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Abstract
Let 𝐸∕ℚ be an elliptic curve without complex multi-
plication. By Serre’s open image theorem, the mod 𝓁

Galois representation 𝜌𝐸,𝓁 of 𝐸 is surjective for each
prime number𝓁 that is sufficiently large. Under the gen-
eralized Riemann hypothesis, we give an explicit upper
bound on the largest prime 𝓁, linear in the logarithm of
the conductor of 𝐸, such that 𝜌𝐸,𝓁 is nonsurjective.
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1 INTRODUCTION

Let 𝐸 be an elliptic curve defined over ℚ. For a prime number 𝓁, let 𝐸[𝓁] denote the 𝓁-torsion
subgroup of 𝐸(ℚ) and let 𝑇𝓁(𝐸) denote the 𝓁-adic Tate module of 𝐸. Recall that 𝐸[𝓁] and 𝑇𝓁(𝐸)

are free modules of rank two over 𝔽𝓁 and ℤ𝓁 , respectively, where 𝔽𝓁 denotes the finite field
with 𝓁 elements and ℤ𝓁 denotes the ring of 𝓁-adic integers. Fixing bases, we obtain the module
isomorphisms

𝐸[𝓁] ≅ 𝔽𝓁 ⊕ 𝔽𝓁 and 𝑇𝓁(𝐸) ≅ ℤ𝓁 ⊕ℤ𝓁 .

The absolute Galois group Gal(ℚ∕ℚ) acts coordinate-wise on elements of 𝐸[𝓁] and on 𝑇𝓁(𝐸).
These actions respect the above isomorphisms, and give rise to the mod 𝓁 Galois representation
and 𝓁-adic Galois representation of 𝐸, which are denoted, respectively, by

𝜌̄𝐸,𝓁 ∶ Gal(ℚ∕ℚ) ⟶ GL2(𝔽𝓁) and 𝜌𝐸,𝓁 ∶ Gal(ℚ∕ℚ) ⟶ GL2(ℤ𝓁).
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1400 MAYLE and WANG

The above Galois representations carry a considerable amount of information about 𝐸. For
instance, consider the reduction𝐸𝑝 of the curve𝐸 at a prime number 𝑝 that is distinct from 𝓁. The
well-known Néron–Ogg–Shafarevich criterion gives that 𝐸 has good reduction at 𝑝 if and only if
𝜌𝐸,𝓁 is unramified at 𝑝. Further, if 𝐸 has good reduction at 𝑝, then tr 𝜌𝐸,𝓁(Frob𝑝) = 𝑎𝑝(𝐸) and
det 𝜌𝐸,𝓁(Frob𝑝) = 𝑝, where Frob𝑝 ∈ Gal(ℚ∕ℚ) denotes a Frobenius automorphism associated
with 𝑝 and 𝑎𝑝(𝐸) is defined by the equation #𝐸𝑝(𝔽𝑝) = 𝑝 + 1 − 𝑎𝑝(𝐸).
Suppose from now on that 𝐸 is without complex multiplication, that is, assume that the geo-

metric endomorphism ring of 𝐸 is trivial. A celebrated theorem of Serre [40], known as the open
image theorem, establishes that if 𝓁 is sufficiently large, then 𝜌̄𝐸,𝓁 is surjective. Let 𝑐(𝐸) denote the
least positive integer such that if 𝓁 > 𝑐(𝐸), then 𝜌̄𝐸,𝓁 is surjective.† Serre asked if 𝑐(𝐸) ⩽ 37 holds
for each elliptic curve 𝐸∕ℚ without complex multiplication. This is known as Serre’s uniformity
question and, following theoretical advances and vast numerical evidence, is now articulated in
precise conjectures of Sutherland [47, Conjecture 1.1] and Zywina [53, Conjecture 1.12]. Mazur’s
landmark work on modular curves implies that 𝑐(𝐸) ⩽ 11 if 𝐸 is semistable [34, Theorem 4]. Fur-
ther progress toward resolving Serre’s question has since been made by studying modular curves,
whichwe discuss in §2. In an adjacent direction, there has been progress in bounding 𝑐(𝐸) in terms
of invariants of 𝐸, such as the Faltings height ℎ𝐸 or the conductor 𝑁𝐸 of 𝐸, which we address in
this paper.
Serre’s original proof of the open image theorem is ineffective and does not give a bound on

𝑐(𝐸). The first unconditional bound on 𝑐(𝐸) is due to Masser and Wüstholz [33] who proved in
1993 that there exist absolute constants 𝐶1 and 𝛾 such that

𝑐(𝐸) ⩽ 𝐶1ℎ
𝛾
𝐸
.

This bound has subsequently been improved and made explicit in [28, 32, 39]. Under the now
superfluous assumption that 𝐸 is modular [8], in 1995, Kraus [23] bounded 𝑐(𝐸) in terms of the
conductor of 𝐸,

𝑐(𝐸) ⩽ 68 rad(𝑁𝐸)(1 + log log rad𝑁𝐸)
1∕2,

where rad 𝑛 ∶=
∏

𝑝∣𝑛 𝑝 denotes the radical of an integer 𝑛. In 2005, Cojocaru [12] proved
independently using a similar approach that

𝑐(𝐸) ⩽
4
√
6

3
𝑁𝐸

∏
𝑝∣𝑁𝐸

(
1 +

1

𝑝

)1∕2

.

Recently, Zywina [54, Proposition 1.8 and Theorem 1.10] improved the bounds of Kraus
and Cojocaru.
Considerably better bounds for 𝑐(𝐸) are known under the assumption of the generalized Rie-

mann hypothesis (GRH) for Dedekind zeta functions. AssumingGRH, Serre gave an elegant proof
in 1981 [41, Théorème 22] that there exists an absolute, computable constant 𝐶2 such that

𝑐(𝐸) ⩽ 𝐶2(log rad𝑁𝐸)(log log rad 2𝑁𝐸)
3. (1)

† The choice to define 𝑐(𝐸) in terms of 𝜌̄𝐸,𝓁 instead of 𝜌𝐸,𝓁 is somewhat arbitrary. Indeed, for a prime number 𝓁 ⩾ 5, we
have that 𝜌̄𝐸,𝓁 is surjective if and only if 𝜌𝐸,𝓁 is surjective [43, p. IV-23].
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ON THE EFFECTIVE VERSION OF SERRE’S OPEN IMAGE THEOREM 1401

Serrementioned without proof in [44, Note 632.6] that the “log log” term in (1) may be removed
by employing an𝓁-adic technique of Faltings [21, §6, pp. 362–363]. The technique and its extension
is called the Faltings–Serre method (see [9, Section 2]) and is widely recognized for its impor-
tant role in establishing various modularity results: such as the modularity of elliptic curves
over (infinitely) many imaginary quadratic fields [11, 14, 18, 22, 48], the paramodularity of certain
abelian surfaces with a trivial endomorphism ring [7, 9], and the modularity of some Calabi–Yau
threefolds [15, 19].
In 2014, Larson and Vaintrob [27, Theorem 1] proved, without applying the Falting–Serre

method, that under GRH, there exists an absolute constant 𝐶3 such that

𝑐(𝐸) ⩽ 𝐶3 log𝑁𝐸. (2)

Not only is their bound linear in log𝑁𝐸 , but it also holds over an arbitrary number field𝐾 (with
𝐶3 depending only on 𝐾). However, even over ℚ, the bound (2) is ineffective in the sense that no
method is presently known for computing 𝐶3. In order to compute 𝐶3 via the proof in [27], one
would need to understand the rational points on themodular curve𝑋+

𝑛𝑠(𝓁) for some prime 𝓁 ⩾ 53.
The main result of this paper is an explicit conditional bound on 𝑐(𝐸) of the same asymptotic

quality as (2) for elliptic curves over ℚ. Specifically, we shall prove the following.

