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SINGULAR HERMITIAN METRICS AND THE DECOMPOSITION

THEOREM OF CATANESE, FUJITA, AND KAWAMATA

LUIGI LOMBARDI AND CHRISTIAN SCHNELL

Abstract. We prove that a torsion-free sheaf F endowed with a singular hermitian
metric with semi-positive curvature and satisfying the minimal extension property
admits a direct-sum decomposition F ≃ U ⊕ A where U is a hermitian flat bundle
and A is a generically ample sheaf. The result applies to the case of direct images
of relative pluricanonical bundles f∗ω

⊗m
X/Y under a surjective morphism f : X → Y

of smooth projective varieties with m ≥ 2. This extends previous results of Fujita,
Catanese–Kawamata, and Iwai.

1. Introduction

Let f : X → Y be a fibration of smooth projective varieties (over the complex
numbers) and let ωX/Y = ωX ⊗ f∗ω−1

Y be the relative canonical bundle. Motivated by
earlier work of Fujita, Catanese and Kawamata [CK19, Theorem 1.2] proved a direct-sum
decomposition

(1) f∗ωX/Y ≃ U ⊕ A

where U is a hermitian flat bundle and A is a generically ample sheaf, if not zero. We
recall that a coherent torsion-free sheaf A on a smooth projective variety is generically
ample if its restriction to a general complete intersection smooth curve is an ample vector
bundle. In dimension one we say that A is generically ample if it is ample. When Y
is a smooth projective curve, the decomposition (1) is Fujita’s second decomposition in
[Fuj78] (see also [CD17, Theorem 3.3]). Motivated by (1), we introduce the following
definition.

Definition 1. A coherent torsion-free sheaf F admits a Catanese–Fujita–Kawamata

decomposition if there exists an isomorphism F ≃ U ⊕ A where U is a hermitian flat
bundle, and A is either a generically ample sheaf or the zero sheaf.

In this paper we extend decomposition (1) to direct images of relative pluricanonical
bundles.

Theorem 2. If f : X → Y is a surjective morphism of smooth projective complex vari-

eties, then f∗ω
⊗m
X/Y admits a Catanese–Fujita–Kawamata decomposition for every m ≥ 2.

When Y is a smooth projective curve, Theorem 2 was proved by Iwai in [Iwa22,
Theorem 1.4] by showing in greater generality that the reflexive hull

(

f∗ω
⊗m
X/Y

)∗∗
admits

a Catanese–Fujita–Kawamata decomposition for any smooth projective variety Y and
m ≥ 1.
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2 LUIGI LOMBARDI AND CHRISTIAN SCHNELL

While the proof of (1) is Hodge-theoretic, the proof of Theorem 2 is based on the
fact that, for any m ≥ 2, the sheaf f∗ω

⊗m
X/Y carries a canonical singular hermitian metric

with semi-positive curvature. Furthermore, this metric satisfies the so-called minimal

extension property (cf. §2, [PT18, Theorem 1.1] and [HPS18, Theorem 27.1]). This is a
property that stems from Ohsawa–Takegoshi’s extension theorem with optimal bounds
and allows one to extend local sections across subsets of measure zero with a control
on the L2-norm. Instances of bundles satisfying the minimal extension property are
pseudo-effective line bundles and Nakano semi-positive vector bundles. Theorem 2 is an
application of the following theorem.

Theorem 3. Let F be a coherent torsion-free sheaf on a smooth projective variety Y
endowed with a singular hermitian metric with semi-positive curvature and satisfying the

minimal extension property. Then F admits a Catanese–Fujita–Kawamata decomposi-

tion.

Proof of Theorem 2. By [PT18, Theorem 1.1] and [HPS18, Theorem 27.1] the push-
forward f∗ω

⊗m
X/Y admits a singular hermitian metric with semi-positive curvature and

satisfying the minimal extension property for any m ≥ 2. The result follows by Theorem
3. �

As an application of Theorem 2, we prove a structure theorem for the sheaves
f∗ω

⊗m
X/Y with m ≥ 2.

