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Zusammenfassung

In Tokamak Plasmen im Regime hohen Einschlusses (H-Mode) ist der erreichbare
Druckgradient typischerweise durch das Auftreten von sogenannten “Edge Local-
ized Modes” (ELMs), welche den explosionsartigen quasi-periodischen Ausstoß von
Energie und Teilchen beschreiben, begrenzt. Da ELMs voraussichtlich erheblichen
Schaden an den Wandkomponenten von zukünftigen Fusionsanlagen anrichten, ist
es von großer Wichtigkeit die Methoden zur Abschwächung und Unterdrückung von
ELMs zu verstehen. Experimentelle Beobachtungen haben gezeigt, dass ELMs durch
das Anlegen eines nicht-axialsymmetrischen (3D) magnetischen Störfelds (MP Feld)
unterdrückt werden können. Die Entstehung von ELMs wird typischerweise gut
durch das Anwachsen randlokalisierter magnetohydrodynamischer (MHD) Insta-
bilitäten beschrieben. Dies schafft den Rahmen für die Vorhersage der Stabilität
gegenüber ELMs. Bisherige Arbeiten haben die MHD-Stabilität im Grenzbereich
lokaler Instabilitäten oder kleiner MP Felder untersucht. In dieser Arbeit wird der
lineare Stabilitätscode CASTOR3D, der keine dieser Einschränkungen hat, verwen-
det, um den Einfluss von MP Feldern auf die MHD-Stabilität zu untersuchen.
........Zu diesem Zweck wird das CASTOR3D Framework für die Stabilitätsanalyse
von randlokalisierten Instabilitäten optimiert. Die Menge der Fourier-Harmonischen,
welche zur Beschreibung der randlokalisierten Moden nötig ist, wird reduziert. Dies
ermöglicht die Untersuchung von Instabilitäten mit mittlerer bis hoher toroidaler
Modenzahl mit CASTOR3D. Zudem wird die Berechnung von hochaufgelösten Gle-
ichgewichtsgrößen und Koordinatentransformationen durch verbesserte Parallelisie-
rung und die Verwendung schneller Fouriertransformationen ermöglicht. Weiter-
hin wird die intuitive Energiezerlegung für ideale MHD-Instabilitäten auf resistive
Moden erweitert und die physikalischen und phasengemittelten Energieterme werden
in den CASTOR3D Code implementiert. Die optimierte Version von CASTOR3D
wird dann zur Untersuchung verschiedener Effekte, welche durch die MP Felder aus-
gelöst werden, verwendet. Diese Effekte beinhalten die helikale Modenlokalisierung,
das Festsetzen von Moden an bestimmte Positionen in rotierenden Plasmen (“Mode
Locking”) und die Destabilisierung durch MP Felder.
........Zwei unterschiedliche Arten von Modenlokalisierung oder Mode Locking werden
eingeführt: Striktes Locking und Quasi-locking von Instabilitäten. Strikt gelockte
Moden werden durch nicht-entartete Eigenwertpaare beschrieben und ihre Position
ist unabhängig von der beliebigen Phase der linearen MHD-Lösung. Quasi-gelockte
Moden werden durch entartete Eigenwerte beschrieben und weisen, in Abhängigkeit
von der Lösungsphase, eine beliebige Position unter einer Einhüllenden auf. Die
schnell wachsenden strikt gelockten Moden oder die Einhüllende der quasi-gelockten
Moden sind helikal in energetisch vorteilhaften Regionen lokalisiert, während die
langsam wachsenden strikt gelockten Moden in energetisch unvorteilhaften Regio-
nen lokalisiert sind. In rotierenden Plasmen rotieren strikt gelockte Moden erst
oberhalb einer kritischen Rotationsgeschwindigkeit des Plasmas, wohingegen quasi-
gelockte Moden bei jeglicher Plasmarotation nahezu gleichförmig unterhalb ihrer
Einhüllenden durchrotieren. Ein Vergleich der von der linearen MHD vorhergesagten
Lokalisierung mit experimentellen Messungen zeigt exzellente Übereinstimmung.
........Es wird erstmals gezeigt, dass die lineare MHD-Stabilitätsanalyse eine Re-
duzierung des kritischen Drucks in der Plasmarandregion aufgrund von MP Feldern
vorhergesagt. Die vorhergesagte Destabilisierung stimmt gut mit experimentellen
Beobachtungen überein. Erstmals werden gekoppelte Ballooning Moden hoher
Modenzahl in realistischen magnetisch gestörten Tokamak Plasmen beschrieben.
Wie im axialsymmetrischen Fall, werden die Instabilitäten hoher Modenzahl stark
durch ionen-diamagnetische Drifteffekte stabilisiert. Zudem wird gezeigt, dass sich
eine vereinfachte Erklärung für die Destabilisierung durch MP Felder aus der Lokali-
sierung der Moden in energetisch vorteilhaften Regionen im 3D Plasma ergibt.
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Abstract

The achievable pressure gradient in the edge region of H-mode (high confinement
mode) tokamak plasmas is typically limited by the occurrence of type-I Edge Local-
ized Modes (ELMs), which are large quasi-periodic bursts of particles and energy.
Since these bursts are projected to cause substantial damage to the plasma-facing
components of future fusion devices, it is important to understand methods which are
able to mitigate or suppress them. Experimental observations have shown that ELMs
can be mitigated or suppressed by the application of external non-axisymmetric (3D)
magnetic perturbation (MP) fields. The onset of ELMs is typically well-described by
the growth of edge localized magnetohydrodynamic (MHD) instabilities, providing
a framework for the predictive stability analysis. While previous work studied MHD
stability of 3D tokamak plasmas in the limits of local instabilities or small MP fields,
in this thesis the linear MHD stability code CASTOR3D, which has none of these
limitations, is used to study the impact of MP fields on MHD stability.
........For this purpose, the CASTOR3D framework is optimized for the stability
analysis of edge localized instabilities. The set of Fourier harmonics required to
describe edge localized instabilities is reduced, enabling the study of instabilities of
intermediate to high toroidal mode numbers n. Furthermore, improvements to the
parallelization and the implementation of Fast Fourier Transforms enable the calcu-
lation of high-resolution equilibrium quantities and coordinate transformations. In
addition, the intuitive energetic decomposition of ideal MHD modes is extended to
resistive plasma perturbations and the physical and phase-averaged energy terms
are implemented into the CASTOR3D code. The optimized CASTOR3D code is
applied to study the effect of MP fields on MHD stability, investigating several phe-
nomena such as the helical localization of modes, the locking of modes to a certain
position in rotating plasmas or the destabilization due to MP fields.
........Two distinct types of mode localization or mode locking are introduced: strict
locking and quasi-locking of instabilities. Strictly locked modes correspond to pairs
of non-degenerate eigenvalues and there is no change in their position for any value
of the arbitrary phase of the linear MHD solution. Quasi-locked modes correspond
to degenerate eigenvalues and their precise localization varies beneath an envelope
depending on the solution phase. The fast growing strictly locked modes or the
envelope of quasi-locked modes are helically localized in an energetically favourable
region, while slow growing strictly locked modes are localized in an energetically un-
favourable region. Furthermore, in rotating plasmas, strictly locked modes are only
rotating if the plasma rotation exceeds a critical threshold whereas quasi-locked
modes start rotating beneath their envelope in a nearly uniform motion at any finite
value of the plasma rotation. The localization predicted by linear MHD is compared
to experimental measurements, showing excellent agreement between the measured
and predicted localization.
........It is shown for the first time that linear MHD predicts a decrease of the critical
pedestal top pressure due to the application of MP fields. The predicted destabi-
lization is in good agreement with experimental observations. For the first time,
coupled high-n ballooning modes are described by linear MHD in realistic magnet-
ically perturbed tokamak plasmas. Similar to the axisymmetric case, these high-n
instabilities are shown to be strongly stabilized by ion diamagnetic drift effects.
Furthermore, it is demonstrated that the localization of the MHD instabilities in
energetically favourable regions of the non-axisymmetric tokamak plasma yields a
simplified explanation of the destabilization due to MPs.
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1 Introduction

The global energy demand is projected to increase over the next decades [1]. In addi-
tion, the contributions of greenhouse gas emitting energy sources to the energy mix
must be gradually replaced by clean energy sources over the next decades, in order
to counteract man-made climate change and keep global warming below 2 oC [2].
Currently, fossil fuels cover about 80% of the global primary energy consumption [3].
One solution to reach these goals would be to replace fossil fuels mainly by solar,
wind and nuclear fission power. However, the process of nuclear fission bears the
risk of catastrophic uncontrolled chain-reactions and creates long-living radioactive
waste that has to be stored safely for tens of thousands of years, motivating research
which enables other reliable sources of affordable clean energy. One candidate for a
future clean energy source is nuclear fusion, which is the process providing energy
to the stars in our universe.

1.1 Nuclear fusion

The dominant fusion process in stars similar to our sun is the proton-proton re-
action, where hydrogen fuses to helium at high temperatures and densities. The
proton-proton reaction has an extremely small reaction rate, since it involves the
weak interaction, which ensures that stars burn for billions of years [4]. However,
because of the low reaction rate, the proton-proton reaction is not self-sustained for
temperatures and densities achievable in a reactor on Earth. For this reason, fusion
reactors have to utilize other fusion processes with higher reaction rates such as the
fusion of deuterium and tritium [5]

2
1D+ 3

1T → 4
2He (3.5MeV) + 1

0n (14.1MeV) (1.1)

which has the highest reaction rate at reasonable temperatures that is about 24
orders of magnitude larger than the reaction rate of the proton-proton reaction [6].
In order to be self-sustained, the power gained from the fusion process Pα must
exceed the energy losses Ploss of the system. Assuming an equal mixture of deuterium
and tritium, the condition Pα ⩾ Ploss results in the ignition threshold for the “triple
product” [5]:

neTτE ⩾ L(T ) with L(T ) =
12T 2

Eα σv(T )
(1.2)

where ne is the electron density, T is the temperature, τE is the energy confinement
time, which describes the timescale on which energy leaves the system, and L(T )
is the ignition threshold, above which the fusion process is self-sustained. The igni-
tion threshold depends on the energy created from the fusion process which remains
in the system Eα = 3.5 MeV as well as the temperature-dependent reaction rate
σv(T ) of the deuterium-tritium reaction. The remaining 14.1 MeV are carried out
of the fusion domain by the neutron. The primary energy outcome is high-grade
heat which can be used for electricity production. The ignition threshold for the
deuterium-tritium reaction has a minimum of L ≈ 5 · 1021 keV s m−3 at a temper-
ature of T ≈ 15 keV [7]. For this reason, in order to achieve a self-sustained fusion
reaction, the deuterium-tritium mixture must be confined at temperatures of about
15 keV. At these temperatures both hydrogen isotopes are fully ionized, forming
a plasma, i.e. a gas of charged particles. Since charged particles gyrate around
magnetic field lines, the plasma can be confined using magnetic fields, which is the
fundamental concept of Magnetic confinement fusion (MCF). For typical densities
in a MCF reactor of ne ≈ 1020m−3, the “triple product” yields a requirement on the
energy confinement time τE ∼ s [5].

1.1 Nuclear fusion
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1.2 Tokamaks

Over the last decades, the “triple product” of MCF devices improved by orders of
magnitude, gradually approaching the ignition threshold [8]. There are two prevail-
ing MCF reactor concepts, tokamaks and stellarators, both featuring a toroidal
field line topology, which means that the magnetic field lines are embedded in
torus-shaped flux surfaces. Stellarators are characterized by their winding three-
dimensional flux surface geometry and generate the confining magnetic field only by
external coils. In contrast, tokamaks, which are the subject of this thesis, are typi-
cally axisymmetric by design and generate the poloidal component of the magnetic
field by inducing a toroidal current in the plasma.

Figure 1.1: Structure of a tokamak device. Source: EUROfusion (adapted).

The structure of a tokamak device is shown in figure 1.1. The toroidal field is gener-
ated by the toroidal field coils. However, in a purely toroidal field the curvature and
the gradient of the magnetic fieldB would result in a drift motion vD ∼ B ×∇B/qel
of the gyrating particles, where qel is the electric charge of the particle [5]. Since
the direction of the drift is given by the sign of the charge, this drift motion leads
to a separation of positive and negative charges, generating an electric field E. The
electric field results in a subsequent drift motion vD ∼ E×B, which is independent
of the charge of the particles and causes the particles to leave the confined plasma
volume [5]. In order to reduce this particle loss, a transformer coil in the center
of the tokamak device induces a toroidal plasma current which generates a poloidal
magnetic field. The superposition of the toroidal and poloidal magnetic fields results
in helical field lines, which are embedded in nested torus-shaped flux surfaces [9].
The helicity of the field lines leads to a cancellation of the ∇B-drift motion if a
charged particle traversed once around the torus poloidally [9]. The remaining ef-
fect of the drift motion results in a small displacement of the drift orbits [9]. The
twisting of the magnetic field for each flux surface is described by the safety factor q,
defined as the number of toroidal turns per poloidal turn of a field line. Besides the
toroidal field coils and the transformer coil, there are usually multiple poloidal field
coils. These coils generate vertical magnetic fields used to position the plasma and
modify the shape of the flux surfaces [5].

1.2 Tokamaks
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a) b)

Figure 1.2: a) Toroidal cut of ASDEX Upgrade including the transformer, toroidal
and poloidal field coils and a plasma cross-section. Flux surfaces embedding the
magnetic field lines are shown in dark red. b) Profiles of density and temperature
for two different confinement regimes (L- and H-mode). Source: Cut of ASDEX
Upgrade taken from the ASDEX Upgrade database (adapted).

The toroidal cut, i.e. the cross-section at a fixed toroidal angle, of the ASDEX
Upgrade (AUG) tokamak, located at the Max Planck Institute for Plasma Physics
in Garching, is shown in figure 1.2a. In the confined plasma region (red area), flux
surfaces (red lines) form closed contours. For this reason, the magnetic field lines of
the confined region have no contact to wall components of the device. Outside the
confined region, flux surfaces and magnetic field lines touch the wall components.
This region, called the scrape-off layer, creates a barrier between the wall components
of the device and the confined region, which contains the hot fusion plasma. The
scrape-off layer is separated from the confined region by the so-called separatrix.

Because of the high temperatures in fusion plasmas, the mean free path of the
charged particles parallel to the magnetic field lines usually exceeds the system
size by orders of magnitude [10]. This means that particles in the confined region
travel around the toroidal direction thousands of times before they are deflected by
collisions. The mean free path perpendicular to the field lines is bound by the gyro-
radius. The toroidal magnetic field in tokamaks is strong enough that the gyro-radius
and, therefore, the perpendicular mean free path are much smaller than the system
size. For this reason, gradients of thermodynamic quantities can only be sustained
perpendicular to the flux surfaces, which embed the magnetic field lines [11]. The
nested flux surfaces can be labeled by the toroidal or poloidal magnetic flux enclosed
by those flux surfaces [9]. The poloidal or toroidal flux is defined as the magnetic
flux through a toroidal or poloidal surface enclosed by a specific flux surface, which
is illustrated in figure 1.3. This allows the thermodynamic quantities to be expressed
as profiles of the magnetic flux. Density and temperature profiles of the confined
region are shown in figure 1.2b for two different confinement regimes. The normalized

1.2 Tokamaks
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toroidal flux increases from 0 at the magnetic axis (red cross) to 1 at the separatrix.
Several other quantities can be expressed as a function of the magnetic flux such as
the safety factor q and the toroidal current I.

Figure 1.3: Nested flux surfaces (purple) and cylindrical coordinates (R,Φ, Z) for a
tokamak plasma. The orange line indicates a magnetic field line. The blue and red
surfaces represent a toroidal and poloidal surface corresponding to the flux surface
embedding the orange field line. On each flux surface, a local set of angle coordinates
(Φ, θ) can be defined, where θ is the poloidal angle.

There are multiple confinement regimes featuring different radial transport be-
haviour in tokamak plasmas. The most common of these regimes are the low confine-
ment mode (L-mode) and the high confinement mode (H-mode) [12]. The transport
properties and thermodynamic gradient lengths in L-mode are nearly constant across
the confined region, resulting in peaked but relatively flat density and temperature
profiles as shown in figure 1.2b. In order to access the H-mode regime, a certain
heating power threshold must be exceeded [12]. Then, a transport barrier forms at
the edge of the confined plasma region. This region of self-organized suppression
of turbulent transport results in the formation of steep temperature and density
gradients. Since the transport in the core plasma is nearly unaffected during the
transition from L-mode to H-mode, the gradient length of the temperature pro-
file, T/∇T , remains roughly unchanged, which is known as profile stiffness [11, 13].
Consequently, the core profiles seem to be lifted up by the steep edge gradients as
if they were on a pedestal. For this reason, the steep gradient region at the edge of
H-mode tokamak plasmas is called pedestal. The transport barrier at the pedestal
of H-mode plasmas leads to an increase of the energy confinement time by about a
factor of 2 compared to L-mode, which makes the H-mode a favorable regime for
reaching ignition [12].

1.3 Mitigation and suppression of edge localized modes

While the H-mode grants increased energy and particle confinement, the steep gradi-
ents in the pedestal of H-mode tokamak plasmas can eventually drive edge localized
plasma instabilities [14]. If the gradients in the pedestal exceed a critical threshold,
massive quasi-periodic bursts of energy and particles, called type-I Edge Localized
Modes (ELMs), are triggered. Each burst, ejecting particles and energy from the
confined region, causes a reduction of the gradient below the critical threshold. After
a burst, the gradients are slowly restored by transport mechanisms until they once
again exceed the critical threshold, triggering the next burst. These bursts limit

1.3 Mitigation and suppression of edge localized modes
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the achievable pedestal top pressure and are projected to cause severe damage to
the plasma-facing components of future fusion devices such as ITER [15]. For this
reason, it is important to understand the conditions at which ELMs are triggered as
well as methods which are able to mitigate or suppress ELMs. The onset of type-I
ELMs is typically well-described by the growth of edge localized magnetohydrody-
namic (MHD) instabilities [16, 17]. This allows for the predictive analysis of ELM
stability using MHD, which is a fluid description of the plasma and further discussed
in chapter 2.

Experimental observations have shown that ELMs can be mitigated [18, 19] or sup-
pressed [20, 21] by the application of external non-axisymmetric magnetic perturba-
tion (MP) fields. This technique is foreseen for the suppression of ELMs in the ITER
tokamak, which is currently under construction in Cadarache, France. In the case of
ELM suppression, the plasma enters a stationary state with no ELM bursts [20, 21].
In the case of ELM mitigation, large ELMs are replaced by smaller but more fre-
quent ELM bursts [18, 19], decreasing the peak energy fluence onto the plasma-facing
components by an MP-induced reduction of the pedestal top pressure [22].

Figure 1.4: Corrugation (normal displacement) of the flux surfaces in the confined
plasma volume of an ASDEX Upgrade plasma and the 16 MP coils generating the
non-axisymmetric perturbation field.

The application of MP fields intentionally breaks the axisymmetry of the tokamak
configuration. The plasma responds to the externally applied MP field by forming
non-axisymmetric helically corrugated flux surfaces [23, 24]. Figure 1.4 shows the
MP coils, which generate the MP field, as well as the corresponding corrugation
of the flux surfaces for an AUG plasma. The corrugation quickly decays towards
the magnetic axis as the plasma attempts to shield the externally applied perturba-
tion. It has been demonstrated empirically that the application of MP fields results
in augmented transport, causing a decrease of the pedestal density and pressure
gradients [21, 25, 26]. Furthermore, evaluating the ELM onset for a range of exper-
iments (discharges) with applied MP fields shows that the perturbation fields lead
to a reduction of the MHD stability threshold, meaning the critical pedestal top
pressure above which ELMs occur [21, 27]. It is proposed that, in order to achieve
ELM suppression, the augmented transport has to keep the pressure gradient below
the reduced stability threshold. This highlights the importance of understanding
the effect of MP fields on both MHD stability, which is subject of this thesis, and
transport for the extrapolation of ELM suppression to future tokamak devices.

1.3 Mitigation and suppression of edge localized modes
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1.4 Focus of this thesis

Previous work studied MHD stability of magnetically perturbed tokamak plasmas
in the limits of local instabilities or small MP fields [28, 29, 30, 31]. In the frame
of this PhD thesis work, the linear MHD code CASTOR3D [32, 33, 34], which
has none of these limitations, has been optimized for the analysis of edge localized
instabilities in tokamaks. Then, the optimized code was applied to study the ef-
fect of symmetry-breaking by MP fields on MHD stability. The theory of MHD,
edge localized instabilities and the predictive modelling tools are discussed in chap-
ter 2. Chapter 3 summarizes the extensions and optimizations of the COTRANS
and CASTOR3D codes. In chapter 4, an energy decomposition for resistive plasma
perturbations is derived, the ideal and resistive terms of the energy decomposition
are implemented into the CASTOR3D code and the implemented energy terms are
verified for a numerical test case. Results on the helical localization and mode
locking of MHD instabilities in non-axisymmetric tokamak plasmas are presented
in chapter 5. The numerically predicted localization is in good agreement to ex-
perimental measurements. Furthermore, the helical structure of the energetically
favourable regions, maximizing the growth rate of MHD instabilities, is revealed.
In chapter 6, the numerically predicted reduction of the MHD stability threshold
by MP fields is shown. The predicted shift of the marginally stable pedestal top
pressure is in good agreement with experimental findings. In the case of an ELM
mitigation discharge carried out on ASDEX Upgrade, an increase in the growth rate
of MHD instabilities is found. If the pressure gradient is reduced, the MHD insta-
bilities vanish, corresponding to an ELM suppression discharge. Finally, the results
of this thesis are summarized in chapter 7.

