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Abstract. We generalize Hirzebruch–Slodowy’s computation of the signature of equal rank
homogeneous spaces to a large class of biquotients.

1. Introduction

The signature of a homogeneous space G/H , where H ⊂ G are compact Lie
groups of equal rank, is explicitly computable from the root systems of G and H .
This was shown by Hirzebruch–Slodowy [9], as a corollary of a more general result
for compact oriented manifolds on which a circle acts with finite fixed point set,
see Theorem 2.6 below.

In this note we generalize Hirzebruch–Slodowy’s computation to a large class
of equal rank biquotients, i.e., quotients of a compact Lie groupG by the free action
of a subgroup H ⊂ G × G with rk H = rk G by left and right multiplication. In
this way we continue the topological study of biquotients by extending methods
from homogeneous spaces, which already lead to an understanding of the Euler
characteristic [12], cohomology [3], and rational homotopy [10] of biquotients.

Biquotients were originally considered by Eschenburg [4] in the context of
Riemannian geometry, but also appear naturally in other geometries, such as sym-
plectic [5] or Sasakian geometry [2]. In all these considerations, symmetries play
an essential role.Wewill use the fact that any Lie subgroup ofG×G that commutes
with H naturally acts on G//H , yielding in particular circle actions on many such
biquotients. Our main result, Theorem 4.1, is applicable to any such circle action
with finite fixed point set. The main difference to the homogeneous setting is the
fact that because we do not have a transitive action on the space at our disposal,
we need to keep track of orientations, see Definition 3.11 below. To illustrate this
issue, we have included a detailed example, see Sect. 4.1.

M. Schmitt (B)· O. Goertsches: Philipps-Universität Marburg Fachbereich Mathematik
und Informatik, Hans-Meerwein-Straße, 35043 Marburg, Germany.
e-mail: schmittt@mathematik.uni-marburg.de

O. Goertsches
e-mail: goertsch@mathematik.uni-marburg.de

Mathematics Subject Classification: 57T99 · 57S15

https://doi.org/10.1007/s00229-021-01344-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s00229-021-01344-0&domain=pdf


426 O. Goertsches, M. Schmitt

2. Actions on homogeneous spaces

In this section we present the known results on homogeneous spaces from [9]. We
begin by recalling the notion of weights for real and complex torus representations.
Let T be a compact torus and

� : T → GL(V )

a finite dimensional complex T -representation. A linear form α : t → R is called
a weight of � if

Vα :=
{
v ∈ V | ∀H ∈ t : �(exp(H))(v) = e2π iα(H)v

}

is not zero. Then V decomposes as V = ⊕
α∈�

Vα for some set of weights� ⊂ t∗; the

Vα are called weight spaces. If W is a real T -representation without fixed vectors,
there always exists a T -invariant complex structure onW . Having chosen one such,
we can decomposeW into its weight spaces. Note that when replacing the invariant
complex structure J by its negative −J , a weight space Vα corresponding to the
weight α becomes the weight space of the weight −α. Without fixing a complex
structure, we can still speak about weights and weight spaces of the representation
W , but these are then only well-defined up to sign, i.e., elements of t∗/±1.

Introducing an invariant almost complex structure on W in particular fixes an
orientation. Without the almost complex structure we can obtain an orientation by
fixing signs of the weights: for every two-dimensional irreducible submodule V of
weight ±α, let β be one of α or −α; we then choose H ∈ t such that β(H) > 0,
and define v, H ·v be positively oriented, where v ∈ V is any nonzero element, and
H · v := d

dt

∣∣
t=0 �(exp(t H))(v) denotes the associated Lie algebra representation.

In this way, choosing a sign for each weight of W determines an orientation of W .
In the case of T = S1, i.e., a real representation of a circle, the weights are

integers, well-defined up to sign. Following [9], we denote by V (m) ∼= C the real
S1-module on which z ∈ S1 acts by v �→ zmv, where m ∈ Z.

