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ANALOGUES OF THE BOL OPERATOR FOR HALF-INTEGRAL

WEIGHT WEAKLY HOLOMORPHIC MODULAR FORMS

NIKOLAOS DIAMANTIS, MIN LEE, AND LARRY ROLEN

Abstract. We define an analogue of the Bol operator on spaces of weakly holomorphic
modular forms of half-integral weight. We establish its main properties and relation with
other objects.

1. Introduction

The classical “Bol operator” has proved a very fruitful tool in various aspects of the theory
of modular forms. It provides one of the ways to address the difficulty that the derivative
of a modular form is typically not modular (see §5 of [Zag08] for a excellent discussion of
this problem). Among the applications of the Bol operator, we only point to two: Firstly,
the theory of period polynomials [Kno90] and, through it, the critical values of L-functions,
bases of spaces of cusp forms etc. Secondly, the theory of harmonic Maass forms [BFOR17,
Ch. 5] to which the Bol operator plays a fundamental role, not least because, together with
the “xi-operator” (see (1.3)), they uniquely determine the harmonic Maass form.

We outline its construction in the setting we will most often be using, namely that of
weakly holomorphic modular forms. For N ∈ N and k ∈ Z, let M !

k(N) denote that space of
weakly holomorphic modular forms of weight k for Γ0(N), i.e. modular forms for which the
holomorphicity condition is relaxed to include functions with poles at the cusps. Then we
set

(1.1) Dk−1 := (2πi)1−k
dk−1

dzk−1
.

This induces a map from M !
2−k(N) to M !

k(N) given, at the level of Fourier expansions, by

(1.2) Dk−1

(

∑

n≫−∞
anq

n

)

=
∑

n≫−∞
ann

k−1qn.

This Bol operator commutes with the Hecke operators and with the Fricke involution

WN :=
(

0 −1/
√
N√

N 0

)

. It can be expressed as an iterated Maass raising operator [BFOR17,

Lemma 5.3] and forms a companion to the “shadow operator” on the space H2−k(Γ0(N)) of
harmonic Maass forms

(1.3) ξ2−k := 2ivk
∂

∂z
: H2−k(Γ0(N)) → Sk(Γ0(N)),

where v = Im(z). Here Sk(Γ0(N)) stands for the space of cusp forms of weight k and level
N. The interplay between Dk−1 and ξ2−k is fundamental for the theory of harmonic Maass
forms and, in particular, the study of mock modular forms. Specifically, harmonic Maass
forms canonically split into two pieces, which are in turn annihilated each by one of these two
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operators. Thus, the two pieces of a harmonic Maass form can both be uniquely determined
via positive weight (weakly holomorphic) modular forms by using both operators.

Given the importance of the “Bol operator” hinted above, it is natural to seek analogues in
the space M !

k(N,χ) of half-integral weight k weakly holomorphic modular forms for Γ0(N)
and character χ. In contrast to the shadow operator which exists for k half-integral and
behaves exactly as in integral weight, there is, as yet, no “companion” operator to ξ2−k.
Finding one has been a long-standing aim among researchers in the area.

Results hinting in this direction have been given, however. In [BGK14] a very interesting
map is constructed which sends weight 2 − k harmonic Maass forms to weight k weakly
holomorphic cusp forms for k half-integral in a fashion that parallels the Bol operator. The
construction is based on the Zagier lifts and appears in the context of Shintani lifts from in-
tegral weight weakly holomorphic modular forms to half-integral weight weakly holomorphic
modular forms. Since the main aim was to ensure that the maps involved in the definition of
the Shintani lift are Hecke invariant, the Bol-style map of [BGK14] was, in fact, a family of
maps on certain individual subspaces of the space of weight 2− k weak Maass forms. How-
ever, unlike the classical Bol operator, these maps do not have a simple action on Fourier
expansions, and while they have been put to good use to study L-values, they are in some
sense more mysterious.

Against this background, in this note we investigate three questions of increasing strength
and specificity

Question 1.1. Can one build an explicit analogue of the operator in (1.2) for the entire space
of half-integral weight forms?

A stronger form of this question is

Question 1.2. Let k ∈ 1
2
+ N, N ∈ N and a Dirichlet character ψ mod N . Does there exist

a linear map from M !
2−k(N,ψ) to M

!
k(N

′, ψ′), for some N ′ ∈ N and a character ψ′ mod N ′,
sending each

(1.4) f(z) =
∑

n≥−n0

cnq
n ∈M !

2−k(N,ψ)

to a f1 ∈M !
k(N

′, ψ′) which has the form

(1.5) f1(z) =
∑

n≥−n0

(

cnℓ(n)n
k−1 + “lower order terms”

)

qn

for an explicit, bounded map ℓ : Z → C independent of f and, as “lower order terms”, some
linear combinations of {c−n0

, . . . , cn−1} with coefficients independent of f?