1.4 Focus of this thesis
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2 Magnetohydrodynamics (MHD)

The theory of Magnetohydrodynamics (MHD) yields a fluid description of the plasma.
Similar to conventional hydrodynamics, the MHD equations are obtained from the
moments of the kinetic equation [10]. MHD additionally considers electromagnetic
forces between the charged particles. The fluid description is based on the assump-
tion that the mean free path of particles is smaller than the dimensions of a fluid
element [35]. In fusion plasmas, this assumption is usually fulfilled perpendicular
to the field lines since particles are bound by the gyro-motion. However, the mean
free path parallel to the field lines exceeds the system size typically by orders of
magnitude. For this reason, MHD can only accurately describe the dynamics per-
pendicular to the field lines [35].

In principle, MHD provides a separate set of fluid equations for each particle species.
If there is mainly one ion species, the equations for electrons and ions can be com-
bined [35]. For this purpose, it is assumed that the electron mass can be neglected
and that the plasma is quasi-neutral. Quasi-neutrality means that the ion and elec-
trons densities, ni and ne, are approximately equal, such that no macroscopic electric
fields are present on scales greater than the Debye length. As a result, the single-
fluid MHD equations, obtained from the first two moments of the kinetic equation,
read [35, 36, 34]:

Continuity ∂tρ+∇ · (ρv) = 0 (2.1)

Force balance ρ(∂t + v ·∇)v = −∇p−∇ ·Π+ j ×B (2.2)

Ohm’s law E + v ×B = ηj (2.3)

together with the Maxwell equations

∂tB = −∇×E , ∇×B = µ0j , ∇ ·B = 0 (2.4)

where ρ is the mass density, v is the center-of-mass velocity, p is the isotropic
pressure, Π is the an-isotropic component of the pressure tensor, j is the current
density and η is the resistivity. In addition, a fourth equation, ∇ ·j = 0, is obtained
from the derivation of the single-fluid MHD equations, which is naturally fulfilled
by equation 2.4. In equation 2.3, the Hall term and electron diamagnetic drift are
neglected. This is justified if the velocity of the observed MHD phenomena is of the
order of the ion thermal velocity [35]. Finally, the MHD equations 2.1 to 2.4 must
be closed by assumptions on the higher moments of the kinetic equations. Assuming
adiabatic processes and neglecting resistive heating, one obtains [37]:

(∂t + v ·∇)(pρ−Γ) = 0 (2.5)

where Γ is the adiabatic coefficient, which is Γ = 5/3 for a mono-atomic gas. The an-
isotropic part of the pressure tensor can be approximately split into a parallel Π∥
and a cross-component Π∧, which describe parallel viscosity and gyro-viscosity,
respectively [36, 34]:

∇ ·Π∥ ≈ µ∥∆∥v , ∇ ·Π∧ ≈ ρ(v∗
i ·∇)v with v∗

i =
mi

e

αT

ρ

B ×∇p

B2 (2.6)

where µ∥ is the parallel viscosity coefficient, ∆∥ is the parallel Laplace operator, v
∗
i is

the ion diamagnetic drift velocity, mi is the ion mass and e is the elementary charge.
Since the ion pressure gradient is not determined by single-fluid MHD, it is replaced
by the ratio αT ∈ [0, 1] between ion pressure and total pressure. A common choice
is to assume equal electron and ion pressure, which means αT = 0.5. However, other
ratios of the pressure gradient can be studied by varying αT .
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2.1 Boundary conditions

At the plasma-vacuum interface, several boundary conditions must be satisfied [38]:[[
p+

B2

2µ0

]]
= 0 (2.7)

n× [[E]] = (n · v)[[B]] (2.8)

n · [[B]] = 0 , n× [[B]] = µ0K (2.9)

where n is the surface normal vector pointing into the vacuum region, K is a surface
current and [[. . . ]] denotes the jump of the enclosed quantity across the interface.
In the following, surface currents are neglected, since they cannot be sustained in
the presence of finite resistivity. In the absence of surface currents K = 0, all
components of the magnetic and electric field must be continuous across the plasma-
vacuum interface. Then, according to the pressure balance 2.7, the pressure must
vanish at the boundary.

2.2 MHD equilibrium

In order to study the MHD stability of tokamak plasmas, it is useful to search for
stationary solutions of the MHD equations. A stationary state, or MHD equilibrium,
is reached if the explicit time-dependence of all fluid quantities vanishes, i.e. ∂t → 0.
Then, the force balance equation 2.2 becomes:

j ×B = ∇p ⇒ (∇×B)×B = µ0∇p (2.10)

In equation 2.10, it is assumed that the dynamic pressure ρ(v · ∇)v is negligible,
which is justified for small Mach numbers [35, 39], and that the equilibrium pressure
is isotropic. For axisymmetric systems, the stationary force balance equation can be
rewritten in terms of the poloidal fluxes, which results in a scalar partial differential
equation, the so-called Grad-Shafranov equation. For this purpose, the MHD equa-
tions are expressed in cylindrical coordinates (R,Φ, Z). Then, the Grad-Shafranov
reads [35]:

4π2FF ′ + (2πR)2µ0p
′ = 2πRµ0jΦ = −∆∗ψ with F (ψ) = RBΦ (2.11)

and the poloidal flux

ψ(R,Z) = 2π

∫ R

0
BZ(R,Z)R dR− 2π

∫ RM

0
BZ(R,ZM )R dR (2.12)

where BΦ is the toroidal magnetic field, BZ is the vertical component of the magnetic
field, jΦ is the toroidal current density, ∆∗ ≡ R∂R(1/R · ∂R) + ∂2Z is the Stokes
operator in cylindrical coordinates and (RM , ZM ) is the location of the magnetic axis.
The prime denotes a derivative with respect to the poloidal flux. The integration
surfaces of the poloidal flux as defined in equation 2.12 as well as the cylindrical
coordinates are illustrated in figure 1.3 on page 4.

The stationary force balance can also be obtained from a variational principle based
on the energy stored in the plasma [40]:

W =

∫
B2

2µ0
+

p

Γ− 1
dV (2.13)

2.1 Boundary conditions
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where the integral is taken over the plasma volume. Numerical solutions of the
force balance for non-axisymmetric systems are found by minimizing the plasma
energy 2.13 for given pressure and safety factor profiles and total toroidal flux. The
safety factor profile can be replaced by the toroidal current profile. In addition,
either the vacuum magnetic field or the shape of the plasma boundary must be
specified as boundary conditions.

In order to obtain MHD equilibria of tokamak discharges, they must be reconstructed
from experimental measurements. The equilibrium reconstruction code CLISTE [41]
determines a solution of the Grad-Shafranov equation which minimizes the least
square error with respect to several measurements. These measurements include
magnetic data, kinetic profiles and information on the safety factor. The resulting
equilibrium reconstruction yields the pressure and safety factor profiles and the
shape of the plasma boundary defining the MHD equilibrium which corresponds to
the experimental measurements. For this purpose, the source profiles p′ and FF ′

are parameterized and their free parameters are varied during the minimization.

While such an interpretative equilibrium reconstruction results in an MHD equi-
librium from magnetic measurements, the resolution and quality of the resulting
equilibrium are typically not sufficient to perform a stability analysis. In order to
study the MHD stability of an equilibrium obtained from equilibrium reconstruc-
tion, the quality of the equilibrium must be increased by further minimizing the
residual forces. In addition, the coordinate transformation to coordinate systems
which are suitable for stability analysis (see section 2.3.5) requires a high radial
resolution. For this reason, high-resolution equilibria must be calculated from the
reconstructed pressure and safety factor profiles in order to study the stability of
the equilibrium. In this thesis, the NEMEC [40, 42] and GVEC [43] codes, which
are based on the minimization of the plasma energy 2.13, are used to calculate the
high-quality equilibrium solutions of non-axisymmetric plasmas. The NEMEC code
is capable of calculating non-axisymmetric free-boundary equilibria, meaning that
the vacuum magnetic field, generated by the coils, can be prescribed. The plasma
boundary is then self-consistently determined such that the pressure balance 2.7 is
fulfilled. Both codes, GVEC and NEMEC, can calculate fixed-boundary equilib-
ria, for which the shape of the plasma boundary is prescribed. The GVEC code
makes use of advanced numerical methods and is based on a Galerkin approach,
showing better equilibrium convergence properties compared to NEMEC. In this
thesis, NEMEC is used to calculate free-boundary equilibria in order to determine
the shape of the plasma boundary if the coil currents are prescribed. This provides
the shape of the plasma boundary required for the calculation of fixed-boundary
equilibria. The GVEC code is used to calculate refined fixed-boundary equilibria
based on the shape of the plasma boundary.

Finally, the use of CLISTE for the reconstruction of non-axisymmetric tokamak equi-
libria must be discussed. Since the CLISTE code is based on the Grad-Shafranov
equation, it is in principle restricted to the reconstruction of axisymmetric equi-
libria. However, it has been shown that the reconstructed source profiles of non-
axisymmetric tokamak plasmas are nearly unaffected by the applied MP fields [44].
Furthermore, there is excellent agreement between the measured corrugation and the
corrugation of non-axisymmetric equilibria calculated with the NEMEC code based
on profiles obtained from CLISTE [24]. This verifies the corrugation or plasma
response to MP fields determined by NEMEC and justifies the use of CLISTE to
reconstruct the source profiles of magnetically perturbed tokamak equilibria.

2.2 MHD equilibrium
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2.3 MHD stability

The stability of an equilibrium is determined by its response to small perturbations.
If the plasma tends to amplify the initial perturbation, the equilibrium is considered
to be unstable and the perturbation is called an instability. If the equilibrium
tends to restore itself, it is considered to be stable. One approach to study the
stability of an equilibrium is to add some small random noise and evolve the fluid
quantities in time. Typically, numerically calculated equilibria already have a finite
force imbalance such that no additional noise is required. While this approach yields
the non-linear dynamics of instabilities, its numerical implementation requires high
amounts of computing time. A different approach to obtain the response of the
plasma to small perturbations is to linearize the MHD equations with respect to
the equilibrium solution, which yields information on the initial response of the
plasma to a perturbation. This results in an eigenvalue problem, where the spectrum
contains all possible instabilities and which usually requires less computing time for
its numerical solution.

2.3.1 Linear MHD

In order to linearize the MHD equations, all fluid variables f = f0+f1 are split into
an equilibrium component f0, which obeys the stationary MHD equations, and a
small perturbation f1 ∼ O(ϵf0) with ϵ≪ 1. This approach allows terms of second or
higher order in the perturbation scale ϵ to be neglected. Since the resulting system
of partial differential equations for the perturbed quantities is linear in time, an
exponential ansatz for the time-dependence of the perturbations f1(r, t) = f1(r)e

λt

is made, where λ = γ + iω contains the growth rate γ and the oscillation frequency
ω of the perturbation. Then, the linearization of the MHD equations 2.1 to 2.3 and
2.5 yields [34]:

λρ1 = −v0 ·∇ρ1 − v1 ·∇ρ0 − ρ1∇ · v0 − ρ0∇ · v1 (2.14)

ρ0λv1 = −ρ1(v0 ·∇)v0 − ρ0(v1 ·∇)v0 − ρ0(v0 ·∇)v1

= + ρ1(v
∗
i,0 ·∇)v0 + ρ0(v

∗
i,1 ·∇)v0 + ρ0(v

∗
i,0 ·∇)v1

= + (∇× (∇×A1))×B0/µ0 + (∇×B0)× (∇×A1)/µ0

= −∇(ρ0T1)/mi −∇(ρ1T0)/mi + µ∥∆∥v1 (2.15)

λT1 = −v1 ·∇T0 − v0 ·∇T1 − (Γ− 1)T1∇ · v0 − (Γ− 1)T0∇ · v1 (2.16)

λA1 = v1 ×B0 + v0 × (∇×A1)− η(∇× (∇×A1))/µ0 (2.17)

with

v∗
i,1 = −αT

mi

e

ρ1
ρ20

B0 ×∇p0

B2
0

+ αT
mi

e

1

ρ0

(∇×A1)×∇p0

B2
0

= + αT
mi

e

1

ρ0

B0 × (T0∇ρ1 + T1∇ρ0 + ρ0∇T1 + ρ1∇T0)

B2
0

= − αT
mi

e

1

ρ0

2B0 · (∇×A1)

B4
0

(B0 ×∇p0) (2.18)

where the resistivity η and the parallel viscosity µ∥ are free parameters, which must
be determined from kinetic models. In the linearized MHD equations, the magnetic
field perturbation is expressed as the curl of a vector potential A1, which implicitly

2.3 MHD stability
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fulfills ∇ · B1 = 0. Furthermore, the MHD temperature T , defined as the sum of
electron and ion temperature, is related to the isotropic pressure by the ideal gas law
p = nT = ρT/mi. The thermodynamic temperatures of the ions Ti and electrons
Te can be derived from the MHD temperature by the relations Ti = αTT and
Te = (1− αT )T , where αT was defined as the ratio of ion and electron temperature
or pressure. In equation 2.17, which is the linearized Ohm’s law, the Weyl gauge

E1 = −∂tA1 = −λA1 (2.19)

has been used [34]. In general, the Weyl gauge is incomplete since it allows for
transformationsA(r, t) → A(r, t)+∇φ(r) where φ is an arbitrary time-independent
potential. However, A1 in equation 2.17 represents the time-dependent part of the
vector potential, i.e. A1(r, t) = A1(r)e

λt, which is completely fixed by the Weyl
gauge.

2.3.2 The CASTOR3D code

The CASTOR3D code [32, 33, 34] solves the linear MHD equations defined in equa-
tions 2.14 to 2.17 in general right-handed curvilinear coordinates (s, v, u) ∈ [0, 1]3,
where s, v and u are the radial, toroidal and poloidal coordinates, respectively. The
plasma part of CASTOR3D has been developed based on the axisymmetric resistive
MHD stability code CASTOR [37], while the vacuum part has been substituted by
integration of the STARWALL code [45]. In order to solve the MHD equations nu-
merically, the linear equation system is transformed to a discrete eigenvalue problem.
The system of linearized MHD equations is of the form

λSχ = Rχ (2.20)

where χ = (ρ1,v1, T1,A1) is the eigenvector, S is a diagonal matrix and R contains
differential operators and equilibrium quantities. Similar to the CASTOR code [37],
the fluid quantities contained in the physical eigenvector χ are, without loss of
generality, expressed as [32]:

ρ1 =
1

s
ρ̂ , v1 =

R2

√
g
v̂sr,s +

R2

i
√
g
v̂ur,u +

qR2

if̂
v̂vB0

T1 =
1

s
T̂ , A1 = −iÂs∇s+ Âu∇u+ Âv∇v (2.21)

where
√
g is the Jacobian and f̂ = ∂sϕ is the derivative of the toroidal flux ϕ. The

vector χ̂ = (χ̂f )f=1...8 = (ρ̂, v̂s, v̂u, v̂v, T̂ , Âs, Âu, Âv) is the projected eigenvector and
yields a coordinate representation of the physical eigenvector. The ansatz for the
eigenfunctions χ̂f is based on a Fourier decomposition in the periodic coordinates u
and v and a radial discretization using Hermite polynomials [32]:

χ̂f =
∑

m,n,j,k

(
cm,n
f,j,kH

j
f,ke

2πi(mu+nv) + c̄m,n
f,j,kH

j
f,ke

−2πi(mu+nv)
)

(2.22)

where m is the poloidal mode number, n is the toroidal mode number, j is the
radial grid point, Hj

f,k is the k-th Hermite polynomial with k ∈ {1, 2} as defined
in [37]. In order to avoid summing each Fourier harmonic twice in equation 2.22,
the toroidal harmonics are defined to be either positive n ⩾ 0 or negative n ⩽ 0.
The degree of the Hermite polynomials is cubic for v̂s, Âu and Âv and quadratic for
all other perturbed quantities. The coefficients cm,n

f,j,k and c̄m,n
f,j,k are the complex and

2.3 MHD stability
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complex-conjugate coefficients. The splitting into complex and complex-conjugate
exponential functions can also be interpreted as a splitting into positive and negative
toroidal mode numbers, since the summation in equation 2.22 is restricted to either
positive or negative n. In the context of an oscillating mode, i.e. χ ∼ eiωt with
ω ̸= 0, the positive and negative harmonics can be seen to describe left-traveling and
right-traveling waves. Since the ansatz 2.22 is based on a Fourier decomposition in
the periodic coordinates, it cannot be applied to plasma volumes that extend across
the separatrix. For this reason, the plasma volume is assumed to be bounded by a
closed flux surface which is located close to the separatrix, the so-called Last Closed
Flux Surface (LCFS). The LCFS is usually chosen to be located at a poloidal flux
of ψ ⩾ 0.99ψsep, where ψsep is the poloidal flux at the separatrix.

Equation 2.20 can be transformed to the weak form by multiplication with appro-
priate test functions, using the same radial and poloidal discretization as in 2.22 as
described in [32]. Finally, inserting the ansatz 2.21, using the poloidal and toroidal
Fourier decomposition of the equilibrium quantities and integrating over the plasma
volume yields a non-hermitian matrix eigenvalue problem of the form [32]:

λBx = Ax with x = ({cm,n
f,j,k, c̄

m,n
f,j,k}) (2.23)

where x is the coefficient eigenvector. The two sparse block-tridiagonal square ma-
trices A and B, which are structured as shown in figure 2.1, have Nmat = 32NjNmn

rows or columns representing the perturbation in the plasma volume, where Nj is
the number of radial discretization points and Nmn is the number of Fourier har-
monics (m,n). In addition, the matrices can be extended to include the coupling of
the plasma to response currents in resistive and ideal wall or coil structures (blue,
green and purple blocks in figure 2.1) [32]. If the (m,n) = (0, 0) harmonic is not
contained in the spectrum of the perturbation and if there are no resistive wall or coil
structures, it is possible to solve the external part of the matrix separately [32, 46].
In conclusion, the CASTOR3D code calculates the matrix elements of A and B and
solves the eigenvalue problem 2.23.

2.3.3 Mode coupling

The matrix elements X of the eigenvalue problem 2.23 are of the form [32]:

X j̃,k̃,f̃ ,m̃,ñ
j,k,f,m,n =

∑
M,N

CM,N,j,̃j,...

∫ 1

0

∫ 1

0
e−2πi(m̃u+ñv)e2πi(Mu+Nv)e2πi(mu+nv) du dv (2.24)

where (M,N) are the poloidal and toroidal equilibrium harmonics. Indices and
mode numbers corresponding to the test function are denoted by a tilde. The matrix
element X is related to the complex or complex conjugate coefficients cm,n

f,j,k and c̄m,n
f,j,k

by the sign of the toroidal harmonics n and ñ. As discussed earlier, the splitting into
positive and negative toroidal harmonics is equivalent to the splitting into complex
and complex-conjugate exponential functions, but allows the structure of all matrix
elements to be summarized in a single equation. In equation 2.24, the quantity C
contains the equilibrium Fourier coefficients, including the ansatz 2.21, as well as
the Hermite polynomials and has been integrated over the radial coordinate. The
structure of the matrix elements implies that only elements where

m− m̃ =M and n− ñ = N (2.25)

can be non-zero. This means that two different perturbation Fourier harmonics
(m,n) and (m̃, ñ) can only couple if there is a finite contribution of an equilibrium

2.3 MHD stability
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Figure 2.1: a) Structure of the matrices A and B with plasma-vacuum interaction
including wall and coil structures as described in [32]. The purple block is only in-
cluded in matrix A while the green block is only included in matrix B. b) Structure
of a plasma-volume block. Each of the 4 subblock contains rows and columns for
the Fourier harmonics, complex and complex-conjugate coefficients, Hermite poly-
nomials and physical quantities.

harmonic (M,N) which fulfills equation 2.25. In the following, a range of conclusions
is deduced from equations 2.22, 2.24 and 2.25.

In the case of axisymmetry, i.e. N = 0 is the only toroidal equilibrium harmonic,
the toroidal mode numbers n are completely decoupled. This means that there is no
change in growth rate and energy connected to the coupling of toroidal harmonics.
For this reason, the stability for each toroidal mode number n can be analyzed
independently in an axisymmetric plasma and n can be used to label the instabilities.
Moreover, the two decoupled equation systems corresponding to the complex or
complex conjugate coefficients cm,n

f,j,k and c̄m,n
f,j,k are equivalent, which results in pairs

of degenerate eigenvalues λ1 and λ2. In this context, the term degenerate means
λ1 = λ∗2 and the corresponding eigenvectors describe exactly the same physical
perturbation. This can be seen by relating the solutions of the complex and complex-
conjugate equation systems. Expressing a solution χ(1) of the complex equation

system with growth rate λ1 and Fourier coefficients χ
(1)
m,n in terms of the complex

conjugate Fourier harmonics results in:

χ(1)(r, t) =
∑

n⩾0,m

χ(1)
m,ne

2πi(mu+nv)eλ1t =

 ∑
n⩾0,m

(
χ(1)
m,n

)∗
e−2πi(mu+nv)eλ

∗
1t

∗

=

 ∑
n⩾0,m

χ(2)
m,ne

−2πi(mu+nv)eλ2t

∗

=
(
χ(2)

)∗
(r, t) (2.26)

with
χ(2)
m,n =

(
χ(1)
m,n

)∗
and λ2 = λ∗1 (2.27)

Clearly, if
(
χ(2)

)∗
solves the MHD equations, χ(2) yields an equivalent solution of the

MHD equations. This implies that χ(2) with growth rate λ2 = λ∗1 and coefficients

χ
(2)
m,n is a solution of the complex-conjugate equation system. In conclusion, every

2.3 MHD stability
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solution in the complex equation system is related to a degenerate solution in the
complex-conjugate equation system.

