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Abstract

In this thesis, the exactly solvable DUIRF model of dual-unitary quantum circuits is generalised

to noisy dynamics. When replacing conventional IRF gates with local quantum channels, we

impose that solvability properties are preserved in circuits of this new class of IRF channels.

This gives rise to several unitality constraints which allow to reduce the number of independent

parameters in the matrix representation of the channel. We then explicitly parameterise an

interesting subset of IRF channels which cannot be represented in the DUIRF framework and

which goes beyond convex combinations of dual-unitary gates. Furthermore, we elaborate on

the specific structure of these quantum channels that appear to be in one-to-one correspon-

dence to constructions of CNOT gates. Besides that, we conclude that both the Completely

Depolarising and Dephasing Channel are incompatible with the solvability constraints.
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CHAPTER 1

Introduction

1.1 Motivation
We are nowadays witnessing a second quantum revolution giving rise to many new technologies

and applications of quantum mechanics. It is of main interest to study the behaviour of quantum

many-body systems that serve as processors in the thriving field of quantum computation. In

this work, we are going to apply the methods of quantum information which allow to examine

the physical evolution of such quantum systems. Given a quantum state, one typically visualises

manipulations on this system with a network of quantum gates, also referred to as the quantum

circuit. However, in many physically relevant setups, the complexity of the latter does not allow

to perform time and memory efficient computations on it such that special constraints have

to be imposed on the constituent quantum gates. The so-called dual-unitary quantum circuits

are prominent classes of exactly solvable models in one spatial dimension that guarantee such

efficiency property.

Nonetheless, dual-unitary dynamics does not directly apply to real-world systems because these

are always subject to quantum noise. Therefore, in [KS23], the dual-unitary model has been

generalised by substituting dual-unitary gates for local quantum channels. This is a promising

approach since exact solutions within this framework already include noisy dynamics. In the

same work, they derive solvability conditions on these circuits of quantum channels and outline

how correlation functions may then be computed systematically.

Lately, Tomaž Prosen introduced another class of quantum gates in [Pro21] that also possesses

a dual-unitarity property but exhibits a different gate structure. In contrast to conventional

models, these newly proposed Dual-Unitary Interaction Round-a-Face (DUIRF) quantum gates

locally act over three and not only two qudits. It has been shown in [CLV23] that there exists

a collective representation of any type of dual-unitary gate in the Shaded Calculus formalism.
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In this thesis, we aim to extend the notion of IRF gates to quantum channels, which we will

refer to as IRF channels. This generalisation embeds them in the family of exactly solvable

models of noisy quantum circuits that are highly valuable in the Noisy Intermediate-Scale

Quantum (NISQ) era. In chapter §2, a range of fundamental concepts of quantum information

will be presented. In particular, we will review the notion of a quantum channel from different

physical perspectives. In a second step, we illustrate solvability issues that occur when con-

tracting generic quantum circuits. Chapter §3 presents the principles of the DUIRF model and

provides examples of calculations of two types of correlation functions. In chapter §4, we then

characterise the class of IRF quantum channels and explicitly parameterise a subset of IRF-

channels which preserves solvability and goes beyond convex combinations of DUIRF quantum

gates. Eventually, the results of this work are reviewed in the conclusion §5. Some technical

computations are outsourced to the appendix A.

1.2 Tensor Network Notation

This preface provides a dictionary of notations and conventions applied throughout the thesis.

In the following, we introduce Tensor Network Notation (TNN) which is a convenient diagram-

matic visualisation of tensor manipulations[1]. According to [BC17] one can view this graphical

notation as a generalisation of the Einstein summation convention that allows to keep track of

particularly large numbers of indices in complex computations.