An even stronger version of the question, dispenses with the “lower order terms” in the
n-th Fourier coefficient of (1.5)

Question 1.3. Let k ∈ 1
2
+ N, N ∈ N and a Dirichlet character ψ mod N . Does there exist

a linear map from M !
2−k(N,ψ) to M

!
k(N

′, ψ′), for some N ′ ∈ N and a character ψ′ mod N ′,
sending each f ∈M !

2−k(N,ψ) with Fourier expansion (1.4) to a f1 ∈M !
k(N

′, ψ′) of form

(1.6) f1(z) =
∑

n≥−n0

cnℓ(n)n
k−1qn

for an explicit, bounded map ℓ : Z → C independent of f?
2



We will give an affirmative answer to Questions 1.1 and 1.2 by defining a family of Bol-
style maps on the entire space M !

2−k(N,ψ) yielding elements of M !
k(N,ψ

′) with a Fourier
expansion of the form (1.5). For the construction, the relation between the theta functions

θ0(z) :=
∑

n≥1

ψ0(n)q
n2

and θ1(z) :=
∑

n≥1

nψ1(n)q
n2

,

for suitable characters ψ0, ψ1, is used as a prototype of a Bol-style operator of weight 1/2
(see Prop. 3.1) and this is reflected in the structure of the formula for our operators. Indeed,
in addition to addressing Questions 1.1 and 1.2, they map θ0 to θ1. Further, our operators
are derived by a process reminiscent of (group-)conjugating an integral weight Bol operator
by elements of the algebra generated by θ0, θ1.

The use of theta functions in our construction is similar in spirit with the special case of
the Shimura lift that originated with Selberg and, later on, extended by Cipra and Hansen-
Naqvi [Cip89, HN08]. In their setting too, the theta function is used to “complete” the
degree to an integer. A further similarity is that both their Shimura lift and our Bol-style
operator are explicitly identified and, in the negative direction, that neither their Shimura
lift nor our operator are compatible with the Hecke action. Finally, there is no basis to
ask whether their version of the Shimura lift is compatible with our Bol-style operator and
the classical Bol operator, because their lift, by construction, is only definable for positive
weights.

It is unclear whether the answer to Question 1.3 is affirmative and the main supportive
evidence is, on the one hand, the analogy with the integral weight case and, on the other,
the special case of the pair θ0, θ1 in weights 1/2 and 3/2. A positive answer would be
important, not just because the resulting construction will be simpler but, mainly, because
a function such as (1.5) will be more likely to be compatible with the Hecke action and with
the analogue of the Shimura lift for weakly holomorphic modular forms. In the last section
of the note, we propose an approach towards this question which is based on the direct and
converse theorems proved in our recent work [DLRR].
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2. Background.

2.1. Basic notation. We recall the slash action |k of SL2(R) on smooth functions f : H → C

on the complex upper half-plane H, in the cases k ∈ Z and k ∈ 1
2
+ Z:

• k ∈ Z. We consider the action |k of SL2(R) on smooth functions f : H → C on the
complex upper half-plane H, given by

(2.1) (f |kγ)(z) := (cz + d)−kf(γz), for γ =

(

a b
c d

)

∈ SL2(R).
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Here γz = az+b
cz+d

is the Möbius transformation.

• k ∈ 1
2
+ Z. Here and throughout, we set the implied logarithm to equal its principal

branch so that −π <arg(z) ≤ π. If
(

c
d

)

denotes the Kronecker symbol, we set, for an odd
integer d,

(2.2) ǫd :=

{

1 if d ≡ 1 mod 4,

i if d ≡ 3 mod 4,

so that ǫ2d =
(−1
d

)

. We define the action |k of Γ0(N), for 4|N , on smooth functions f : H → C

as follows:

(2.3) (f |kγ)(z) :=
( c

d

)

ǫ2kd (cz + d)−kf(γz) for all γ =

(

∗ ∗
c d

)

∈ Γ0(N).

Let WM =
(

0 −
√
M

−1

√
M 0

)

for M ∈ N. For both k ∈ 1
2
Z we have

(2.4) (f |kWM)(z) = f(WMz)(
√
Mz)−k.

Note that we define the action |kWM by the same formula in both the integral and half-
integral weight cases.

For each N ∈ N, k ∈ 1
2
Z, and Dirichlet character ψ mod N , we denote by Mk(N,ψ) (resp.

M !
k(N,ψ)) the space of holomorphic (resp. weakly holomorphic) modular forms for Γ0(N)

and character ψ. The subspace of Mk(N,ψ) (resp. M
!
k(N,ψ) consisting of forms such that

the constant term of its Fourier expansion at each cusp vanishes is denoted by Sk(N,ψ)
(resp. S !

k(N,ψ) and called the space of holomorphic (resp. weakly holomorphic) cusp forms
for Γ0(N) and character ψ. The absence of ψ from the notation means that the implied
character is the trivial one.