Consequently, as will be further discussed in chapter 5, pairs of degenerate eigenval-
ues are also found in non-axisymmetric plasmas if there is no or negligible coupling
between positive and negative toroidal harmonics. As in the case of axisymmetry,
the decoupling of positive and negative toroidal harmonics results in two equivalent
decoupled equation systems. The degenerate solutions can be omitted by only con-
sidering the contributions related to one of the two equation systems, i.e. restricting
equation 2.22 to cm,n

f,j,k, which halves the size of the eigenvalue problem.

If there are finite contributions of equilibrium Fourier harmonics with N ̸= 0,
toroidal perturbation harmonics n can couple together to form instabilities. For
a system with toroidal periodicity NP , equation 2.25 implies that the toroidal har-
monics can be grouped into ⌊(NP +1)/2⌋ toroidal mode families, where only toroidal
harmonics of the same mode family can couple together [47]. In the case of a sys-
tem with periodicity NP = 2, there are two mode families N1 = {1, 3, 5, 7, . . . }
and N2 = {0, 2, 4, 6, . . . }. Since the toroidal Fourier harmonics in a mode family
couple together, instabilities cannot be described by a single toroidal Fourier har-
monic n [47]. However, especially in the case of weakly non-axisymmetric equilibria,
there is usually a dominant toroidal Fourier harmonic n∗, which will be used to la-
bel the instabilities. Furthermore, in the non-axisymmetric case, the eigenvalue pair
λ1 and λ2 related to an instability n∗ can become non-degenerate by the coupling
of negative and positive toroidal Fourier harmonics. In this case, the two related
instabilities are distinguished into a “fast” and “slow” solution by their growth rate.

Finally, equation 2.25 yields a necessary requirement for mode coupling. However,
for the formation of instabilities, harmonics which fulfill equation 2.25 might not
couple if the coupling is energetically unfavourable. The arguments for toroidal
mode coupling hold also for the poloidal Fourier harmonics. For a toroidal plasma,
especially with shaped plasma cross-section (e.g. by elongation, triangularity, ...),
there is a broad range of poloidal harmonics in the Fourier decomposition of the
equilibrium quantities, required to encode the effects of finite aspect ratio and shap-
ing. For this reason, the spectrum of instabilities usually contains many coupled
poloidal Fourier harmonics.

2.3.4 Energy functional

Since the linearized MHD equations as defined in equations 2.14 to 2.17 take various
physics phenomena into account, they are extremely complex and can only be solved
numerically. Valuable insight into MHD stability can be obtained by neglecting
several of these phenomena. In the case of flow-free ideal MHD, i.e. neglecting
resistivity, viscosity, gyro-viscosity and equilibrium flows, the eigenvalue problem is
reduced to a single equation [35]:

ρ0λ
2ξ = ∇(ξ ·∇p0)+∇(p0Γ(∇ ·ξ))+ 1

µ0
(∇×B0)×B1+

1

µ0
(∇×B1)×B0 (2.28)

with

B1 = ∇× (ξ ×B0) (2.29)

where the plasma displacement ξ is defined by v1 = ∂tξ = λξ. It can be shown that
the eigenvalue problem defined in equation 2.28 is self-adjoint, which means that
the eigenvalues λ2 are real-valued and stability is determined by the sign of λ2 [9].

2.3 MHD stability
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This allows a variational principle, the so-called energy principle, to be derived from
equation 2.28 which is of the form [35]:

δW (ξ, ξ∗) ≡ −1

2

∫
ξ∗ · Fidξ dV = −λ

2

2

∫
ρ0ξ · ξ∗ dV ≡ −λ2K(ξ, ξ∗) (2.30)

where Fidξ is given by the right-hand side of equation 2.28 and represents the
force acting on the displaced fluid element. The functional δW (ξ, ξ∗) is related
to the potential energy of the perturbation ξ, while the quantity −λ2K(ξ, ξ∗) is
related to the kinetic energy. Linear ideal MHD stability codes such as CAS3D [48]
solve the ideal MHD eigenvalue problem for 3D plasmas in the form of the energy
principle 2.30, which corresponds to the weak formulation of equation 2.28. Since
the eigenvalue problem of ideal MHD is self-adjoint, instabilities can be found by
minimizing the energy functional δW (ξ, ξ∗) for a fixed value of the norm K(ξ, ξ∗).
The energy functional allows us to analytically study MHD stability and determine
stability criteria by minimizing the energy functional with respect to certain sets
of test functions. The chosen sets of test functions can be identified with certain
classes of instability. Consequently, because of the restriction to certain sets of
test functions or classes of instability, the stability criteria are necessary but not
sufficient to guarantee stability and the described instabilities are generally not the
most unstable ones. In addition, the energy functional can be rewritten into an
intuitive form, yielding valuable information on the different energetic drives of the
ideal MHD instabilities [35, 38, 49]:

δW = δWV + δWS + δW
qV

(2.31)

with

2δW
qV
=

∫
Vacuum

∥ qB1∥2

µ0
dqV (2.32)

2δWS =

∮
Surface

|n · ξ|2n ·
[[
∇(p0 +

B2
0

2µ0
)
]]
dS (2.33)

2δWV =

∫
Plasma

∥B1,⊥∥2

µ0︸ ︷︷ ︸
WSHA

+
B2

0

µ0

∣∣∣∇ · ξ⊥ + 2(ξ⊥ · κ)
∣∣∣2︸ ︷︷ ︸

WCPA

+ Γp0|∇ · ξ|2︸ ︷︷ ︸
WSND

=

∫
Plasma

−
j0,∥

∥B0∥
(ξ∗⊥ ×B0) ·B1,⊥︸ ︷︷ ︸

WCUR

− 2(ξ⊥ ·∇p0)(ξ
∗
⊥ · κ)︸ ︷︷ ︸

WDP0

dV (2.34)

where δW
qV
is the always positive vacuum contribution, δWS is the energy connected

to jumps of equilibrium quantities across the perturbed plasma-vacuum interface,
δWV is the energy of the plasma volume and vacuum quantities are denoted with an
inverted hat (e.g. qB1). In the absence of equilibrium surface currents, the surface
term is strictly zero. The first three terms of the plasma contribution are always
positive and related to perpendicular magnetic perturbations, parallel magneto-
compressional perturbations and adiabatic compression, respectively [35, 49]. The
last two terms are potentially negative, i.e. destabilizing. The first destabilizing
term WCUR describes instabilities which are driven by the parallel equilibrium cur-
rent density j0,∥ = j0 ·b with b = B0/∥B0∥, whileWDP0 describes instabilities which
are driven by the pressure gradient in regions of unfavourable curvature κ = (b·∇)b,
where unfavourable means κ · ∇p0 > 0 [35, 49]. The intuitive formulation of the
energy functional allows instabilities to be categorized by their driving mechanisms
and to study pressure-gradient and current-density driven modes separately. The
energetic decomposition in equations 2.32 to 2.34 is extended to resistive plasmas
and further discussed in chapter 3.

2.3 MHD stability
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2.3.5 Straight field line coordinates

In the limit of infinite aspect ratio, i.e. ignoring the effects of toroidicity, the tokamak
can be described as a periodic cylinder with the radial, poloidal and “toroidal” coor-
dinates (r,Φ, θ). Since this configuration features cylindrical symmetry, all Fourier
harmonics are completely decoupled. Expressing the energy functional in the peri-
odic cylinder limit reveals that all stabilizing plasma volume contributions to δW
vanish on flux surfaces which fulfill

q = m/n (2.35)

for a certain harmonic (m,n) [35]. These flux surfaces, called resonant surfaces,
are particularly prone to instabilities. For a straight cylinder, the magnetic field
lines appear straight in the (Φ, θ)-plane. Consequently, the (m,n) harmonic is per-
fectly aligned with the field lines on the resonant surface, which avoids the strongly
stabilizing energy contribution related to the bending of magnetic field lines [35].

While the stability analysis becomes more complex in the case of finite aspect ratio,
the stabilizing effect of field line bending remains. Thus, also in the case of finite
aspect ratio, it is favourable for instabilities to be approximately aligned with the
magnetic field lines [35]. This motivates the introduction of poloidal and toroidal
coordinates (Φs, θs) in which the magnetic field lines appear straight. These coordi-
nates fulfill the condition

B ·∇θs
B ·∇Φs

= const. (2.36)

and are generally called straight field line coordinates. In straight field line coordi-
nates, Fourier harmonics which fulfill the resonance condition 2.35 are aligned with
the magnetic field lines and intrinsically minimize field line bending on the resonant
surface. For this reason, straight field line coordinates are the natural choice for the
Fourier decomposition of MHD instabilities in toroidal geometry.

Figure 2.2: Magnetic field lines on an unrolled flux surface (a) as well as lines
of constant poloidal angle on a toroidal cross-section (b) are shown for NEMEC
coordinates (Φ, θNEM) (blue) and SFL coordinates (Φ, θ∗) (red).

2.3 MHD stability
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In this thesis, two straight field line coordinate systems are used: 2D straight field
line coordinates (SFL) [37] and Boozer coordinates (BZR) [50]. SFL coordinates
(Φ, θ∗) are used for axisymmetric plasmas and keep the toroidal angle Φ unchanged.
BZR coordinates can be used for axisymmetric and non-axisymmetric plasmas and
change both angle coordinates such that also the diamagnetic lines ∇s×B, which
describe the direction of the diamagnetic drift velocity, are straight. Magnetic field
lines on an unrolled flux surface as well as lines of constant poloidal angle on a
toroidal cross-section are shown for NEMEC coordinates, which are nearly geomet-
ric, and SFL coordinates in figure 2.2.

2.3.6 Edge localized instabilities

Figure 2.3: Radial displacement of an (a) n = 1 external kink, (b) n = 5 peeling-
ballooning and (c) n = 40 ballooning mode.

Expressing the energy functional of ideal MHD in appropriate coordinates and using
reasonable test functions, two fundamental classes of edge localized MHD instabil-
ities can be identified. These are the current-density driven external kink/peeling
modes and the pressure-gradient driven ballooning modes [35]. These instabili-
ties can couple together and form peeling-ballooning modes. The ELM onset in
H-mode tokamak plasmas is typically well-described by the growth of these cou-
pled peeling-ballooning modes [16, 17]. The radial displacement for an external
kink, peeling-ballooning and ballooning mode is shown in figure 2.3 on the toroidal
plasma cross-section. The radial and poloidal localization increase with increasing
toroidal mode number. While kink modes are usually localized at the top and bot-
tom regions of an elongated plasma, ballooning modes are strongly localized at the
low-field side, where the field line curvature is unfavourable κ · ∇p0 > 0. In gen-
eral, the localization of kink modes depends strongly on the shaping of the plasma
cross-section.

The typical structures of a low-n and high-n external kink mode are shown in figure
2.4. The amplitude of the harmonics increases towards the vacuum region and the
dominating poloidal harmonic has its maximum at the plasma boundary. Since the
displacement caused by low-n external kink modes extends over a broad radial re-
gion of the plasma, these instabilities are usually very violent. The high-n external
kink modes, often called peeling modes, are strongly localized at the plasma bound-

2.3 MHD stability
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a) b)

Figure 2.4: Fourier harmonics of the radial displacement for an n = 1 external kink
mode (a) and an n = 15 external kink / peeling mode (b) in straight field line
coordinates.

Figure 2.5: Fourier harmonics of the radial displacement for an n = 40 ballooning
mode in straight field line coordinates.

ary [35]. Each Fourier harmonic that has a resonant surface inside the plasma region
is peaked at this resonant surface in agreement with the resonance condition 2.35.
The Fourier harmonics which are peaked at the plasma boundary are said to have
a resonant surface in the vacuum region.

The pressure-gradient driven ballooning modes are derived from the energy func-
tional in the limit of high toroidal mode number n≫ 1 [35]. These modes poloidally
localize in the regions of unfavourable curvature by the superposition of many Fourier
harmonics. The typical structure of a ballooning mode is shown in figure 2.5. Bal-
looning modes are localized at the steep-gradient region in the edge. Each Fourier
harmonic is strongly radially localized and peaked at its resonant surface.

In the vicinity of the stability threshold of peeling and ballooning modes, both modes
can couple together to form peeling-ballooning modes. The Fourier harmonics of a
peeling-ballooning mode, shown in figure 2.6a, are similar to those of the balloon-
ing mode but contain a peeling harmonic, which is strongly peaked at the plasma
boundary. The stability of the H-mode pedestal can be summarized in the space
of pedestal current density and pedestal pressure gradient, which is shown in figure
2.6b [16]. At high pedestal pressure gradient the growth of ballooning modes limits
the pedestal, while the pedestal current density is limited by external kink modes. In
the region close to both the peeling and the ballooning stability boundaries coupled

2.3 MHD stability
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a) b)

Discharge

Figure 2.6: a) Fourier harmonics of the radial displacement for an n = 5 peeling-
ballooning mode in straight field line coordinates. b) Sketch of the peeling-ballooning
stability diagram. The line indicates the theoretically predicted stability boundary,
while the box with error bars marks a point of operation during a discharge.

peeling-ballooning modes are excited. Shaping of the plasma cross-section can sta-
bilize the peeling-ballooning modes and increase the maximum achievable pedestal
pressure gradient as shown schematically in figure 2.6b [16].

2.3.7 Interpretative and predictive stability analysis

Experiment / Discharge

Equilibrium reconstruction
(CLISTE)

Free-boundary equilibrium
(NEMEC)

Fixed-boundary equilibrium
refinement (GVEC)

Generation of model
equilibria (IPED2)

Preparation for CASTOR3D
(COTRANS)

Stability analysis
(CASTOR3D)

Predictive
stability analysis

Interpretative
stability analysis

Figure 2.7: Workflow for the predictive and interpretative stability analysis.

The pedestal stability can be analyzed based on experimental equilibria obtained
from an equilibrium reconstruction. This method, known as interpretative stability
analysis, yields information on the specific instabilities that were observed during
a discharge and can be used to verify the results obtained with numerical stability
analysis. On the other hand, stability can be analyzed based on modelled equilibria,
which are created from a reduced set of parameters. This enables the predictive
analysis of MHD stability. In this work, model pressure and safety factor profiles as
well as 2D plasma boundaries are generated using the predictive pedestal stability
framework IPED2 [51]. IPED2 generates a range of model equilibria with different
pedestal top pressures for a set of operational plasma parameters: major and minor
plasma radius, elongation and triangularity of the toroidal plasma cross-section,
toroidal magnetic field at the axis, plasma current, pedestal top density and the
volume-averaged plasma pressure. Analyzing the stability of the generated model
equilibria yields the critical pedestal top pressure above which MHD instabilities
are triggered for the specified set of operational parameters. The obtained stability

2.3 MHD stability
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boundary (boundary in figure 2.6b) might then be compared to the operational point
of a stable or unstable discharge (box with error bars in figure 2.6b). The workflow
for both the predictive and interpretative stability analysis is shown in figure 2.7.
For the predictive and interpretative stability analysis a high-resolution equilibrium
is calculated using the GVEC code, as described in section 2.2. The COTRANS
code, which represents an interface between the equilibrium codes and CASTOR3D,
then transforms the equilibrium to straight field line coordinates (SFL or BZR) and
calculates the Fourier decomposition of the equilibrium quantities required for the
eigenvalue problem 2.23. Finally, the stability of the equilibrium is analyzed using
the CASTOR3D code.

2.3 MHD stability
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3 Extension and optimization of the COTRANS and
CASTOR3D codes

In order to study edge localized instabilities in non-axisymmetric tokamak plasmas,
several improvements to the CASTOR3D framework were necessary. These improve-
ments, enabling the work presented in this thesis, are discussed in the following.

3.1 Optimization of the COTRANS code

AUG40180

Figure 3.1: Flux surfaces (black)
and lines of constant poloidal
straight field line angle (colored)
for an AUG equilibrium.

The strongly shaped edge region close to the sep-
aratrix in combination with the steep safety fac-
tor profile of tokamak plasmas results in strongly
non-orthogonal straight field line coordinates,
where the poloidal and radial basis vectors are
almost parallel, as shown in figure 3.1. Thus,
the precise mapping of quantities between the
equilibrium coordinate system and straight field
line coordinates for realistic tokamak geome-
tries is numerically challenging and typically re-
quires calculation of the transformation with ex-
tremely high resolution. Using previous versions
of COTRANS, such mappings with several thou-
sands of flux surfaces and hundreds of Fourier
harmonics would require days of CPU time for
a single equilibrium. For this reason, several se-
quential parts of COTRANS were parallelized,
parts of the previous parallelization were opti-
mized to allow calculations to be scheduled dy-
namically and numerous Fourier transforms were
replaced by Fast Fourier Transform (FFT) algo-
rithms. As a result, the CPU time for the high-
resolution mappings could be reduced from hours
to seconds or from days to minutes. The speedup is mainly due to the imple-
mentation of the FFTs, reducing the computational complexity from O(N2

MN
2
N ) to

O(NMNN log(NMNN )), where NM and NN are the numbers of poloidal and toroidal
grid points used to map the equilibrium. These improvements required for example
unique changes to the 42 routines in which the 383 metric elements for the eigenvalue
problem are calculated. Furthermore, the replacement of the Fourier transformation
required significant structural changes to major fractions of the code. Finally, the
code is carefully tested after any change by benchmarking with previous versions
and evaluation of several physical metrics as well as the equilibrium force balance.

3.2 Force balance verification

Since the integrity of the linear MHD equations fundamentally depends on the qual-
ity of the force balance, it is crucial to test for the error of the force balance in order
to enable an accurate stability analysis. The structure of the instabilities as well as
the energetic decomposition, discussed in chapter 4, strongly depend on the local
force balance. For this reason, calculations of the (radial) force imbalance

∆FMHD = (j ×B −∇p) · r,s = j ×B · r,s − ∂sp (3.1)

3.2 Force balance verification
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a) b)

Figure 3.2: a) Step size −δWMHD of the plasma energy 2.13 and average of the
absolute values (L1 norm) of the local force imbalance normalized w.r.t. the pressure
gradient ∥∆FMHD/∂sp∥1 over the iterations of the minimization process of a non-
axisymmetric equilibrium using GVEC. b) Local force imbalance on a toroidal
plasma cross-section after 120000 and 310000 iterations of the equilibrium code.
The dashed white lines indicate resonant surfaces with respect to the dominating
toroidal harmonic N = 2 of the applied MP field.

Figure 3.3: Instability-like local force
imbalance on a toroidal plasma cross-
section of a non-axisymmetric strongly
unstable equilibrium after 340000 itera-
tions of energy minimization using the
GVEC code. The dashed white lines in-
dicate resonant surfaces with respect to
the dominating toroidal harmonic N = 2
of the applied MP field.

were implemented at various points of
the workflow (after the equilibrium code,
after the coordinate transformation and
within the stability code itself). The vari-
ous force imbalance calculations allow the
cause of a potential force imbalance to be
precisely tracked down to a certain point
in the workflow. Firstly, the MHD energy
2.13 or net radial forces ⟨∆FMHD⟩, which
are the typical metrics used to measure
convergence by equilibrium codes, might
seem to be well-converged while there are
growing local force imbalances, which is
demonstrated in figure 3.2. While the
plasma energy or net forces might aver-
age over local force imbalances in oppo-
site directions, the average of the abso-
lute values (L1 norm) of the local force
imbalance normalized w.r.t. the pressure
gradient ∥∆FMHD/∂sp∥1 reveals local vi-
olations of the force balance. Local force
imbalances during the minimization of
the plasma energy might for example be
caused by the susceptibility of the equi-
librium solution to MHD instabilities. If
the equilibrium is strongly unstable to in-
ternal instabilities, equilibrium codes that minimize the plasma energy are capable
of evolving instability-like perturbations as shown in figure 3.3 (see [52, 53, 54, 55]).
Further violations of the force balance might be introduced if the resolution for the
coordinate transformation into straight field line coordinates is chosen too low. Fi-
nally, the force balance verification in the stability code tests for errors in the Fourier

3.2 Force balance verification
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transformations of the equilibrium quantities performed in CASTOR3D. The imple-
mented force imbalance calculations allow a high-quality of the equilibrium solution
throughout the entire workflow of the MHD stability analysis to be maintained. This
might save significant amounts of computational resources since corrupted equilibria
can be identified early in the workflow.