Consider G a compact, connected Lie group and H ⊂ G a subgroup with
rk(H) = rk(G). Fix a shared maximal torus T ⊂ H ⊂ G. Left multiplication with
elements of the torus induces a well-defined action of T on the homogeneous space
G/H by t · gH := (tg)H . The fixed point set of this action is well-known and in
particular finite:

Proposition 2.1. The natural map NG(T ) → G → G/H induces a bijection
(G/H)T ∼= NG(T )/NH (T ) ∼= W (G)

W (H)
.

Proof. See e.g. [6, Proposition 2.2]. 	

Wewant to understand the isotropy representation in these (isolated) fixedpoints

and their weights. Denote by

π : G −→ G/H

the natural projection. Then:
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Proposition 2.2. Let g ∈ NG(T ). Then the isotropy representation of the T -action
on G/H in the point gH is given as follows: for any t ∈ T and v ∈ TgHG/H we
have

dtgH (v) = dπgd(lg)e Adw−1(t)(X)

where X ∈ g satisfies dπg(Xg) = v and w−1(t) = g−1tg.

Proof. For such a fixed point we define w−1(t) := g−1tg ∈ T . Then:

dtgH (v) = d

ds

∣∣∣
s=0

tg exp(sX)H = d

ds

∣∣∣
s=0

gw−1(t) exp(sX)H

= d

ds

∣∣∣
s=0

gw−1(t) exp(sX)(w−1(t))−1H = dπgd(lg)e Adw−1(t)(X).

	

Remark 2.3. Let �H ⊂ �G be the root systems of H and G with respect to T :
these elements are linear maps t → iR. The former proposition tells us that the
weights of the isotropy representation in each fixed point gH , where g ∈ NG(T ),
are the roots �G \ �H , up to sign and a factor i , twisted by a representative of
the fixed point, i.e., {Ad∗

g−1 α | α ∈ �G \ �H }. See also [6], where even more
information was obtained, in form of the GKM graph of the T -action on G/H .

The root space decomposition

gC = tC ⊕
⊕

α∈�G

gα

of the complexification gC induces a decomposition

g = t ⊕
⊕

α∈�+
G

(gα ⊕ g−α) ∩ g

of the real Lie algebra g, where �+
G ⊂ �G is a choice of positive roots. A similar

decomposition holds for H , so that

TeHG/H ∼=
⊕

α∈�+
G\�H

(gα ⊕ g−α) ∩ g,

which is the same as the decomposition of TeHG/H into the irreducible submodules
of the isotropy representation of T at eH . Explicitly, each gα is one-dimensional and
g−α = gα . Hence, when choosing X ∈ gα we obtain the real basis (X+X , i X−i X)

of (gα ⊕ g−α) ∩ g. For an element H ∈ t and X ∈ gα , we have[
H, X + X

] = α(H)X − α(H) · X
= 1

i
α(H)

(
i X − i X

)

Thus, (gα ⊕ g−α) ∩ g is a weight space of the real T -representation TeHG/H of
weight ± 1

i α. As described in the beginning of the section, the choice of positive
roots �+

G therefore induces an orientation on TeHG/H (and hence on G/H ).
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This data is now sufficient to understand the signature of these spaces, defined
by

Definition 2.4. Let M be a compact, connected, orientable manifold of dimension
4n. By Poincaré duality, multiplication in themiddle cohomology defines a bilinear,
symmetric, non-degenerate product

∧: H2n(M, R) × H2n(M, R) −→ H4n(M, R) ∼= R.

We define the signature σ(M) of M to be the signature of this inner product. We
set the signature of manifolds whose dimension is not divisible by four to zero.

Remark 2.5. When M̄ denotes M with the reversed orientation, σ(M̄) = −σ(M).

Hirzebruch, Berger and Jung computed this (oriented-homotopy) invariant
using the famous Atiyah–Singer-Index Theorem [8, p. 63–72]. For the special
case of S1-manifolds with finite fixed point set Hirzebruch–Slodowy obtained in
[9, Section 1.7.b)]:

Theorem 2.6. Take M a compact, oriented, 2n-dimensional manifold on which
S1 acts with isolated fixed points. Denote by V (mi ) ∼= C the oriented real S1-
module defined by z · v := zmi v. Then, in each fixed point p ∈ MS1 , we can
decompose TpM ∼= ⊕

i
V (mi ), such that the orientations on the V (mi ) induce the

given orientation on TpM. Then these mi are well-defined up to an even number
of sign changes and

σ(M) =
∑

p∈MS1

(−1)#{i |mi<0}.