Theorem 4. Let f : X → Y be a fibration of smooth projective complex varieties and

denote J = {m ∈ N≥2

∣

∣ f∗ω
⊗m
X/Y 6= 0 }. Suppose there exists an open subset U ⊂ Y such

that: codim(Y rU) ≥ 2, the morphism f is smooth over U , and ωV/U is f |V -semi-ample

where V = f−1(U). Then f∗ω
⊗m
X/Y is either generically ample for all m ∈ J , or hermitian

flat for all m ∈ J .

In §4 we collect further instances of Catanese–Fujita–Kawamata decompositions.
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2. The minimal extension property

Let Y be a complex manifold of positive dimension n and let (F , h) be a torsion-
free sheaf endowed with a singular hermitian metric. We refer to [HPS18, §19] for
the definition of singular hermitian metrics with semi-positive curvature on torsion-free
sheaves. Denote by B ⊂ Cn the open unit ball centered at the origin with volume
µ(B) = πn/n!. Moreover let Fy be the fiber of F at a point y ∈ Y over which F is
locally free. We recall the definition of the minimal extension property introduced in
[HPS18, Definition 20.1].

Definition 5. The pair (F , h) satisfies the minimal extension property if there exists an
analytic nowhere dense closed subset Z ⊂ Y such that F is locally free on Y \Z, and for
every embedding ι : B →֒ Y of the open unit ball centered at ι(0) = y ∈ Y \Z, and vector
v ∈ Fy of length

∣

∣v
∣

∣

h,y
= 1, there exists a holomorphic section s ∈ H0(B, ι∗F) such that

s(0) = v and
1

µ(B)

∫

B

∣

∣s
∣

∣

2

h
dµ ≤ 1.

We recall a few properties of the minimal extension property from [HPS18].

Proposition 6. Let (F , h) be a torsion-free sheaf endowed with a singular hermitian

metric satisfying the minimal extension property and let b : F →֒ G be an inclusion of

torsion-free sheaves. If b is generically an isomorphism, then h extends to a singular

hermitian metric hG on G satisfying the minimal extension property. Moreover, if h has

semi-positive curvature, then hG has semi-positive curvature as well.

Proof. The proposition is essentially proved in [HPS18, Proposition 19.3] where it is
stated in greater generality. It only remains to note that the minimal extension property
holds for (G, hG), but this is true because every section of F is also a section of G. �

Proposition 7. Let (F , h) be a torsion-free sheaf endowed with a singular hermitian

metric satisfying the minimal extension property. If ϕ : F ։ E is a quotient onto a

torsion-free sheaf and h′ is the induced metric, then (E , h′) satisfies the minimal extension

property.

Proof. Let Z = Z(F) be as in Definition 5 and let S(E) be the locus where E is not
locally free. Set Z ′ = Z ∪ S(E) and let y ∈ Y \Z ′. For w ∈ Ey the induced metric h′ on
E is defined by

(2)
∣

∣w
∣

∣

h′,y
= inf{

∣

∣v
∣

∣

h,y

∣

∣ v ∈ Fy and ϕy(v) = w }.

(If ϕy = 0, then the metric is +∞ for all w 6= 0.) Now let w ∈ Ey be such that
∣

∣w
∣

∣

h′,y
= 1

and let B ⊂ Y be the embedding of the unit ball centered at y ∈ Y \Z ′. Then there exists
v ∈ Fy such that

∣

∣v
∣

∣

h,y
= 1 and, by the minimal extension property of F , a holomorphic

section s ∈ H0(B,F|B) such that s(0) = v and 1
µ(B)

∫

B

∣

∣s
∣

∣

2

h
dµ ≤ 1. As

∣

∣ϕ(s)
∣

∣

h′,y
≤

∣

∣s
∣

∣

h,y

for almost every y ∈ B, this yields inequalities

1

µ(B)

∫

B

∣

∣ϕ(s)
∣

∣

2

h′ dµ ≤
1

µ(B)

∫

B

∣

∣s
∣

∣

2

h
dµ ≤ 1.