3.3 Optimization of the eigenvalue problem size

The pedestal stability analysis of non-axisymmetric tokamak plasmas is numerically
challenging, since a high radial resolution as well as a large amount of poloidal and
toroidal harmonics are required in order to resolve the edge localized instabilities.
Since the size of the Nj matrix blocks depends on the amount of poloidal and
toroidal harmonics, Nm and Nn, the resolution necessary to describe edge localized
instabilities results in a huge eigenvalue problem. The memory required for the
factorization of the generally non-hermitian matrix roughly scales with the amount
of non-zero matrix elements:

Mem ∼ Nj(NmNn)
2 (3.2)

This is demonstrated for a range of CASTOR3D runs in figure 3.4a. Thus, the
memory requirement for the stability analysis rapidly increases with the amount of
Fourier harmonics and the available memory sets an upper limit for the observable
physical problem size. For this reason, the memory requirement must be minimized
in order to study high-n edge localized instabilities. In the following, the mini-
mal amount of Fourier harmonics required to describe edge localized instabilities is
discussed and the problem size of the CASTOR3D code is optimized accordingly.

a) b)

Figure 3.4: a) Memory required to solve the linear eigenvalue problem for Nj = 251
flux surfaces and different amounts of Fourier harmonics. b) Typical safety factor
profiles for H-mode tokamak plasmas modelled with IPED2.

As discussed in section 2.3.5, in straight field line coordinates, harmonics which
fulfill the resonance condition minimize field line bending at their respective resonant
surface. For this reason, at a certain radial location s, instabilities consist mainly of
harmonics (m,n) which are close to the resonant harmonic, defined by

mres(s) = n q(s) (3.3)

Thus, for a given toroidal mode number n, a natural choice for the poloidal mode
number spectrum m(s) at a certain radial location s is given by

mres(s)−∆m ⩽ m(s) ⩽ mres(s) + ∆m (3.4)

3.3 Optimization of the eigenvalue problem size
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where the range of poloidal mode numbers ∆m takes the coupling of poloidal har-
monics into account. Since the edge of tokamak plasmas is usually strongly shaped,
the range of poloidal mode numbers required to describe edge localized instabilities
at a certain flux surface is typically about ∆m = 20 − 30. In comparison to stel-
larators, tokamak plasmas feature a strong variation of the safety factor across the
plasma radius, increasing from values slightly above 1 at the axis to values of about
5 or higher at the LCFS. Typical safety factor profiles for H-mode tokamak plasma
are shown in figure 3.4b. The variation of the safety factor is usually strongest near
the plasma edge. In previous versions of CASTOR3D, the set of Fourier harmonics
(m,n) used in the ansatz for the eigenfunction 2.22 was the same for all flux surfaces.
Consequently, according to equation 3.4, a large amount of different poloidal mode
numbers Nm is required to describe edge localized instabilities in tokamaks:

Nm ≈ n∆q + 2∆m ⇒ Mem ∼ (n∆q + 2∆m)2 (3.5)

where ∆q is the variation of the safety factor across the radial extent of the insta-
bility. This is no issue for stellarators and for core instabilities in tokamaks, for
which there is usually little variation of the safety factor ∆q < 1. However, for
edge localized instabilities in tokamaks, for which the variation of the safety factor
can be about ∆q ≈ 4 or higher, the amount of poloidal harmonics and the memory
consumption increase quickly for high toroidal mode numbers. For this reason, as
a part of this thesis, the CASTOR3D code was modified to allow the set of Fourier
harmonics to be dependent on the flux surface. Consequently, only the harmonics
described in 3.4 need to be considered at each flux surface s, reducing the size of
the eigenvalue problem according to

Nm = 1 + 2∆m ⇒ Mem ∼ (1 + 2∆m)2 (3.6)

which is independent of n∆q. The Fourier decomposition for an instability calculated
with the previous and optimized versions of CASTOR3D is shown in figure 3.5.
The Fourier decompositions and growth rates are identical. However, only half the
poloidal harmonics and a quarter of the memory are required with the optimized
version. In addition, the optimized version omits numerical noise by excluding
harmonics that should have vanishing contribution to the Fourier decomposition.
The impact of these improvements increases quickly for higher toroidal harmonics.

a) b)

Figure 3.5: Fourier harmonics (logarithmic amplitude) for an n = 20 ballooning
mode calculated using the original (a) and optimized (b) version of CASTOR3D.
The dashed white lines indicate the resonant poloidal harmonics. Only harmonics
in the filled (non-white) area of the plot are used for the ansatz 2.22.

3.3 Optimization of the eigenvalue problem size



3 Extension and optimization of COTRANS and CASTOR3D | 25

Further reduction of the memory can be obtained for high-n edge localized instabil-
ities by omitting a range of flux surfaces in the core. For this reason the possibility
to crop the plasma core was implemented in CASTOR3D. This is equivalent to
setting the eigenfunctions to zero within the cropped interval. For the instability
shown in figure 3.5, one could omit the flux surfaces with a normalized toroidal flux
s < 0.3. This method must be applied carefully since setting the cutoff too close to
the pedestal can impact the instability. In addition, cropping the core plasma only
saves a small amount of memory, since typically a low radial resolution is chosen for
the core. However, in some cases the small additional reduction might allow further
toroidal harmonics to be included or the radial resolution in the region of interest
to be increased.

Furthermore, a new radial mesh has been introduced which features grid points at
and in between the resonant surfaces for a specific toroidal mode number n. While
this grid naturally resolves instabilities in axisymmetric plasmas perfectly using a
minimal amount of radial grid points, it is not suitable for non-axisymmetric plasmas
since - in this case - multiple toroidal harmonics are coupled together and the grid
favors only a single toroidal mode number. This new mesh was used to resolve the
ballooning mode shown in figure 2.5 (page 18). For edge localized instabilities in
non-axisymmetric plasmas, piece-wise equidistant radial grids, where the resolution
in each section is chosen to be roughly proportional to the amount of resonant flux
surfaces in the section, seem to be currently the best choice. Both the resonant
surface grid and the piece-wise equidistant grid share the property of flattening the
safety factor profile. While new radial grids have been implemented in CASTOR3D,
previous versions already supported non-uniform grids.

a) b)

Figure 3.6: Relative convergence γ/γ∞ (a) and absolute convergence γ∞ − γ (b) of
the growth rate γ, which has been normalized with respect to the Alfvén time, with
an increasing amount of toroidal harmonics for different dominating toroidal mode
numbers n∗. The colored crosses belong instabilities close to the stability threshold
studied in chapter 6, while the black circles belong to the test equilibrium discussed
in chapter 5. The lines indicate exponential convergence fits, defining the limit γ∞.
The gray area indicates the range of toroidal harmonics that could be considered for
edge localized instabilities with previous versions of CASTOR3D.

In conclusion, the implementation of local sets of Fourier harmonics and new radial
grids provides an efficient description of edge localized instabilities, minimizing the
required computational resources. This allows a maximum amount of toroidal har-
monics to be considered in the stability analysis and, hence, enables the study of edge
localized instabilities in non-axisymmetric tokamak plasmas. This is demonstrated

3.3 Optimization of the eigenvalue problem size
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in figure 3.6, which shows the necessity of improvements allowing for the increase
of the amount of toroidal harmonics included in the stability analysis in order to
achieve convergence of edge localized instabilities, especially for equilibria close to
the stability boundary (colored crosses/lines) or for instabilities of high dominating
toroidal mode number n∗. The implementation of the flux-surface dependent Fourier
decomposition required structural changes in almost all parts of the code, including
for example the reassembly of the Fourier decomposition of the instability from the
solution vector or the building of the matrix which describes the eigenvalue problem,
since every subblock of the matrix has now a separate Fourier decomposition.

3.4 Further extensions of the CASTOR3D framework

More than 40 physical quantities, which are calculated in general curvilinear coordi-
nates from the eigenfunctions, have been implemented into the diagnostic part of the
CASTOR3D code and are available on radial, poloidal and toroidal cross-sections or
the full plasma volume. These quantities include the various energy terms, discussed
in chapter 4, perturbed current densities as well as perturbed magnetic and electric
field components, and yield additional information on the numerically determined
instabilities. The newly implemented quantities and visualization routines support
the physical interpretation of the eigenfunctions and are the base for the analysis of
the localization of instabilities as demonstrated in chapters 5 and 6.

Finally, the CASTOR3D framework was extended by the calculation of the neoclas-
sical resistivity [56], providing a realistic model for the plasma resistivity in tokamak
geometry. The implemented neoclassical resistivity has been applied to the interpre-
tative stability analysis of an experimental discharge featuring edge localized resis-
tive MHD instabilities in chapter 6 of B. Vanovac, J. Puchmayr, et. al. (2023) [57].
The numerical studies of the resistive edge localized instabilities in Ref. [57] were
enabled by the optimizations presented in this chapter and reveal the influence of
various physical effects such as parallel viscosity, gyroviscosity and equilibrium flow
on growth rates and frequencies of MHD instabilities. While the work in Ref. [57]
is focused on axisymmetric tokamak plasmas, studies of axisymmetric plasmas are
the base for the analysis of non-axisymmetric tokamak equilibria.

3.4 Further extensions of the CASTOR3D framework
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4 Energy decomposition of resistive plasma perturba-
tions

Large parts of the following chapter were published as a part of this dissertation in J. Puch-

mayr et al., J. Plasma Phys. (2022), vol. 88, 905880512 [58], distributed under the terms of

the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted re-use, distribution and reproduction, provided the original arti-

cle (J. Plasma Phys. (2022), vol. 88, 905880512) is properly cited.

While the MHD stability of fusion plasmas is often well-described by ideal MHD,
finite resistivity affects the stability of some equilibria significantly. In addition,
there are types of instability that only exist in plasmas with finite resistivity. In the
following, the intuitive energy functional of flow-free ideal MHD [38, 49], defined in
equations 2.32 to 2.34, is extended to resistive perturbations. Furthermore, the ideal
as well as the newly derived resistive contributions to the energetic decomposition
are implemented in the CASTOR3D code. The resulting resistive energy functional
is not in the form of a solvable eigenvalue problem but is intended to analyze the
energetic composition of eigenfunctions which were calculated in advance by solving
the linearized MHD equations. The energetic decomposition of the perturbations
contributes to their physical interpretation and understanding and allows one to
distinguish between e.g. current-density and pressure-gradient driven instabilities.
There are also energy principles for resistive MHD [59, 60] which are meant to
determine stability criteria or evaluate stability but do not provide information on
the different contributions to the perturbed energy.

As discussed in section 2.3.4, the ideal energy principle is based on the minimization
of the energy functional δW which represents the potential energy of a perturba-
tion [38]. In general, the definition of a potential energy is not possible for MHD,
since the MHD force is not a conservative force and no force potential exists. How-
ever, the restriction to linear perturbations causes the work integral to become ef-
fectively path-independent and, hence, the obtained energy functional only depends
on the current state of the plasma perturbation. For this reason, we will keep the
term “potential energy” for the resistive energy functional. Extending the linear
ideal MHD equation 2.28 by including finite resistivity results in:

ρ0λ
2ξ = ∇(ξ ·∇p0)+∇(p0Γ(∇ ·ξ))+ 1

µ0
(∇×B0)×B1+

1

µ0
(∇×B1)×B0 (4.1)

B1 = ∇× (ξ ×B0)− λ−1∇× (
η

µ0
∇×B1) (4.2)

In contrast to ideal MHD, equation 4.1 can no longer be written purely in terms
of ξ by inserting 4.2 in 4.1. In order to get an expression for the plasma energy
δW , we multiply the displacement 1

2ξ
∗ of the perturbation with the restoring force

defined by equation 4.1, which results in an energy density, and integrate the product
over the plasma volume V . This is the common approach to derive the general
complex energy functional δW . It should be noted that the energy densities related
to the complex energy functional are not the physical energy densities of the real
perturbation ξr = Re(ξ). However, the physical energies and energy densities of δW
are easily obtained from the complex energy functional by taking the real part of all
complex quantities and all complex-conjugate quantities, separately. This is because
the physical work done by the real displacement ξr is obtained by its multiplication
with the physical restoring force Re(λ2ξ). An example for deducing the physical
energy density of the complex functional δW is given at the end of this section.
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To form the resistive energy functional, we apply cyclic rotation and integration by
parts to the last term of equation 4.1, resulting in:

G ≡
∫

(∇×B1)×B0 ·ξ∗dV = −
∫

∇× (ξ∗×B0) ·B1dV−
∮

B1× (ξ∗×B0) ·ndS
(4.3)

Inserting 4.2, integrating by parts and using some vector algebra results in:

−G

µ0
=

∫
1

µ0
∥B1∥2 +

η

µ20λ
∗ ∥∇×B1∥2dV

+

∮
η

µ20λ
∗ (∇×B∗

1) · (B1 × n) +
1

µ0
(B1 ·B0)(ξ

∗ · n)dS (4.4)

Finally, integration by parts of the pressure-dependent terms in 4.1 yields an ex-
pression for the energy functional similar to Bernstein et al. [38]:

−
∫
ρ0λ

2∥ξ∥2dV = 2δW = 2δWV + 2δWB (4.5)

where

2δWV =WMAG+WJXB +WRCD+WSND +WDP,C

2δWB =W s
MAG+W

s
RES +W s

PRE +W s
DP (4.6)

with the volume energy contributions δWV

WMAG =
1

µ0

∫
∥B1∥2dV WJXB = − 1

µ0

∫
(∇×B0)×B1 · ξ∗dV

WRCD =
1

µ20λ
∗

∫
η∥∇×B1∥2dV WSND = Γ

∫
p0|∇ · ξ|2dV

WDP,C =

∫
(ξ ·∇p0)(∇ · ξ∗)dV (4.7)

and boundary contributions δWB

W s
MAG =

1

µ0

∮
(B1 ·B0)(ξ

∗ · n)dS W s
RES =

1

µ20λ
∗

∮
η(∇×B∗

1) · (B1 × n)dS

W s
PRE = −Γ

∮
p0(∇ · ξ)(ξ∗ · n)dS W s

DP = −
∮
(∇p0 · ξ)(ξ∗ · n)dS (4.8)

Two resistive energy contributions appear in equation 4.5, the resistive current dif-
fusion WRCD, and a surface term W s

RES, which is a correction to W s
MAG. Combining

W s
MAG and W s

RES, we get:

W s
EXB =W s

MAG +W s
RES =

1

µ0λ∗

∮
E∗

1 ×B1 · ndS (4.9)

which describes a flow of electromagnetic energy through the plasma surface, the
Poynting flux. The ideal volume contributions in equation 4.5 are related to the
magnetic energy WMAG, the Lorentz force WJXB, adiabatic compression WSND and
compression against the pressure gradient WDP,C. The surface contributions always
relate to a jump of a quantity at the plasma boundary. In the following, we bring the
terms WMAG, WJXB and WDP,C into their intuitive form, which separates current
from pressure gradient drive, analogously to Ref. [49]. Splitting the equilibrium
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current-density into a parallel j0,∥ and perpendicular j0,⊥ component with respect
to the magnetic field B0 results in:

−WJXB =

∫
j0,∥

∥B0∥
(ξ∗ ×B0) ·B1dV +

∫
1

B2
0

(B1 ·B0)(∇p0 · ξ∗)dV

−
∫

1

B2
0

(B1 ·∇p0)(B0 · ξ∗)dV (4.10)

with j0,∥ = (j0 · B0)/∥B0∥. Analogously, we split the divergence ∇ · ξ in WDP,C

into ∇ · ξ∥ and ∇ · ξ⊥. After some vector algebra and integration by parts, we get:

B2
0∇ · ξ⊥ = µ0 ξ⊥ ·∇p0 − 2B2

0(ξ⊥ · κ)−B0 ·B1 −B0 ·BR (4.11)

−
∫
(ξ ·∇p0)(∇ · ξ∗∥)dV =

∫
1

B2
0

(B0 · ξ∗)(B1 ·∇p0) +
1

B2
0

(B0 · ξ∗)(BR ·∇p0)dV

(4.12)

where we introduce the self-induced ohmic field BR = λ−1∇× (ηj1) and the equi-
librium curvature vector κ = (b ·∇)b with b = B0/∥B0∥. Note that for constant
resistivity, we get BR = η

µ0λ
∆B1 which describes resistive diffusion. Equations

4.11 and 4.12 relate the (work done by) parallel and perpendicular divergence of the
plasma displacement to the (work done by the) magnetic perturbation using equation
4.2. In contrast to ideal MHD, the perturbed field generated by the displacement
is changed by its self-induced ohmic field BR, which is taken into account by the
corrective resistive terms in equations 4.11 and 4.12. Finally, combining equations
4.10 to 4.12 yields:

WMAG +WJXB +WDP,C =

∫
1

µ0

∥∥∥B1 −B0
µ0 ξ⊥ ·∇p0

B2
0

∥∥∥2
−

j0,∥

∥B0∥
(ξ∗⊥ ×B0) ·B1 − 2(ξ∗⊥ · κ)(ξ⊥ ·∇p0)

− 1

B2
0

[
(ξ⊥ ·∇p0)(B0 ·B∗

R) + (ξ∗∥ ·B0)(∇p0 ·BR)
]
dV (4.13)

Then, using 4.11 and 4.13, the intuitive form of the energy functional for resistive
MHD reads:

2δWV =

∫ ∥B1,⊥∥2

µ0
dV︸ ︷︷ ︸

WSHA

+

∫
B2

0

µ0

∣∣∣∇ · ξ⊥ + 2(ξ⊥ · κ) + 1

B2
0

B0 ·BR

∣∣∣2dV︸ ︷︷ ︸
WCPA

+Γ

∫
p0|∇ · ξ|2dV︸ ︷︷ ︸
WSND

+
1

µ20λ
∗

∫
η∥∇×B1∥2dV︸ ︷︷ ︸
WRCD

−
∫

j0,∥

∥B0∥
(ξ∗⊥ ×B0) ·B1,⊥dV︸ ︷︷ ︸

WCUR

−
∫

2(ξ⊥ ·∇p0)(ξ
∗
⊥ · κ)dV︸ ︷︷ ︸

WDP0

−
∫

1

B2
0

(ξ∗∥ ×∇p0) · (B0 ×BR)dV︸ ︷︷ ︸
WRD,∥

−
∫

1

B2
0

(ξ⊥ ·∇p0)(B0 ·B∗
R)dV︸ ︷︷ ︸

WRD,⊥

(4.14)
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where the first four terms are always stabilizing and relate to perpendicular mag-
netic perturbationsWSHA, parallel magneto-compressional perturbationsWCPA, adi-
abatic compression WSND and resistive current diffusion WRCD, respectively. The
next two terms describe the parallel current density WCUR and field-line-curvature
dependent pressure gradient WDP0 drives, respectively. The last two terms are re-
sistive corrections to the pressure gradient drive. They account for the effect of
resistive diffusion on the work done by the induced magnetic perturbation that is
generated by parallel WRD,∥ and perpendicular WRD,⊥ compression of the plasma,
respectively. Finally, the resistive correction to the relation between perpendicular
compression and its induced magnetic perturbation also appears in the stabilizing
energy of magneto-compressional perturbations WCPA. In summary, taking finite
resistivity into account, there are three new volume contributions to the energy
functional (WRCD, WRD,∥, WRD,⊥) as well as a correction to the stabilizing energy
of magneto-compressional perturbations (WCPA). Note that resistive diffusion can
affect the perturbation over a longer time-scale if the mode grows or oscillates slower,
which is described by the inverse proportionality of the resistive energy terms with
the eigenvalue of the perturbation.

In the following, we extend the energy functional to the vacuum region, analogously
to Ref. [38]. The linearized boundary condition for the pressure balance 2.7 is not
dependent on resistivity and remains unchanged:

B0 ·B1 − µ0Γp0(∇ · ξ) = 1

2
ξ · (∇ qB

2

0 −∇B2
0) +

qB0 · qB1 (4.15)

An additional boundary condition is obtained by combining Ohm’s law 2.3 with the
boundary condition for the tangential electric field 2.8:

−n× qA1 =
η

λ
n× j1 + qB0(n · ξ) with qA1 = − 1

λ
qE1 (4.16)

resulting in a resistive correction on the right hand side. Applying equation 4.15 to
W s

MAG and W s
PRE results in:

W s
MAG +W s

PRE =

∮
1

2µ0
(ξ∗ · n)ξ · [[∇B2

0]]dS +

∮
1

µ0
(ξ∗ · n)( qB1 · qB0)dS (4.17)

Adding the latter surface integral in equation 4.17 to W s
RES and using equation 4.16

yields:∮
1

µ0
(ξ∗ ·n)( qB1 · qB0)dS+

∮
η

µ0λ∗
j∗1 · (B1×n)dS =

∫
∥ qB1∥2

µ0
dqV+

∮
η

λ∗
j∗1 ·K1dS

(4.18)
where we introduced the perturbed surface current K1 = µ−1

0 n × [[B1]]. How-
ever, surface currents cannot be maintained in resistive plasmas, i.e. η ̸= 0 implies
K1 = 0. This means that all components of the magnetic field must be continuous
in resistive plasmas. Finally, combining equations 4.17 and 4.18 with W s

DP, we get:

δWB = δWS + δW
qV

(4.19)

with

2δWS =

∮
|n · ξ|2n ·

[[
∇(p0 +

B2
0

2µ0
)
]]
dS , 2δW

qV
=

∫
∥ qB1∥2

µ0
dqV (4.20)

As a result, no additional surface or vacuum energy contributions have to be consid-
ered in the case of finite resistivity. Note that δWS = 0 if there are no equilibrium
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surface currents, which is a common constraint on equilibria and is consistent with
the resistive boundary conditions. However, in principle, one could allow for finite
surface currents in an ideal equilibrium and test this equilibrium for resistive insta-
bilities. In the case of vanishing surface current, the surface terms in equation 4.5 are
equivalent to the vacuum energy of the perturbation, i.e. δWB = δW

qV
> 0. While

the vacuum contribution δW
qV
provides a simpler, more accessible understanding of

the perturbation energy outside the plasma, the surface contributions δWB encode
the vacuum energy in a single surface, which can be computationally advantageous.
If there is a resistive wall or resistive components in the vacuum region, additional
terms in equation 4.19 are required to take the interaction of the perturbation with
the wall into account. These additional terms can be easily obtained from the di-
vergence theorem applied in equation 4.18.