Remark 2.7. A different choice of the mi does not change the parity of #{i | mi <

0}.

Ifwe feed in the results on the canonical torus action on equal rankhomogeneous
spaces, restrict our torus action to a circle which has the same fixed points as the
torus, and fix sets of positive roots �+

G on G and �H ⊂ �G on H which induce
an orientation on G/H as described in Remark 2.3, Hirzebruch–Slodowy’s fomula
yields [9, Theorem 2.5.]:

Theorem 2.8. σ(G/H) = ± ∑
[w]∈ W (G)

W (H)

(−1)#{α∈�+
G\�H |w−1(α)/∈�+

G }

This formula is then used in numerous papers (e.g. [1,13]) to compute the
signature of homogeneous spaces. In the following sections we will generalize this
result to a large class of biquotients.
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3. Actions on biquotients

In the following G will always denote a compact, connected Lie group, with maxi-
mal torus Tmax ⊂ G. Furthermore T shall denote a torus in Tmax × Tmax of dimen-
sion equal to the rank of G. We fix a complementary torus T ′ in Tmax × Tmax, i.e.,
t⊕ t' = tmax ⊕ tmax. Let H ⊂ G × G be a closed, connected subgroup containing
T with rk G = rk H . We assume that H (or, equivalently, T ) acts freely on G by
(h1, h2) · g = h1gh

−1
2 , and we denote the H -orbit space by G//H . It is called a

biquotient. We assume that H commutes with a subtorus T̃ ⊂ T ′, so that we get
a well-defined action of T̃ on the biquotient G//H via (t1, t2)Hg = H(t1gt

−1
2 ).

The aim of this section is to understand the weights of the isotropy representation
of this action in the fixed points.

Remark 3.1. For a homogeneous space G/H , and T ⊂ H a subtorus with rk T =
rk H = rk G, Proposition 2.1 tells us that the (finite) fixed point set (G/H)T of
the T -action on G/H by left multiplication is naturally given by the finite set
W (G)/W (H). In particular, the Weyl group W (G) acts on it.

In the biquotient setting as above, in the special case H = T and T̃ = T ′, a
similar statement is true. Let π : G → G//T be the projection. The preimage
π−1((G//T )T

′
) is equal to the set of elements g ∈ G for which TmaxgTmax is of

minimal possible dimension, or equivalently equal to Tg. This set clearly contains
the normalizer NG(Tmax). On the other hand, if g is in this set, then both Tmaxg and
gTmax are equal to TmaxgTmax, which implies that g ∈ NG(Tmax). This implies

(G//T )T
′ = NG(Tmax)//T .

The normalizer NG(Tmax) acts on this finite set, because for all g, g′ ∈ NG(Tmax)

we have g · Tg′ = g · (g′Tmax) = (gg′)Tmax = Tgg′. The subaction of Tmax is
trivial, because for g′ ∈ NG(Tmax) and t ∈ Tmax, we have tg′ ∈ Tmaxg′ = Tg′.
This implies that we obtain a free and transitive action of the Weyl groupW (G) on
(G//T )T

′
.

Lemma 3.2. In the above setting H ∩ �(G) = {(e, e)}.

Proof. Take (g, g) ∈ H ∩ �G. Then (g, g)e = geg−1 = e and therefore (g, g) ∈
He, so g equals e according to the freeness of the action. 	


Lemma 3.3. The orbit map π : G −→ G//H is T̃ -equivariant.

Proof. For (t1, t2) ∈ T̃ the following is valid: π(t1gt
−1
2 ) = H(t1gt

−1
2 ) =

t1(Hg)t−1
2 = (t1, t2)(π(g)). 	