Hereafter, we summarise some fundamental identities that will be essential for the understand-

ing of many statements in the main chapters of this work. In TNN, boxes represent rank-r

tensors whose indices, denoted with little legs, may be grouped into inputs and outputs. By

fixing the value of each index of the tensor, we are left with a single complex number. Hence,

for k + k′ = r, we may identify

Figure 1.1: Rank-r tensor in TNN with input indices i1, ..., ik and output indices i′
1, ..., i′

k′

[1] Tensor Network Notation was first proposed by Roger Penrose in 1971 and applies to various fields of physics
ranging from quantum field theory and general relativity to quantum information theory [BC17].
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The binary tensor product is defined elementwise as [R⊗R′]i
′
1,...,i′

k′ ,j
′
1,...,j′

l′
i1,...,ik,j1,...,jl

= (R)i′
1,...,i′

k′
i1,...,ik

·(R′)j′
1,...,j′

l′
j1,...,jl

which graphically corresponds to merging two boxes:

Figure 1.2: Binary tensor product of the tensors R and R’ in TNN

If the xth and yth index of a tensor have identical dimension, one can perform the partial

trace (trx,yR)i′
1,...,i′

y ,...,i′
k′

i1,...,ix,...,ik
= ∑dx

α=1(R)i′
1,...,α,...,i′

k′
i1,...,α,...ik

that can be represented by connecting the two

legs which are summed over:

Figure 1.3: Partial trace over the indices ix and i′
y of a tensor in TNN

Indices may be grouped and split freely taking advantage of row- or column-major ordering

methods. For any bipartition of k and k′ indices there exists a bijection of tensor elements

to elements of an ordinary matrix of suitable dimensionality, referred to as the bisection of

the tensor along this bipartition. For instance, the grouping of input and output indices to

(R)I′
I ∈ C(d1...dk)×(d′

1...d′
k′ ) with I = i1 + d1 · i2 + d1d2 · i3 + ... + d1...dk−1 · ik and I ′ = i′

1 + d′
1 · i′

2 +

d′
1d

′
2 · i′

3 + ... + d′
1...d

′
k′−1 · i′

k′ yields the following graphical representation:

Figure 1.4: Grouping of the input and output indices of a tensor in TNN

Since any higher dimensional tensor may henceforth be thought of as a matrix, one can also find

a singular value decomposition (SVD) with respect to this bisection (R)i′
1,...,i′

k′
i1,...,ik

= ∑
α(U)i′

1,...,i′
k′

α ·
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(S)α
α · (V †)α

i1,...,ik
where U and V denote isometries (V †V = U †U = 1) and S a diagonal matrix.

In TNN this corresponds to

Figure 1.5: Singular value decomposition of a tensor in TNN

Tensor networks are now composed of several tensors connected by legs that indicate summa-

tions over the common indices. The dimensionality of the global tensor can be evaluated by

multiplying the dimensions of all free legs. However, the difficulty of computing its value for

fixed indices might strongly depend on the structure of the network. It is therefore of interest

to find techniques to reduce the complexity of the global tensor, such as by imposing conditions

on its constituents, for time and memory efficient contractions. In the context of this work,

we want to consider ensembles of finite dimensional d-level quantum systems associated with

Hilbert spaces H ∼= Cd. Pure states may be depicted as boxes with a single leg whereas the

illustration of mixed states in terms of density matrices necessarily requires both an input and

output leg. The action of quantum mechanical operators on quantum states is then realized by

simple contractions of the respective boxes.



CHAPTER 2

Fundamental Concepts of Quantum Information

This chapter provides an introduction to the fundamental principles of quantum information

which are relevant for this work. We assume that the state of a quantum system is completely

characterized by its density operator ρ which per definition needs to satisfy the conditions

xxxx (i) ρ ≥ 0 Positive Semi-Definiteness

xxxx (ii) tr(ρ) = 1 Normalisation

Note that hermiticity ρ† = ρ is implicitly included in the first definition. From this postulate,

we develop ways to transmit quantum information through quantum channels as presented in

chapter §2.1. In a second step, we illustrate computational aspects in order to understand

solvability issues of large quantum circuits. This should motivate the relevance of dual-unitary

models which are worked with from chapter §3.1 on.