Theorem 1. Assume GRH. If 𝐸∕ℚ is an elliptic curve without complex multiplication, then

𝑐(𝐸) ⩽ 964 log rad(2𝑁𝐸) + 5760,

where rad 𝑛 ∶=
∏

𝑝∣𝑛 𝑝 denotes the radical of an integer 𝑛.

Our proof of Theorem 1 follows the strategy set forth by Serre in [41, Théorème 22] and [44, Note
632.6]. The key improvement comes from the following sharpening of his conditional bound in
the effective version of Faltings’s isogeny theorem for elliptic curves [41, Théorème 21].

Theorem 2. Assume GRH. Let 𝐸1∕ℚ and 𝐸2∕ℚ be elliptic curves without complex multiplication.
Suppose that 𝐸1 and 𝐸2 are not ℚ-isogenous. Then there exists a prime number 𝑝 of good reduction
for 𝐸1 and 𝐸2 such that 𝑎𝑝(𝐸1) ≠ 𝑎𝑝(𝐸2) satisfying the inequality

𝑝 ⩽ (482 log rad(2𝑁𝐸1
𝑁𝐸2

) + 2880)2.

The structure of our paper is as follows. In §3, we give a variant of the effective Chebotarev
density theorem due to Bach and Sorenson. We use this tool, together with a refinement of a
technique of Faltings, to prove Theorem 2 in §4. With this result in hand, in §5, we follow in the
footsteps of Serre’s elegant proof of (1) to complete our proof of Theorem 1. Afterward, we illustrate
our result with a numerical example in §5.3.
We conclude the introduction with some remarks on extensions of the effective Serre’s open

image theorem.
We recall from the modularity theorem [49, 52] that Galois representations of elliptic curves

over ℚ arise from Galois representations of weight 2 cuspidal eigenforms. Therefore, Theorem 1
can also be interpreted as an effective open image theorem for modular forms of weight 2. We
refer the reader to [5, 38] for other effective results for higher weight modular forms.
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1402 MAYLE and WANG

Let 𝐾 be a number field and 𝐸∕𝐾 be a non-CM elliptic curve. Serre’s open image theorem also
applies over a number field, so we can define 𝑐(𝐸) in a similar way as before. It is known that
there is a uniform bound of 𝑐(𝐸) for certain families of ℚ-curves 𝐸 over a quadratic field 𝐾 (see
[28, 30]).
The main result of this paper is to make explicit the conditional bound of Larson and Vaintrob

[27, Theorem 1] for elliptic curves over ℚ. However, as their bound holds for elliptic curves over
number fields, it is natural to ask if we could extend our result to 𝐸∕𝐾. The approach that we
follow relies onMazur’s cyclic isogeny theorem.GeneralizingMazur’s result to elliptic curves over
arbitrary number fields appears to be challenging. Nonetheless, assuming GRH, if 𝐾 is among
a certain finite set of quadratic fields 𝐾, Banwait [3] and Banwait, Najman, and Padurariu [4],
building on the earlier work of David [16], Larson and Vaintrob [26], and Momose [35], proved
an analog of Mazur’s cyclic isogeny theorem for 𝐸∕𝐾. Thus, it is promising that one may be able
to extend our work to give an explicit open image theorem for elliptic curves defined over these
quadratic fields.

2 PROGRESS TOWARD SERRE’S UNIFORMITY QUESTION

The most significant progress toward a resolution of Serre’s uniformity question comes from
studying rational points on certain modular curves. By doing so, one limits the possibilities for
𝐺𝐸(𝓁) ∶= im 𝜌̄𝐸,𝓁 , that is, the image of 𝜌̄𝐸,𝓁 . As𝐺𝐸(𝓁) is a subgroup ofGL2(𝔽𝓁), in order to describe
what is known in this direction, we first state a well-known classification of subgroups ofGL2(𝔽𝓁)
(which dates back to Dickson [17]) and give some necessary terminology.
Let 𝓁 be an odd prime number and fix a nonsquare element 𝜀 ∈ 𝔽×𝓁 . The split Cartan subgroup

and nonsplit Cartan subgroup of GL2(𝔽𝓁) are, respectively,

𝑠(𝓁) ∶=
{(

𝑎 0

0 𝑑

)
∶ 𝑎, 𝑑 ∈ 𝔽×𝓁

}
and 𝑛𝑠(𝓁) ∶=

{(
𝑎 𝜀𝑐

𝑐 𝑎

)
∶ 𝑎, 𝑐 ∈ 𝔽𝓁 and (𝑎, 𝑐) ≠ (0, 0)

}
.

Let +𝑠 (𝓁) and 
+
𝑛𝑠(𝓁) denote the normalizer of 𝑠(𝓁) and 𝑛𝑠(𝓁), respectively. Onemay show that

+𝑠 (𝓁) = 𝑠(𝓁) ∪
(
0 1

1 0

)
𝑠(𝓁) and +𝑛𝑠(𝓁) = 𝑛𝑠(𝓁) ∪

(
1 0

0 −1

)
𝑛𝑠(𝓁). (3)

Let(𝓁) denote theBorel subgroup ofGL2(𝔽𝓁), that is, the subgroup of upper triangularmatrices,

(𝓁) ∶=
{(

𝑎 𝑏

0 𝑑

)
∶ 𝑎, 𝑑 ∈ 𝔽×𝓁 and 𝑏 ∈ 𝔽𝓁

}
.

Let 𝐴𝑛 and 𝑆𝑛 denote the alternating and symmetric groups, respectively, on 𝑛 elements. Finally,
for a subgroup 𝐺 ofGL2(𝔽𝓁), let 𝐺 denote the image of 𝐺 in the projective linear group PGL2(𝔽𝓁).
With notation set, we now state the classification. For further details, we refer the reader
to [40, §2].