Now we are able to compute the isotropy representation of this action in a fixed
point.

Let g ∈ G be such that Hg ∈ (G//H)T̃ . Then, because H acts freely on G, for
each (t1, t2) ∈ T̃ there is a unique (s1, s2) ∈ H such that t1gt

−1
2 = s1gs

−1
2 .
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Proposition 3.4. We have

d(t1, t2)Hg(v) = dπgd(lg)e Ads−1
2 t2

(X)

where v ∈ THg(G//H) and X ∈ g satisfies dπg(Xg) = v.

Proof. Since H is closed under inversion, (s−1
1 , s−1

2 ) ∈ H . Invoking the defining
equation of (s1, s2) we compute using Lemma 3.3:

d(t1, t2)Hg(v) = d

dt

∣∣∣
t=0

t1π(g · exp(t X))t−1
2

= d

dt

∣∣∣
t=0

π(t1(g · exp(t X))t−1
2 )

= d

dt

∣∣∣
t=0

π(s−1
1 t1g · exp(t X)t−1

2 s2)

= d

dt

∣∣∣
t=0

π(g · (s−1
2 t2) exp(t X)(s−1

2 t2)
−1)

= dπgd(lg)e Ads−1
2 t2

(X)

	

Lemma 3.5. The maps ψ : T̃ → H ; (t1, t2) �→ (s1, s2) and ψg : T̃ −→
G; (t1, t2) �→ s−1

2 t2 are well-defined homomorphisms of Lie groups.

Remark 3.6. The homomorphism ψg depends on the choice of g, i.e., some repre-
sentative of Hg.

Proof. As observed above, the freeness of the H -action implies that ψ and ψg are
well-defined. Let for (t1, t2), (t̂1, t̂2) ∈ T̃ be (s1, s2), (ŝ1, ŝ2) ∈ H as above. Then

(t1 t̂1, t2 t̂2)g = t1 t̂1gt̂
−1
2 t−1

2 = t1ŝ1gŝ
−1
2 t−1

2 = ŝ1t1gt
−1
2 ŝ−1

2 = ŝ1s1gs
−1
2 ŝ−1

2 ,

which implies that ψ is a homomorphism. Further,

ψg((t1 t̂1, t2 t̂2)) = s−1
2 ŝ−1

2 t2 t̂2 = s−1
2 t2ŝ

−1
2 t̂2 = ψg(t1, t2)ψg(t̂1, t̂2),

where we used that T̃ and H commute. It is clear that ψ and ψg are continuous.
But every continous homomorphism of Lie groups is differentiable. 	


For later purposes we need to determine the differential of ψg .

Lemma 3.7. Denote by τi : t̃ → g and πi : h → g the respective projections to
the i-th factor. Furthermore we consider the maps α : t̃ −→ g given by α(X, X ′) =
X − X ′ and β : h −→ g given by β(Y,Y ′) = Y − Y ′, where β is injective. Then

dψg = −π2 ◦ β−1 ◦ α ◦ (Adg−1 ×1) + τ2

for g ∈ Hg ∈ (G//H)T̃ .
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Proof. Writing (s1, s2) = ψ(t1, t2), we have

t1gt
−1
2 = s1gs

−1
2 .

Multiplying this equation with g−1 from the left yields

cg−1(t1)t
−1
2 = cg−1(s1)s

−1
2 ,

and differentiating this we obtain for (X1, X2) ∈ t̃

Adg−1(X1) − X2 = Adg−1(π1(dψ(X1, X2))) − π2(dψ(X1, X2))

which we can express as

β((Adg−1 ×1)(dψ(X1, X2)) = α((Adg−1 ×1)(X1, X2)).

We note that β is injective, since h ∩ �g = ker(β) = 0, its image contains tmax
and α has image contained in tmax. Therefore we have

dψ = (Adg−1 ×1)−1 ◦ β−1 ◦ α ◦ (Adg−1 ×1)

Now we can use this to differentiate the homomorphism ψg , which was given by
ψg(t1, t2) = s−1

2 t2: it is

dψg = −π2 ◦ β−1 ◦ α ◦ (Adg−1 ×1) + τ2

which completes our proof. 	