2.2. L-series. Following [DLRR], we associate an L-series to each element of the above
spaces. As discussed in [DLRR], in the case of holomorphic cusp forms, these L-series are
equivalent with the classical L-series.

First, for each f : H → C, holomorphic in H with a Fourier expansion of the form

(2.5) f(z) =
∑

n≥−n0

cne
2πinz/M

for some M ∈ N and n0 ∈ Z., we let Ff be the set of piecewise smooth complex functions ϕ
on R such that the series

∑

n≥−n0

|cn|(L|ϕ|) (2πn/M)

converges, where (Lϕ)(s) :=
∫∞
0
e−stϕ(t)dt is the Laplace transform.

Let now k ∈ 1
2
Z, N ∈ N and a Dirichlet character ψ mod N. If the Fourier expansion of

f ∈ M !
2−k(N,ψ) has the form (1.4) with M = 1, we define the L-series of f to be the map

Lf : Ff → C given by

Lf(ϕ) :=
∑

n≥−n0

cn(Lϕ)(2πn).

We further consider the twists fχ(z) given by

fχ(z) :=
∑

n≥−n0

cnτχ̄(n)e
2πn z

D ,
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where for a Dirichlet character χ modulo D and an n ∈ Z, the generalized Gauss sum is

τχ(n) :=
∑

u mod D

χ(u)e2πin
u
D .

The L-function of fχ is defined by

Lf (χ, ϕ) = Lfχ(ϕ) :=
∑

n≥−n0

cnτχ̄(n)(Lϕ)(2πn/D)

for each ϕ ∈ Ffχ.
One of the main advantages of this distributional-type setup is that it was used in [DLRR]

to prove a Weil-type converse theorem. To state the direct and converse theorems for our
L-series, we set, for each ϕ : R+ → C

(2.6) (ϕ|kWM)(x) := ϕ((Mx)−1)(Mx)−k.

We recall the following theorem from [DLRR].

Theorem 2.1. Fix k ∈ 1
2
Z. Let N ∈ N and let ψ be a Dirichlet character modulo N . When

k ∈ 1
2
+Z, assume that 4|N . Suppose that f is an element of M !

k(N,ψ) with expansion (1.4)
and that χ is a character modulo D with (D,N) = 1. Set g := f |kWN and

(2.7) Ff,g :=
⋂

χ mod D

{

ϕ ∈ Ffχ : ϕ|2−kWN ∈ Fgχ

}

.

Then Ff,g 6= {0} and we have the following functional equations. For each ϕ ∈ Ff,g, if k ∈ Z,

(2.8) Lf (χ, ϕ) = ik
χ(−N)ψ(D)

Nk/2−1
Lg(χ̄, ϕ|2−kWN),

For each ϕ ∈ Ff,g, if k ∈ 1
2
+ Z,

(2.9) Lf (χ, ϕ) = ikψD(−1)k−
1

2ψD(N)
χ(−N)ψ(D)

ǫDNk/2−1
Lg(χ̄ψD, ϕ|2−kWN ).

Here ψD(u) =
(

u
D

)

is the real Dirichlet character modulo D, given by the Kronecker symbol.

Note that the factor in (2.9) differs from [DLRR] due to our different normalisation of
f |kWN . We now recall the converse of Theorem 2.1 from [DLRR].

Theorem 2.2. Let N be a positive integer and ψ a Dirichlet character modulo N . For
j ∈ {1, 2} and some integer n0, let (aj(n))n≥−n0

be a sequence of complex numbers such that

aj(n) = O
(

eC
√

|n|
)

as |n| → ∞ for some constant C > 0. Define holomorphic functions

fj : H → C by fj(z) :=
∑

n≥−n0
aj(n)e

2πinz .

For all D ∈ {1, 2, . . . , N2 − 1}, gcd(D,N) = 1, Dirichlet character χ modulo D and any
smooth, compactly supported ϕ : R+ → C, assume that

Lf1(χ, ϕ) = ik
χ(−N)ψ(D)

N
k
2
−1

Lf2(χ, ϕ|2−kWN)

if k ∈ Z, and

Lf1(χ, ϕ) = ikψD(−1)k−
1

2ψD(N)
χ(−N)ψ(D)

ǫDN
k
2
−1

Lf2(χψD, ϕ|2−kWN)
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if k ∈ 1
2
+Z. Then, the function f1 is a weakly holomorphic modular form with weight k and

Nebentypus character ψ for Γ0(N) and f2 = f1|kWN .

3. Analogues of the Bol operator

3.1. Theta series of weight 1/2 and 3/2. Before beginning our main construction, we
first recall the classical unary theta functions [Shi73]. Let N0, N1 two positive integers. Fix
an even ψ0 mod N0 and an odd character ψ1 mod N1. Set

(3.1) θ0(z) :=
∑

n≥0

ψ0(n)q
n2

and

(3.2) θ1(z) :=
∑

n≥1

nψ1(n)q
n2

.