Proposition 3. Let 𝓁 be an odd prime. If 𝐺 ⊆ GL2(𝔽𝓁) is a subgroup, then

(1) 𝐺 contains SL2(𝔽𝓁),
(2) 𝐺 is conjugate to a subgroup of (𝓁),
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ON THE EFFECTIVE VERSION OF SERRE’S OPEN IMAGE THEOREM 1403

(3) 𝐺 is conjugate to a subgroup of 𝑛𝑠(𝓁),
(4) 𝐺 is conjugate to a subgroup of +𝑠 (𝓁) but not to any subgroup of 𝑠(𝓁),
(5) 𝐺 is conjugate to a subgroup of +𝑛𝑠(𝓁) but not to any subgroup of 𝑛𝑠(𝓁), or
(6) 𝐺 is isomorphic to 𝐴4, 𝑆4, or 𝐴5.

Returning to the world of elliptic curves, recall that by the Weil pairing on 𝐸, the composition

det ◦𝜌̄𝐸,𝓁 ∶ Gal(ℚ∕ℚ) ⟶ 𝔽×𝓁

is the mod 𝓁 cyclotomic character and hence is surjective [46, III.8]. In particular, if SL2(𝔽𝓁) ⊆
𝐺𝐸(𝓁), then, in fact, 𝐺𝐸(𝓁) = GL2(𝔽𝓁). Consequently, in order to prove that 𝜌̄𝐸,𝓁 is surjective for a
particular prime number 𝓁, it suffices to rule out possibilities (2) through (6) of Proposition 3 for
the group 𝐺𝐸(𝓁). For a non-CM elliptic curve, many cases are already ruled out for sufficiently
large 𝓁. Indeed, Serre ruled out (3) for 𝓁 > 2 [40, §5.2] and (6) for 𝓁 > 13 [41, Lemme 18]; Mazur
ruled out (2) for 𝓁 > 37 [34, Theorem 3]; Bilu, Parent, and Rebolledo ruled out (4) for 𝓁 > 7 and
𝓁 ≠ 13 [6, Corollary 1.2]; Balakrishnan, Dogra, Netan, Müller, Tuitman, and Vonk ruled out (4)
for 𝓁 = 13 [2, Theorem 1.2]. Therefore, all but (5) are ruled out for each prime number 𝓁 > 37, as
recorded below.

Theorem 4. Let 𝐸∕ℚ be an elliptic curve without complex multiplication. If 𝓁 is a prime number
such that 𝓁 > 37, then either 𝜌̄𝐸,𝓁 is surjective or 𝐺𝐸(𝓁) is conjugate to a subgroup of +𝑛𝑠(𝓁) but is
not conjugate to any subgroups of 𝑛𝑠(𝓁).

3 THE EFFECTIVE CHEBOTAREV DENSITY THEOREM

In this section, we offer a modest extension of the version of the effective Chebotarev density
theorem given in [1]. This extension will serve as a crucial tool in our proof of Theorem 1. First,
let us fix some relevant notation.
Let𝐾 be a number fieldwith absolute discriminant 𝑑𝐾 and ring of integers𝐾 . For a prime ideal

𝔭 ⊆ 𝐾 , we write 𝔭 ∣ 𝑝 to indicate that 𝔭 lies above a prime number 𝑝. Let 𝑣𝔭 ∶ 𝐾 → ℤ denote
the normalized 𝔭-adic valuation on 𝐾. We write 𝑁(𝔭) for the ideal norm of 𝔭, which extends
multiplicatively to arbitrary ideals of 𝐾 . One has that 𝑣𝔭(𝑝) = 𝑒𝔭 and 𝑁(𝔭) = 𝑝𝑓𝔭 , where 𝑒𝔭 and
𝑓𝔭 are the ramification index and inertia degree of 𝔭, respectively.
Assume that 𝐾∕ℚ is Galois. For a prime number 𝑝 that is unramified in 𝐾∕ℚ, write ( 𝑝

𝐾∕ℚ
) to

denote the Artin symbol of𝐾∕ℚ at 𝑝. Let𝐶 be a subset of the Galois groupGal(𝐾∕ℚ) that is closed
under conjugation. Associated with 𝐶, consider the counting function

𝜋𝐶(𝑥) ∶= #

{
𝑝 ⩽ 𝑥 ∶ 𝑝 is unramified in 𝐾∕ℚ and

(
𝑝

𝐾∕ℚ

)
⊆ 𝐶

}
.

The Chebotarev density theorem states that

𝜋𝐶(𝑥) ∼
#𝐶

#Gal(𝐾∕ℚ)
𝜋(𝑥), (4)

where 𝜋(𝑥) is the prime counting function and 𝑓 ∼ g means that lim𝑥→∞
𝑓(𝑥)

g(𝑥)
= 1.
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1404 MAYLE and WANG

Assuming GRH, Lagarias and Odlyzko [24] gave an effective version of the Chebotarev density
theorem that provides an error term in (4). Moreover, they showed that there exists an absolute
constant 𝑘 such that the least prime number 𝑝 with(

𝑝

𝐾∕ℚ

)
⊆ 𝐶 (5)

satisfies the inequality 𝑝 ⩽ 𝑘(log 𝑑𝐾)
2. Oesterlé [37] stated that the absolute constant 𝑘 may be

taken to be 70. Subsequently, Bach and Sorenson offered the following improvement.

Theorem 5. Assume GRH. Let 𝐾 be a Galois number field and let 𝐶 ⊆ Gal(𝐾∕ℚ) be a nonempty
subset that is closed under conjugation. Then there exists a prime number 𝑝 that is unramified in
𝐾∕ℚ for which (5) holds that satisfies the inequality

𝑝 ⩽ (𝑎 log 𝑑𝐾 + 𝑏[𝐾 ∶ ℚ] + 𝑐)2,

where 𝑎, 𝑏, and 𝑐 are absolute constants that may be taken to be 4, 2.5, and 5, respectively, or may be
taken to be the improved values given in [1, Table 3] associated with 𝐾.

Proof. See [1, Theorem 5.1]. □

For our application, we need an extension of Theorem 5 that allows for the avoidance of a
prescribed set of primes.

Corollary 6. Assume GRH. Let 𝐾 be a Galois number field, let 𝑚 be a squarefree positive integer,
and set 𝐾̃ ∶= 𝐾(

√
𝑚). Let 𝐶 ⊆ Gal(𝐾∕ℚ) be a nonempty subset that is closed under conjugation.

Then there exists a prime number 𝑝 not dividing 𝑚 that is unramified in 𝐾∕ℚ for which (5) holds
that satisfies the inequality

𝑝 ⩽ (𝑎̃ log 𝑑𝐾̃ + 𝑏̃[𝐾̃ ∶ ℚ] + 𝑐)2, (6)

where 𝑎̃, 𝑏̃, 𝑐 are absolute constants thatmay be taken to be 4, 2.5, and 5, respectively, ormay be taken
to be the improved values given in [1, Table 3] associated with 𝐾̃.