Corollary 3.8. If T ′ lies in the special torus {(t1, t2) ∈ G × G | (t2, t1) ∈ T }, this
differential computes as

dψg = τ1 ◦ (Adg−1 ×1) + τ2.

Proof. In this case we have −π2 ◦ β−1 ◦ α = τ1. 	

Corollary 3.9. If we fix an auxiliary biinvariant Riemannian metric on G and
denote by �̂g the set of weights of the restriction of the adjoint representation of G
on g to the subspace d(lg−1)e(ker dπg)

⊥ and the subtorus Im(ψg), the set of weights

of the isotropy representation in the fixed point Hg is �g := {d(ψg)
∗λ|λ ∈ �̂g}.

Proof. In Proposition 3.4 we proved the commutativity of the following diagram:

g TgG THg(G//H)

g TgG THg(G//H).

d(lg)e

Adψg (t1,t2)

dπg

d(t1,t2)Hg
d(lg)e dπg

In order to get isomorphic representations we fix a biinvariant Riemannian metric
on G, restrict to appropriate subspaces and finally achieve the following diagram:
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(d(lg−1)g(ker dπg))
⊥ (ker dπg)

⊥ THg(G//H)

(d(lg−1)g(ker dπg))
⊥ (ker dπg)

⊥ THg(G//H).

d(lg)e

Adψg (t1,t2)

dπg

d(t1,t2)Hg

d(lg)e dπg

Theweights of the above twisted adjoint representation are then the twisted weights
{d(ψg)

∗λ|λ ∈ �̂Hg}. 	

Remark 3.10. The most convenient situation occurs, when for each fixed point
Hg ∈ (G//H)T̃ there exists a representative g ∈ NG(Tmax). Then Im(ψg) lies
in Tmax and the weights are pulled back roots associated to the maximal torus Tmax.

Remark 3.11. Asexplained in the beginningofSect. 2, theweights�g are onlywell-
defined up to sign, as they are weights of the real T̃ -representation THg(G//H).
Therewealso explainedhowfixing signs of theseweights determines anorientation.

If we fix an orientation on G//H , the vector space THg(G//H) is oriented.
By choosing exactly one of each pair α,−α, we can choose a set of linear forms
�+

g such that �g = {±α | α ∈ �+
g }, with the property that the orientation on

THg(G//H) induced by this choice coincides with the one given by the orientation
on the manifold G//H .

4. Signature

Just as in the homogeneous case we can now invoke Hirzebruch–Slodowy’s signa-
ture formula to prove a result on the signature of biquotients.

Using the same notation as before, suppose that the fixed point set of T̃ �

G//H consists of isolated points and fix (X,Y ) ∈ t̃ generating a subcircle with
the same fixed points. The weights �g of the T̃ -isotropy representation in Hg
were determined in Corollary 3.9. We furthermore fix an orientation on G//H , and
choose sets of linear forms�+

g that induce the weights�g and are compatible with
the chosen orientation, as described in Remark 3.11. Then Hirzebruch–Slodowy’s
Theorem 2.6 for oriented S1-manifolds gives the following theorem:

Theorem 4.1.

σ(G//H) =
∑

Hg∈(G//H)T̃

(−1)#{α∈�+
g |α(X,Y )<0}

Remark 4.2. By [12, Corollary 3.4. and Property 1.7.]G//H is orientablewhenever
G and H are connected. In that case, we can orient G//H as follows. By introduc-
ing a bi-invariant auxiliary Riemannian metric on G we can make the following
identifications:

THgG//H ∼= (ker dπg)
⊥

∼= (d(lg−1)g(ker dπg))
⊥

∼= (d(lg−1)g(TgH · g))⊥
∼= {Adg−1 X − Y | (X,Y ) ∈ TeH}⊥,
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which gives us a splitting

g ∼= THgG//H ⊕ {Adg−1 X − Y | (X,Y ) ∈ TeH}.
Therefore fixing orientations of G and H we get an orientation of each orbit H · g
and an induced orientation of its normal space ν(H · g), which is by the previous
considerations isomorphic to THgG//H . Note that the orientation of the orbit

(d(lg−1)g(TgH · g) ∼= {Adg−1 X − Y | (X,Y ) ∈ TeH}
is independent of the choice of the representative of the orbit because H is con-
nected.Hencewe can determine an orientation of the biquotientG//H , by choosing
sets of positive roots of G and H and orientations on their maximal tori.