For computational convenience, we take ψ0(0) to be 1/2, ψ0 is the trivial character. By
[Shi73, Section 2], we have that θ0 is a modular form of weight 1/2, level 4N2

0 and character
ψ0. Also, θ1 is a modular form of weight 3/2, level 4N2

1 and character ψ1

(−1
·
)

. If, in addition,
ψ0 (resp. ψ1) are real and primitive, we have the transformation equations

θ0|1/2W4N2

0
= (iN0)

−1/2τ(ψ0)θ0;(3.3)

θ1|3/2W4N2

1
= −(iN1)

−1/2τ(ψ1)θ1,(3.4)

where, for i = 0, 1,

τ(ψi) :=
∑

u mod Ni

ψi(u)e
2πi u

Ni .

Remark. The primitivity of ψ0, ψ1 is needed only for (3.3), (3.4) not for the modularity of
θ0, θ1.

Recall that ψ0 is a real, even, primitive Dirichlet character modulo N0. In the next
proposition, we will answer Question 1.3 in the case of the subspace M1/2(4N

2
0 , ψ0) of

M !
1/2(4N

2
0 , ψ0). Specifically, we will define a map such as the one posited in Question 1.3.

Any f ∈ M1/2(4N
2
0 , ψ0) with Fourier expansion f(z) =

∑

n≥0 a(n)q
n, is mapped to the

function

(3.5) (δ
3

2
−1f)(z) :=

∑

n≥0

a(n)ℓ(n)n
3

2
−1qn

with ℓ : N0 → R given by

(3.6) ℓ(n) :=

{

(

−1√
n

)

when
√
n ∈ N,

0 otherwise.

Now we will prove that the image of the map δ
3

2
−1 is contained in M3/2(64N

2
0 , ψ0).

Proposition 3.1. The answer to Question 1.3 is positive in M1/2(4N
2
0 , ψ0), for ψ0 mod N0

real, even and primitive.
6



Proof. First note that, by [SS77, Theorem A], a basis of M1/2(4N
2
0 , ψ0) consists of the series

θψ,t(z) :=

∞
∑

n=0

ψ(n)qtn
2

for (ψ, t) such that t ∈ N, ψ is even, primitive with conductor r, 4r2t|4N2
0 and ψ0(m) =

ψ(m)χt(m) whenever (m, 4N2
0 ) = 1. Here χt is the primitive character of order less than

equal 2 corresponding to the field extension Q(t
1

2 ) over Q ([SS77, p.30, §1.2]). When t is
square we set χt = 1. As above, by convention, ψ(0) = 1/2 if ψ is the trivial character.

For a non-negative integer n, we define

(3.7) at(n) =

{

ψ
(
√

n
t

)

when t | n and
√

n
t
∈ N,

0 otherwise.

Then

(3.8) θψ,t(z) =

∞
∑

m=0

at(m)qm.

We have

(3.9) (δ
3

2
−1θψ,t)(z) =

∑

m≥0

at(m)ℓ(m)m
3

2
−1qm =

∑

n≥0

ψ(n)ℓ(tn2)(tn2)
3

2
−1qtn

2

.

Note that ℓ(tn2) = 0 unless t is square. So δ
3

2
−1θψ,t = 0 unless t is square. If t is square,

then ψ0 = ψ and thus r = N0, which implies that t = 1. Therefore,

(3.10) δ
3

2
−1θψ,t(z) = 0

unless (ψ, t) = (ψ0, 1). When (ψ, t) = (ψ0, 1), comparing with (3.2), we get

(3.11) (δ
3

2
−1θψ0,1)(z) =

∑

n≥0

ψ0(n)

(−1

n

)

nqn
2

= θ1(z)

with ψ1 = ψ0

(−1
·
)

. Since, ψ1 is a Dirichlet character modulo 4N0, θ1 is a weight 3/2 modular

form of level 4(4N0)
2 and character ψ1

(−1
·
)

= ψ0. Therefore, the assignment

∑

n≥0

at(n)q
n −→

∑

n≥0

at(n)ℓ(n)n
3

2
−1qn

induces a linear map from M1/2(4N
2
0 , ψ0) to M3/2(64N

2
0 , ψ0), confirming the assertion of

Question 1.3. �

This instance of a positive answer to Question 1.3 is special because it concerns forms of
moderate growth which can occur only if both weights involved (k and 2 − k) are positive.
This happens only if k = 1/2 or 3/2 and therefore, for more general half-integral weights
one must by necessity consider weakly holomorphic forms. However, the relation between θ0
and θ1 will be used as the basis for the general weight case in the next subsection.
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3.2. The main construction. Throughout subsections 3.2-3.4, we fix a real, primitive, even
ψ0 mod N0 and a real, primitive odd character ψ1 mod N1 such that θ0(·, ψ0) and θ1(·, ψ1)
have no zeros in H. Further fix an integer a. Then, for each smooth function f : H → C, set

(3.12) δk−1
a (f) := θ3a−2

0 (z)θ1−a1 (z)Dk− 3

2 (θ1−3a
0 θa1f),

where Dk− 3

2 is the usual Bol’s operator given in (1.1). Here, note that k − 3
2
∈ N0.