Proof. Notice that 𝐾̃ is Galois over ℚ since both 𝐾 and ℚ(
√
𝑚) are Galois over ℚ. If 𝐾̃ = 𝐾,

then each prime number dividing 𝑚 is ramified in 𝐾∕ℚ, so Theorem 5 provides the desired
result. Thus, we assume that 𝐾̃ ≠ 𝐾. Then 𝐾 ∩ ℚ(

√
𝑚) = ℚ, so by [25, Theorem VI 1.14], we have

that

Gal(𝐾̃∕ℚ) ≅ Gal(𝐾∕ℚ) × (ℤ∕2ℤ).

Let res∶ Gal(𝐾̃∕ℚ) ⟶ Gal(𝐾∕ℚ) denote the restriction map and consider the subset 𝐶̃ ∶=

res−1(𝐶) of Gal(𝐾̃∕ℚ). Since 𝐶 is closed under conjugation in Gal(𝐾∕ℚ), 𝐶̃ is closed under con-
jugation in Gal(𝐾̃∕ℚ). By applying Theorem 5 to 𝐾̃ and 𝐶̃, we obtain a prime number 𝑝 that is
unramified in 𝐾̃ for which (5) holds and satisfies the inequality (6). Note that 𝐾̃ is ramified at the
ramified primes of 𝐾 and at the prime divisors of 𝑚 (and possibly at 2). Thus, 𝑝 is unramified
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ON THE EFFECTIVE VERSION OF SERRE’S OPEN IMAGE THEOREM 1405

in 𝐾 and does not divide 𝑚. Finally, because ( 𝑝

𝐾̃∕ℚ
) ⊆ 𝐶̃ and res((

𝑝

𝐾̃∕ℚ
)) = (

𝑝

𝐾∕ℚ
), we have that

(
𝑝

𝐾∕ℚ
) ⊆ 𝐶. □

In the corollary, we see that 𝑝 is bounded above in terms of [𝐾̃ ∶ ℚ] and log 𝑑𝐾̃ . In our appli-
cation, the degree [𝐾̃ ∶ ℚ] will be absolutely bounded. Thus, it will remain to bound log 𝑑𝐾̃ . For
this purpose, we employ the following lemma, which can be found in [41, Proposition 6].

Lemma 7. If 𝐾∕ℚ is a nontrivial finite Galois extension, then

( 1
2
log 3)[𝐾 ∶ ℚ] ⩽ log 𝑑𝐾 ⩽ ([𝐾 ∶ ℚ] − 1) log rad(𝑑𝐾) + [𝐾 ∶ ℚ] log([𝐾 ∶ ℚ]).

Proof. The left-hand inequality follows from the Minkowski bound for the discriminant [41, p.
139]. For the right-hand inequality, let𝔇𝐾 ⊆ 𝐾 denote the different ideal of 𝐾 and note that

𝑑𝐾 = 𝑁(𝔇𝐾) =
∏
𝑝∣𝑑𝐾

𝑝𝑣𝑝(𝑁(𝔇𝐾)).

By taking logarithms, we obtain

log 𝑑𝐾 =
∑
𝑝∣𝑑𝐾

𝑣𝑝(𝑁(𝔇𝐾)) log 𝑝 =
∑
𝑝∣𝑑𝐾

∑
𝔭∣𝑝

𝑓𝔭𝑣𝔭(𝔇𝐾) log 𝑝. (7)

For each prime ideal 𝔭 ⊆ 𝐾 lying above 𝑝, we have that

𝑣𝔭(𝔇𝐾) = 𝑒𝔭 − 1 + 𝑠𝔭

for some integer 𝑠𝔭 satisfying 0 ⩽ 𝑠𝔭 ⩽ 𝑣𝔭(𝑒𝔭) (see, e.g., [36, Theorem 2.6, p. 199]). Thus,

∑
𝔭∣𝑝

𝑓𝔭𝑣𝔭(𝔇𝐾) =
∑
𝔭∣𝑝

𝑓𝔭(𝑒𝔭 − 1) +
∑
𝔭∣𝑝

𝑓𝔭𝑠𝔭 ⩽ [𝐾 ∶ ℚ] − 1 +
∑
𝔭∣𝑝

𝑓𝔭𝑣𝔭(𝑒𝔭). (8)

Since 𝐾∕ℚ is Galois, 𝑒𝔭 divides [𝐾 ∶ ℚ]. Thus, 𝑣𝑝(𝑒𝔭) ⩽ 𝑣𝑝([𝐾 ∶ ℚ]). Hence,

∑
𝔭∣𝑝

𝑓𝔭𝑣𝔭(𝑒𝔭) =
∑
𝔭∣𝑝

𝑓𝔭𝑒𝔭𝑣𝑝(𝑒𝔭) ⩽ 𝑣𝑝([𝐾 ∶ ℚ])
∑
𝔭∣𝑝

𝑓𝔭𝑒𝔭 = 𝑣𝑝([𝐾 ∶ ℚ])[𝐾 ∶ ℚ]. (9)

Observe that ∑
𝑝∣𝑑𝐾

𝑣𝑝([𝐾 ∶ ℚ])[𝐾 ∶ ℚ] log 𝑝 ⩽ [𝐾 ∶ ℚ] log[𝐾 ∶ ℚ]. (10)

Applying (8)–(10) to (7), we obtain

log 𝑑𝐾 ⩽ ([𝐾 ∶ ℚ] − 1)
∑
𝑝∣𝑑𝐾

log 𝑝 + [𝐾 ∶ ℚ] log[𝐾 ∶ ℚ].

The claimed inequality now follows by noting that
∑

𝑝∣𝑑𝐾
log 𝑝 = log rad(𝑑𝐾). □
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1406 MAYLE and WANG

4 AN EFFECTIVE ISOGENY THEOREM FOR ELLIPTIC CURVES

The objective of this section is to provide an improved conditional bound on the effective version
of Faltings’s isogeny theorem for elliptic curves. We begin in §4.1 with some preliminaries.

4.1 Ramified primes

Let 𝐴∕ℚ be an abelian variety. For a positive integer 𝑚, let ℚ(𝐴[𝑚]) denote the 𝑚-division field
of 𝐴, that is, the field obtained by adjoining to ℚ the coordinates of all points of 𝐴(ℚ) of order
dividing𝑚. For a prime number 𝓁, we write

ℚ(𝐴[𝓁∞]) ∶=
∞⋃
𝑘=1

ℚ(𝐴[𝓁𝑘]).

We now recall Serre and Tate’s extension of the criterion of Néron–Ogg–Shafarevich to abelian
varieties in order to specify which primes ramify in the infinite degree algebraic extension
ℚ(𝐴[𝓁∞])∕ℚ.

Theorem 8. Let𝐴∕ℚ be an abelian variety. For a prime number 𝑝, the following are equivalent:

(1) 𝐴 has good reduction at 𝑝,
(2) ℚ(𝐴[𝑚])∕ℚ is unramified at 𝑝 for each positive integer𝑚, not divisible by 𝑝, and
(3) ℚ(𝐴[𝑚])∕ℚ is unramified at 𝑝 for infinitely many positive integers𝑚, not divisible by 𝑝.