2.1 Notions of Quantum Channels

Having defined the properties of quantum states, we are interested in the propagation of quan-

tum information over time. Such mappings between valid quantum states are referred to as

quantum channels. There exist several equivalent representations of the latter originating from

different physical perspectives on the quantum system. Hereinafter, we will discuss the most

important ones and link them to each other.

2.1.1 Completely Positive Trace-Preserving Maps

We first exhibit the most axiomatic approach. According to [CLT22] a quantum channel ε

is defined as a completely positive trace preserving map (CPTM) between quantum states
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ρ
CP T7−−−→ ε(ρ) ≡ ρ′ where one may identify ρ′ ≡ ρ(t) as the time evolved quantum state. If the

density operator ρ acts on a Hilbert space H , we may consider arbitrary extensions H ⊗Hext.

Quantum channels are then defined as mappings satisfying the following conditions:

(iii) (ε ⊗ 1d)(ρ̃) ≥ 0 ∀d = dim(Hext) Complete Positivity

(iv) tr(ρ′) = tr(ρ) Trace Preservation

where ρ̃ ∈ H ⊗Hext. It is also customary to assume that ε is a linear map such that it respects

convex mixtures of inputs. If we associate a quantum state to the environment living in Hext

and coupled with our quantum state ρ, complete positivity ensures that the composite state

evolves physically under all circumstances. Since experimentally one can never fully isolate a

quantum system, this condition allows to examine such general open quantum systems. Trace

preservation however mathematically guarantees the conservation of probabilities.

2.1.2 The Kraus Representation Theorem

For any quantum channel there can equivalently be found an explicit representation in terms of

Kraus operators as derived in this theorem. Following [Pre98] and [Sch96], let us again consider

the composite Hilbert space H ⊗ Hext of a system with its environment. For the proof we will

apply the Relative State Method which is shortly described in the appendix A.1.

In a first step, we evaluate the image of a maximally entangled state ρ̃ = |Ψ⟩ ⟨Ψ| in the

composite system under the action of ε ⊗ 1ext expressed as an ensemble of pure states

(ε ⊗ 1ext)(|Ψ⟩ ⟨Ψ|) =
∑

k

qk |Φ⟩k ⟨Φ|k (2.1)

where qk > 0 and ∑
k qk = 1. Note that for completely positive ε the resulting quantum state

will again be positive semi-definite. We now implement the relative state method using the

notion of an index state |ϕ⟩int and relative state |ϕ∗⟩ext as presented in the appendix to show

ε(|ϕ⟩int ⟨ϕ|int) = ext ⟨ϕ∗| (ε ⊗ 1ext)(|Ψ⟩ ⟨Ψ|) |ϕ∗⟩ ext =
∑

k

qk ext ⟨ϕ∗|Φk⟩ ⟨Φk|ϕ∗⟩ext (2.2)

Furthermore, we may identify the Kraus-Operators Fk acting on H defined by the action

Fk : |ϕ⟩int 7→ √
qk ext ⟨ϕ∗|Φk⟩ (2.3)

Since the index state and relative state are linked by an anti-linear mapping, all Fk are linear.
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This allows us to also consider arbitrary mixed states as inputs in (2.2). Therefore any quantum

channel ε acting over H can be expressed in the Kraus decomposition given by

ε(ρ) =
∑

k

FkρF †
k with

∑
k

F †
kFk = 1 Kraus Representation (2.4)

where the second equation needs to hold for trace preservation. The number of Kraus operators

needed to represent the quantum channel depends on the rank of the image (2.1) that is bounded

by dim(H ). Moreover, one should notice that this representation is not unique: Any unitary

transformed set of Kraus operators F̃k′ = ∑
k FkUkk′ gives rise to the same Kraus decomposition.

