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Abstract
We propose a simple scheme for merging two neural networks trained with different starting
initialization into a single one with the same size as the original ones. We do this by carefully
selecting channels from each input network. Our procedure might be used as a finalization
step after one tries multiple starting seeds to avoid an unlucky one.We also show that training
two networks and merging them leads to better performance than training a single network
for an extended period of time.

Keywords Neural networks · Machine learning · Training improvement

1 Introduction

Typical neural network training starts with random initialization and is trained until reaching
convergence in some local optima. The final result is quite sensitive to the starting random
seed as reported in [1, 2], who observed a 0.5% difference in accuracy between the worst and
best seed on the Imagenet dataset and a 1.8% difference on the CIFAR-10 dataset. Thus, one
might need to run an experiment several times to avoid hitting the unlucky seed. The final
selected network is just the one with the best validation accuracy.

We believe that the discrepancy between starting seeds performance can be explained by
selecting slightly different features in hidden layers in each initialization. One might ask a
question: can we somehow select better features for network training? One approach is to
train a bigger network and select the most important channels via channel pruning [3–6].
Training a big network, which is subsequently pruned, might be in many cases prohibitive,
since increasing network width by a factor of two results in a four times increase in FLOPs
and also might require a change in some hyperparameters (e.g. regularization, learning rate).

Here, we propose an alternative approach demonstrated in Fig. 1. Instead of training a
bigger network and pruning it, we will train two same-sized networks and merge them
together into one. The idea is that each training run would fall into different local optima and
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Fig. 1 Comparison between (a) training a bigger network and then pruning and (b) training two separate
networks and then merging them together. Width of rectangles denotes the number of channels in the layer

Fig. 2 Set of filters in the first layer of two ResNet20 networks trained on CIFAR-100 dataset with different
starting seeds. Each row shows filters from one network. Selected filters for merged network are marked with
a red outline

thus have different sets of filters in each layer, as shown in Fig. 2. We then can select a better
set of filters than in the original networks and achieve better accuracy.

In summary, in this paper:

• We propose a procedure for merging two networks with the same architecture into one
with the same architecture as the original ones.

• We demonstrate that our procedure produces a network with better performance than the
best of original ones. On top of that, we also show that the resulting network is better
than the same network trained for an extended number of epochs (matching the whole
training budget for the merged network).

1.1 RelatedWork

Multiple approaches try to improve accuracy/size tradeoff for neural networks without the
need for specialized sparse computation (such as in case ofweight pruning). Themost notable
one is channel pruning [3–6]. Here, we first train a bigger network and then select the most
important channels in each layer. The selection process usually involves assigning some score
to each channel and then removing channels with the lowest score.

Another approach isknowledgedistillation [7].Knowledgedistillationfirst trains a bigger
network (teacher) and then uses its outputs as targets for a smaller network (student). It is
hypothesized that by using outputs from larger network, the smaller network can also learn
hidden aspects of data which are not visible in the dataset labels. However, it was shown that
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successful knowledge distillation requires training for a huge number of epochs (i.e. 1200)
[8]. A slight twist to distillation was applied in [9] where bigger and smaller networks were
cotrained together.

One can also use auxiliary losses to reduce redundancy and increase diversity between
various places in the neural network [10].

A closely related approach to ours is known asmodel fusion [11, 12] (with further advance-
ments detailed in [13]). Model fusion, like our method, combines multiple networks into a
unified model. Given that neural networks exhibit permutation invariance, model fusion ini-
tially focuses on aligning neurons across various models, essentially identifying the optimal
permutation of neurons before averaging their respective parameters. Notably, when neurons
are aligned only by looking at relevant weights, there is no need for training data, which offers
a significant advantage in federated learning scenarios. In contrast, our approach directly
selects an optimal subset of neurons from both networks. Our strategy might be particularly
advantageous in scenarios where specific neurons from one network cannot be seamlessly
aligned with those of another.