Proof. See [45, Theorem 1]. □

Corollary 9. Let 𝐵𝐴 be the product of 𝓁 and the primes of bad reduction for 𝐴. The extension
ℚ(𝐴[𝓁∞])∕ℚ is ramified at exactly the prime divisors of 𝐵𝐴.

Proof. First, we note that 𝓁 is ramified inℚ(𝐴[𝓁∞])∕ℚ. Indeed, let 𝜁𝓁2 ∈ ℚ be a primitive 𝓁2-root
of unity. It follows from the Weil pairing on 𝐸[𝓁2] (see the exercise in [42, p. 55]) that

ℚ ⊆ ℚ(𝜁𝓁2 ) ⊆ ℚ(𝐴[𝓁2]) ⊆ ℚ(𝐴[𝓁∞]).

Because 𝓁 ramifies in ℚ(𝜁𝓁2 )∕ℚ, it follows that 𝓁 ramifies in ℚ(𝐴[𝓁∞])∕ℚ.†
We continue the proof by showing that the extension ℚ(𝐴[𝓁∞])∕ℚ is unramified at exactly

the primes not dividing 𝐵𝐴. Let 𝑝 be a prime number such that 𝑝 ∤ 𝐵𝐴. Then 𝐴 has good reduc-
tion at 𝑝, so it follows from the equivalence of (1) and (2) in Theorem 8 that in the chain of
subfields

ℚ ⊆ ℚ(𝐴[𝓁]) ⊆ ℚ(𝐴[𝓁2]) ⊆ ⋯ ⊆ ℚ(𝐴[𝓁∞]),

the prime 𝑝 is unramified in ℚ(𝐴[𝓁𝑛])∕ℚ for each 𝑛 ⩾ 0. Thus, 𝑝 is unramified in ℚ(𝐴[𝓁∞])∕ℚ.
Now suppose that 𝑝 is distinct from 𝓁 and is unramified in ℚ(𝐴[𝓁∞])∕ℚ. Then, in fact, 𝑝 is

† If 𝓁 ≠ 2, then it suffices to consider ℚ ⊆ ℚ(𝜁𝓁) ⊆ ℚ(𝐴[𝓁]) ⊆ ℚ(𝐴[𝓁∞]) to observe that 𝓁 ramifies in ℚ(𝐴[𝓁∞])∕ℚ.
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ON THE EFFECTIVE VERSION OF SERRE’S OPEN IMAGE THEOREM 1407

unramified in ℚ(𝐴[𝓁𝑛])∕ℚ for each 𝑛 ⩾ 0. By the equivalence of (1) and (3) in Theorem 8, 𝑝 is
a prime of good reduction of 𝐴, so 𝑝 ∤ 𝐵𝐴. □

Remark 10. Equivalently, 𝜌𝐴,𝓁 is ramified at exactly the prime divisors of 𝐵𝐴.

Remark 11. Let 𝐴 = 𝐸1 × 𝐸2 be the product of two elliptic curves 𝐸1 and 𝐸2, with conductors𝑁𝐸1
and 𝑁𝐸2

, respectively. It follows from Theorem 8 that 𝐴 has good reduction at a prime 𝓁 if and
only if 𝐸1 and 𝐸2 both have good reduction at 𝓁. Thus, rad(𝐵𝐴) = rad(𝓁𝑁𝐸1

𝑁𝐸2
).

4.2 Effective isogeny theorem

In 1968, Serre proved the isogeny theorem for elliptic curves with nonintegral 𝑗-invariant [43, p.
IV-14]. This was generalized by Faltings for arbitrary abelian varieties [21, Korollar 2, p. 361]. For
elliptic curves 𝐸1∕ℚ and 𝐸2∕ℚ, the isogeny theorem gives that 𝐸1 and 𝐸2 are ℚ-isogenous if and
only if for each prime 𝑝 ∤ 𝑁𝐸1

𝑁𝐸2
, one has that

𝑎𝑝(𝐸1) = 𝑎𝑝(𝐸2). (11)

Provided that 𝐸1 and 𝐸2 are without complexmultiplication and notℚ-isogenous, Serre proved
in [41, Théorème 21] that under GRH, the least prime number 𝑝 ∤ 𝑁𝐸1

𝑁𝐸2
for which equality in

(11) fails to hold satisfies the inequality

𝑝 ⩽ 𝐶4(log rad(𝑁𝐸1
𝑁𝐸2

))2(log log rad(2𝑁𝐸1
𝑁𝐸2

))12, (12)

for some absolute, computable constant 𝐶4. In this section, we improve upon the bound in (12) by
removing the “log log” factor.
We begin by offering a refinement of a proposition due to Serre. Serre mentioned his result,

without proof, in [44, Note 632.6]. Much later, he communicated an elegant proof that appears
in [10, Theorem 4.7]. Our proof builds on the one appearing in [10] by considering a quotient
by scalar matrices as in the proof of [41, Théorème 21’]. Our bound on the order of 𝐺 (as below)
coincides with Serre’s when 𝓁 = 2, which is the prime for which we will apply the result in the
proof of Theorem 2. However, it does offer an improvement in the case when 𝓁 ≠ 2, so we find it
worthwhile to include it nonetheless.

Proposition 12. Let 𝓁 be a prime number and 𝑟 be a positive integer. Let Γ be a group and
𝜌1, 𝜌2 ∶ Γ ⟶ GL𝑟(ℤ𝓁) be group homomorphisms. Suppose that there is an element 𝛾 ∈ Γ such that
tr 𝜌1(𝛾) ≠ tr 𝜌2(𝛾). Then there exists a quotient 𝐺 of Γ and a subset 𝐶 ⊆ 𝐺 for which

(1) the order of 𝐺 is at most 𝓁2𝑟
2
−1

𝓁−1
,

(2) the set 𝐶 is nonempty and closed under conjugation in 𝐺, and
(3) if the image in 𝐺 of an element 𝛾 ∈ Γ belongs to 𝐶, then tr 𝜌1(𝛾) ≠ tr 𝜌2(𝛾).

Proof. Let𝑀 ∶= Mat𝑟×𝑟(ℤ𝓁) be the ℤ𝓁-algebra of the 𝑟 × 𝑟matrices with coefficients in ℤ𝓁 . Let𝐴
denote the ℤ𝓁-algebra generated by the image of Γ under the product map

𝜌1 × 𝜌2 ∶ Γ ⟶ GL𝑟(ℤ𝓁) × GL𝑟(ℤ𝓁).
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1408 MAYLE and WANG

Let 𝐺′ be the image of Γ under 𝜌1 × 𝜌2 in 𝐴∕𝓁𝐴. Because of the existence of the identity element
in Γ, the algebra 𝐴 contains the set of scalar matrices

Λ2𝑟 ∶=
{
(𝜇𝐼𝑟, 𝜇𝐼𝑟) ∶ 𝜇 ∈ ℤ𝓁

}
.