Remark 4.3. Let us describe two situations in which the signature of a biquotient
vanishes automatically: For rk(H) < rk(G) the signature behaves analogously
to the homogeneous case and σ(G//H) = 0 because by [12, Proposition 6.7.]
all Pontryjagin numbers of G//H vanish and therefore the signature vanishes by
Hirzebruch’s signature theorem [7, Theorem 8.2.2].

Consider a biquotient of the formG//T , whereG is a compact simple Lie group
and T ⊂ G × G is a torus with rk T = rk G. Such biquotients were classified by
Eschenburg in [4, Chapters 6,7,8] (up to a certain notion of equivalence). Moreover,
it follows from the results in Chapter 9 of the same reference that there always
exists a nonabelian extension T ⊂ H ⊂ G × G with rk H = rk G (in fact, there
the maximal such extensions are classified). In particular, we obtain a fibration

H/T −→ G//T −→ G//H,

cf. [5, Section 2.1], fromwhich we obtain σ(G//T ) = σ(H/T )σ (G//H) by [11].
But the signature of the generalized flag manifold H/T vanishes by [9, Proposition
2.4], which implies that σ(G//T ) = 0.

4.1. An example

Let us apply Theorem 4.1 to an example. Take G = SU(6) and let H =
�3(SU(2)) × SU(5) ⊂ G × G, where

�3(SU(2))=
⎧⎨
⎩

⎛
⎝
A 0 0
0 A 0
0 0 A

⎞
⎠

∣∣∣∣∣∣
A∈SU(2)

⎫⎬
⎭

is the blockwise embedding and SU(5) is embedded in the upper left corner. Let
T ⊂ H be the maximal torus given by diagonal matrices in both components.
We will compute the signature of the biquotient G//H , in order to illustrate our
formula. This will not be a new result; as G//H = �3(SU(2))\SU(6)/SU(5) ∼=
�3(SU(2))\S11 ∼= HP2, the signature is well-known to be ±1.

The first step is to find a subtorus of G × G which commutes with H and acts
with finite fixed point set on G//H , and determine the weights of the isotropy
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representation in each fixed point. Such a torus is for example given by T̃ =
{diag(λ, λ, λ−1, λ−1, 1, 1)|λ ∈ S1}×{1}. We note that T̃ is contained in the flipped
torus T ′ = {(t1, t2) | (t2, t1) ∈ T }. It is easily seen that the action of T̃ on G//H ∼=
HP2 is given by λ · [q1 : q2 : q3] = [λq1 : λ−1q2 : q3] because the diffeomorphism
SU(6)/SU(5) ∼= S11 is just projection on the last column. Hence our fixed point
set is (G//H)T̃ = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]} =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H ·

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
−1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, H ·

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

H ·

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

We define g1, g2, g3 as the above representatives of the fixed points. Note that we
are in the situation of Remark 3.10.

denote by Vjk ⊂ su(6), where j, k = 1, . . . , 6, j �= k, the span of Ei j − E ji

and i(Ei j + E ji ). This is the root space of the adjoint representation of the standard
maximal torus on su(6) of the root ±(ei − e j ). By choosing the set of positive
roots {ei − e j | i < j} we induce an orientiation on Vi j , with respect to which the
above fixed basis is positively oriented. We thus obtain an orientation on su(6) =
tmax ⊕ ⊕

i< j Vi j by declaring the basis {i(E11 − E66), . . . , i(E55 − E66)} of tmax
to be positively oriented. Analogously we obtain an orientation on su(2), su(5),
and then also on

su(2) × su(5) = t ⊕ (V12 × 0) ⊕
⊕

1≤i< j≤5

(0 × Vi j ),

via the positively oriented basis (i(E11−E22), 0), (0, i(E11−E55), . . . , (0, i(E44−
E55))}. These orientations onG and H induce an orientation onG//H , cf. Remark
4.2.