2 Methods

Here, we describe our training and merging procedure. We will denote two networks, which
will be merged as teachers and the resulting network as a student.

Our training strategy is composed of three stages:

1. Training of two teachers
2. Merging procedure, i.e. creating a student, which consists of the following substeps:

(a) Layerwise concatenation of teachers into a big student
(b) Learning importance of big student neurons
(c) Compression of big student

3. Fine-tuning of the student

Training of teachers and fine-tuning of the student is just standard training of a neural
network by backpropagation. Below, we describe howwe derive a student from two teachers.

2.1 Layerwise Concatenation of Teachers into a Big Student

First, we create a “big” student by layerwise concatenation of teachers. The big student
simulates the two teachers and averages their predictions in the final layer. This phase is just
network transformation without any training, see Fig. 3. Concatenation of the convolutional
layer is done in the channel dimension, see Fig. 4. Concatenation of the linear layer is done
analogically in the feature dimension.We call themodel "big student" because it has a doubled
width.

2.2 Learning Importance of Big Student Neurons

We want the big student to learn to use only half of the neurons in every layer. So, after
removing unimportant neurons,wewill end upwith the original architecture.Besides learning
the relevance of neurons, we also want the two computational flows to interconnect.
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Fig. 3 Concatenation of linear layer. Orange and green weights are copies of the teacher’s weights. Gray
weights are initialized to zero. In the beginning, big student simulates two separate computational flows. But
during the training, they can be interconnected

Fig. 4 Pytorch code for concatenation of a convolutional layer in ResNet. Since convolutions are followed by
Batch normalization, they do not use biases

There are multiple ways to find the most relevant channels. One can assign scores to
individual channels [3, 4], or use an auxiliary loss to guide the network to select the most
relevant channels. We have chosen the latter approach, inspired by [14]. It leverages the L0
loss presented in [15].

Let � be a linear layer with k input features. Let gi be gate assigned to feature fi . Gate
can be either opened gi = 1 (student is using the feature) or closed gi = 0 (student isn’t
using the feature). Before computing outputs of the layer, we first multiply inputs by gates,
i. e. instead of computing W f + b, we compute W ( f · g) + b. To make our model use only
half of the features, we want 1

n

∑k
1 gi = 1

2 .
The problem with this approach is that gi is discrete and is not trainable by the gradient

descent. We used stochastic gates and continuous relaxation of L0 norm presented in [15]
to overcome this issue. The stochastic gates contain a random variable that has nonzero
probability to be 0: P[gi = 0] > 0, nonzero probability to be 1 P[gi = 1] > 0, and
is continuous on interval (0, 1). The reparameterization trick makes the distribution of the
gates trainable by gradient descent.
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Fig. 5 Evolution of λ during training. For the sine problem we have used λt+1 = λt + 0.05 ∗ √
λt (where t

is the epoch number)

To encourage the big student to use only half of the features of the layer, we use an
auxiliary loss:

L�
hal f =

(
1

2
− 1

k

k∑

1

P[gi > 0]
)2

Note that our loss is different from the loss used in [15].Whereas our loss forces the model
to have exactly half of the gates opened, their loss pushes the model to use as few gates as
possible.

Thus we are optimizing L = LE + λ
∑

� L
�
hal f , where LE is error loss measuring fit

on the dataset and new hyperparameter λ is the proportion of importance of error loss and
auxiliary loss.

Hyperparameter λ is sensitive and needs proper tuning. At the beginning of the training,
it can not be too big, or the student will set every gate to be closed with a probability of 0.5.
At the end of the training, it can not be too small, or the student will ignore the auxiliary
loss in favor of the error loss. It will use more than half of the neurons of the layer and
will significantly drop performance after the compression. We found that using the quadratic
increase of λ during big student’s training works sufficiently well, see Fig. 5.