We can conversely recover an ensemble representation of the quantum channel from a given

Kraus decomposition. Let us adopt the notation from A.1, that is we have orthonormal bases

{|αi⟩int}n
i=1 and {|βi⟩ext}d

i=1. Then if we know the action on the basis of H given by

ε(|αi⟩int ⟨αj|int) =
∑

k

Fk |αi⟩int ⟨αj|int F †
k (2.5)

we may consider the extended map on the maximally entangled state |Ψ⟩

(ε ⊗ 1ext)(|Ψ⟩ ⟨Ψ|) = 1
n

n∑
i,j

(Fk |αi⟩int ⊗ |βi⟩ext)(int⟨αj| F †
k ⊗ ⟨βj|ext) =

∑
k

qk |Φk⟩ ⟨Φk| (2.6)

such that one may retrieve √
qk |Φk⟩ = 1√

n

∑n
i Fk |αi⟩int ⊗|βi⟩ext. In that context, it is illuminat-

ing to point out how to interpret the unitary degree of freedom which is induced by the Kraus

operators. For that, we will have to introduce the purification of a quantum state, a concept

which is discussed in the appendix A.2. Let us consider two Kraus representations √
qk |Φk⟩

and √
pk′ |Φ′

k′⟩ of the same quantum channel and study their purification

|Υ⟩ =
∑

k

√
qk |Φk⟩ ⊗ |γk⟩pur and |Υ′⟩ =

∑
k′

√
pk′ |Φ′

k′⟩ ⊗ |δk′⟩pur (2.7)

living in the same purification space Hpur with dim(Hpur) = m and spanned by two different

sets of orthonormal bases {|γk⟩pur}m
k=1 and {|δk′⟩pur}m

k′=1. The GHJW theorem in A.2 asserts

that purifications of any such Kraus representations are related by a unitary transformation in

the purifying system. It therefore follows that

|Υ′⟩ =
∑
k′

√
pk′ |Φ′

k′⟩ ⊗ |δk′⟩pur =
∑

k

√
qk |Φk⟩ ⊗ Upur |γk⟩pur =

∑
k′,k

√
qk |Φk⟩ ⊗ Upur

kk′ |δk′⟩pur (2.8)

where in the last step we used that there is a unitary transformation between the bases of the

purification space. Hence √
pk′ |Φ′

k′⟩ = ∑
k

√
qk |Φk⟩ Upur

kk′ with unitary Upur
kk′ ≡ Ukk′ from which
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we conclude F̃k′ = ∑
k FkUkk′ . In this regard, the unitary invariance of the Kraus operators is

a natural consequence of the GHJW theorem.

In keeping with the preface, let us now present an intuitive way to visualise the Kraus decom-

position with the help of TNN. We will especially operate in the Folded Picture Representation

which is introduced in the setting of [KS23]. From this point of view, density matrices are

vectorised in order to avoid redundant graphical notation. If {|n⟩} constitutes a basis of Cd

which induces a basis {|m⟩ ⟨n|} for Cd ⊗Cd, then we map |m⟩ ⟨n| vec7−→ |m⟩⊗|n⟩. In other words,

we bend input indices upwards if we read the pictures from bottom to top. Now note that (2.4)

is equivalent to a superoperator acting on the density operator of the quantum system. Hence,

we may write ∑
k Fk(·)F †

k
vec7−→ ∑

k Fk ⊗ F∗
k where the ∗ operation arises from the partial trans-

position in the vectorisation process, changing inputs and outputs of the Kraus operators F †
k .

Superoperators ∑
k Fk(·)F †

k have the gentle feature that the operators acting from both sides

on the quantum state are related by a † operation allowing to further compactify the vectorised

notation into a folded picture with identical information:

Figure 2.1: Kraus representation of a quantum channel in the folded picture

Note that in figure (2.1) we indicated the Kraus summation index with a closed wire between

the Kraus operators which is graphically omitted in the folded picture. Quantum states that

are acted on are indicated in gray colour and the timeline should henceforward be read from

bottom to top in the vectorised notation. Moreover, we denote objects in the folded notation

with double lines to stress that the quantum channel acts on a bipartition of indices of the

vectorised state. This graphical method also extends to ensembles of qudits where one only

needs to add the respective number of additional input and output legs to the initial state ρ.