Using the Frobenius inner product or equivalently the Killing form on SU(6)
we can determine the complements ker(dπ)⊥gi ∼= THgi G//H . We obtain

d(lg1 )
−1
e ker(dπ)⊥g1 =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 ∗
0 0 0 0 0 ∗
0 0 0 0 0 ∗
0 0 0 0 0 ∗
0 ∗ ∗ ∗ ∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= V26 ⊕ V36 ⊕ V46 ⊕ V56 ⊂ su(6),
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d(lg2 )
−1
e ker(dπ)⊥g2 =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 ∗
0 0 0 0 0 ∗
0 0 0 0 0 0
0 0 0 0 0 ∗
0 0 0 0 0 ∗
∗ ∗ 0 ∗ ∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= V16 ⊕ V26 ⊕ V46 ⊕ V56 ⊂ su(6),

d(lg3 )
−1
e ker(dπ)⊥g3 =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 ∗
0 0 0 0 0 ∗
0 0 0 0 0 ∗
0 0 0 0 0 ∗
0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= V16 ⊕ V26 ⊕ V36 ⊕ V46 ⊂ su(6).

By Corollary 3.9, the weights of the T̃ -isotropy representation in the three fixed
points are

• �g1 = {±dψ∗
g1(

1
i (e2−e6)),±dψ∗

g1(
1
i (e3−e6)),±dψ∗

g1(
1
i (e4−e6)),±dψ∗

g1(
1
i (e5−

e6))}
• �g2 = {±dψ∗

g2(
1
i (e1−e6)),±dψ∗

g2(
1
i (e2−e6)),±dψ∗

g2(
1
i (e4−e6)),±dψ∗

g2(
1
i (e5−

e6))}
• �g3 = {±dψ∗

g3(
1
i (e1−e6)),±dψ∗

g3(
1
i (e2−e6)),±dψ∗

g3(
1
i (e3−e6)),±dψ∗

g3(
1
i (e4−

e6))}.
where we now denote by 1

i (ei − e j ) the restrictions of the realifications of the
usual roots to the tori Im(ψgk ). We now have to choose appropriate signs of these
weights, i.e., define compatible sets of weights �+

gk as in Remark 3.11.
For every k, the subspace {Adg−1

i
X − Y | (X,Y ) ∈ TeH} ⊂ su(6) is the sum

of the Lie algebra of the maximal torus of su(6) and certain root spaces, and hence
oriented by our conventions above. Using the bases above, and taking into account
the embeddings of su(2) and su(5) into su(6), in order to define �+

gk we have to
determine if the natural maps

su(2) × su(5) −→ {Adg−1
k

X − Y | (X,Y ) ∈ TeH} ⊂ su(6). (4.1)

are orientation-preserving. The images of the embedded basis of su(2) are

Adg−1
1

(diag(i,−i)) = diag(−i, i,−i, i,−i, i)

Adg−1
1

(E12 − E21) = (E23 − E32) + (E45 − E54) + (E16 − E61)

Adg−1
1

(i(E12 + E21)) = i(E23 + E32) + i(E45 + E54) − i(E16 + E61)

Adg−1
2

(diag(i,−i)) = diag(i,−i,−i, i,−i, i)

Adg−1
2

(E12 − E21) = −(E12 − E21) + (E45 − E54) − (E36 − E63)

Adg−1
2

(i(E12 + E21)) = −i(E12 + E21) + i(E45 + E54) + i(E36 + E63)

Adg−1
3

(diag(i,−i)) = diag(i,−i, i,−i,−i, i)

Adg−1
3

(E12 − E21) = −(E12 − E21) + (E34 − E43) − (E56 − E65)