Theorem 3.2. Set N := lcm(4N2
0 , 4N

2
1 ). For each γ = ( ∗ ∗

c d ) ∈ Γ0(N), we have

δk−1
a (f |2−kγ) =

(−1

d

)

ψ0(d)

ψ1(d)
δk−1
a (f)|kγ.

Suppose further that N0 = N1. Then, with N = lcm(4N2
0 , 4N

2
1 ) = 4N2

0 , we have

δk−1
a (f |2−kWN) = −τ(ψ0)

τ(ψ1)
δk−1
a (f)|kWN .

Proof. Since θ0 (resp. θ1) has weight 1/2 (resp. 3/2) and character ψ0 (resp. ψ1 ·
(−1

·
)

) for
Γ0(4N

2
0 ) ⊃ Γ0(N) (resp. Γ0(4N

2
1 ) ⊃ Γ0(N)), we have

(3.13)

δk−1
a (f |2−kγ) = θ3a−2

0 (z)θ1−a1 (z)Dk− 3

2

(

(θ0| 1
2

γ)1−3a(θ1| 3
2

γ)af |2−kγ
)

ψ̄0(d)
1−3aψ̄1(d)

a

(−1

d

)a

= θ3a−2
0 (z)θ1−a1 (z)Dk− 3

2

(

(fθ1−3a
0 θa1)(γz)(cz + d)−

1

2
−(2−k)

)

ǫ
1+2(2−k)
d ψ̄0(d)

1−3aψ̄1(d)
a

(−1

d

)a

.

The function to which Dk−3/2 has been applied equals (fθ1−3a
0 θa1)|2−(k−1/2)γ (note that the

weight is integral). Then we apply the standard Bol’s identity followed by the modularity
of θ0 and θ1. We obtain

(3.14) θ3a−2
0 (z)θ1−a1 (z)ǫ

1+2(2−k)
d (Dk− 3

2 (fθ1−3a
0 θa1)|k− 1

2

γ)(z) ψ̄0(d)
1−3aψ̄1(d)

a

(−1

d

)a

= (θ0|1/2γ)(z)3a−2(θ1|3/2)(z)1−aǫ1−2k
d (Dk− 3

2 (fθ1−3a
0 θa1)|k− 1

2

γ)(z) ψ̄0(d)
−1ψ̄1(d)

(−1

d

)

= θ0(γz)
3a−2θ1−a1 (γz)Dk− 3

2 (fθ1−3a
0 θa1)(γz)(cz + d)−k

( c

d

)

ǫ−2k
d

ψ0(d)

ψ1(d)
.

In the last equality we used the identity ǫ2d =
(−1
d

)

. Using the same identity and the
definition of the action |k (with k half-integral), we can simplify to deduce the first identity
of the theorem.

Suppose now that N0 = N1. Then (3.3), (3.4) imply that

θ1−3a
0 θa1(f |2−kWN ) =

(−1)a(iN0)
1/2−a

τ(ψ0)1−3aτ(ψ1)a
(θ1−3a

0 θa1f)|2−(k−1/2)WN .

8



Bol’s identity, followed by an application of (3.3) and (3.4), imply that

(3.15) δk−1
a (f |2−kWN ) =

(−1)a(iN0)
1/2−a

τ(ψ0)1−3aτ(ψ1)a
θ3a−2
0 θ1−a1 (Dk−3/2(θ1−3a

0 θa1f))|k−1/2WN

=
(−1)a(iN0)

1/2−a

τ(ψ0)1−3aτ(ψ1)a
(−1)1−a(iN0)

a− 1

2

τ(ψ0)3a−2τ(ψ1)1−a

× (θ0|1/2WN)
3a−2(θ1|3/2WN)

1−aDk−3/2(θ1−3a
0 θa1f)|k−1/2WN

which, after simplification, implies the second identity of the theorem. �

With the notation of the theorem, we see that the answer to Question 1.1 is positive:

Corollary 3.3. Let f be a weakly holomorphic modular form of weight 2− k ∈ 1
2
−N0, level

N and character ψ. Then δk−1
a (f) is a weakly holomorphic modular form of weight k, level

N and character d→ ψ(d)
(−1
d

) ψ1(d)
ψ0(d)

. In particular,

δ1/2a (θ0) = θ1,

Note that since θ0 has no zeros inH, δk−1(f) is well-defined and gives a weakly holomorphic
form.