�
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The following result generalizes [HPS18, Theorem 26.4].

Proposition 8. Suppose Y is a compact complex manifold and let (F , h) be a torsion-free

sheaf endowed with a singular hermitian metric of semi-positive curvature and satisfying

the minimal extension property. If f : F ։ U is a quotient onto a vector bundle U
endowed with a smooth hermitian flat metric, then there exists a morphism s : U → F
such that f ◦ s = idU .

Proof. Set r = rk
(

U
)

> 0. The bundle U is associated to a representation π1(Y ) → U(r)
of the fundamental group of Y to the unitary group U(r). Hence U decomposes as a
direct sum of vector bundles arising from irreducible unitary representations. Without
loss of generality we can suppose that U is irreducible.

Consider the quotients

F ⊗ U∨
։ U ⊗ U∨ tr

։ OY

where the first is induced by f and the second is the trace map of U . Since the metric on
U , and hence on U∨, is flat, the induced singular hermitian metric on the sheaf F⊗U∨ has
semi-positive curvature and the minimal extension property. By [HPS18, Theorem 26.4]
there exists a splitting s′ : OY → F ⊗U∨, and hence a non-trivial morphism s′′ : U → F
such that f ◦ s′′ 6= 0. By Schur’s Lemma the composition f ◦ s′′ is an isomorphism and
s := s′′ ◦ (f ◦ s′′)−1 splits f . �

Remark 9. Following [HIM22, Theorem 1.4] the previous proposition remains valid
when F is reflexive and h does not necessarily satisfy the minimal extension property.

Finally we recall the following theorem [HPS18, Theorem 26.1] which is based on
an earlier result of Cao and Păun [CP17, Lemma 5.3]. We define the determinant of a

torsion-free sheaf F 6= 0 as det(F) =
(
∧rk(F)F

)∗∗
.

Theorem 10. Let Y be a compact complex manifold and let (F , h) be a nonzero torsion-

free sheaf endowed with a singular hermitian metric. Suppose h has semi-positive curva-

ture and satisfies the minimal extension property. If c1
(

det(F)
)

= 0 in H2(Y,R), then
F is locally free, h is smooth and (F , h) is hermitian flat.

3. Catanese–Fujita–Kawamata decompositions

3.1. Proof of Theorem 3. Set n = dimY . We may suppose n > 0 and F 6= 0.
By [HPS18, Proposition 25.1, §26 and Definition 19.1] the line bundle det(F) admits a
singular hermitian metric with semi-positive curvature. Hence det(F) is pseudo-effective
and for any very ample line bundle A on Y the degree of F satisfies

degA(F) :=
(

An−1 · F
)

≥ 0

by Nakai–Moishezon’s Theorem. We define the A-slope of F as

µA(F) :=
degA(F)

rk(F)
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and say that it is semistable (with respect to A) if for every nonzero coherent sub-module
E ⊂ F the inequality µA(E) ≤ µA(F) holds. Let

(3) 0 = N0 ( N1 ( . . . ( Nd = F

be the Harder–Narasimhan filtration of F . Hence for any i = 1, . . . , d the quotients
Ni/Ni−1 are torsion-free and semistable. Moreover the slopes

µAi := µA(Ni/Ni−1)

satisfy

µA1 > µA2 > . . . > µAd

[Mar81, Proposition-Definition 1.13]. We denote by

Q := F/Nd−1 = Nd/Nd−1

the minimal destabilizing quotient of F and set

L := det(Q)

for the determinant of Q. By [PT18, Lemma 2.4.3] and [HPS18, Proposition 25.1]
both Q and L admit a singular hermitian metric with semi-positive curvature. Hence
L is pseudo-effective and degA(L) ≥ 0. We distinguish two cases: degA(L) > 0 and
degA(L) = 0.