Lastly, let us elaborate on the special case of unitary dynamics. It is obvious to see that for
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trivial Kraus indices the ∑
k disappears in formula (2.4). Then we rename Fk 7→ U such that

ε(ρ) = UρU † with U †U = 1 Unitary Dynamics (2.9)

In graphical notation, one can recognise unitary dynamics directly by the omitted Kraus sum-

mation leg and by the blue colouring which will be applied throughout the whole thesis.

Figure 2.2: Trivial Kraus representation for unitary dynamics in the unfolded picture

2.1.3 The Stinespring Dilation Theorem

In the derivation of the Kraus representation, we treated the most general case of quantum

channels to describe quantum systems coupled to an environment. However, if we also include

the latter into our considerations, the overall dynamics of the closed quantum system will be

unitary according to the postulates of quantum mechanics. The Kraus representation then

naturally arises in the subsystem when tracing out the environment described by a quantum

state |0⟩. This so-called Stinespring Dilation Theorem can be understood in TNN [BC17]:

Figure 2.3: Graphical derivation of the Stinespring Dilation of a quantum channel
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The unitary operator U only possesses three free indices if one keeps the environment state fixed.

It can therefore be replaced by an isometry V (with V †V = 1) which can be identified with the

Kraus operators Fk. One notices that unitary operators Ũ = (1⊗U ′
env)U(1⊗U ′′

env) generate the

same quantum channel for some unitary U ′
env and U ′′

env only acting on the environment [CLT22].

The assumption that the environment is in an initial product state is reasonable in many

practical implementations [NC10]. Typically experimentalists reduce correlations between the

system and the environment to a minimum before the experiment.

2.1.4 The Choi–Jamiołkowski Isomorphism

We have already worked with the Choi state of a quantum channel previously without explicitly

mentioning it and examining its structure. If we consider the maximally entangled state |Ψ⟩

from chapter §2.1.2, then the Choi state is defined with respect to the quantum channel ε as

σε = (ε ⊗ 1ext)(|Ψ⟩ ⟨Ψ|) with trH (σε) = 1ext

n
Choi state (2.10)

According to [CLT22], the Choi-Jamiołkowski Isomorphism describes a one-to-one-correspondence

between any quantum channel ε and a Choi state σε. This becomes apparent in the expression

n trHext [σε(1⊗ ρT )] = n trHext [(ε ⊗ 1ext)(|Ψ⟩ ⟨Ψ|)(1⊗ ρT )] (2.11)

= n ε trHext [(|Ψ⟩ ⟨Ψ|)(1⊗ ρT )] (2.12)

= n ε trHext [(|Ψ⟩ ⟨Ψ|)(ρ ⊗ 1ext)] (2.13)

= n ε(ρ) trHext(|Ψ⟩ ⟨Ψ|) (2.14)

= ε(ρ) (2.15)

where we used the identity (1⊗ ρT ) |Ψ⟩ = (ρ ⊗ 1ext) |Ψ⟩[1] and dim(H ) = dim(Hext) ≡ n.

By taking the partial trace with respect to Hext in (2.10) one may find the Kraus operators

corresponding to that quantum channel as demonstrated in (2.2).

2.2 Aspects of Quantum Circuits

This section gives insights into computational aspects of tensor networks. Namely, we provide

notions of quantum circuits and initial states which they might act on. Eventually, we illustrate

the difficulty of efficiently contracting generic quantum circuits.

x
[1] This can readily be seen by expanding ρ =

∑n
i,j ρij |αi⟩ ⟨αj | and inserting the definition of |Ψ⟩.
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2.2.1 Multipartite Tensor Network States

In the following we will derive an important class of initial states for one-dimensional quantum

systems [BC17]. These so-called Matrix Product States (MPS) typically describe quantum low

energy states of physically realistic systems efficiently. We now construct the TNN representa-

tion of such states step by step.

