods
	Participants
	Data and data pre-processing
	Group dense connectome and hypothalamus similarity�matrix
	Parcellation of the hypothalamus
	Naming of clusters
	ROI selection for nuclei-specific hypothalamus connectivity
	Stress-related behavioural markers
	Factor analysis for extracting a dimensional stress�marker
	Relating stress and hypothalamus nuclei connectivity
	Out-of-sample stress prediction using hypothalamus coupling
	Characterising hypothalamus networks predictive of�stress
	Nuclei-specific versus whole hypothalamus predictions
	Behavioural specificity of predictions for�stress
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