Finally, we demonstrate how to obtain the physical energies and energy densities
from the complex terms of the resistive energy functional derived above. As discussed
in the beginning of this chapter, one must take the real part of the complex and
complex-conjugate quantities in order to obtain the physical energies. This is shown
as an example for the energy density related to resistive current diffusion wRCD:

wRCD =
1

µ20λ
∗ η∥∇×B1∥2 → P {wRCD} =

η

µ20
Re

(
λ−1∇×B1

)
· Re (∇×B1)

if λ∈R
=

η

µ20λ
Re (∇×B1)

2 (4.21)

where P{. . . } denotes the physical energy or energy density, the lower case wRCD

denotes the energy density or integrand of the energy term WRCD. Note that one
must express the absolute values in terms of complex and complex-conjugate quan-
tities before extracting the physical energy. The multiplication of solutions of the
linear MHD equations with an arbitrary complex number yields equivalent solutions
to the linear MHD equations, which results in a useful relation between the complex
and physical energy densities:

1

2
Re(w□) =

1

2π

∫ 2π

0
P {w□}

∣∣∣
χ→χeiφ

dφ (4.22)

where φ is the solution phase, i.e. the arbitrary complex phase of the eigenfunction
χ. In equation 4.22, the lower case w□ denotes the energy density or integrand of
the energy term W□ and □ is a placeholder for any energy density, e.g. □ = RCD.
Thus, the real-part of the complex energy densities is equivalent to two-times the
solution phase average of the physical energy densities. Furthermore, the energy
functional is related to the kinetic energy δEkin =

∫
1
2ρ0∥v1∥2dV by:

δEkin + δEosc + δW = 0 (4.23)

where the energy stored in the oscillation frequency is δEosc = −
∫
ω2∥ξ∥2dV. For

the physical energies, we have P{δEkin} =
∫

1
2ρ0 Re(v1)

2dV and P{δEosc} = 1
2δEosc.

The oscillation energy is negligible if γ ≫ ω.

4.1 Numerical validation

The physical and complex terms of the intuitive form of the energy functional for
ideal and resistive plasma perturbations have been implemented as a diagnostic for
eigenfunctions in the CASTOR3D code. We validate the energy functional by com-
parison of potential and kinetic energy and of the energy contributions of δW over

4.1 Numerical validation
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three different coordinate systems: NEMEC coordinates (NEM) [61], 2D straight
field line coordinates (SFL) [37], and Boozer coordinates (BZR) [50]. The following
validation is based on an n = 8 edge-localized mode of a simple low-β axisym-
metric equilibrium surrounded by an infinite vacuum region. The equilibrium was
calculated using the NEMEC equilibrium code [40, 42].

Figure 4.1: Toroidal cross-section
with flux surfaces (black) and lines of
constant poloidal coordinate for NEM
(dark blue), SFL (purple) and BZR
(green, dashed) coordinates; toroidal
angle of the cross-section for BZR co-
ordinates (background color, blue to
red).

a) b)

Figure 4.2: a) Equilibrium pressure profile (solid) and safety factor profile (dashed).
b) Profile shape of the resistivity as defined in equation 4.24 normalized to η(1) = 1.

Figure 4.1 shows the flux surfaces and lines of constant poloidal coordinate u of the
validation case for a toroidal cross-section, i.e. constant toroidal coordinate v, in the
different coordinate systems. One can see that the lines of constant poloidal coordi-
nates are equal for SFL and BZR coordinates. However, the toroidal cross-section
in SFL coordinates is planar in cylindrical coordinates, while in BZR coordinates it
is deformed and extends over multiple toroidal angles Φ. The equilibrium pressure
and safety factor profiles (see [62]) of the validation case are displayed in figure 4.2a.
For the resistivity, a polynomial profile that is small in the plasma-core and large at
the edge is used:

η(ρtor) = η0 · (1 + 10ρtor + 10ρ2tor + 100ρ8tor + 100ρ10tor) (4.24)

where ρtor is the square-root of the normalized toroidal flux. The shape of this
resistivity profile is shown in figure 4.2b. In the following, all energies and energy

densities are normalized w.r.t.
∫
τ−2
A ρ∥ξ∥2dV where τA =

√
µ0ρaxRax

Bax
is the Alfvén

time, Rax is the major radius and the subscript “ax” denotes equilibrium quantities

4.1 Numerical validation
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at the magnetic axis. For the physical energies and energy densities, the normaliza-
tion factor naturally becomes

∫
τ−2
A ρRe(ξ)2dV. This ensures comparability of the

energy between eigenfunctions, since the amplitude of the perturbation is arbitrary
in linear MHD.

Coordinate system NEM SFL BZR BZR

Pol. mode numbers 6 - 105 20 - 75 20 - 90 20 - 70

WSHA [10−2] 5.93 5.93 5.93 5.92
WCPA [10−6] 4.03 4.04 4.11 4.10
WSND [10−3] 1.54 1.54 1.54 1.54
WDP0 [10−2] -5.14 -5.15 -5.15 -5.14
WCUR [10−2] -4.03 -4.04 -4.03 -4.02
WRCD [10−3] 5.08 5.04 5.13 111
WRD,⊥ [10−4] -1.98 -1.98 -1.98 -6.77
WRD,∥ [10−6] -5.49 -5.50 -5.51 -5.70

Vacuum energy δW
qV

[10−3] 9.84 9.83 9.83 9.76

Potential energy δW [10−2] -1.61 -1.63 -1.62 8.88
Kinetic energy λ2 [10−2] 1.61 1.61 1.61 1.61
Deviation (δW + λ2)/(−λ2) [%] -0.06 0.91 0.37 -651

Table 4.1: Normalized potential energy contributions calculated in the different
coordinate systems and numerical deviation of the potential and kinetic energies.

a) b)

Figure 4.3: Fourier spectra (m = 20− 90) of the radial (a) and toroidal (b) velocity
perturbation v1 in BZR coordinates for the n = 8 eigenfunction and a resistivity of
η0 = 10−8 Ωm.

Table 4.1 shows the potential energy contributions of the n = 8 eigenfunction for a
resistivity of η0 = 10−8 Ωm. The Fourier spectra in BZR coordinates of the radial
and toroidal velocity perturbation for this eigenfunction are displayed in figure 4.3.
In order to resolve the eigenfunction, different sets of poloidal mode numbers are
required for each coordinate system. From comparison of the last two columns
of table 4.1, one can see that the kinetic energy, i.e. the eigenvalue, eventually
converges much faster with respect to the number of poloidal modes than some of
the energy terms, especially the resistive current diffusion termWRCD which depends
on ∇×B1. This leads to the large difference of kinetic and potential energy for the
BZR coordinates with the small set of poloidal mode numbers m = 20− 70. While
for BZR coordinates, the spectrum m = 20 − 70 is probably sufficient to solve the

4.1 Numerical validation
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a) b)

Figure 4.4: a) Normalized energy density wRCD for poloidal mode numbers m =
20− 70 (red), m = 20− 75 (purple), m = 20− 80 (blue) and m = 20− 90 (black) in
BZR coordinates. b) Normalized kinetic energy density (dark blue) and normalized
potential energy densities wRCD (red) and wSHA (dark red) in BZR coordinates and
resonant surfaces (light gray, dashed).

numerical eigenvalue problem for the growth rate of the mode, some derivatives of
the eigenfunction can still be poorly resolved. Figure 4.4a shows the convergence
of the radially resolved energy density wRCD for different sets of poloidal mode
numbers. The radial resolution of the eigenfunction must also be large enough to
resolve the behavior of the potential energy densities at the resonant flux surfaces.
The radially resolved energy densities can vary strongly near these resonant surfaces,
as can be seen in figure 4.4b.

As one can see in table 4.1, the kinetic and potential energy as well as the different
energy contributions match well for all coordinate systems provided that sufficient
poloidal resolution has been chosen. The numerical equality of potential and ki-
netic energy validates that all energy contributions have been considered, while the
numerical equality between the coordinate systems validates the implementation in
general curvilinear 3D coordinates. Note that in order to get such a high accuracy of
the energy functional over different coordinate systems requires not only a sufficient
radial and poloidal resolution of the eigenfunction but also a highly resolved force
equilibrium.

4.2 Influence of finite resistivity

In the following, we investigate the influence of increasing resistivity on the poten-
tial energy composition of the eigenfunction for the validation case. In order to
estimate the effect of the resistive corrections with increasing resistivity, we define
the following potential energy proportions:

χs
RES =

|W s
RES|∣∣W s

MAG

∣∣+ ∣∣W s
RES

∣∣ , χRCD =
WRCD

WRCD +WSHA +WCPA +WSND
(4.25)

χRD =
WRD,⊥ +WRD,∥

WRD,⊥ +WRD,∥ +WDP0
(4.26)

with the proportion of the resistive correction relative to the surface or vacuum
energy χs

RES, to the stabilizing energy terms χRCD and to the pressure-gradient

4.2 Influence of finite resistivity
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a) b)

Figure 4.5: a) Proportions of the resistive corrections w.r.t. the energy terms χs
RES

(red), χRCD (purple) and χRD (blue) as well as the ratio of pressure-gradient to
current-density drive χDP/CUR (black); the gray area indicates the range of realistic
resistivity values. b) Magnetic energy density of the perpendicular perturbation
wSHA for resistivity values of η0 = 0 Ωm (black), η0 = 10−8 Ωm (blue), η0 = 10−7 Ωm
(purple) and η0 = 10−6 Ωm (red).

drive χRD. We also define the ratio of pressure-gradient drive to the destabilizing
terms:

χDP/CUR =
WRD,⊥ +WRD,∥ +WDP0

WRD,⊥ +WRD,∥ +WDP0 +WCUR
(4.27)

The newly defined energy proportions are shown in figure 4.5a. One can see that
the surface correction W s

RES (red) and the resistive current diffusion WRCD (purple)
become important even for small values of resistivity, while the relative correction
to the pressure drive WRD,⊥ +WRD,∥ (blue) only increases slowly with increasing
resistivity. Note that the validation case is ideally unstable and the effect of the
correction WRD,⊥+WRD,∥ might be larger for purely resistive modes. Moreover, the
relative effect of the corrections on the growth rate is often larger compared to the
effect of the corrections on the related energy terms because the growth rate is given
by the sum of the energy terms which might be smaller than its summands. Finally,
from the ratio of pressure to current drive χDP/CUR (black curve in figure 4.5a) it
can be seen that the eigenfunction becomes increasingly pressure-gradient driven for
increasing resistivity.

Figure 4.5b shows the radially resolved perpendicular magnetic energy density wSHA

for different values of resistivity. The radial structure of the magnetic perturbation
becomes less sensitive to resonant surfaces and the maximum of the magnetic per-
turbation shifts inwards with increasing resistivity. In addition, the poloidal local-
ization of the potential energy contributions is affected by resistivity as can be seen
in figure 4.6 which shows the energy density corresponding to the pressure-gradient
drive. With increasing resistivity, the pressure drive of the eigenfunction becomes
at first slightly less localized at the low-field side compared to the ideal mode, which
can be seen from the relative increase of the energy density in the upper, lower and
high-field side regions of the plasma. Further increasing the resistivity causes the
energy density of the pressure drive to move to the upper and lower regions of the
plasma, away from the midplane. Furthermore, it can be seen that the eigenfunction
is weakly stabilized (magenta regions in figure 4.6) by the pressure-gradient on the
high-field side and at some locations on the low-field-side. We note here that such
trends can also be seen for resistive modes at realistic resistivity values.

4.2 Influence of finite resistivity



36 | 4 Energy decomposition of resistive plasma perturbations

Figure 4.6: Energy density of the pressure-gradient drive including resistive correc-
tions (wDP0+wRD,⊥+wRD,∥) for resistivity values of η0 = 0 Ωm (a), η0 = 10−8 Ωm
(b) and η0 = 10−6 Ωm (c). The color range is normalized with respect to the max-
imum and minimum energy densities for each plot separately and the color scale is
linear in the intervals [−1, 0] and [0, 1]. The minimum normalized energy densities
are: wmin

DP = −1.132 (a), wmin
DP = −1.029 (b), wmin

DP = −1.427 (c); the maximum nor-
malized energy densities are: wmax

DP = 0.033 (a), wmax
DP = 0.027 (b), wmax

DP = 0.073 (c).

In conclusion, the resistive corrections can significantly affect the energy contribu-
tions of the ideal energy functional for realistic values of the resistivity and trends
in the localization of the energy density with increasing resistivity were presented,
where, with increasing resistivity, the perturbation moves away from the midplane.
The energy functional grants increased insight into the different energetic drives
and stabilising phenomena of linear perturbations compared to trends in growth
rates and perturbed quantities and, hence, contributes to the physical understand-
ing of these perturbations. The newly implemented functional is used in chapter 5
to obtain a physical understanding of the localization and locking of ideal MHD
instabilities in non-axisymmetric tokamak plasmas and has been applied to classify
resistive modes in Ref. [34].

4.2 Influence of finite resistivity



5 Helical localization and mode locking | 37

5 Helical localization and mode locking of ideal MHD
instabilities in non-axisymmetric equilibria

Large parts of the following chapter were published as a part of this dissertation in J. Puch-

mayr et al., Nucl. Fusion (2023), vol. 63, 086008 [63], distributed under the terms of

the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted re-use, distribution and reproduction, provided the original arti-

cle (Nucl. Fusion (2023), vol. 63, 086008) is properly cited. Any further distribution of this

work must maintain attribution to the author(s) and the title of the work, journal citation

and DOI.

Experimental observations show that the application of a MP field causes inter-
ELM modes, i.e. MHD instabilities that grow in between two ELM bursts, and the
ELM onset to appear in certain helical positions (at certain toroidal phase angles)
instead of being randomly located along the toroidal direction [24]. The toroidal
mode localization for infinite-n ballooning modes, which are located at a single flux
surface, was studied analytically by [30]. The helical localization of intermediate
to high toroidal mode number peeling-ballooning modes in non-axisymmetric toka-
mak plasmas in the limit of weak MP fields (perturbative stability analysis) was
investigated by [31]. Further research investigated the impact of MPs on the MHD
stability limit, but has not analyzed the localization of the instabilities [28, 29]. In
this chapter, we focus on the helical localization of general ideal MHD instabilities at
the edge in magnetically perturbed tokamak plasmas of arbitrary MP field strength
using the CASTOR3D code. In addition, we study mode locking of MHD insta-
bilities, which describes a state in which instabilities remain in their position even
if the background plasma rotates at a finite velocity, in non-axisymmetric tokamak
plasmas.

The phenomenon of helical mode localization is analyzed for a simplified MHD equi-
librium (section 5.1). A systematical differentiation between two kinds of helical
mode localization, strictly locked and localized (quasi-locked) modes, is introduced.
Furthermore, the effect of toroidal plasma rotation on the strictly locked and quasi-
locked modes is studied, providing a physical interpretation of strict locking and
quasi-locking (section 5.2). Strictly locked modes are shown to rotate non-uniformly
above a critical plasma rotation, while quasi-locked modes are shown to rotate uni-
formly at any plasma rotation. Finally, the helical mode localization is studied for an
experimental case and successfully compared to Electron Cyclotron Emission (ECE)
measurements [24] (section 5.3). We show that the equilibrium is unstable to low
mode number instabilities which are located at the same helical position as observed
in the experiment.

5.1 Mode localization and mode locking for a numerical test equi-
librium

In order to study helical mode localization and mode locking of ELMs, we begin with
the analysis of a simple equilibrium. The simple equilibrium should have smooth
plasma profiles, an intrinsically small size of the linear eigenvalue problem, and it
should be unstable to edge localized instabilities of any toroidal mode number in
the axisymmetric case, i.e. without application of a magnetic perturbation to the
equilibrium.

The work presented in this section was carried out before the memory optimization

5.1 Mode localization and mode locking for a numerical test equilibrium
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of CASTOR3D, which has been discussed in section 3.3. For this reason, the num-
ber of poloidal harmonics required to describe global MHD instabilities is roughly
proportional to the range of safety factor values ∆q over the plasma radius. To
minimize the memory requirements for our test case and allow large toroidal mode
numbers to be investigated, we choose a small but relevant value for the edge value
of the safety factor:

q(ψN ) = 1.1 + 2.15ψ2
N (5.1)

where ψN is the normalized poloidal flux. Next, we use the IPED2 framework
to create a model plasma boundary (major radius R0 = 1.66 m, minor radius a0 =
0.6 m, elongation κ = 1.8, triangularity δ = 0.4), pressure profile (normalized plasma
beta βN = 1.54, pedestal top pressure pped = 17.5 kPa), and an electron density
profile (pedestal top electron density ne,ped = 5 · 1019 m−3) [51]. The toroidal flux
at the plasma boundary is set to Φbnd = −3.64 Wb.

a) b)

Figure 5.1: Pressure (dark blue) and safety factor (dark red) profiles for the numer-
ical test case in toroidal flux coordinates (a) and as function of ρpol =

√
ψN (b)

.

The obtained set of plasma boundary, safety factor, pressure profile, and toroidal
flux at the plasma boundary defines our numerical test equilibrium, which fulfills
all properties described in the first paragraph of this section. Figure 5.1 shows the
safety factor and pressure profile of the numerical test case. The profiles are shown in
toroidal flux coordinates, which stretch the pedestal region and are numerically bene-
ficial for the equilibrium convergence and stability analysis, as well as in ρpol =

√
ψN

coordinates, usually used for tokamak profiles. The global plasma parameters of the
resulting magnetic equilibrium are: plasma current IP = 1.75 MA, toroidal mag-
netic field at the axis BT = 1.73 T, total normalized plasma beta βN = 1.47 and
pedestal beta poloidal βpol,ped = 0.27.

The growth rates of the axisymmetric equilibrium are listed in table 5.1. As desired,
all instabilities have comparably large growth rates, which implies that the numerical
test case is far above the stability boundary, i.e. far above marginal stability. The
growth rate of every fourth mode number is damped because the edge safety factor
multiplied by 4 is an integer, which causes the outermost resonant surface to be
aligned with the boundary for n/4 ∈ N. Finally, the energetic decomposition of the
ideal MHD instabilities is calculated using the energy functional 4.14, which has
been implemented in the CASTOR3D code as described in chapter 4 [49, 58]. There

5.1 Mode localization and mode locking for a numerical test equilibrium
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Tor.mode numbern∗ 1 2 3 4 5 6 15

γ (2D) [1/s] 188380 359829 345114 173776 409451 525212 500055
γ (3D, fast) [1/s] 197189 360345 345670 174903 411084 526736 500585
γ (3D, slow) [1/s] 180158 353589 345503 174898 411084 526736 500585
∆γ3D,fast-slow [1/s] 17031 6756 167 5 0 0 0
∆γ2D→3D [1/s] 8809 516 556 1127 1633 1524 530

Table 5.1: Growth rates for the axisymmetric (2D) and magnetically perturbed, non-
axisymmetric (3D) equilibrium for different (dominating) toroidal mode numbers
n∗. Growth rates of the 3D equilibrium are given for both orthogonal (fast and slow
growing) or degenerate eigenvalues. The differences in growth rates of the fast and
slow growing instabilities ∆γ3D,fast-slow as well as of the 2D and fast growing 3D
instabilities ∆γ2D→3D are shown.

are three dominating energy contributions, δWSHA, δWCUR and δWDP:

δWSHA =

∫
V
B2

1,⊥dV (5.2)

δWCUR = −
∫
V

j0 ·B0

B2
0

(ξ∗⊥ ×B0) ·B1,⊥dV (5.3)

δWDP = −2

∫
V
(ξ⊥ ·∇p0)(ξ

∗
⊥ · κ0)dV (5.4)

while the other (always stabilizing) terms, δWCPA and δWSND, are typically very
small. Analyzing the different energy contributions reveals that all modes are
strongly current-density driven, while the relative pressure-gradient drive χDP/CUR =
δWDP/(δWCUR+ δWDP) increases with increasing toroidal mode number from 2.3%
for n = 1 to 14.0% for n = 15.