Let’s begin with the case degA(L) > 0. We are going to show that F is already
generically ample. LetH = A⊗a be a very ample line bundle with a≫ 0 so that Flenner’s
Theorem [HL10, Theorem 7.1.1] applies to a general complete intersection smooth curve
C cut out by divisors in |H| and contained in the locus where F is locally free. It follows
that the Harder–Narasimhan filtration (3) of F restricts to the Harder–Narasimhan
filtration

0 = M0 ( M1 ( . . . ( Md = F|C

of F|C . Here the sheaves Mi := Ni|C are locally free and semistable, and

deg
(

Mi/Mi−1

)

rk
(

Mi/Mi−1

) >
deg

(

Mi+1/Mi

)

rk
(

Mi+1/Mi

)

for all i = 1, . . . , d− 1. Since

deg
(

Mi/Mi−1

)

=
(

Hn−1 · Ni/Ni−1

)

= an−1
(

An−1 · Ni/Ni−1

)

,

the minimal slope of F|C satisfies

µmin

(

F|C
)

:=
deg

(

Md/Md−1

)

rk
(

Md/Md−1

) = an−1µAd = an−1degA(L)

rk(Q)
> 0.

By [Bre04, Theorem 2.1] F|C is an ample bundle. In this case we set U = 0 and A = F .

Now let us suppose that degA(L) = 0. We will first show that c1(L) = 0 in H2(Y,R).
Let H = A⊗a be a very ample line bundle as before with a sufficiently large. Let
D1, . . . ,Dn−2 ∈ |H| be general members such that for all i = 2, . . . , n − 2 each partial
intersection

Vi := D1 ∩ D2 ∩ . . . ∩ Di
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is a smooth and irreducible ample divisor in Vi−1. Hence S := Vn−2 is a smooth surface
with [S] = Hn−2 in H4(Y ;Z) such that the restriction map

(4) H2(Y ;Z) → H2(S;Z) is injective

(see Lefschetz’s Hyperplane Theorem [Laz04, Theorem 3.1.17]). Moreover, we can choose
the general divisors Di ∈ |H| such that the restrictions L|Vi are pseudo-effective. Hence

0 =
(

Hn−1 · L
)

=
(

H|S · L|S
)

from which we deduce that L|S is numerically trivial as H|S is ample and L|S is a limit
of effective classes (cf. [Laz04, Theorem 1.4.29]). By (4) the claim follows.

Since c1(L) = 0, by Proposition 7 and Theorem 10 the bundle Q is hermitian flat.
Moreover, by Proposition 8 there exists a decomposition F ≃ Q⊕Nd−1 so that we only
need to prove that Nd−1 is generically ample (or zero). Let C be a general complete
intersection smooth curve cut out by divisors in |H| and consider the Harder–Narasimhan
filtration

0 = M0 ( M1 ( . . . ( Md−2 ( Md−1,

of Md−1 :=
(

Nd−1

)

|C where, as before, Mi := Ni|C . As the minimal slope of Md−1

satisfies

µmin

(

Md−1

)

:=
deg

(

Md−1/Md−2

)

rk
(

Md−1/Md−2

) = an−1µAd−1 > an−1µAd = an−1degA(L)

rk(Q)
= 0,

the bundle Md−1 is ample. In this case we set U = Q and A = Nd−1.

4. Further applications

Corollary 11. Let f : X → Y be a surjective morphism of smooth projective varieties

and let L be a semiample line bundle on X. Then f∗(ωX/Y ⊗ L) admits a Catanese–

Fujita–Kawamata decomposition.