In our construction, the parameter a is assumed to be integer. However, δk−1
a can be

defined for other values too and, in some cases, it can be shown to coincide with other
well-known operators. We will discuss one such example.

We first note that the equation defining δk−1
a in (3.12) gives a well defined function when

a ∈ Q. We also recall the definition of Rankin-Cohen bracket in the form given, e.g. in
[Zag77], which includes the case of half-integral weights. For n ∈ N0 and modular forms f
and g of level N , weights k, ℓ respectively, and characters χ, ψ respectively, we set

[f, g]n =

n
∑

j=0

(−1)n−j
(

n

j

)

Γ(k + n)Γ(ℓ+ n)

Γ(k + j)Γ(ℓ+ n− j)
f (j)g(n−j)

where f (j) denotes the j-th derivative of f. The function [f, g]n is a modular form of weight
k + ℓ+ 2n and character χψ. Then we have

Corollary 3.4. Let f be a weakly holomorphic modular form of weight −1, level N and
character ψ. Set

(3.16) F (z) = f(4z)θ0(z).

Then

δ
3/2
2/3(F ) =

3

πi
[θ1, f(4·)]1

Proof. This follows by a direct calculation. �

Remark. We have not been able to find so simple a relation of our Bol-style operator with
Rankin-Cohen brackets for general weights and values of the parameter a. However, the
structure of the half-integral weight forms that are the subject of Corollary 3.4, exhibits
some interesting similarity with that of modular forms that can be lifted to integral weight
modular forms according to Selberg’s version of the Shimura lift. This will be discussed in
the next subsection.
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3.3. Selberg’s version of the Shimura lift. The construction of the operator δk−1
a has

quite a few analogies with Selberg’s version of a Shimura-type lift (see [Cip89]). We recall
its simplest case and then point out those analogies:

Let k be an a positive even integer and let f(z) =
∑

n≥1 a(n)q
n ∈ Sk(1) be a normalised

eigenform for all Hecke operators. Set

F (z) := f(4z)θ0(z) ∈ Sk+1/2(4).

Then

S(F )(z) := f(z)2 − 2k−1f(2z)2

belongs to S2k(2).
The most essential analogy of Selberg’s construction with the construction of δk−1

a is that
it uses a fixed half-integral weight form (namely θ0, as in our construction) in order to
translate the situation into the more familiar context of integral weight forms. Furthermore,
this “translation” is based on a multiplication with the theta function.

As in our construction, Selberg’s lift is not Hecke-invariant. Furthermore, since his con-
struction is intrinsically built on holomorphic cusp forms, it can only be carried out in the
case of positive weight and therefore we cannot check if δk−1

a is compatible with D2k−2 via
Selberg’s lift.

3.4. Fourier expansion. We will compute the Fourier expansion of δ
k− 3

2

a (f) in the special
case a = 0 which will allow us to answer Question 1.2

In addition to the assumptions of the previous subsections, we assume that the Dirichlet
character ψ0 associated to the theta series θ0 is also non-trivial. Recall that

(3.17) Dk− 3

2

(

∑

m≫−∞
anq

n

)

=
∑

m≫−∞
nk−

3

2anq
n.

Since θ0 is non-trivial, we note that θ1/θ
2
0 has a Fourier expansion of the form

(3.18)
θ1(z)

θ0(z)2
=

∞
∑

n=−1

anq
n with a−1 = 1.

We then have:

Proposition 3.5. With notation as above, let

f(z) =
∞
∑

n=−n0

cnq
n

be a weakly holomorphic modular form of weight 2 − k ∈ 1
2
− N, level N = lcm(4N2

0 , 4N
2
1 )

and character ψ. Then, the Fourier expansion of δk−1
0 (f) is given by

δk−1
0 (f)(z) =

∞
∑

n=−n0

qn

(

n
∑

l=−n0

cl

(

n+1−l
∑

m=1

(l +m)k−
3

2ψ0(
√
m)an−l−m

))

where, ψ0(
√
m) = ψ0(m1), if m = m2

1 (m ∈ N), and 0 otherwise.
10



Proof. With the Fourier expansions of θ0, f and (3.18) we see that

δk−1
0 (f)(z) =

( ∞
∑

n=−1

anq
n

)

Dk− 3

2

( ∞
∑

m=1−n0

qm

(

m+n0
∑

l=1

ψ0(
√
l)cm−l

))

.