We write 𝐻 to denote the image of Λ2𝑟∖𝓁Λ2𝑟 in 𝐴∕𝓁𝐴. Then we have the group isomorphism
𝐻 ≅ ℤ∕𝓁ℤ×, as the image of (𝜇𝐼𝑟, 𝜇𝐼𝑟) in𝐴∕𝓁𝐴 is determined by the image of 𝜇 inℤ∕𝓁ℤ. Clearly,
𝐻 ∩ 𝐺′ is a normal subgroup of 𝐺′. Consider the group 𝐺 ∶= 𝐺′∕(𝐻 ∩ 𝐺′). From the second iso-
morphism theorem in group theory, we have𝐺 ≅ 𝐺′𝐻∕𝐻. Since the rank of𝐴 as a freeℤ𝓁-module
is at most 2𝑟2 and both 𝐺′𝐻 and𝐻 are groups in 𝐴∕𝓁𝐴, we obtain the bound

|𝐺| = |𝐺′𝐻∕𝐻| ⩽ 𝓁2𝑟
2
− 1

𝓁 − 1
.

Let𝑚 be the largest nonnegative integer such that for each 𝛾 ∈ Γ, one has that

tr 𝜌1(𝛾) ≡ tr 𝜌2(𝛾) (mod 𝓁𝑚).

As 𝐴 is a ℤ𝓁-algebra generated by the image of Γ under 𝜌1 × 𝜌2, it follows that the congruence
tr 𝑥1 ≡ tr 𝑥2 (mod 𝓁𝑚) holds for each (𝑥1, 𝑥2) ∈ 𝐴. We obtain the ℤ𝓁-module homomorphism
𝜆∶ 𝐴 ⟶ ℤ𝓁 given by

𝜆(𝑥1, 𝑥2) = 𝓁−𝑚(tr 𝑥1 − tr 𝑥2).

Since 𝜆(𝓁𝐴) ⊆ 𝓁ℤ𝓁 , we may consider the induced ℤ∕𝓁ℤ-module homomorphism 𝜆̄ ∶ 𝐴∕𝓁𝐴 ⟶

ℤ∕𝓁ℤ.
Let 𝐶 be the set of elements in 𝐺 whose preimages in 𝐺′ all take nonzero values under 𝜆̄. From

the definition of𝑚 and the linearity of the trace map, there exists a 𝛾0 ∈ Γ such that

tr 𝜇𝜌1(𝛾0) ≢ tr 𝜇𝜌2(𝛾0) (mod 𝓁𝑚+1) ∀𝜇 ∈ ℤ×
𝓁 .

Note that the image of (𝜌1 × 𝜌2)(𝛾0) in 𝐺 is contained in 𝐶, so 𝐶 is nonempty. Further, 𝐶 is
closed under conjugation because trace is invariant under conjugation. Finally, suppose that 𝛾 ∈ Γ

is such that the image of 𝛾 in 𝐺 is contained in 𝐶. Then 𝜆((𝜌1 × 𝜌2)(𝛾)) ∉ 𝓁ℤ𝓁 , and, in particular,
tr 𝜌1(𝛾) ≠ tr 𝜌2(𝛾). □

We now employ the above proposition, together with the effective Chebotarev density theorem
in the form of Corollary 6 to give an improvement on the bound in (12), as recorded in Theorem 2.

Proof of Theorem 2. Let 𝐴 ∶= 𝐸1 × 𝐸2 and apply Proposition 12 with 𝓁 ∶= 2, 𝑟 ∶= 2, Γ ∶=

Gal(ℚ(𝐴[2∞])∕ℚ), and 𝜌𝑖 ∶= 𝜌𝐸𝑖,2 for each 𝑖 = 1, 2. Let 𝐺 and 𝐶 be as in the conclusion of
Proposition 12. Let 𝐾 be a subfield of ℚ(𝐴[2∞]) for which Gal(𝐾∕ℚ) = 𝐺, which exists by the
fundamental theorem of infinite Galois theory. From Proposition 12, the size of 𝐺 is bounded
above by 255. Since ℚ(𝐴[2∞]) =

⋃
𝑘 ℚ(𝐴[2

𝑘]), it follows that 𝐾 ⊆ ℚ(𝐴[2𝑛]) for some 𝑛. Thus,
[𝐾 ∶ ℚ] divides [ℚ(𝐴[2𝑛]) ∶ ℚ], which divides |GL2(ℤ∕2𝑛ℤ)|2 = (6 ⋅ 16𝑛−1)2. One can check that
the largest divisor of (6 ⋅ 16𝑛−1)2 that is at most 255 is 192. Thus, |𝐺| = [𝐾 ∶ ℚ] ⩽ 192.
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ON THE EFFECTIVE VERSION OF SERRE’S OPEN IMAGE THEOREM 1409

Applying Corollary 6 with 𝐾 and 𝐶 as above and𝑚 ∶= rad(2𝑁𝐸1
𝑁𝐸2

), we obtain a prime num-
ber 𝑝 not dividing 𝑚 such that ( 𝑝

𝐾∕ℚ
) ⊆ 𝐶 that satisfies inequality (6). As Frob𝑝 ∣𝐾= (

𝑝

𝐾∕ℚ
), it

follows from Proposition 12 that

tr 𝜌𝐸1,2(Frob𝑝) ≠ tr 𝜌𝐸2,2(Frob𝑝).

Consequently, 𝑎𝑝(𝐸1) ≠ 𝑎𝑝(𝐸2). It remains to show that 𝑝 satisfies the claimed bound.
As in the statement of Corollary 6, let 𝐾̃ ∶= 𝐾(

√
𝑚). We have that

[𝐾̃ ∶ ℚ] ⩽ 2[𝐾 ∶ ℚ] ⩽ 2 ⋅ 192 = 384.

Thus, by Corollary 6,

𝑝 ⩽
(
𝑎̃ log 𝑑𝐾̃ + 384𝑏̃ + 𝑐

)2
.

where 𝑎̃, 𝑏̃, 𝑐 are absolute constants that may be taken to be 4, 2.5, and 5, respectively, or may be
taken to be the improved values given in [1, Table 3] associated with 𝐾̃.
Thus, if log 𝑑𝐾̃ ⩽ 100, then by applying Theorem 5with the constants 4, 2.5, and 5, we find that

𝑝 ⩽ (4 ⋅ 100 + 2.5 ⋅ 384 + 5)2 = 1 863 225.

If 100 ⩽ log 𝑑𝐾̃ ⩽ 1000, then by Theorem 5with improved constants from [1, Table 3], we find that

𝑝 ⩽ (1.755 ⋅ 1000 + 0.23 ⋅ 384 + 6.8)2 = 3 422 944.0144.