Proof. As a consequence of the semiampleness, the line bundle L admits a smooth hermit-
ian metric h with semi-positive curvature; in particular, the multiplier ideal I(h) = OX

is trivial. By Păun–Takayama’s theorem [PT18, Theorem 1.1] and [HPS18, Theorem
21.1], f∗(ωX/Y ⊗L) admits a singular hermitian metric with semi-positive curvature and
the minimal extension property. The corollary follows from Theorem 3. �

Corollary 12. If f : X → Y is a smooth fibration of smooth projective varieties and E
is a Nakano semi-positive vector bundle on X, then Rjf∗(ωX/Y ⊗E) admits a Catanese–

Fujita–Kawamata decomposition for every j ≥ 0.

Proof. The main result of [MT08, Theorem 1.1] proves that Rjf∗(ωX/Y ⊗E) is a Nakano
semi-positive vector bundle for all j ≥ 0. On the other hand a Nakano semi-positive
vector bundle satisfies the minimal extension property (cf. [SY23, Example 2.16]). The
result follows by Theorem 3.

�
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Remark 13. As a further example, Iwai and Matsumura prove that a nef cotangent
bundle Ω1

X of a smooth projective variety admits a Catanese–Fujita–Kawamata decom-
position (cf. [IM22, Proposition 4.2]).

Remark 14. Let f : X → A be a surjective morphism from a smooth projective complex
variety X to an abelian variety A. By employing [LPS20, Theorem C] it is possible to
check that the hermitian flat part of the Catanese–Fujita–Kawamata decomposition of
f∗ω

⊗m
X/A (m ≥ 1) consists of a direct-sum of finitely many torsion line bundles in Pic0(A).

5. Proof of Theorem 4

In this section we prove Theorem 4. In order to do so, we begin by recalling the
following result of Esnault and Viehweg, which in fact holds under more general assump-
tions.

Given a fibration f : X → Y of varieties, a line bundle L on X is f -semi-ample if
for some positive integer N > 0 the natural morphism f∗f∗L

⊗N → L⊗N is surjective.

Theorem 15. Let g : X → C be a smooth fibration from a smooth projective variety to

a smooth projective curve such that ωX/C is g-semi-ample. If det(g∗ω
⊗m
X/C) is an ample

line bundle for some m ≥ 1, then for all m ≥ 2 the bundle g∗ω
⊗m
X/C is ample, if not the

zero sheaf.

Proof. The proof is a special case of [EV91, Theorem 0.1]. �

Corollary 16. Let g : X → C be a smooth fibration from a smooth projective vari-

ety to a smooth projective curve such that ωX/C is g-semi-ample. Denote J = {m ∈

N≥2

∣

∣ g∗ω
⊗m
X/C 6= 0}. Then either g∗ω

⊗m
X/C is ample for every m ∈ J , or hermitian flat for

every m ∈ J .

Proof. By Theorem 3 g∗ω
⊗m
X/C decomposes as g∗ω

⊗m
X/C ≃ Um⊕Am with Um hermitian flat

(or zero), and Am ample (or zero). If Am = 0 for all m ∈ J , then g∗ω
⊗m
X/C is hermitian

flat for every m ∈ J and the proof is complete. On the other hand, if Am 6= 0 for some
m ∈ J , then det

(

g∗ω
⊗m
X/C

)

is ample, and by Theorem 15 the bundle g∗ω
⊗m
X/C is itself ample

for every m ∈ J . �

Lemma 17. Let f : X → Y be a fibration of smooth projective varieties. Then for

any sufficiently general hyperplane section H ⊂ Y the variety XH := f−1(H) is smooth

and irreducible. Moreover, if m is a positive integer, then there is an isomorphism

f∗ω
⊗m
X/Y |H ≃ g∗ω

⊗m
XH/H where g := f |XH

.