With (3.17) followed by the change of variables n+m→ n, we deduce

(3.19) δk−1
0 (f)(z) =

∞
∑

n=−n0

qn

(

n+1
∑

m=1−n0

mk− 3

2an−m

(

m+n0
∑

l=1

ψ0(
√
l)cm−l

))

=

∞
∑

n=−n0

qn

(

n+1
∑

m=1−n0

mk− 3

2an−m

(

m−1
∑

l=−n0

ψ0(
√
m− l)cl

))

which, by an interchange of the inner sums, equals

∞
∑

n=−n0

qn
n
∑

l=−n0

n+1
∑

m=l+1

mk− 3

2an−mψ0(
√
m− l)cl

The change of variables m→ l +m in the last sum implies the result. �

This proposition, together with Cor. 3.3, allows us to answer Question 1.2 positively:

Corollary 3.6. Let k ∈ 1
2
+ N, N ∈ N and a Dirichlet character ψ mod N . Set ℓ(n) :=

(n + 1)k−
3

2/nk−1 if n 6= 0 and ℓ(0) := 0. Then δk−1
0 is a linear map from M !

2−k(N,ψ) to

M !
k

(

N,ψ ·
(−1

·
)

ψ1

ψ0

)

sending each

(3.20) f(z) =
∑

n≥−n0

cnq
n ∈M !

2−k(N,ψ)

to a f1 ∈M !
k

(

N,ψ
(−1

·
)

ψ1

ψ0

)

of the form

(3.21) f1(z) =
∑

n≥−n0

(

cnℓ(n)n
k−1 + “lower order terms”

)

qn

where the “lower order terms” are linear combinations of {c−n0
, . . . , cn−1} with coefficients

independent of f .

4. Possible approach to Question 1.3

We outline an approach based on Theorems 2.1 and 2.2 which could potentially shed light
on Question 1.3. Specifically we will derive a sufficient condition for a map ℓ to give an
affirmative answer to that question. We will first prove a functional equation that the L-
series of a weakly holomorphic modular form must satisfy if the answer to Question 1.3 is
positive. We will then identify a condition that implies that functional equation. Then, by
the Converse Theorem 2.2, we can deduce the modularity of the function f1 of (1.6).
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4.1. Functional equations. Let f be a weakly holomorphic cusp form of weight 2 − k ∈
1
2
− N, level N and Nebentypus ψ with a Fourier expansion of the form (1.4) and such that

f |2−kWN = cf,

for some c ∈ C. (This is only assumed for simplicity). We assume that the statement of
Question 1.3 holds and therefore, that there exists a bounded ℓ : N → C, independent of f ,
such the function

f1(z) =
∑

n≫−∞
cnℓ(n)n

k−1qn

belongs to M !
k(N

′, ψ′), for some N ′ ∈ N and some character ψ′ mod N ′. Finally, we assume
that, if f |2−kWN = cf , for some c ∈ C, then f1|2−kWN1

= cλf1, for some λ ∈ C, as is to be
expected for a useful Bol-style operator.

The Direct Theorem 2.1 then implies that for each character χ mod D with (D,NN ′) = 1
and for each compactly supported ϕ : R+ → C we have

Lf (χ, ϕ) = ikcψD((−1)
3

2
−kN)

N
k
2χ(−N)ψ(D)

εD
Lf (χψD, ϕ|kWN)(4.1)

Lf1(χ, ϕ) = ikcλ
ψD

(

(−1)k−
1

2N ′
)

χ(−N ′)ψ′(D)

εD(N ′)
k
2
−1

Lf1(χψD, ϕ|2−kWN ′)(4.2)

for every character χ modulo D for (D,N ′) = 1.
There is a relation between Lf(χ, ϕ) and Lf1(χ, ϕ): We let h be a smooth function on R+

such that h(n) = ℓ(n) for n ∈ Z and we set

(4.3) αD(ϕ) := L−1

(

(

Dp

2π

)k−1

h

(

Dp

2π

)

(Lϕ)(p)
)

,

Then, for all characters χ modulo D with (D,NN ′) = 1. we have

(4.4) Lf1(χ, ϕ) =
∑

n≫−∞
τχ(n)cnn

k−1ℓ(n)(Lϕ)
(

2πn

D

)

=
∑

n≫−∞
τχ(n)cnL(αD(ϕ))

(

2πn

D

)

= Lf(χ, αD(ϕ)).

Thus (4.2) becomes

Lf (χ, αD(ϕ)) = ikcλ
ψD

(

(−1)k−
1

2N ′
)

χ(−N ′)ψ′(D)

εD(N ′)
k
2
−1

Lf (χψD, αD(ϕ|2−kWN ′))

Upon applying (4.1) to the left-hand side, we deduce the following proposition.

Proposition 4.1. Let k ∈ 1
2
+N, N ∈ N and a Dirichlet character ψ mod N . Assume there

is a linear map fromM !
2−k(N,ψ) toM

!
k(N

′, ψ′), for some N ′ ∈ N and a character ψ′ mod N ′,
sending each f ∈M !

2−k(N,ψ) with Fourier expansion (3.20) to a f1 ∈ M !
k(N

′, ψ′) of the form

(4.5) f1(z) =
∑

n≥−n0

cnℓ(n)n
k−1qn
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for an explicit, bounded map ℓ : Z → C independent of f . Further assume that if f |2−kWN =
cf , for some c ∈ C, then f1|2−kWN1

= cλf1, for some λ ∈ C.
Then, for each f ∈ S !