If one considers a one-dimensional system of L qudits with local Hilbert space dimension d, the

most general ansatz for the quantum state of the composite system reads

⇔ |Ψ⟩ =
d∑

i1,...,iL=1
Ci1,...,iL

|i1⟩ ⊗ ... ⊗ |iL⟩ (2.16)

Figure 2.4: Representation of a generic many-body quantum state in TNN

where all information on the quantum state is stored in the coefficients Ci1,...,iL
. As the number

of coefficients scales exponentially with dL, one tries to find a simpler but still exact represen-

tation of the quantum state. In our case, the idea is to perform successive SVDs (as described

in figure 1.5) to reduce the complexity of our state. At first, let us group the indices i2 to iL

which yields a SVD with respect to the first index i1:

Figure 2.5: First grouping step in the construction of MPS from successive SVDs

where the {|Li⟩} and {|Ri⟩} are orthonormal sets of vectors. The remaining state physically

corresponds to the Schmidt decomposition |Ψ⟩ = ∑
i λi |Li⟩ ⊗ |Ri⟩ with Schmidt coefficients λi.

By repeating this procedure L-1 times on the respective states |Ri⟩, we are left with a decom-

position into local tensors M (i) and singular value tensors λ(i). Contracting the latter into the

local tensors yields the generic form of a matrix product state:

Figure 2.6: Representation of a Matrix Product State in TNN
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We note that by construction the MPS is not unique since we could have grouped the indices

in any arbitrary order. The advantage of this representation comes into play if the number

of non-zero singular values c in the matrices λ(i) can be bounded by a strong area law [2]. In

this case, we may truncate the zero Schmidt coefficients from the singular value tensors and

remain with only O(dLc2) coefficients that exactly express the MPS. In figure (2.6) we call

an uncontracted index a physical index whereas a bond index corresponds to the summation

index between adjacent matrices A(i). Typically, one modifies the final form for convenience

or to capture periodic states by connecting the tensors A
(1)
i1 and A

(L)
iL

. In case of translational

invariance the MPS then writes

⇔ |Ψ[A]⟩ =
d∑

i1,...,iL

tr[Ai1Ai2 ...AiL
] |i1i2...iL⟩ (2.17)

Figure 2.7: Matrix Product State with translational invariance in TNN

We are furthermore interested in treating ensembles of MPS that are realised by so-called Matrix

Product Density Operators (MPDO). A mixed state ρ[A] = |Ψ[A]⟩ ⟨Ψ[A]| may be expressed in

the folded picture where we now also added further indices on the sides to allow for boundary

conditions represented by tensors aL and aR:

Figure 2.8: Matrix Product Density Operator in the folded picture

In chapter §3.2, we will engage with the so-called infinite temperature, or equivalently, maximum

entropy state which is another type of multipartite TNN state. It can be viewed as the state

of maximal disorder where thermal influence is overwhelming quantum coherence phenomena.

It can be represented in the folded notation by a number of local vectorised identities that are

symbolised by small circles [KS23].

⇔ |ρ∞⟩ = |1d ⊗ 1d ⊗ ... ⊗ 1d⟩
dL

xxxxxxxxx (2.18)

Figure 2.9: Infinite temperature state of a quantum many-body system with L qudits

[2] Entanglement rank S0 ≤ log c for some constant c where Sα = 1
1−α log tr(ρα) denotes the α-Rényi entropy.
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2.2.2 Quantum Circuit Theory

Having prepared our system in an initial quantum state, we may simulate the physical evolution

by acting quantum gates on them. In the case of closed quantum systems, the overall evolution

has to be unitary. In fact, it can be shown that any unitary operation U acting over a Hilbert

space H = (Cd)⊗L may be decomposed into a product of gates belonging to a small universal

set of gates of which there exist many equivalent ones [Wan23]. Hence, we have to deal with

a network of quantum gates, called quantum circuit, which reduces the task to the analysis of

the constituent local unitary operations. Such qudit gates can themselves be reduced to and

therefore be simulated by sequences of lower-dimensional qudit gates.