Proof. The fact that XH is smooth and irreducible follows by Bertini theorem, as stated
in [Jou83, Theorem 6.3]. The following argument is inspired by [Kol86]. Consider the
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following cartesian diagram

XH
�

� j
//

g

��

X

f

��

H �

� i
// Y

where i and j are the natural inclusions. There is a short exact sequence for any m ≥ 1

0 → ω⊗m
X/Y ⊗OX(−XH) → ω⊗m

X/Y → j∗ω
⊗m
XH/H → 0

since NXH/X ≃ g∗NH/Y and ω⊗m
X/Y |XH

≃ ω⊗m
XH/H . By taking higher direct images, there

is a long exact sequence

0 → f∗ω
⊗m
X/Y ⊗OY (−H) → f∗ω

⊗m
X/Y → i∗g∗ω

⊗m
XH/H →

→ R1f∗ω
⊗m
X/Y ⊗OY (−H) → R1f∗ω

⊗m
X/Y → i∗R

1g∗ω
⊗m
XH/H → . . .

. . . → Rjf∗ω
⊗m
X/Y ⊗OY (−H) → Rjf∗ω

⊗m
X/Y → i∗R

jg∗ω
⊗m
XH/H → . . .

For every index j ≥ 0 the morphism ψj : R
jf∗ω

⊗m
X/Y ⊗OY (−H) → Rjf∗ω

⊗m
X/Y is obtained

by tensoring the natural inclusion OY (−H) → OY with Rjf∗ω
⊗m
X/Y . Hence, for a general

hyperplane section H, which does not contain any associated subvariety of Rjf∗ω
⊗m
X/Y ,

the morphism ψj is injective. For j = 0 it follows that the following sequence

(5) 0 → f∗ω
⊗m
X/Y ⊗OY (−H) → f∗ω

⊗m
X/Y → i∗g∗ω

⊗m
XH/H → 0

is short exact. The desired isomorphism is obtained by restricting (5) to H. �

Repeated applications of the previous lemma yield the following corollary.

Corollary 18. Let f : X → Y be a fibration of smooth projective varieties. Then for a

general complete intersection smooth curve C in Y the variety XC = f−1(C) is smooth

and irreducible. Moreover, if m is a positive integer, then there is an isomorphism

f∗ω
⊗m
X/Y |C ≃ g∗ω

⊗m
XC/C where g := f |XC

.

Proof of Theorem 4. Set n = dimY . Thanks to Corollary 16 we can assume that n ≥ 2.
Moreover, without loss of generality we can suppose that J 6= ∅. Recall that for every
m ∈ J there exists a decomposition

(6) Fm := f∗ω
⊗m
X/Y ≃ Um ⊕Am

where Um is hermitian flat (or zero), and Am is generically ample (or zero). If Am = 0
for all m ∈ J , then Fm is hermitian flat for every m ∈ J and the proof is complete. We
may suppose that there exists an index m0 ∈ J such that Am0

6= 0. We aim to prove
that Um = 0 for all m ∈ J .

Let U ⊂ Y be an open subset as in the statement of the theorem and fix a very ample
line bundle H on Y . Moreover, let C ⊂ U be a general complete intersection smooth
curve cut out by divisors in |H| such that deg(Am0

|C) > 0. If g : XC → C denotes the
restriction of f to XC := f−1(C), then by Corollary 18 there is an isomorphism

(7) 0 6= Fm0
|C ≃ g∗ω

⊗m0

XC/C ≃ Am0
|C ⊕ Um0

|C .
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Hence we have
deg

(

det(g∗ω
⊗m0

XC/C)
)

=
(

det(Am0
) · C

)

> 0

and by Corollary 16 we conclude that

(8) g∗ω
⊗k
XC/C is ample for all k ∈ J.

If m ∈ J is an arbitrary index, we can select a curve C (depending on m) as above, and
general enough so that also the following isomorphism

(9) 0 6= Fm|C ≃ g∗ω
⊗m
XC/C

holds. By (6), (8) and (9) the bundle g∗ω
⊗m
XC/C ≃ Um|C ⊕Am|C is ample, and therefore

Um|C itself is ample, if not trivial. Since
(

det(Um) · C
)

= 0, this forces det(Um)|C = 0,
and thus Um = 0. �
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