5.1.1 Construction of the non-axisymmetric model equilibrium

Next, we perturb the plasma boundary with a resonant non-axisymmetric corruga-
tion of periodicity NP = 2. For this purpose, we start from the prescribed boundary
of the axisymmetric equilibrium (“2D” equilibrium) and calculate the Fourier rep-
resentation of the last closed flux surface in 2D straight-field-line coordinates. Then
we add the desired non-axisymmetric toroidal harmonics (N > 0) to the Fourier
spectrum encoding the last closed flux surface and assemble the last closed flux
surface in real space. Finally, a non-axisymmetric equilibrium (“3D” equilibrium)
is calculated from the generated non-axisymmetric plasma boundary while keeping
safety factor, pressure profile and toroidal flux from the axisymmetric equilibrium
using the fixed-boundary equilibrium solver GVEC [43].

Figure 5.2 shows the corrugation of the 3D equilibrium. The simple corruga-
tion of the equilibrium has similar amplitude on the high and low field side and
the MP field is shielded by the resonant surfaces. The maximum absolute values
maxs,M |f(s,N,M)| of the Fourier coefficients f(s,N,M) which encode the R and Z
coordinates of the flux surfaces are shown in figure 5.3 for each toroidal harmonic
N > 0. The Fourier spectrum contains non-axisymmetric contributions from all the
toroidal harmonics N which are a multiple of NP . The contribution of the toroidal
equilibrium harmonics decreases exponentially.

As discussed in section 2.3.3, if we perturb the plasma boundary with a corruga-
tion or MP field of toroidal periodicity NP , the instabilities of the corresponding
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a) b)

Figure 5.2: (a) Corrugation (normal displacement) of the 3D equilibrium for the
numerical test case. (b) Maximum values of the corrugation on every flux surface
as a function of the normalized toroidal flux s. The dashed lines mark the resonant
flux surfaces with respect to the NP = 2 MP field.

Figure 5.3: Maximum absolute val-
ues maxs,M |f(s,N,M)| of the Fourier
coefficients f(s,N,M) which encode
the R and Z coordinates of the mag-
netically perturbed flux surfaces for
each toroidal equilibrium harmonic
N . Only multiples of NP are con-
tained in the equilibrium Fourier spec-
trum.

NP -periodic equilibrium separate into ⌊(NP + 1)/2⌋ toroidal mode families [47]. In
the case of an NP = 2 equilibrium, there are two different toroidal mode families
N1 = 1, 3, 5, 7, . . . and N2 = 0, 2, 4, 6, . . . . Without loss of generality, we restrict
the analysis in this chapter to equilibria of periodicity NP = 2. Furthermore, the
Fourier decomposition of instabilities no longer contains only a single toroidal har-
monic. There are multiple instabilities in each of the mode families, which can be
labeled by their dominating toroidal harmonic n∗. In general, because of the 3D ge-
ometry, there are two non-degenerate or degenerate eigenvalues for each dominating
toroidal harmonic n∗, which we will separate by their growth rate into “fast” and
“slow” solutions. Since the non-axisymmetric tokamak configurations are in general
not stellarator-symmetric, it is not possible to separate the eigenfunctions by their
parity as it it usually done for stellarator plasmas (see [33, 47]).

5.1.2 Linear 3D stability analysis

In the following, the helical localization of the MHD instabilities is analyzed for
the n∗ = 1, 2, 3, 4, 5, 6, 15 instabilities. The Fourier spectrum of the radial velocity
perturbation for the n∗ = 4 fast growing mode as well as for one of the degenerate
n∗ = 5 instabilities is shown in figure 5.4a,b. While multiple toroidal harmonics
(n = 2, 4, 6 or n = 3, 5, 7) are contained in the Fourier spectrum because of the
coupling of toroidal harmonics, one can clearly see that there is a single strongly
dominating toroidal harmonic, n = 4 or n = 5, for each of the instabilities which
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a) b)

c) d)

Figure 5.4: (a-b) Complex (solid) and complex-conjugate (dashed) Fourier coeffi-
cients of the radial velocity perturbation v1 for the n∗ = 4 fast growing mode (a)
and the n∗ = 5 mode, restricted for visibility to toroidal harmonics n = 2, 4, 6 and
n = 3, 5, 7, respectively. (c) Non-degeneracy of the fast and slow eigenvalue solutions
∆γ3D,fast-slow for the non-degenerate n∗ modes. (d) Normalized energy density of the
current-density drive δWcur for different mode numbers n∗ (fast growing).

determines n∗. Table 5.1 (page 39) contains the growth rates of the fast and slow
growing n∗ = 1, 2, 3, 4, 5, 6, 15 modes in comparison to their respective axisymmetric
instability. One can clearly see that the instabilities become degenerate for n∗ > 4,
because the growth rate or eigenvalue is equal for the fast and slow growing insta-
bilities, i.e. ∆γ3D,fast-slow = 0. The applied equilibrium corrugation has destabilized
all instabilities of the plasma ∆γ2D→3D > 0. Figure 5.4c reveals the exponential
decrease of the energetic non-degeneracy with increasing mode number n∗, which is
similar to the exponential decrease of the contributions from the equilibrium Fourier
harmonics N (figure 5.3). The distinction into slow and fast growing is arbitrary
for the degenerate instabilities, which is not important since they describe the same
instability (equal growth rate and spatial mode structure). However, we keep this
distinction for the degenerate instabilities in table 5.1 in order to indicate that there
are still two solutions of the eigenvalue problem. Comparing the Fourier spectra of
the instabilities which correspond to the non-degenerate and degenerate eigenval-
ues, one can see that the former have significant contributions from both complex
and complex-conjugate Fourier coefficients (figure 5.4a), while the latter have only
significant contributions from either the complex or complex-conjugate Fourier co-
efficients (figure 5.4b).

The energy density of the current-density drive δWCUR for different mode num-
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bers n∗ is shown in figure 5.4d (see chapter 4) [58]. We will evaluate the helical
localization of the eigenfunctions close to the most unstable flux surface. The most
unstable flux surface is determined by the minimum of the potential energy density
corresponding to the dominating drive, which is δWCUR for current-density driven
instabilities and δWDP for pressure-gradient driven instabilities. If there is no clearly
dominating drive, the helical localization has to be evaluated with respect to both
energetic drives.

5.1.3 Toroidal mode locking

The eigenfunctions of an axisymmetric plasma χ are proportional to a single toroidal
harmonic χ ∼ e−inΦ because there is no coupling of the toroidal harmonics. Since in
linear MHD the (complex) amplitude of the eigenfunctions is arbitrary, the multipli-
cation of an eigenfunction by an arbitrary complex prefactor results in an equivalent
eigenfunction corresponding to the same eigenvalue as the original eigenfunction.
Thus, if χ is an eigenfunction, χφ = χeiφ are equivalent eigenfunctions for any
solution phase φ ∈ [0, 2π). In the case of a single toroidal harmonic, the solution
phase is equivalent to a shift of the perturbation in the toroidal direction:

χφ(Φ) ∼ e−inΦeiφ = e−in(Φ−φ/n) ∼ χ(Φ− φ/n) (5.5)

This implies that there is no preferred toroidal position of the eigenfunction for an
axisymmetric plasma.

Since in a non-axisymmetric equilibrium different complex toroidal harmonics as well
as complex-conjugates couple together, the eigenfunctions might be located at pre-
ferred toroidal/helical locations. Clearly, the transition between solution phase and
a toroidal shift in equation 5.5 is no longer possible if there is more than one toroidal
harmonic in the Fourier spectrum of the eigenfunction. For non-axisymmetric plas-
mas, eigenfunctions can lock to certain toroidal locations, creating “standing waves”
with respect to φ by containing complex-conjugate Fourier harmonics in their spec-
trum, or they can localize toroidally without strictly locking via the superposition
of different toroidal mode numbers, similar to the poloidal localization known from
ballooning modes. We will distinguish strictly locked perturbations, which are per-
turbations for which the helical position is strictly constant for all values of φ, and
quasi-locked perturbations, which are perturbations for which the helical position
varies with φ but which are bound to an envelope of periodicity NP . While the
fine mode structure of the quasi-locked perturbations is not truly locked, their NP

envelope which determines the mode amplitude is locked at a fixed position. Thus,
especially for instabilities with a high toroidal mode number, the structure of quasi-
locked modes seems like a locked n∗ = NP /2 mode. This will be discussed in more
detail in the next subsection.

In order to systematically analyze the helical/toroidal localization of instabilities
we define quantities representing the spatial structure/location of the mode while
being independent of the arbitrary amplitude and sign of the eigenfunction. Such
quantities are for example given by the normalized square of the perturbed magnetic
field eigenvectors Re(B1e

iφ))2 or by the normalized physical energy densities of
the ideal energy functional, normalized with respect to the square of the arbitrary
amplitude of the eigenfunction. As the normalized squares of the eigenfunctions
are strictly positive, they purely encode the spatial localization of the mode. These
normalized squared quantities are strictly independent of the solution phase φ if the
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mode is strictly locked or form an envelope for φ ∈ [0, 2π) if the mode is quasi-
locked. Note that the periodicity of the squared quantities is twice the periodicity
of the corresponding mode, e.g. the energy densities and squared eigenvectors of an
n∗ = 1 mode have a periodicity of 2.

Since the instabilities in this section are current-density driven, we show the local-
ization/ structure of the perturbations relative to the normalized non-axisymmetric
part σ1,N of the parallel equilibrium current-density σ = j0 ·B0/B

2
0, which is defined

as

σ1,N = (σ − σav)/∆σav (5.6)

where σav(u) = ⟨σ⟩v is the average of σ(u, v) over the toroidal coordinate v for every
poloidal angle u and ∆σav = ±[max{σav(u)} −min{σav(u)}] is the variation of the
axisymmetric parallel equilibrium current-density σav along the poloidal direction;
the sign of ∆σav is chosen such that σ1,N > 0 stands for an augmented current-
density.

The eigenfunctions with low dominating mode numbers n∗ = 1, 2, 3, 4 are strictly
locked. There are two orthogonal eigenfunctions (fast and slow growing) located at
distinct toroidal/helical locations for each of these perturbations. Their correspond-
ing eigenvalues are non-degenerate. The location of the perpendicular magnetic

a) b)

c) d)

Figure 5.5: Background of (a-d): Normalized non-axisymmetric component of the
parallel equilibrium current-density σ1,N . Orange/brown lines in (a,b): Normalized
perpendicular magnetic perturbation Re(B1,⊥)

2 of the n∗ = 1 mode, darker color
indicates a larger value of Re(B1,⊥)

2. Purple lines in (c,d): Normalized current-
density drive δWcur < 0 of the n∗ = 1 mode, darker color indicates more nega-
tive/destabilizing values of δWcur. (a,c): Fast growing, (b,d) slow growing mode.
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a) b)

c) d)

Figure 5.6: Background (a-d): Normalized non-axisymmetric component of the par-
allel equilibrium current-density σ1,N , where in (c,d) the N = 2 component was
subtracted. Orange/brown lines in (a-d): Normalized perpendicular magnetic per-
turbation Re(B1,⊥)

2 of the n∗ = 2 mode, darker color indicates a larger value of
Re(B1,⊥)

2. (a,c): Fast growing, (b,d) slow growing mode.

perturbation of the n∗ = 1 fast and slow growing modes is shown in figure 5.5a,b.
Although the two orthogonal n∗ = 1 instabilities are located at different helical loca-
tions, they are positioned such that they maximize their current-density drive (figure
5.5c,d) which is optimized by locating where the non-axisymmetric part of the par-
allel equilibrium current-density σ1,N has its maximum. This alignment is natural
since the instabilities are current-density driven. The faster growing n∗ = 1 mode
perfectly aligns with the regions where σ1,N is positive (figure 5.5c). The slower
growing n∗ = 1 mode, which is the second of the two orthogonal n∗ = 1 solutions
and shifted by ∆v ≈ π/2, is distorted such that it minimizes the localization in the
region of negative σ1,N as much as possible (figure 5.5d). Clearly, the n∗ = 1 mode
which is located such that the parallel current-density drive is maximized is the
faster growing dominating n∗ = 1 instability. Since the mode energy is proportional
to the square of the perturbation (see equations 5.3 and 5.4), the energy density of
the n∗ = 1 instability is correlated with the non-axisymmetric N = 2 equilibrium
harmonic.

As one can see in figure 5.6a, the fast growing n∗ = 2 mode is localized in the regions
of augmented as well as in regions of weakened parallel equilibrium current-density.
If there are maxima of the n = 2 harmonic of the instability at the regions of aug-
mented parallel equilibrium current-density (magenta region in figure 5.6a), there
are also maxima at the regions of weakened parallel equilibrium current-density
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(cyan region in figure 5.6a), because the energy of the n = 2 harmonic has 4 max-
ima which can not be aligned with the two maxima of the dominating equilibrium
harmonic N = 2. This means the n∗ = 2 instability is not correlated with the N = 2
equilibrium harmonic and its location is not determined by the N = 2 equilibrium
harmonic. However, the non-degeneracy and localization of the n∗ = 2 perturbation
is reasoned by the correlation with the N = 4 equilibrium harmonic. This can be
seen in figure 5.6c,d, where we subtracted the N = 2 harmonic from σ1,N in order
to reveal the N = 4 component of the parallel equilibrium current-density. The
fast growing n∗ = 2 mode is at a favorable position (region of augmented current-
density) while the slow growing n∗ = 2 mode is at a less optimal position (region of
weakened current-density) with respect to the N = 4 harmonic (see figure 5.6c,d).
Moreover, the localization in the regions of minimum parallel current-density is re-
duced by coupling to the n = 0, 4 harmonics, maximizing the growth rate of the
n∗ = 2 modes (figure 5.6a,b).

5.1.4 Quasi-locked modes

a)

b) c)

Figure 5.7: Normalized perpendicular magnetic perturbation Re(B1,⊥e
iφ)2 of the

n∗ = 15 mode at φ = 0 (a) and its envelope E = maxφ{Re(B1,⊥e
iφ)2} (b). Back-

ground of (c): Normalized non-axisymmetric component of the parallel equilibrium
current-density σ1,N . Orange/brown lines in (c): Normalized perpendicular mag-
netic perturbation Re(B1,⊥)

2 of the n∗ = 15 mode, darker color indicates a larger
value of Re(B1)

2.

The location of the perpendicular magnetic perturbation of the n∗ = 15 mode as
well as the corresponding envelope are shown in figure 5.7a,b. One can see that
the precise location of the eigenfunction is not fixed but bound to an envelope
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E = maxφ{Re(B1,⊥e
iφ)2} of periodicity NP . In order to determine the envelope,

it is necessary to evaluate the eigenfunction at a range of solution phase angles φ.
As expected, close to the most unstable flux surface, the envelope of the n∗ = 15
eigenfunction is aligned with the maximum equilibrium current-density perturbation
(see figure 5.7c). Note that the eigenfunction is eventually not aligned with the
maximum equilibrium current-density perturbation at flux surfaces which are far
from the most unstable flux surface.

From the considerations in this section it follows that, in general, for every harmonic
of the equilibrium spectrum N the location of the perturbation with mode number

n∗ = N/2 (5.7)

can be optimized with respect to this equilibrium harmonic N , resulting in non-
degenerate perturbations. Since the contributions of the equilibrium harmonics de-
crease exponentially, the non-degeneracy, which encodes the strict locking of the
instability, also decreases exponentially. Note that only instabilities which are a
multiple of NP /2 can be non-degenerate / strictly locked, belonging either to the
NP /2 or NP mode family (see [47]). The energy of the degenerate instabilities is
independent from the precise toroidal location of the eigenfunction but instead is de-
termined by its envelope (with respect to the solution phase φ), which is aligned with
the equilibrium perturbation of periodicity NP . This can be seen for the n∗ > 4
modes, which are quasi-locked. This interpretation is also in agreement with the
results from linear MHD calculations for stellarators [33].

5.2 Strictly locked and quasi-locked instabilities in rotating plas-
mas

While both strictly locked and quasi-locked instabilities are helically localized, quasi-
locked modes can still appear at slightly varying locations under the envelope. In
order to further improve the understanding of the difference between strictly locked
and quasi-locked modes, we investigate the behaviour of the instabilities for finite
equilibrium rotation of the plasma Ω0. Note that the equilibrium plasma rotation
is only included for the stability analysis (i.e. in the linearized equation system)
but not for the equilibrium calculation, which is justified for low Mach numbers
Ma ⪅ 0.2 [39]. The values of the plasma rotation applied in this section are lower
than Ω0 = 15000 rad/s, which corresponds to a Mach number of Ma = 0.036 and
is consistent with the limit in [39], with exception of the high rotation scenario
Ω0 = 100000 rad/s, which corresponds to a Mach number of Ma = 0.24.

While the non-degenerate instabilities remain strictly locked in their position even
for finite plasma rotation, the degenerate eigenfunctions immediately start rotating
under their envelope. Figure 5.8a shows the growth rates and oscillation frequencies
for the fast and slow n∗ = 3 modes. If one exceeds a critical rotation Ω0 > Ωcrit(n

∗),
also the formerly non-degenerate instabilities become degenerate and start to rotate.
This behaviour was also previously investigated for stellarators [33]. The critical ro-
tation for the n∗ = 3 mode is Ωcrit(3) = 28.8 rad/s, which is a very small edge
rotation threshold. Note that although the sign of the oscillation frequency is op-
posite for the two different eigenfunctions, they rotate in the same direction in real
space. The critical rotation for the much stronger non-degenerate n∗ = 1 mode is
Ωcrit(1) = 9765 rad/s, which is in the order of typical edge rotation values of present
machines. From the above consideration, it follows that quasi-locked instabilities
have a critical rotation threshold of zero.

5.2 Strictly locked and quasi-locked instabilities in rotating plasmas
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a) b)

c) d)

Figure 5.8: (a) Normalized growth rate and oscillation frequency for the fast (red,
solid) and slow (blue, dashed) n∗ = 3 modes in dependency of the plasma rota-
tion Ω0. (b-c) Movement of the normalized perpendicular magnetic perturbation
Re(B1,⊥e

iωt)2 of the n∗ = 1 mode at the outboard midplane at s = 0.949 over a full
oscillation period ωt ∈ [0, 2π]. The time is normalized with respect to ω/(2π). (b)
Time-evolution of the perturbation as a surface plot, which shows the movement of
the instability. For improved visibility, the value of the Z axis is color-coded. (c)
Time-evolution of the perturbation (gray to black) as a projection of equally dis-
tanced time steps, which shows the deformation of the mode during the oscillation
cycle. The time is increasing from the light gray to the black curves. The amplitude
of the normalized perpendicular magnetic perturbation is bound by an envelope
(blue). (d) Relative toroidal position of the minimum of the normalized perpendicu-
lar magnetic perturbation (as shown in c) for different mode numbers n∗ over a full
rotation cycle of the mode around the torus ωt ∈ [0, 2πn∗]. The plasma rotation was
taken at values above the critical rotation threshold for each toroidal mode number.
n∗ = 1: Ω0 = 10000 rad/s (dark blue), Ω0 = 15000 rad/s (blue), Ω0 = 100000 rad/s
(bright blue); n∗ = 3: Ω0 = 40 rad/s (red); n∗ = 15: Ω0 = 10 rad/s (black).
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Clearly, the strictly locked modes are forced to rotate by the background velocity of
the plasma. Since these instabilities naturally want to stay at a fixed location, they
rotate irregularly/non-uniform, like being pushed through a bottleneck, which can
be seen in figures 5.8b-d. From the time-evolution of the irregular rotation, one can
see that the instability seems to jump form one preferred location/position of rest
to the next (figure 5.8b). The instability is bound to an envelope. The mode slows
down and nearly stops (region of high line density in figure 5.8c) before traversing
the minimum of its envelope. While traversing the minimum, the mode is strongly
deformed. The irregularity of the rotation decreases with both increasing plasma
rotation and decreasing non-degeneracy of the instabilities in a flow-free plasma
(figure 5.8d).

a) b)

Figure 5.9: (a) Forced motion of a ball in a sinusoidal potential (dashed black line)
at equally distanced time steps (circles) for v0 = 0.238. The velocity of the ball
is color-coded. (b) Position of the ball for different background velocities v0. The
time is normalized to two full hill crossings. The motion was calculated for m = 1,
α = −0.85 and k = −0.2.

This system shows similar behaviour to a ball in a sinusoidal potential which is
exposed to an external drag force. A sketch of such a system is shown in figure 5.9a.
Here we assume a ball which lies on a chain of hills made of a mesh and is forced
to roll over the structure by a strong horizontal stream of air. The same behaviour
would also be achieved for an electrically charged particle in an electrostatic sine
potential which is forced to move through the potential by a background flow of
neutrals. The equation of motion for such a system is given by:

mẍ = α(ẋ− v0)︸ ︷︷ ︸
Drag

+ kh′(x)︸ ︷︷ ︸
Restoring force

= α(ẋ− v0) + k sin(2x) (5.8)

wherem is the mass, v0 the background velocity, α the drag force strength, k the po-
tential force strength and h(x) = sin(x)2 the profile of the potential. The potential
force strength is related to the degeneracy k ∼ ∆γ3D,fast-slow, the background flow is
related to the equilibrium velocity of the plasma v0 ∼ Ω0 and the potential is related
to the envelope of the instability h(x) ∼ E. Note that a similar equation of motion
describes mode locking of tearing modes caused by external error fields [35, 64, 65].
Numerical integration of equation 5.8, shown in figure 5.9b, provides the motion of
the ball within the defined system and is in good agreement with the rotation be-
haviour of the quasi-locked and locked modes (see figure 5.8d). The ball only passes
the hilltop above a critical threshold for the background flow, which is vcrit ≈ 0.2354
for the chosen set of parameters m = 1, α = −0.85 and k = −0.2. Below this
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threshold the drag has not enough strength to push the ball over the hilltop and a
force equilibrium between the drag and potential force is reached. This mechanical
system provides a physical understanding of the irregular rotation of strictly locked
and quasi-locked MHD modes. The mode is dragged by the equilibrium plasma flow
while a restoring force from a potential (represented by the envelope) tries to pull
the instability back to its preferred localization. While there is an envelope also for
the quasi-locked modes, their restoring force is small, since they are (numerically)
degenerate (k ≈ 0).

a) b)

Figure 5.10: Complex (solid) and complex-conjugate (dashed) Fourier coefficients
of the radial velocity perturbation v1 for the n∗ = 1 mode restricted for visibility
to toroidal harmonics n = 1, 3, 5 at a plasma rotation of Ω0 = 15000 rad/s (a) and
Ω0 = 100000 rad/s (b).