2−k(N,ψ) such that f |2−kWN = cf, for some c ∈ C and for each
piece-wise smooth, compactly supported ϕ on R+, we have

(4.6) Lf (χψD, αD(ϕ)|kWN) = Lf (χψD, bαD (ϕ|2−kWN ′)) .

where

(4.7) b := λψD

(

(−1)2k
N ′

N

)

χ

(

N ′

N

)

ψ′(D)

ψ(D)
(NN ′)−

k
2N ′.

4.2. A sufficient condition for a positive answer to Question 1.3.

Proposition 4.2. Let k ∈ 1
2
+N, λ ∈ C, N,N ′ ∈ N and ψ, ψ′ Dirichlet characters modulo N

and N ′ respectively. Suppose that there is a h : R → C such that, for all smooth compactly
supported ϕ on R and all χ mod D ((D,NN ′) = 1) we have, for all p ∈ R,

(4.8) b

(

Dp

2π

)k−1

h

(

Dp

2π

)

L
(

ϕ

(

1

Nx

)

(Nx)k−2

)

(p)

= L
(

(Nx)−kL−1

(

(

Dp

2π

)k−1

h

(

Dp

2π

)

(Lϕ)(p)
)

(

1

Nx

)

)

(p)

where b is given by (4.7) for some λ ∈ C. Then, if f ∈ M !
2−k(N,ψ) with Fourier expansion

(3.20) and such that f |2−kWN = cf, for some c ∈ C, then the function f1 given by

(4.9) f1(z) :=
∑

n≫−∞
cnn

k−1h(n)qn

belongs to M !
k(N

′, ψ′) and cλf1 = f1|kWN ′.

Proof. We first observe that, by the definition of αD, (4.8) implies

(4.10) bαD (ϕ|2−kWN ′) = αD (ϕ) |kWN ,

By construction, we have Lf1(χ, ϕ) = Lf (χ, αD(ϕ)). Further, since f ∈ M !
2−k(N,ψ) and

f |2−kWN = cf, Theorem 2.1 implies (4.1). Therefore,

Lf1(χ, ϕ) = ikcψD((−1)
3

2
−kN)

N
k
2χ(−N)ψ(D)

εD
Lf (χψD, αD(ϕ)|kWN ).

Then, (4.10) implies that this equals

(4.11) ikcλ
ψD

(

(−1)k−
1

2N ′
)

χ(−N ′)ψ′(D)

εD(N ′)
k
2
−1

Lf(χψD, αD(ϕ|2−kWN ′)).

The last term of (4.11) equals Lf1(χψD, ϕ|2−kWN ′) and thus we have

Lf1(χ, ϕ) = ik
ψD

(

(−1)k−
1

2N ′
)

χ(−N ′)ψ′(D)

εD(N ′)
k
2
−1

Lcλf1(χψD, ϕ|2−kWN ′).

Then Theorem 2.2 implies that f1 ∈ M !
k(N

′, ψ′) and that cλf1 = f1|kWN ′ . �
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This proposition implies that “solving the equation (4.8) in h” would give an affirmative
answer to Question 1.3.

In [DLRR] (Proposition 5.5) we show that this approach works in the case of integral
weight, with map h ≡ 1. The stumbling block to transferring this to the case of half-integral
weight is that some Laplace transform identities crucial in the integral weight case do not
hold or lead to infinite sums in the half-integral case. Therefore, “solving the equation (4.8)
in h” is harder.

For example, in the case of integral weights, the proof of the analogue of (4.8) with h ≡ 1
hinges, in a sense, on with the simple relation J−k(z) = (−1)kJk(z) satisfied by the J-Bessel
functions when k is integer. This relation does not hold for k 6∈ Z, but the explicit expressions
for J−k and Jk do exhibit some similarities. Specifically, for each n ∈ N, we have ([DLMF,
10.47(ii), 10.49(iii)]):

(4.12)

Jn+ 1

2

(z) =

√

2

π
zn+

1

2

(

−1

z

d

dz

)n(
sin z

z

)

,

J−n− 1

2

(z) = (−1)n
√

2

π
zn+

1

2

(

−1

z

d

dz

)n
(cos z

z

)

.

This more complicated pattern may, on the one hand, account for the difficulty in extending
the method of proving [DLRR, Proposition 5.5] to the case of half-integral weight and, on
the other, give hope that a “solution in h” of (4.8) may exist.

We might perhaps complete this picture by pointing out that, for k 6∈ 1
2
Z, there is, as

far as we are aware, no recognisable relation between Jk and J−k. This could be viewed as
consistent with the expectation that no weight k Bol-type operator should exist for such k.
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