We have implemented gates in a separate layer. We have used two designs of gate layers,
one for 2d channels and one for 1d data. The position of gate layers is critical. For example, if
a gate layer is positioned right before the batch norm, its effect (i. e. multiplying the channel
by 0.1) would be countered by the batch norm, see Fig. 6.

2.3 Compression of Big Student

After learning of importance is finished, we select half of the most important neurons for
every layer. Then, we compress each layer by keeping only the selected neurons as visualized
in Fig. 7.

123



8 Page 6 of 13 M. Pašen, V. Boža

Fig. 6 Positions of gate layers (a) sine problem (b) LeNet c) two consecutive blocks in ResNet. Two of the
ResNet gate layers have to be identical. If the layers would not be linked and for some channel i , the first gate
would be closed while the second gate would be opened, the result of the second block, for that channel, would
be 0 + f (x) instead of xi + f (x) which would defeat the whole purpose of ResNet and skip connections

Fig. 7 Compression of the big student. On the left side is a linear layer of a big student. Prior and following
gate layers decide which neurons are important. On the right side is a compressed layer. It consists of only the
important neurons

3 Experimental Results

We compare our merging strategy to generic neural network training on several problems.
First, we test our training strategy on a synthetic problem.We show that our merging strategy
can learn better features than typical training. Then we test various architectures on image
classification problems. We show that after the merging procedure, the resulting network is
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Fig. 8 a) Training dataset for sine
problem consisting of 10000
samples where x ∼ U(0, 1) and
y = sin(10πx) + z ; z ∼
N (0, 0.2). b) Architecture of
model for sine problem

Table 1 Summary of experimental results for sine problem

Task Strategy Min. Max. Median Mean Std.

Sine problem test MSE Student 0.049 0.116 0.078 0.077 0.015

bo3 model 0.105 0.373 0.253 0.240 0.076

one model 0.053 0.363 0.281 0.249 0.097

Bold values indicate the best result (group in case of Table 2)
We report themean squared error for each strategy. Strategy student (our strategy) uses 2/3 to train two teachers
and 1/3 to train student (1/6 finding important features, 1/6 finetuning). Strategy bo3 model trains three models
and picks the best. Strategy one model uses all epochs to train one model

better than the original ones and also better than training one network for an extended amount
of time.

3.1 Training Strategies

We compare our network merging with generic training strategies using the same number of
training epochs. Except for Imagenet and comparison with model fusion, we are comparing
our training strategy with strategies bo3model and one model. In the CIFAR-100 experiment,
we also compare with pruning strategy. We run tests multiple times and report summary
statistics (minimum, maximum, median, mean, and standard deviation of accuracy or mean
squared error) over multiple runs.

In ourmerging strategy, student, we use two-thirds of epochs to train teachers and one-third
to train student (one-sixth to find important neurons and one-sixth to fine-tune).

In the bo3 model, we train three models, each for one-third of epochs, and then we choose
the best.

In the one model strategy, we use all epochs to train one model.
In the pruning strategy, we use the channel pruningmethod from [4].We first train network

with doubled width using two thirds or training budget and then incrementally prune for one
sixth of the training budget and finally fine-tune for the rest of the time.

Note that each strategy uses a similar training budget. Also, during inference, all models
use the equivalent amount of resources since they have exactly the same architecture.

3.2 Synthetic Dataset-Sine Problem

First, we want to confirm the idea that a network trained from random initialization might
end in suboptimal local optima, and our merging procedure finds higher quality local optima.
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Fig. 9 Box plot of testing losses of 50 experiments on the sine problem. The vertical line inside the box
represents the median, and the cross presents the mean

Fig. 10 Plots of learned sine curves by models trained with different strategies. We plot every train result as
one line and overlay on top of each other. As we can see, all the students resulting from merging get all the
peaks. However, models without merging often missed some peaks

To verify, we have created a synthetic dataset—five sine waves with noise. The input is scalar
x and the target is y = sin(10πx) + z where z ∼ N (0, 0.2), see Fig. 8.