Finally, figure 5.10 shows the Fourier spectrum of the n∗ = 1 instability for
Ω0 = 15000 rad/s and Ω0 = 100000 rad/s. If the plasma rotation is large enough
such that the forced rotation of the strictly locked n∗ = 1 instability becomes
nearly uniform, there are only significant contributions of either the complex or
complex-conjugate Fourier coefficients to the spectrum of the eigenfunction. Thus,
for Ω0 ≫ Ωcrit, the Fourier spectrum of the forced rotating modes becomes similar
to the spectrum of the quasi-locked modes (see figure 5.4b). A similar suppres-
sion of complex or complex-conjugate Fourier coefficients was also recently found
for instabilities in stellarator plasmas which were strongly affected by diamagnetic
drift [34].

5.3 Application to an AUG experimental case

In the following, we compare the numerically predicted mode localization to ex-
perimental measurements. The experiment which we will use for comparison was
performed at the ASDEX Upgrade tokamak and an experimental analysis was done
in [24]. Here, the initially axisymmetric magnetic field of the tokamak was per-
turbed by magnetic perturbation coils, which create a non-axisymmetric vacuum
field acting on the plasma equilibrium. The plasma reacts to this vacuum perturba-
tion with a saturated kink-response forming a weakly non-axisymmetric equilibrium.
In this experiment, an NP = 2 vacuum perturbation field was rotated around the
plasma toroidally at a frequency of 3 Hz while the MHD activity was measured by
the Electron Cyclotron Emission (ECE) diagnostic at a toroidally fixed location on
the outboard midplane as shown in figure 5.11. This method allows ECE data to
be obtained at different toroidal phase angles ΦMP of the vacuum field, which is
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Figure 5.11: Spectrogram of the ECE intensity for experiment AUG #34424 for a
single ECE channel fECE (adapted from [24]). The MP field and consequently the
corrugation are rotated in counter-clockwise direction. The ECE signal time-trace
corresponds to a scan of the toroidal coordinate in clockwise direction. Black curve:
Corrugation of the plasma boundary at the ECE line-of-sight. Dashed black line:
Level of zero corrugation. The dashed green lines enclose a time-frame of high MHD
activity (dark region in the spectrogram).

equivalent to a scan in the toroidal direction.

Figure 5.11 shows the spectrogram of the ECE intensity for a ECE frequency fECE

emitted from the plasma edge measured during the experiment as well as the equi-
librium corrugation at the ECE position. One can see that there is MHD activity,
caused by inter-ELM modes [24], in the ECE spectrogram (darker regions) only on
every other zero of the corrugation. However, since the ECE measures at the same
flux surface for every zero of the corrugation this means that the MHD activity
or MHD instabilities must be toroidally/helically localized, i.e. they occur at pre-
ferred toroidal locations. This is further confirmed by magnetic measurements [24].
Moreover, ELM activity is also found to be at the same location as the inter-ELM
modes [24].

For the numerical MHD stability analysis, the non-axisymmetric MHD equilibrium
was calculated with the NEMEC [40, 42] and GVEC [43] codes for the applied MP
coil currents and for the experimental equilibrium profiles and axisymmetric coil
currents obtained by equilibrium reconstruction using the CLISTE code [41]. We
use the free-bounadry equilibrium code NEMEC to obtain the perturbed plasma
boundary from the coil currents, which is in good agreement with experimental
lithium beam measurements (see [24]), and refine the NEMEC equilibrium using
the GVEC code.

Figure 5.12a shows the resulting corrugation of the magnetically perturbed equilib-
rium. The Fourier spectrum of the equilibrium contains significant non-axisymmetric
contributions of the toroidal harmonics n = 2, 4. Figure 5.12b shows a Poincaré plot
of the equilibrium, revealing that there is ergodization of the magnetic field near the
edge. For the stability analysis, we will crop the ergodized region of the equilibrium
at the dashed line in figure 5.12b (s = 0.98) since this region is not well-described
by closed flux surfaces or straight-field-line coordinates. The cropped region con-
tains 0.92% of the toroidal plasma current and 0.02% of the thermodynamic energy
WpV =

∫
pdV . The thickness of the cropped region at the outboard midplane is

1.8 mm averaged over the toroidal direction.

While the axisymmetric equilibrium, i.e. without application of the MP coils, is
stable with respect to ideal MHD, the non-axisymmetric equilibrium is unstable to
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a) b)

Figure 5.12: (a) Corrugation of the magnetically perturbed equilibrium for AUG
#34424. (b) Poincaré plot of the equilibrium. Black and blue dots: closed field lines
(10000 turns), Red and orange: open field lines (less than ∼ 1022 turns). The solid
black line is the plasma boundary determined by the equilibrium code. The dashed
black line indicates, where we cropped the equilibrium.

a) b)

c) d)

Figure 5.13: (a-b) Absolute value of the ECE temperature perturbation at
s = 0.9018 (pressure gradient peak at the mid of the pedestal) relative to the equi-
librium corrugation on the unraveled surface (a) and at the ECE position (b). (c)
Normalized perpendicular displacement and (d) current-density drive relative to
σ1,N at the most unstable flux surface s = 0.9772.

a strictly locked, ideal, purely current-density driven (δWDP > 0), n∗ = 1 instability
located at the plasma edge. Since the ECE measurement corresponds to a point
of constant magnetic field strength along the ECE line-of-sight whereas perturbed

5.3 Application to an AUG experimental case
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quantities in ideal MHD are defined at a constant point in space, we must couple
the perturbed quantities to the perturbation of the magnetic field for comparability
to the ECE data. To first order, the linear (electron) temperature perturbation at
the ECE point of view becomes

TECE,1 = T1(B = const.) = T1 − 2
eR ·∇T0
eR ·∇B2

0

B0 ·B1 (5.9)

where eR is the vector pointing in the direction of the ECE line-of-sight and all
quantities on the right side of the equation are evaluated at x0 corresponding to the
equilibrium ECE point of view. In equation 5.9, the thermodynamic temperature T
may be replaced by any quantity. Replacing T by the magnetic field strength B, we
get BECE,1 ≡ 0 by construction. Note that the ECE diagnostic measures the ECE
intensity or radiation temperature Trad, which is not the same as the thermodynamic
(electron) temperature at the ECE point of view TECE (see [66]). However, in order
to compare the helical mode localization between the experiment and linear MHD,
we assume that the localization of the MHD activity measured by the ECE diagnostic
is strongly related to the linear MHD temperature perturbation at the ECE point
of view TECE.

Figure 5.13a,b shows the linear ECE temperature perturbation TECE,1 of the calcu-
lated n∗ = 1 instability relative to the equilibrium corrugation at s = 0.9018. The
poloidal and toroidal angles are the geometric angles determined with respect to
R0 = (Rgeo, ZECE), where Rgeo = 1.66 m is the geometric radius of the device and
ZECE = 3.5 cm is the ECE height. The toroidal angle increases in the clock-wise
direction in order to be comparable to the time-trace of the ECE spectrogram shown
in figure 5.11. One can see that, similar to the measured ECE intensity, TECE,1 is
large close to the zero-crossing of the corrugation which is right from the maximum
corrugation and TECE,1 is small close to the zero-crossing of the corrugation which
is left from the maximum corrugation. Figure 5.13c,d shows the perpendicular dis-
placement and normalized current-density drive of the perturbation relative to σ1,N .
The perpendicular displacement is located at the regions of augmented equilibrium
current-density, maximizing the potential energy of the instability. Note that the
small misalignment between δWcur and σ1,N (figure 5.13d) could be the consequence
of the increasing influence of the stabilizing energy contributions close to the stability
boundary.

5.4 Modified equilibrium

Finally, we varied the experimental equilibrium profiles in order to test if the local-
ization of the instability with respect to the equilibrium corrugation is robust. We
increased the current-density and pressure gradient in the edge by a factor of 2, while
keeping the total toroidal current, plasma energy and shaping constant. However,
because of the increased current-density and pressure gradient, we had to reduce
the MP field strength by a factor of 3 in order to get a converged non-axisymmetric
MHD equilibrium. The corrugation of the resulting non-axisymmetric equilibrium
as well as a comparison of the pressure and safety factor profiles of the modified and
unmodified case are shown in figure 5.14.

The modified equilibrium is unstable to edge localized instabilities of any toroidal
mode number even without application of the MP coils, where we have calculated
growth rates for n = 1 to n = 23. The growth rates and the relative pressure-
gradient drive increase with increasing toroidal mode number. All investigated

5.4 Modified equilibrium
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a) b)

Figure 5.14: (a) Corrugation of the magnetically perturbed equilibrium for the mod-
ified AUG #34424 case. (b) Pressure (blue) and safety factor (red) profiles for
experiment AUG #34424 (dashed) and the modified AUG #34424 case (solid) as
function of ρpol.

a) b)

Figure 5.15: (a) Absolute value of the ECE temperature perturbation at s = 0.885
(pressure gradient peak at the mid of the pedestal) relative to the equilibrium cor-
rugation for the n∗ = 23 mode. (b) Normalized perpendicular displacement relative
to σ1,N at the most unstable flux surface s = 0.9060 w.r.t. δWCUR for the n∗ = 23
mode.

toroidal mode numbers have significant contributions from the current-density drive
(δWCUR/(δWCUR + δWDP) = 92% for n∗ = 1 to 50% for n∗ = 23). The n∗ = 1− 4
modes are strictly locked while the n∗ > 5 instabilities are quasi-locked.

The ECE temperature for the n∗ = 23 (most unstable) instability is shown in figure
5.15a. One can see that the linear ECE temperature of the n∗ = 23 mode is not
located at the same location relative to the equilibrium corrugation as the exper-
imentally measured instabilities, which is reasoned by the modified pressure and
current-density profiles. However, since the instability is still significantly current-
density driven, it is still aligned with the regions of augmented equilibrium current-
density (figure 5.15b). This is in agreement to the alignment of the current-density
driven instabilities analyzed in the previous sections. In addition, the n∗ = 23 insta-
bility is 50% pressure-gradient driven. For this reason, the instability is also aligned
with the regions of increased “bad curvature” κp = κ ·∇p0 at the most unstable flux
surface with respect to δWDP, which is shown in figure 5.16. The non-axisymmetric
component of the “bad curvature”, which is induced by the MP field, is defined

5.4 Modified equilibrium
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a) b)

Figure 5.16: (a) Normalized perpendicular displacement and (b) pressure-gradient
drive relative to the non-axisymmetric component of the bad curvature κ1,N at the
most unstable flux surface s = 0.9214 w.r.t. δWDP for the n∗ = 23 mode.

similarly to the non-axisymmetric component of the parallel current-density 5.6:

κ1,N = (κp − κp,av)/∆κp,av (5.10)

where κp,av(u) = ⟨κp⟩v is the average of κ(u, v) over the toroidal coordinate v for
every poloidal angle u and ∆κp,av = ±[max{κp,av(u)} −min{κp,av(u)}] is the varia-
tion of the axisymmetric parallel equilibrium current-density κp,av along the poloidal
direction; the sign of ∆κp,av is chosen such that κ1,N > 0 stands for increased “bad
curvature”. The flux surfaces shown in figures 5.15b and 5.16 are different since
there are unique most unstable flux surfaces with respect to the current-density and
pressure-gradient drive. The global localization of the instability is a balance be-
tween the favourable localization with respect to the pressure-gradient and current-
density drives, maximizing their respective contributions.

In conclusion, the localization of the instability relative to the equilibrium corru-
gation varies with moderate variations of the equilibrium. For this reason, the
equilibrium corrugation is generally not a robust metric to describe helical mode
localization. Instead, the localization of the mode is determined by the energetic
drives close to the most unstable flux surface. Since the application of MP fields re-
sults in a non-axisymmetric structure of the stability-relevant equilibrium quantities
such as parallel current-density or bad curvature, instabilities might optimize their
location with respect to the non-axisymmetric equilibrium in order to maximize their
growth. Depending on their energetic decomposition, instabilities might preferably
align with regions of augmented equilibrium current-density (current-density driven
modes) or bad field-line curvature (pressure-gradient driven modes) or the position
will be a complex compromise between these alignments such that the global energy
is minimized. While this is a very general statement a detailed global MHD stabil-
ity analysis is required in order to predict the precise localization of general finite-n
instabilities for a specific MHD equilibrium.

5.4 Modified equilibrium
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6 Reduction of the MHD stability threshold by
non-axisymmetric perturbation fields

In the following, we demonstrate for the first time that symmetry-breaking in toka-
mak plasmas reduces the window of stable edge operational space, leading to a lower
achievable edge pressure gradient. Previous work described the impact of MP fields
on the stability threshold for local ballooning modes, i.e. in the limit of infinite
toroidal mode number n [29, 30]. There are also reports on the increase of growth
rates for finite-n peeling-ballooning modes with both perturbative models (limit of
small MP fields) [28, 31] and fully non-axisymmetric linear MHD [63]. However,
until now, there is no analysis of the impact of symmetry-breaking on the achievable
edge pressure in tokamak plasmas.

6.1 Stability analysis of model equilibria

a)

b)

Figure 6.1: Flux-surface
corrugation (normal dis-
placement) of a magneti-
cally perturbed tokamak
plasma (a) as well as
pressure and safety fac-
tor profiles (b) for a
model equilibrium with
ne,ped = 4 · 1019 m−3 and
pped = 19.1 kPa.

In this section, we analyze the impact of symmetry-breaking induced by MP fields
on the full MHD stability boundary which contains low-n kink-peeling mode to
high-n peeling-ballooning mode limited regimes of the operational space. For this
purpose, we create a set of model equilibria using IPED2 [51]. For this study, global
parameters are in the range of AUG discharges: elongation κ = 1.8, triangularity
δ = 0.4, toroidal magnetic field BT = 2.2 T, toroidal plasma current IP = 1.0 MA,
resulting in edge safety factor values of q95 ≈ 5, and normalized plasma beta
βN = 1.8 for a range of pedestal top densities ne,ped = 2, 4, 6, 8 [1019 m−3]. The
parameters were chosen such that, depending on the pedestal density, the stability
boundary is limited by kink-peeling or ballooning modes. In order to study the
impact of MP fields on the stability of the generated axisymmetric model equilibria,

6.1 Stability analysis of model equilibria
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we add a field-aligned corrugation with a periodicity of NP = 2 and a maximum
magnitude of 12 mm to the plasma boundary and calculate the fixed-boundary equi-
librium for the corrugated plasma geometry using the GVEC equilibrium code [43].
The corrugation is selected such that its poloidal distribution and magnitude is sim-
ilar to the corrugation induced by realistic MP coil configurations (see figure 6.7).
This approach allows the impact of MP fields on MHD stability to be studied iso-
lated from any MP-induced changes in transport. Model pressure and safety factor
profiles as well as a corrugated plasma boundary are shown in figure 6.1.

a) b)

Figure 6.2: Complex (solid) and complex-conjugate (dashed) Fourier harmon-
ics (m,n) of the radial flux-surface displacement ξ1 of an n∗ = 3 (a) and an
n∗ = 26 (b) peeling-ballooning instability. The harmonics are colored by their
toroidal mode number n. For visibility, only three toroidal harmonics of the n∗ = 3
instability are shown. Note that there is no contribution of complex-conjugate har-
monics to the high-n instability (b) as described in chapter 5 [63].

Figure 6.3: Square of the perpendicular magnetic field perturbation B2
1,⊥ for an

n∗ = 50 instability in toroidal geometry. In this context, perpendicular refers to the
equilibrium magnetic field B0.

The MHD stability of the generated axisymmetric and corrugated equilibria is
analyzed using the CASTOR3D code. The computational improvements of the
CASTOR3D code, discussed in chapter 3, allow for the first time to study instabili-
ties of high toroidal mode number n ≈ 20−60 in non-axisymmetric tokamak plasmas
with realistic safety factor profiles. Moreover, these improvements significantly re-
duce the computational cost for the study of intermediate- to high-n instabilities
(n > 5) by 1 − 2 orders of magnitude. The Fourier harmonics of a low-n∗ and
high-n∗ instability in a non-axisymmetric tokamak plasma are shown in figure 6.2.

6.1 Stability analysis of model equilibria
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The different ballooning mode structures of the contributing toroidal harmonics,
which are coupled together to a single peeling-ballooning mode. The high-n∗ insta-
bilities seem to couple over a wider range of toroidal harmonics compared to the
low-n∗ instabilities (see colored lines/crosses in figure 3.6 on page 25). As in the
case of poloidal mode localisation, multiple toroidal harmonics increase the toroidal
and, consequently, the helical localisation of the ballooning modes by superposition,
which is shown for an n∗ = 50 ballooning mode in figure 6.3. The helical localisation
of edge localized modes relative to the equilibrium corrugation has been observed
in experiments with MP field [24] and is well reproduced by CASTOR3D [63]. The
increase of helical localisation with an increasing number of toroidal harmonics of
ballooning modes in magnetically perturbed plasmas was also found with perturba-
tive approaches [31]. The low-n∗ instabilities, which correspond to non-degenerate
eigenvalue pairs, couple to the complex-conjugate harmonics to form strictly locked
external kink or peeling-ballooning modes as described in chapter 5 [63].

Figure 6.4: Growth rates of the most unstable instability over a range of axisymmet-
ric (black) and corrugated (red) equilibria with different pedestal top pressure for
pedestal top densities of ne,ped = 2 · 1019 m−3 (a) to ne,ped = 6 · 1019 m−3 (c). The
numbers which annotate the data points refer to the (dominating) toroidal harmonic
n∗ of the most unstable instability.

Evaluating growth rates for a series of equilibria with varying pedestal top pressure
reveals that the destabilization caused by the corrugated flux surface geometry re-
sults in a shift of the stability boundary, i.e. the critical pedestal top pressure. This
is shown for low-n limited low density to high-n limited high density pressure scans
in figures 6.4 and 6.5a. The shift observed for the low density case, where ELM sup-
pression is observed, is in good agreement with experimental findings, which report
a shift of ∼ 30% [21]. In all observed cases, the dominating toroidal mode number
n∗ of the most unstable instability of the corrugated equilibrium is close to the most
unstable toroidal mode number of the axisymmetric equilibrium. At the highest
observed density (figure 6.5a) the stability limit is determined by high-n instabilities
with n∗ ⪆ 100. Close to the stability threshold, the toroidal mode number of the
most unstable instability strongly increases as can be seen in figure 6.5b. In order to
resolve these high-n ballooning modes an extremely high radial resolution is required.

6.1 Stability analysis of model equilibria
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a) b)

Figure 6.5: (a) Growth rates of the most unstable instability over a range of axisym-
metric (black) and corrugated (red) equilibria with different pedestal top pressure
for a pedestal top density of ne,ped = 8 · 1019 m−3. The numbers which annotate
the data points refer to the (dominating) toroidal harmonic n∗ of the most unsta-
ble instability. The gray area marks a region where high-n ballooning modes with
n∗ ⪆ 100 are destabilized. (b) Inverse of the dominating toroidal mode number,
1/n∗, of the fastest growing instability over a range of axisymmetric (black) and
corrugated (red) equilibria with different pedestal top pressures.

However, since the structure of the modes becomes comparable to the gyro-radius
for n→ ∞, these instabilities violate the MHD assumptions discussed in chapter 2.
The high-n ballooning modes are known to be strongly stabilized by gyroviscosity,
i.e. ion diamagnetic drift effects, [67, 68, 69]. For this reason, ion diamagnetic drift
effects must be included in the stability calculations in order to accurately describe
the stability in the high density case. Ion diamagnetic drift effects were recently
implemented into the CASTOR3D code [34], allowing the analysis of these effects
in non-axisymmetric tokamak plasmas for the first time. Similar to the axisymmet-
ric case, the ion diamagnetic drift strongly stabilizes the high-n instabilities also
for non-axisymmetric configurations. Consequently, the stability limit including ion
diamagnetic drift effects is described by intermediate-n∗ peeling-ballooning modes.
The resulting shift of the stability boundary for the high density case due to sym-
metry breaking is about ∼ 7%. In summary, symmetry-breaking results in a shift
of the stability threshold which is of the order of ∼ 10% and both the absolute and
relative destabilization become weaker at higher densities.