Adg−1
3

(i(E12 + E21)) = −i(E12 + E21) + i(E34 + E43) + i(E56 + E65).
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Moreover, everything from the su(5) factor is mapped to its negative. From this,
one computes the map (4.1):

• For g1, it is the direct sum of an orientation-reversing map t → tmax and
an orientation-preserving map (V12 × 0) ⊕ ⊕

1≤i< j≤5(0 × Vi j ) → V16 ⊕⊕
1≤i< j≤5 Vi j .• For g2, it is the direct sum of an orientation-reversing map t → tmax and

an orientation-reversing map (V12 × 0) ⊕ ⊕
1≤i< j≤5(0 × Vi j ) → V36 ⊕⊕

1≤i< j≤5 Vi j .• For g3, it is the direct sum of an orientation-reversing map t → tmax and
an orientation-reversing map (V12 × 0) ⊕ ⊕

1≤i< j≤5(0 × Vi j ) → V56 ⊕⊕
1≤i< j≤5 Vi j .

Thus, for g2 and g3 the original orientation given by that of the Vi j is the correct one
on THgkG//H , while for g1 we have to take the opposite one. We can therefore fix
the following sets of weights of (lg−1

i
)gi (Tgi Hgi )⊥ for each fixed point gi inducing

the fixed orientation on G//H :

• �+
g1 = {−dψ∗

g1(
1
i (e2−e6)), dψ∗

g1(
1
i (e3−e6)), dψ∗

g1(
1
i (e4−e6)), dψ∗

g1(
1
i (e5−

e6))}
• �+

g2 = {dψ∗
g2(

1
i (e1 − e6)), dψ∗

g2(
1
i (e2 − e6)), dψ∗

g2(
1
i (e4 − e6)), dψ∗

g2(
1
i (e5 −

e6))}
• �+

g3 = {dψ∗
g3(

1
i (e1 − e6)), dψ∗

g3(
1
i (e2 − e6)), dψ∗

g3(
1
i (e3 − e6)), dψ∗

g3(
1
i (e4 −

e6))}.
Furthermore, because by our choices T̃ lies inside the flipped torus T ′, Corollary

3.8 applies, and

dψgk (X,Y ) = Adg−1
k

(X) + Y.

If we now choose (i X, 0) ∈ i · R × 0 ∼= Lie(S1 × 1), X > 0 generating T̃ , we
compute invoking Corollary 3.8

g−1
1 (i X)g1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

i X 0 0 0 0 0
0 −i X 0 0 0 0
0 0 −i X 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 i X

⎞
⎟⎟⎟⎟⎟⎟⎠

⇒

−(
1

i
(e2 − e6))(Adg−1

1
(i X)) = 2X > 0

1

i
(e3 − e6)(Adg−1

1
(i X)) = −2X < 0

1

i
(e4 − e6)(Adg−1

1
(i X)) = −X < 0

1

i
(e5 − e6)(Adg−1

1
(i X)) = −X < 0

g−1
2 Xg2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

i X 0 0 0 0 0
0 i X 0 0 0 0
0 0 −i X 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −i X

⎞
⎟⎟⎟⎟⎟⎟⎠

⇒

1

i
(e1 − e6)(Adg−1

2
(i X)) = 2X > 0

1

i
(e2 − e6)(Adg−1

2
(i X)) = 2X > 0

1

i
(e4 − e6)(Adg−1

2
(i X)) = X > 0

1

i
(e5 − e6)(Adg−1

2
(i X)) = X > 0
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g−1
3 Xg3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

i X 0 0 0 0 0
0 i X 0 0 0 0
0 0 −i X 0 0 0
0 0 0 −i X 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⇒

1

i
(e1 − e6)(Adg−1

3
(i X)) = X > 0

1

i
(e2 − e6)(Adg−1

3
(i X)) = X > 0

1

i
(e3 − e6)(Adg−1

3
(i X)) = −X < 0

1

i
(e4 − e6)(Adg−1

3
(i X)) = −X < 0

We can now apply Theorem 4.1 and obtain:

σ(G//H) = ±((−1)3 + (−1)0 + (−1)2) = ±1.
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