Figure 2.10: Reduction of a global unitary operation to locally acting unitary gates

In the scope of this work, we mainly engage with tripartite qudit gates introduced in chapter

§3. It is also possible to construct circuits of quantum channels by switching into the folded

picture representation. Such circuits then also capture the dynamics of open quantum systems

whose dynamics do not need to be unitary in principal.

2.2.3 Solvability of Quantum Circuits

We ultimately provide an example that illustrates the computational difficulties when per-

forming contractions of quantum circuits. This motivates the restriction to particular classes

of quantum gates with gentle properties such that important physical computations may be

carried out efficiently (see chapter §3.2).

Let us fix the free indices of the global tensor of an exemplary tensor network [BC17] and only

denote summation indices in the graphical notation in figure (2.11). Since the computation of

(2.19) does not depend on the order by which the constituent tensors R(j) are contracted, there

are several techniques with varying complexity and practicality to determine the value of the

network. We give two examples of such contractions, also referred to as bubblings: In the first

scenario (figure 2.12), we initially contract the tensors rightwards on top before returning from
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≡
∑

i1,i2,i3,
i4,i5,i6,i7

R
(1)
i1,i3R

(2)
i1,i2,i4R

(3)
i2,i5R

(4)
i3,i6R

(5)
i4,i6,i7R

(6)
i5,i7 (2.19)

Figure 2.11: Computation of quantum circuits

the left on the bottom. Here, the bubbling is marked in gray colour and the partially contracted

tensor, which is kept in memory, in green colour.

Figure 2.12: Inefficient bubbling of a tensor network (sample size L = 3)

This method works for small networks, however, for large ensembles of horizontal length L,

the calculation becomes intractable. At the midpoint of the contraction the green tensor has

rank L and therefore the number of entries scales with dL when assuming bond dimension d.

The required memory and run-time then also grow exponentially which renders the problem

infeasible for large sizes. In contrast, by meandering from left to right, the rank of the green

tensor never exceeds three such that the time and memory cost only scale linearly (figure 2.13).

Figure 2.13: Efficient bubbling of a tensor network (sample size L = 3)

While in these examples there exist both efficient and inefficient bubblings, the graph struc-

ture of other tensor networks does generally not admit any efficient contraction ordering. For

instance, one can mention the two-dimensional grid (figure 2.14). This example is of particular

interest since it is closely related to our setup discussed in §3.1.1. It is clear to see that at any
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point of the contraction the required memory is given by the product of the bond dimensions

of each leg passing through the boundary indicated in blue colour.

Figure 2.14: Contraction of the two-dimensional grid (sample size L = 5)

Near the middle of the contraction, we can expect the memory size to scale exponentially with

the perimeter
√

L of the two-dimensional grid. When referring to solvability in chapter §3.2,

we mean that there exists a simplification of the initial tensor network such that the reduced

quantum circuit may be computed with polynomially scaling operating expense.
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CHAPTER 3

Dual Unitary Interaction Round-a-Face Circuits

3.1 Principles of the DUIRF Model

In this chapter we want to present an interesting class of quantum circuits recently proposed

by Tomaž Prosen in [Pro21]. These so-called Dual-Unitary Interaction Round-a-Face circuits

are composed of locally interacting quantum gates over three qudits of identical Hilbert space

dimension d, hereafter referred to as DUIRF(d). One can comprehend this class as a subset of

the unitary class IRF(d) ⊂ DUIRF(d) fulfilling an additional space-wise unitarity condition.

Let us therefore introduce the structure of Interaction Round-a-Face (IRF-)circuits first and

then deduce the implications imposed on them by this space-unitarity constraint.