The mechanisms which cause the destabilizing effect of MP fields are generally com-
plex, since the stability of a mode is determined by the fine balance of various
strongly stabilizing and destabilizing effects. This becomes clear from the energy
functional, where the growth rate of a perturbation is determined by the sum of the
stabilizing and destabilizing energy terms, which are usually 1− 2 orders of magni-
tude larger than their sum. Consequently, small changes to the energetic drives can
result in large changes of the growth rate. However, a simplified explanation might
be obtained considering the results from chapter 5. The non-axisymmetric MP fields
result in regions which are favourable or unfavourable for certain types of instabil-
ity. In the case of magnetically perturbed tokamak plasmas, these perturbations are
usually roughly aligned with the magnetic field lines. For this reason, instabilities,
which are typically also aligned with the magnetic field lines, can optimize their
toroidal position with respect to the toroidally favourable regions. This provides an
intuitive, but strongly simplified, reasoning of the effect of MP fields on the growth
rate of MHD instabilities. This reasoning can be applied to describe the effect of

6.1 Stability analysis of model equilibria
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a) b)

Figure 6.6: (a) Normalized perpendicular displacement relative to the non-
axisymmetric component of the parallel current-density σ1,N , as defined in equation
5.6, at the most unstable flux surface s = 1.0 w.r.t. δWCUR for the n∗ = 1 exter-
nal kink mode. (b) Parallel equilibrium current-density factor σ = (j0 · B0)/B

2
0

and normalized perpendicular displacement ξ2⊥ for an axisymmetric (black) and the
corresponding corrugated (red) equilibrium at the toroidal angle for which the per-
pendicular displacement is largest indicated by the dashed green line in (a).

MP fields on the growth rate in the simple case of an n∗ = 1 external kink mode.
The purely current-driven n∗ = 1 mode, shown in figure 6.6a, is helically localized
in the regions of augmented parallel current-density (magenta area in figure 6.6a) in
order to maximize its growth rate. The poloidal localization of the n instability is
shown relative to the parallel equilibrium current-density factor σ = (j0 · B0)/B

2
0

in figure 6.6b. The symmetry-breaking results in regions of strongly amplified and
weakened current-density compared to the axisymmetric case. Consequently, the
current-driven external kink mode can maximize its current-density drive δWCUR

by localizing in the regions of augmented parallel current-density.

6.2 Stability analysis of AUG discharges

Furthermore, results of the non-axisymmetric MHD stability analysis of two exper-
imental equilibria from the AUG pulses #40180 (ELM suppression) and #40181
(ELM mitigation) are presented. In both discharges, the same MP coil currents
with a periodicity of NP = 2 were applied. However, the ELM mitigation discharge
was achieved by adding gas to raise the density above the empirically observed den-
sity threshold for ELM suppression [21]. As a consequence the edge pressure is also
higher. The equilibria were reconstructed from magnetic measurements using the
CLISTE code [41]. The non-axisymmetric free-boundary equilibria were calculated
from the experimentally measured pressure and safety factor profiles and the coil
currents using the NEMEC code [40, 42], followed by a refinement with the GVEC
code [43]. Pressure and safety factor profiles as well as cross-sections of the corru-
gated plasma boundaries are shown in figure 6.7. The corrugation caused by the
MP fields is 7 mm for the ELM suppression and 13 mm for the ELM mitigation
case at the low-field side, which has been tested against local measurements of the
distorted boundary. The larger corrugation of the ELM mitigation case is caused by
the larger pressure gradient which leads to a stronger plasma response to the same
externally applied MP field.

6.2 Stability analysis of AUG discharges
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a) b)

c)

Figure 6.7: Toroidal cross-
sections of the plasma bound-
ary for the axisymmetric (a)
and magnetically perturbed (b)
equilibria of the experiments
AUG#40180 (solid, black) and
AUG#40181 (dashed, orange) as
well as pressure and safety fac-
tor profiles (c). For visibility, the
corrugation of (b) is amplified by
a factor of 2.5.

For AUG#40181, we find a range of unstable modes, which is in agreement with the
observed ELM activity. The most unstable MHD instabilities predicted by linear
MHD are all in the intermediate toroidal mode number range n∗ = 15 ∼ 17. For
the ELM suppression case AUG#40180, no MHD instabilities were found by linear
MHD stability analysis, indicating that no ELM activity is expected.

In order to analyze the transition from ELM mitigation to ELM suppression, we
create a range of equilibria with an increasing edge pressure from AUG#40180 to
AUG#40181 by linear interpolation of the density profiles of the two discharges
in similarity to the experimentally observed density pump-out. The results of the
stability analysis of the pressure scan between AUG#40180 to AUG#40181 are
shown in figure 6.8. In similarity to the results shown in figure 6.4, we observe a
shift of the critical edge pressure by 9%. The ELM suppression discharge is below
the stability threshold lowered by the MP coils, while the ELM mitigation case is
strongly unstable even without symmetry-breaking. The impact on the growth rate
by symmetry-breaking weakens at higher pressures and densities until it nearly van-
ishes for AUG#40181, which seems to imply that ELM mitigation is not connected
to a MHD destabilization of the plasma. However, while pure ideal MHD is usually
sufficient to roughly describe the experimentally observed critical pressure and its
trends, a precise prediction of the ELM onset might require the inclusion of further
physical effects [69]. One can clearly see that ion diamagnetic drift effects result in
a strong stabilization of the axisymmetric equilibria, resulting in a good agreement
with the empirical stability threshold from Ref. [21]. Consequently, AUG#40181
is just slightly above both the predicted and empirical stability threshold. The
effect of ion diamagnetic drifts is weaker in the non-axisymmetric case, which im-
plies that - considering drift effects - the ELM mitigation discharge is destabilized
by symmetry-breaking. The remaining difference between the empirical and the
predicted stability boundary might be caused by further effects which have been
neglected in this stability analysis such as equilibrium flow. In conclusion, we have
shown that linear MHD predicts a destabilization due to the application of MP fields

6.2 Stability analysis of AUG discharges
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Figure 6.8: Growth rates for a range of equilibria between AUG discharges #40180
and #40181 with and without ion diamagnetic drift effects. The numbers annotating
the data points refer to the (dominating) toroidal harmonic n∗ of the most unstable
instability. The dotted blue line indicates the empirical stability limit from Ref. [21],
assuming equal ion and electron pressure.

in agreement with experimental observations. We have highlighted the importance
of ion diamagnetic drift effects for the accurate description of the stability thresh-
old and a simplified explanation for the generally highly complex destabilization
mechanism was presented.

6.2 Stability analysis of AUG discharges
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7 Summary and outlook

In this thesis, the CASTOR3D code, which solves the linearized extended MHD
equations in general curvilinear coordinates, has been optimized for the analysis of
edge localized instabilities in tokamaks. Then, the optimized CASTOR3D code was
applied to study the effect of symmetry-breaking by MP fields on MHD stability.
Several phenomena such as mode localization, mode locking and destabilization due
to MP fields were investigated.

7.1 Optimization of the COTRANS and CASTOR3D codes

In order to accurately study MHD instabilities in the strongly shaped edge region of
tokamak plasmas, high-resolution mappings from the coordinate system of the equi-
librium code to straight field line coordinates, which are beneficial for stability analy-
sis, are necessary. For this reason, the parallelization of the COTRANS code, which
is the interface between equilibrium codes and CASTOR3D, has been optimized
and Fourier transforms have been replaced by Fast Fourier Transform algorithms.
As a result, the CPU time for the high-resolution mappings could be reduced by
orders of magnitude, enabling the precise stability analysis of strongly shaped equi-
libria. The speedup is predominantly due to the implementation of the Fast Fourier
Transform algorithms, reducing the computational complexity from O(N2

MN
2
N ) to

O(NMNN log(NMNN )), where NM and NN are the numbers of poloidal and toroidal
grid points used to map the equilibrium.

Furthermore, eigenfunctions which have sets of individual Fourier harmonics on each
flux surface were implemented into the matrix of the CASTOR3D code. This allows
the set of Fourier harmonics to include only locally relevant harmonics which approx-
imately fulfill the resonance condition 2.35. As a result, the memory requirement
of the CASTOR3D code for intermediate to high-n edge localized modes (n ⪆ 5)
in tokamaks could be approximately reduced from O((n∆q)2) to O(1). These im-
provements allow for the resource efficient study of edge localized instabilities and
enable the stability analysis of high-n edge localized instabilities (n ⪆ 20) in realistic
non-axisymmetric tokamak plasma, where ∆q ≈ 4 or higher, with CASTOR3D. In
addition, new radial grids based on the localization of the resonant flux surfaces were
implemented. These grids naturally resolve the radial structure of the eigenfunctions
and are especially beneficial to resolve the high-n ballooning modes.

7.2 Energy decomposition for resistive and ideal plasma perturba-
tions

In chapter 4, an energetic decomposition for resistive plasma instabilities was derived
based on the intuitive form of the energy functional of ideal MHD by Greene and
Johnson [49]. The energy functional yields a decomposition of the energy of a pertur-
bation into energy terms related to different stabilizing and destabilizing phenomena.
This energy decomposition contributes to the physical interpretation and under-
standing of instabilities as demonstrated in chapters 5 and 6 as well as Ref. [34]. The
resistive energy functional contains three additional energy terms (WRCD, WRD,∥,
WRD,⊥) as well as a correction to the stabilizing magneto-compressional energy term
(WCPA) related to resistive diffusion. The energy densities can be expressed in their
physical form, encoding the energy density of the instability at a certain phase, or
in their complex form, encoding the phase average of the energy density.

7.2 Energy decomposition for resistive and ideal plasma perturbations
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The physical and complex terms of the intuitive form of the energy functional for
ideal and resistive plasma perturbations have been implemented in the CASTOR3D
code in general curvilinear coordinates. The energy functional has been verified on a
numerical test case, showing excellent numerical equality of potential and kinetic en-
ergy for three different coordinate systems. In order to obtain energy decomposition
where the potential and kinetic energy terms are equal, both a well-converged equi-
librium and a well-resolved eigenfunction are required. This is especially the case
for resistive instabilities, since the current diffusion energy term WRCD is strongly
dependent on a well-resolved eigenfunction. The analysis of the test case reveals
that, for realistic values of the resistivity, the resistive corrections can significantly
affect the energetic decomposition compared to the ideal energy functional. Further-
more, studying trends in the localization of the energy density, it was shown that
the perturbation shifts away from the midplane as resistivity increases. In conclu-
sion, the newly implemented energetic decomposition provides increased insight into
mechanisms which drive or stabilize ideal/resistive modes compared to the analysis
of trends in growth rates and perturbed quantities.

7.3 Helical mode localization and mode locking

In chapter 5, it has been discussed how the phenomena of helical localization and
locking of instabilities in magnetically perturbed tokamak plasmas are related to the
arbitrary complex phase or phase angle of linear solutions. In general, the arbitrary
phase angle of a solution of the linear MHD equations encodes all possible structures
and localizations of the instability. In the case of axisymmetry, this freedom is
reflected in the arbitrary toroidal position of the modes. Hence, in order to analyze
the localization or locking of modes, it is necessary to evaluate the position of the
instability for all values of the arbitrary solution phase. We have shown that the
localization or locking of instabilities can be separated into two types: strictly locked
and quasi-locked instabilities. Both types of localization can be identified by various
characteristics summarized in table 7.1.

Quasi-locked Strictly locked

Ω0=0 Mode amplitude determined Only one possible mode location;
by an envelope; position of the mode structure is fixed
fine mode structure not fixed

Ω0>0 Mode rotates for any Ω0 Rotation only above critical threshold
under its envelope Ω0 > Ωcrit

Ω0>0 Nearly uniform rotation Locked/non-rotating (Ω0<Ωcrit)
for any Ω0 > 0 Forced non-uniform rotation (Ω0>Ωcrit)

Ω0≥0 Two degenerate (*) eigen- Two non-degenerate eigenvalues
values for each n∗ for each n∗ (Ω0 < Ωcrit)

Table 7.1: Summary of the major differences between quasi-locked and strictly locked
linear MHD instabilities in rotating (Ω0 > 0) and non-rotating/flow-free (Ω0 = 0)
non-axisymmetric plasmas. (*) We define two (complex) eigenvalues λ1 = γ1 + iω1

and λ2 = γ2 + iω2 as degenerate if γ1 = γ2 and |ω1| = |ω2|. From Ref. [63].

Strictly locked modes, for which there is no change in the position for any value of
the solution phase, correspond to pairs of non-degenerate eigenvalues. It has been
demonstrated that the pair of non-degenerate solutions describes a fast growing
instability, which is located in an energetically favourable position, and a slow grow-
ing instability, which is in an energetically unfavourable position. Strictly locked

7.3 Helical mode localization and mode locking
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instabilities are built of coupled toroidal harmonics of opposite sign (left- and right-
traveling waves), i.e. n ↔ −n, and thus can only be found in the mode families of
NP and NP /2 where NP is the toroidal periodicity of the system. Furthermore, we
demonstrated that strictly locked instabilities with a dominating toroidal harmonics
n∗ = N/2 naturally localize at a favourable position with respect to the equilibrium
harmonic N .

Instabilities which cannot strictly lock to the equilibrium are quasi-locked. These
instabilities correspond to the degenerate eigenvalues and involve no coupling of
toroidal Fourier harmonics of opposite sign n and −n. It has been shown that,
while the precise localization of the quasi-locked modes depends on the solution
phase, the envelope of the location over all the possible phase angles is helically
localized in an energetically favourable region in order to maximize the growth rate
of the instability.

We demonstrated that, in rotating plasmas, strictly locked modes only rotate if the
plasma rotation exceeds a critical threshold. If the threshold is exceeded, the rotation
of the strictly locked modes is forced and strongly non-uniform. Further increasing
the plasma rotation, eventually results in an increasingly uniform rotation of the
instability. Quasi-locked modes start rotating beneath their envelope in a nearly
uniform motion at any finite value of the plasma rotation. The behaviour of the
instabilities at finite plasma rotation yields an intuitive understanding of strictly
and quasi-locked instabilities.

It has been shown that current-density driven instabilities preferably align with re-
gions of augmented parallel equilibrium current-density whereas pressure-gradient
driven instabilities preferably align with regions of increased “bad curvature”. While
these two equilibrium properties describe the alignment of strongly current-density
driven or pressure-gradient driven instabilities, in general the stability of an MHD
mode is determined by a delicate balance between the current-density drive, the
pressure-gradient drive and the stabilizing energy terms (see [49, 58]). For this rea-
son, the position of an MHD instability is generally a complex compromise between
the favourable alignments w.r.t equilibrium current-density and “bad curvature”.
In order to determine the precise localization of a general finite-n MHD instabil-
ity, a detailed numerical stability analysis of the corresponding MHD equilibrium is
required.

Finally, the helical localization predicted by linear MHD has been compared to
experimental measurements of the helical localization obtained from the Electron
Cyclotron Emission (ECE) diagnostic. As a result, the numerically determined MHD
instabilities are located at the same helical position as observed in the experiment,
which verifies that the localization of the observed instabilities is well-described by
linear ideal MHD.

7.4 Destabilization by symmetry-breaking

In chapter 6, it has been shown for the first time that linear MHD predicts a de-
crease of the critical pedestal top pressure caused by symmetry-breaking due to the
application of MP fields. The predicted destabilization is in good agreement with
experimental observations. It was found that symmetry-breaking has the strongest
impact on the operational space, when the plasma is prone to edge instabilities with
lower toroidal mode number. The application of MP fields roughly preserves the
range of toroidal harmonics corresponding to the most unstable instabilities. For

7.4 Destabilization by symmetry-breaking
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the first time, coupled high-n ballooning modes were described by linear MHD in
realistic non-axisymmetric tokamak geometry. Similar to the axisymmetric case,
these high-n instabilities were shown to be strongly stabilized by ion diamagnetic
drift effects. Finally, a simplified explanation of the destabilization was provided by
the localization of the MHD instabilities in energetically favourable regions of the
non-axisymmetric tokamak plasma.

Results on the stability analysis of two experimental discharges, a mitigated and a
suppressed ELM scenario, indicate that linear MHD is able to describe the effects of
MPs on pedestal stability if ion diamagnetic drift effects are considered. The ELM
mitigation equilibrium was found to be unstable to a range of low- to intermediate-n∗

instabilities, while the ELM suppression case was found to be MHD stable.

7.5 Future work

While in this work, the fundamental mechanisms of mode localization, mode locking
and destabilization due to the application of MP fields were discussed, future analysis
might focus on the impact of the MP field strength or MP field configurations
on these phenomena. Moreover, the influence of further physical effects such as
equilibrium plasma flow and resistivity on the predicted shift of the critical pressure
caused by the application of MP fields might be studied.

Future research might focus on the predictive stability analysis of MP ELM sup-
pression scenarios for future fusion devices such as ITER, DEMO or SPARC. Fur-
thermore, the impact of ion diamagnetic drifts, which are naturally included in the
extended MHD equations of CASTOR3D, or other non-ideal effects on MHD in-
stabilities in future (high-field) tokamaks might be studied. In this context, the
CASTOR3D code might also be coupled to predictive stability frameworks, which
include transport models that predict the kinetic profiles.

In addition, future work could focus on the integration of synthetic diagnostics, i.e.
simulated measurements, such as magnetic probes or ECE into the CASTOR3D
code in order to increase the accuracy of comparisons with experimental measure-
ments. Synthetic diagnostics mimic the process of experimental measurements based
on the simulated results. In the case of magnetic measurements, this would for ex-
ample require to calculate the magnetic field in the vacuum region and the resulting
induced currents in the measurement coil structures considering mirror currents in
the conducting structures near the measurement coils.

7.5 Future work



A Derivation of mode coupling in the strong formulation | 67

A Derivation of mode coupling in the strong formula-
tion

The criterion for mode coupling 2.25 was derived from the weak form. In the weak
form, the coupling of Fourier harmonics is represented by non-vanishing cross-terms
in the linear MHD matrix elements. However, mode coupling can already be deduced
from the linear MHD equations in their original form 2.20. For ρ0 > 0 and λ ̸= 0,
the linear MHD equations can be written in the form:

χ = Fχ with F = λ−1S−1R (A.1)

where F is a linear differential operator that depends only on equilibrium quantities.
Expressing the eigenfunction and force operator in a Fourier representation yields:

χm̃,ñ =

∫ 1

0

∫ 1

0
e−2πi(m̃u+ñv)χ du dv =

∫ 1

0

∫ 1

0
e−2πi(m̃u+ñv)Fχ du dv

=
∑
m,n

∫ 1

0

∫ 1

0
e−2πi(m̃u+ñv)F(χm,ne

2πi(mu+nv)) du dv

=
∑
m,n

∫ 1

0

∫ 1

0
e−2πi(m̃u+ñv)e2πi(mu+nv)Fm,n(χm,n) du dv

=
∑

m,n,M,N

F̂m,n
M,Nχm,n

∫ 1

0

∫ 1

0
e−2πi(m̃u+ñv)e2πi(Mu+Nv)e2πi(mu+nv) du dv (A.2)

where F̂m,n
M,N and χm,n are the Fourier coefficients of the force operator and eigen-

function respectively. Since the Fourier coefficients F̂m,n
M,N contain radial derivatives,

they are still differential operators. However, the toroidal and poloidal dependence
of Fm,n, which originates in the equilibrium quantities and geometry, is encoded by
the Fourier decomposition. Moreover, toroidal and poloidal derivatives acting on the
eigenfunction are represented in Fm,n by multiplication with n or m respectively,
which results in the mode number dependence of Fm,n. The derived equation results
in the same coupling constraint as obtained from the weak form 2.25. In the case
of axisymmetry, F̂m,n

M,N is zero for all N ̸= 0. Then, the integral would vanish for all
n ̸= ñ. Hence, the value of χm̃,ñ is independent of all χm,n with n ̸= ñ, which implies

that the toroidal harmonics are uncoupled. If F̂m,n
M,N is finite for (M,N) = (M0, N0),

then χm̃,ñ is coupled to the values of χM0+m̃,N0+ñ.
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Acronyms

AUG ASDEX Upgrade:
Tokamak located in Garching, Germany

BZR Boozer coordinates:
Coordinates in which the magnetic field lines appear straight

CAS3D Ideal linear MHD code for (non-)axisymmetric plasmas

CASTOR3D Extended linear MHD code for (non-)axisymmetric plasmas

CLISTE Interpretative equilibrium solver for tokamak plasmas

COTRANS Interface between equilibrium codes and CASTOR3D

DEMO Demonstration power plant foreseen as a successor of ITER

ECE Electron Cyclotron Emission spectroscopy

ELM Edge Localized Mode

FFT Fast Fourier Transform

GVEC MHD equilibrium code for (non-)axisymmetric plasmas

H-mode High confinement mode

IPED2 Predictive pedestal stability framework

ITER Future fusion experiment under construction in Cadarache, France

LCFS Last Closed Flux Surface

L-mode Low confinement mode

MCF Magnetic confinement fusion

MHD Magnetohydrodynamics:
Fluid description of the plasma

MP Magnetic perturbation

NEM Coordinates used by the NEMEC equilibrium code

NEMEC MHD equilibrium code for (non-)axisymmetric plasmas

SFL 2D straight field line coordinates:
Coordinates in which the magnetic field lines appear straight

SPARC Future fusion experiment under construction in
Devens, Massachusetts, United States

STARWALL Code for the calculation of the vacuum magnetic field response
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