Next, note that for all real numbers 𝑥 ⩾ 1000, we have that

1.257𝑥 + 7.3 ⩾ 𝑎′𝑥 + 𝑏′𝑑 + 𝑐′

for all (𝑎′, 𝑏′, 𝑐′) that appears as any entry in the last three rows of [1, Table 3], where 𝑑 is the
maximal degree for the corresponding column (and 𝑑 = 384 for the last column). Thus, if log 𝑑𝐾̃ ⩾

1000, then

𝑝 ⩽ (1.257 log 𝑑𝐾̃ + 7.3)2. (13)

Therefore, in all cases, we have that

𝑝 ⩽ max(3 422 944.0144, (1.257 log 𝑑𝐾̃ + 7.3)2). (14)

We have that by Remark 11, 𝐾∕ℚ is unramified outside of the prime divisors of 𝑚 =

rad(2𝑁𝐸1
𝑁𝐸2

). As 𝐾̃ is the compositum of 𝐾 and ℚ(
√
𝑚), the primes that ramify in 𝐾̃ are pre-

cisely those that ramify in𝐾 or inℚ(
√
𝑚). Thus, since rad(𝑑

ℚ(
√
𝑚)
) = rad(2𝑁𝐸1

𝑁𝐸2
) and rad(𝑑𝐾) ∣

rad(2𝑁𝐸1
𝑁𝐸2

),

rad 𝑑𝐾̃ = rad(𝑑𝐾𝑑ℚ(
√
𝑚)
) = rad(2𝑁𝐸1

𝑁𝐸2
).
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1410 MAYLE and WANG

Hence, by Lemma 7,

log 𝑑𝐾̃ ⩽ 383 log rad(2𝑁𝐸1
𝑁𝐸2

) + 384 log(384). (15)

Using the trivial inequality 2𝑁𝐸1
𝑁𝐸2

⩾ 2, we observe that

(1.257(383 log rad(2𝑁𝐸1
𝑁𝐸2

) + 384 log(384)) + 7.3)2 ⩾ 3 422 944.0144. (16)

Considering (14)–(16), we conclude that

𝑝 ⩽ (1.257(383 log rad(2𝑁𝐸1
𝑁𝐸2

) + 384 log(384)) + 7.3)2.

Partially expanding the right-hand side above gives the claimed bound for 𝑝. □

Remark 13. In the proof above, for fields 𝐾̃ with log 𝑑𝐾̃ ⩽ 100, we use the general bound of [1,
Theorem 5.1] rather than the improved bounds appearing in Table 3 of [1]. We do so because
Table 3 does not give constants in boxes where some combination of degree and discriminant
would violate Minkowski’s theorem. This only affects certain entries in the table for which the
logarithm of the absolute value of the discriminant is less than 100. For example, the maximal
totally real subfield ofℚ(𝜁7) has degree 3 and discriminant 49, yet the table gives no constants for
number fields with degree 3–4 for which the logarithm of the absolute value of the discriminant
is less than 5.

5 A BOUND ON THE LARGEST NONSURJECTIVE PRIME

We begin in §5.1 with some necessary background on quadratic Galois characters and quadratic
twists of elliptic curves. In §5.2, we put together the pieces to complete the proof of Theorem 1.
Finally, we present a numerical example in §5.3 that illustrates the theorem.

5.1 Quadratic twists

By a quadratic Galois character, we mean a surjective group homomorphism

𝜒∶ Gal(ℚ∕ℚ) ⟶ {±1}.

Since ker 𝜒 is an index two subgroup of Gal(ℚ∕ℚ), there exists a nonzero squarefree inte-
ger 𝐷 such that ker 𝜒 = Gal(ℚ∕ℚ(

√
𝐷)). Consequently, 𝜒 factors through Gal(ℚ∕ℚ)∕ ker 𝜒 ≅

Gal(ℚ(
√
𝐷)∕ℚ),
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ON THE EFFECTIVE VERSION OF SERRE’S OPEN IMAGE THEOREM 1411

where res𝐷 denotes the restriction homomorphism. Thus, for each 𝜎 ∈ Gal(ℚ∕ℚ),

𝜒(𝜎) =

{
1 𝜎(

√
𝐷) =

√
𝐷

−1 𝜎(
√
𝐷) = −

√
𝐷.

(17)

We write 𝜒𝐷 to denote the quadratic Galois character described by (17). Note that each quadratic
Galois character may be written as 𝜒𝐷 for a unique squarefree integer 𝐷.
For a prime number 𝑝, let 𝐼𝑝 and 𝐼𝑝(𝐷) denote the inertia subgroups of Gal(ℚ∕ℚ) and

Gal(ℚ(
√
𝐷)∕ℚ), respectively. One says that 𝜒𝐷 is unramified at 𝑝 if 𝐼𝑝 ⊆ ker 𝜒𝐷 . From the

description of 𝜒𝐷 given in (17) and upon noting that res𝐷(𝐼𝑝) = 𝐼𝑝(𝐷), we see that

𝜒𝐷 is unramified at 𝑝 ⟺ ℚ(
√
𝐷)∕ℚ is unramified at 𝑝. (18)

If 𝑝 ∤ 𝐷, then ( 𝑝

ℚ(
√
𝐷)∕ℚ

)(
√
𝐷) = (𝐷

𝑝
)
√
𝐷 by [29, p. 88], where (𝐷

𝑝
) denotes the Legendre symbol of

𝐷 with respect to 𝑝. Thus, from (17), we have that

𝜒𝐷

((
𝑝

ℚ(
√
𝐷)∕ℚ

))
=

(
𝐷

𝑝

)
. (19)

Now consider an elliptic curve 𝐸∕ℚ given by a Weierstrass equation

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥 + 𝑎6. (20)

The quadratic twist of 𝐸 by 𝜒𝐷 (or, equivalently, by 𝐷) is the elliptic curve 𝐸𝐷∕ℚ given by

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 +
(
𝑎2𝐷 + 𝑎21

𝐷 − 1

4

)
𝑥2 +

(
𝑎4𝐷

2 + 𝑎1𝑎3
𝐷2 − 1

2

)
𝑥 + 𝑎6𝐷

3 + 𝑎23
𝐷3 − 1

4
.

(21)
See [13, §4.3] or [46, X.2] for background on quadratic twists. By taking (20) to be aminimalmodel
for 𝐸, upon computing and comparing the discriminants of (20) and (21), we find that

rad(𝑁𝐸𝐷
) divides rad(2𝐷𝑁𝐸). (22)

Further, if 𝑝 is a prime number such that 𝑝 ∤ 2𝐷𝑁𝐸 , then by [51, Exercise 4.10] and (19),

𝑎𝑝(𝐸) = 𝜒𝐷(Frob𝑝)𝑎𝑝(𝐸𝐷). (23)

We conclude with a lemma about nontrivial quadratic twists (see, e.g., [41, p. 199]).

Lemma 14. If 𝐷 ≠ 1 is squarefree and 𝐸∕ℚ is without complex multiplication, then 𝐸 and 𝐸𝐷 are
not ℚ-isogenous.