Our architecture is composed of two linear layers (i. e. one hidden layer) with 100 hidden
neurons (Fig. 8). In every strategy, we have used 900 epochs and SGD with starting learning
rate 0.01 and momentum 0.9. Then, we have decreased the learning rate to 0.001 after the
100th epoch for student fine-tuning, the 250th epoch for teachers and bo3 models, and the
800th epoch for a model in one model. We repeat all experiments 50 times.

We can observe that our strategy has significantly smaller error than other strategies (Table
1, Fig. 9).

Digging deeper (Fig. 10), we observe networks trained by our strategy to predict all the
peaks correctly. However, networks trained by generic strategy often miss some peaks. This
indicates that our training strategy helps the network to select better features for later use. In
some cases, bo1 network is lucky and predicts all the peaks correctly, which can be seen in
having similar minimal error as our training strategy.
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Fig. 11 Box plot of the testing
accuracies of 10 experiments on
Imagewoof with LeNet

Table 2 Summary of experimental results on image classification tasks

Task Strategy Min Max Median Mean Std

Imagewoof LeNet test accuracy [%] Student 38.0 41.1 39.9 39.9 0.8

bo3 model 36.9 39.4 38.7 38.5 0.7

one model 36.5 39.7 37.7 37.8 1.0

Imagewoof ResNet18 test accuracy [%] Student 82.4 82.8 82.5 82.6 0.2

bo3 model 80.1 80.9 80.7 80.6 0.3

one model 81.0 81.8 81.3 81.3 0.3

CIFAR-100 ResNet20 test accuracy [%] Student 68.8 69.6 68.8 69.0 0.3

Pruning 68.5 69.1 68.8 68.9 0.2

bo3 model 67.0 67.2 67.0 67.0 0.1

one model 67.0 67.9 67.5 67.5 0.4

Bold values indicate the best result (group in case of Table 2)
We report testing accuracy. Considering specific task, all strategies used the same number of epochs. Strategy
student (our strategy) uses 2/3 to train two teachers and 1/3 to train student (1/6 finding important features,
1/6 finetuning). Strategy bo3 model trains three models and picks the best. Strategy one model uses all epochs
to train one model

3.3 Image Classification

Here, we test our training strategy on various combinations of dataset and architecture.
First, we use Imagewoof (Imagenet-1k using only 10 classes of dog breeds) dataset [16, 17]
with LeNet [18] and ResNet18 [19] architectures. Then, we test our approach on CIFAR-100
dataset [20] using ResNet20 [19] architecture. To compare with other model fusion approach,
we run a test on CIFAR-10 dataset using VGG-11 architecture used in [11, 13]. Finally, we
evaluate our approach on Imagenet-1k dataset [21].

In all cases, our training strategy with merging provides better results than generic training
strategies. Results are summarized in Tables 2 and 4 and details about the training setup are
provided below.

3.3.1 Imagewoof on LeNet

LeNet is composed of two convolutional layers followed by three linear layers. The shape
of an input image is (28, 28, 3). The convolutional layers have 6 and 16 output channels,
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Fig. 12 Results of 5 experiments on Imagewoof with ResNet18. The worst student (0.819) had slightly better
accuracy than the best long teacher (0.818)

respectively. The linear layers have 400, 120, and 80 input features, respectively. For the
architecture of the big student, see Fig. 6.

Every strategy has used 6000 epochs cumulatively and SGD with starting learning rate
0.01 and momentum 0.9. Every training except finding important neurons (teachers, student
fine-tuning, bo3 models, and one model) decreased the learning to 0.001 in the third quarter
and 0.0001 in the last quarter of the training.

We have conducted 10 experiments, see Fig. 11 for visualisation and Table 2 for detailed
statistics. Our strategy has consistently better results than other strategies. It has a greater
sample variance than one model due to an outlier, see Fig. 11.

3.3.2 Imagewoof on ResNet18

ResNet has two information flows (one through blocks, one through skip connections).
Throughout the computation, its update is x = f (x) + x , instead of the original x = f (x).
To conserve this property, some gate layers have to be synchronized—share weights and
realization of random variables, see Fig. 6.

Every strategy has used 600 epochs cumulatively. The optimizer and the learning rate
scheduler is analogical to the LeNet experiment.

We have conducted 5 experiments, see Fig. 12 for visualisation and Table 2 for detailed
statistics. Similarly, as with LeNet, our strategy has consistently better results than other
strategies.

3.3.3 CIFAR-100 on ResNet20

We also tested our approach on the CIFAR-100 dataset using ResNet20. Our total training
budget is 600 epochs. We optimize models using SGD with starting learning rate 0.1 and
then divide it by 10 during half and three quarters of the training of one network. We run all
strategies 5 times and report results in Table 2. We can see that our strategy is more than 1%
better than training onemodel for an extended period of time. Our strategy is also competitive
with typical channel pruning, but compared to channel pruning it can reuse already trained
networks of target size.
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Table 3 Comparison with model fusion algorithms: OTFusion from [11] and GAMF from [13] on CIFAR-10
dataset using VGG-11

Individual models OTFusion GAMF Student (ours)

Test accuracy [%] 90.31, 90.50 90.73 90.75 91.13

Bold values indicate the best result (group in case of Table 2)

Table 4 Results on ResNet-18 on
Imagenet benchmark

Teacher Big student Finetuning Total Validation
epochs epochs epochs epochs accuracy [%]

– – 90 90 69.76

– – 150 150 70.28

20 20 90 150 70.47

Bold values indicate the best result (group in case of Table 2)

3.3.4 Comparison with Other Model Fusion Algorithms on CIFAR-10 Using VGG-11

Model fusion presented in [11–13] can achieve the same goal as our approach. However, they
first select the optimal alignment of neurons from teacher networks, and the resulting student
is just an average between aligned teachers. Our approach tries to find the best subset of
neurons in each layer. In this test, we compare on the CIFAR-10 dataset using VGG-11 [22]
network, which is a setup used both in [11] and [13]. We took baseline networks provided by
[11] andmerged them using our strategy.We found important neurons during 100 epochs and
finetuned the resulting student for another 100 epochs. As shown in Table 3, our approach
provides more accurate final results than the model fusion approaches.

3.3.5 Imagenet on ResNet18

We tested our merging approach also on Imagenet-1k dataset [21]. However, as seen in [2]
high quality training requires 300 to 600 epochs, which is quite prohibitive. We opted for
the approach from Torchvision [23], which achieves decent results in 90 epochs. We train
networks using SGD with starting learning rate 0.1, which decreases by factor of 10 in third
and two thirds of training. For the final finetuning of student, we used a slightly smaller
starting learning rate of 0.07.

For merging, we used slightly different appoach than in previous experiments. We trained
teachers only for a short amount of 20 epochs, which gives teacher accuracy around 65%.
Then we spend 20 epochs in tuning big student and finding important neurons, and finally
finetune for 90 epochs. In the total of 150 epochs, we get better results than ordinary training
for 90 epochs and also better results than training for equivalent amount of 150 epochs.
Results are summarized in Table 4.

4 Conclusions and FutureWork

We proposed a simple scheme for merging two neural networks trained from different ini-
tializations into one. Our scheme can be used as a finalization step after one trains multiple
copies of one network with varying starting seeds. Alternatively, we can use our scheme
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to get higher quality networks under a similar training budget, which we experimentally
demonstrated.

One of our scheme’s downsides is that we need to instantiate a rather big neural network
during the selection of important neurons. In the future, we would like to optimize this step to
be more resource efficient. One option is to select important neurons in a layerwise fashion.
Another option is to align neurons first, as in other model fusion approaches, find highly
similar neurons, and run the selection step with the remaining neurons.

Other options for future research include merging more than two networks and merging
networks pretrained on different datasets.
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