Proof. We know from the Chebotarev density theorem that the natural density of primes 𝑝 for
which𝜒𝐷(Frob𝑝) = −1 is 1

2
. For such a𝑝, if𝑝 ∤ 2𝐷𝑁𝐸 , then𝑎𝑝(𝐸) = −𝑎𝑝(𝐸𝐷) by (23). Thus, either

𝑎𝑝(𝐸) ≠ 𝑎𝑝(𝐸𝐷) or 𝑎𝑝(𝐸) = 0. The density of primes 𝑝 for which 𝑝 ∤ 2𝐷𝑁𝐸 and 𝑎𝑝(𝐸) = 0 is 0 by
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1412 MAYLE and WANG

[41, p. 123] and [20, p. 131]. Thus, there exists a prime 𝑝 ∤ 2𝐷𝑁𝐸 such that 𝑎𝑝(𝐸) ≠ 𝑎𝑝(𝐸𝐷). As
such, 𝐸 and 𝐸𝐷 are not ℚ-isogenous. □

5.2 Completing the proof

We now turn to the problem of bounding 𝑐(𝐸). Suppose that 𝓁 is an odd prime such that 𝐺𝐸(𝓁)
satisfies (5) of Proposition 3. With an appropriate choice of 𝔽𝓁-basis of 𝐸[𝓁] in defining 𝜌̄𝐸,𝓁 , we
may assume that𝐺𝐸(𝓁) ⊆ +𝑛𝑠(𝓁) and𝐺𝐸(𝓁) ⊈ 𝑛𝑠(𝓁). Following Serre, we consider the quadratic
Galois character given by the composition

𝜖𝓁 ∶ Gal(ℚ∕ℚ)
𝜌̄𝐸,𝓁
⟶𝐺𝐸(𝓁) ⟶

+𝑛𝑠(𝓁)

𝑛𝑠(𝓁)

∼
⟶ {±1}. (24)

We list some basic properties of 𝜖𝓁 , which are previously noted in [40, p. 317] and [12, p. 18].

Lemma 15. With the above notation and assumptions, 𝜖𝓁 satisfies the following properties.

(1) For each prime 𝑝 ∤ 𝑁𝐸 , 𝜖𝓁 is unramified at 𝑝.
(2) One has that 𝜖𝓁 = 𝜒𝐷 for some integer 𝐷 ∣ 𝑁𝐸 .
(3) For each prime 𝑝 ∤ 𝑁𝐸 , if 𝜖𝓁(Frob𝑝) = −1, then 𝑎𝑝(𝐸) ≡ 0 (mod 𝓁).

Proof.

(1) If 𝑝 ∤ 𝓁𝑁𝐸 , then by Remark 10, 𝜌𝐸,𝓁 is unramified at 𝑝. In particular, 𝜖𝓁 is unramified at 𝑝.
When 𝓁 ∤ 𝑁𝐸 and 𝑝 = 𝓁, the claimed property follows by a more delicate analysis; see [40, p.
295, Lemme 2].

(2) Let 𝐷 be the squarefree integer such that 𝜖𝓁 = 𝜒𝐷 . It follows from the previous part and (18)
that ℚ(

√
𝐷)∕ℚ is unramified outside of the prime divisors of 𝑁𝐸 . Thus, 𝐷 ∣ 𝑁𝐸 .

(3) For 𝑝 ∤ 𝑁𝐸 , since 𝜖𝓁(Frob𝑝) = −1, we have that 𝜌̄𝐸,𝓁(Frob𝑝) ∈ +𝑛𝑠(𝓁) ⧵ 𝑛𝑠(𝓁). From Equa-
tion (3), we see that tr 𝛾 = 0 for each 𝛾 ∈ +𝑛𝑠(𝓁) ⧵ 𝑛𝑠(𝓁). Thus, 𝑎𝑝(𝐸) ≡ tr(𝜌̄𝐸,𝓁(Frob𝑝)) ≡ 0

(mod 𝓁). □

We are now in a position to prove the main theorem.

Proof of Theorem 1. Let 𝓁 be a prime number such that 𝓁 > 37 and 𝜌̄𝐸,𝓁 is nonsurjective.
By Theorem 4, we know that up to conjugation, 𝐺𝐸(𝓁) ⊆ +𝑛𝑠(𝓁) yet 𝐺𝐸(𝓁) ⊈ 𝑛𝑠(𝓁). Con-
sider the quadratic Galois character 𝜖𝓁 defined in (24). Let 𝐷 be the squarefree integer such
that 𝜖𝓁 = 𝜒𝐷 and consider the quadratic twist 𝐸𝐷 of 𝐸. By Lemma 15(2) and (22), we have
that

rad(𝑁𝐸𝐷
) divides rad(2𝑁𝐸). (25)

For each prime number 𝑝 ∤ 2𝑁𝐸 , by (23), we have that

𝑎𝑝(𝐸) = 𝜖𝓁(Frob𝑝)𝑎𝑝(𝐸𝐷). (26)
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ON THE EFFECTIVE VERSION OF SERRE’S OPEN IMAGE THEOREM 1413

By Lemma 14, 𝐸 and 𝐸𝐷 are not ℚ-isogenous. Thus, there exists a prime number 𝑝 ∤ 2𝑁𝐸 such
that

𝑎𝑝(𝐸) ≠ 𝑎𝑝(𝐸𝐷). (27)

Let 𝑝0 be the least prime number such that 𝑝0 ∤ 2𝑁𝐸 and the inequality (27) holds. Applying
Theorem 2 to 𝐸 and 𝐸𝐷 and noting (25), we find that

𝑝0 ⩽ (482 log rad(2𝑁𝐸) + 2880)2.

Considering (26) and (27), we see that 𝜖𝓁(Frob𝑝0) = −1. Thus, by Lemma 15(3), 𝓁 divides 𝑎𝑝0(𝐸),
and so 𝓁 ⩽ |𝑎𝑝0(𝐸)|. The Hasse bound [46, Theorem V.1.1] gives that |𝑎𝑝0(𝐸)| ⩽ 2

√
𝑝0. Thus,

𝓁 ⩽ 2
√
𝑝0 ⩽ 2(482 log rad(2𝑁𝐸) + 2880).

Expanding the right-hand side, one obtains the claimed bound. □

5.3 An example

We illustrate Theorem 1 with a concrete example. Consider the elliptic curve 𝐸∕ℚ with LMFDB
[31] label 76204800.ut1, given by the Weierstrass equation

𝑦2 = 𝑥3 − 198450𝑥 − 27 783 000.

This elliptic curve is without complex multiplication and has conductor

𝑁𝐸 = 76204 800 = 28 ⋅ 35 ⋅ 52 ⋅ 72.

Assuming the GRH, Theorem 1 tells us that

𝑐(𝐸) ⩽ 964 log(2 ⋅ 3 ⋅ 5 ⋅ 7) + 5760 ≈ 10914.61.

In about one second total, SageMath’s [50] built-in is_surjective command confirms that
𝜌̄𝐸,𝓁 is surjective for each prime number 𝓁 ⩽ 10 915. Thus, conditional on GRH, 𝜌̄𝐸,𝓁 is sur-
jective for all primes 𝓁. Calling Zywina’s ExceptionalSet script [54] on 𝐸 confirms this
unconditionally.
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