3.1.1 Circuits of IRF Quantum Gates

An element UIRF ∈ IRF(d) is defined as the following tripartite quantum gate:

UIRF =
d∑

i,j,k,j′=1
(uik)j′

j |i⟩ ⊗ |j′⟩ ⊗ |k⟩ ⟨i| ⊗ ⟨j| ⊗ ⟨k| (3.1)

where each element of the set {uik ∈ U(d)}i,k∈{1,...,d} is unitary with respect to the input index

j and output index j’. In the graphical notation, such quantum gates can be represented as

2-controlled 3-qudit gates or equivalently as compact faces:

Figure 3.1: IRF-gate in controlled unitary gate and face representation
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We consider the following setup: Let us align L ∈ N qudits on sites x along one dimension

assuming periodic boundary conditions x + L ≡ x for simplicity. Each qudit is living in a

d-dimensional Hilbert space H1 = Cd such that the dL-dimensional composite system reads

H = H ⊗L
1 . One can arrange the IRF circuit by alternately applying the generators U e =∏L

x=1 U IRF
2x−1,2x,2x+1 and U o = ∏L

x=1 U IRF
2x,2x+1,2x+2 where the gates U IRF

i,j,k act on sites i, j and k

respectively. The corresponding quantum circuit is depicted in both the conventional and the

face notation:

Figure 3.2: IRF-circuit in controlled unitary gate and face representation

One should also mention that gauge transformations UIRF 7→ (∆† ⊗g† ⊗∆†) UIRF (∆⊗g ⊗∆)

with g ∈ SU(d) and ∆j′

j = δjj′eiθj with θj ∈ [0, 2π) yield identical quantum circuits, where

one phase θj may be fixed arbitrarily without loss of generality. The time unitarity condition

U †
IRF UIRF = 1 may be written in graphical notation as follows

Figure 3.3: Time unitarity conditions of IRF-gates

where small circles indicate a partial trace along the summed over legs. If we explicitly write

out this unitarity condition for IRF-gates mathematically, we obtain

d∑
m=1

(uik)j′

m(u†
ik)m

j = δjj′ ∀i, k = 1, ..., d Time Unitarity (3.2)

Since unitarity implies that the first identity in the figure (3.3) must also hold when reading it
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in the other time direction from top to bottom, we get a further similar identity:

Figure 3.4: Time unitarity conditions of IRF-gates in the folded picture

By only swapping indices in the coefficients (uik)j′

j 7→ (ujj′)k
i of equation (3.1), let us now define

the dual gate ŨIRF of an IRF-gate in the following manner:

ŨIRF =
d∑

i,j,k,j′=1
(ujj′)k

i |i⟩ ⊗ |j′⟩ ⊗ |k⟩ ⟨i| ⊗ ⟨j| ⊗ ⟨k| (3.3)

which by renaming indices writes

=
d∑

i,j,k,j′=1
(uik)j′

j |j⟩ ⊗ |k⟩ ⊗ |j′⟩ ⟨j| ⊗ ⟨i| ⊗ ⟨j′| (3.4)

where one may identify (ũjj′)k
i := (uik)j′

j . This form suggests to interpret the IRF-gate space-

wise with input index i and output index k which may be expressed in TNN as follows:

Figure 3.5: Dual IRF-gate in controlled gate and face representation

These dual gates may obey a space unitary condition Ũ †
IRF ŨIRF = 1 in analogy to the notion

of unitarity in the conventional time direction.

Figure 3.6: Space-wise unitarity condition of dual IRF-gate

Such condition mathematically translates to

d∑
m=1

(ũjj′)k
m(ũ†

jj′)m
i = δik ∀j, j′ = 1, ..., d Space Unitarity (3.5)
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Similarly, when interpreting along the other space direction, one may find the second space

unitarity condition. Hence, we conclude

Figure 3.7: Space unitarity conditions of Dual IRF-gates in the folded picture

An element UDUIRF ∈ DUIRF(d) is an IRF-gate fulfilling the time unitarity conditions (3.4)

and whose dual gate also satisfies the space unitarity conditions (3.7). In order to stress that

additional property, dual-unitary dynamics will henceforth be represented in purple colours.

Figure 3.8: Unitarity conditions of the DUIRF-gate in the folded picture

3.1.2 Complete Parametrisation of DUIRF Gates

We now want to review [Pro21] where a complete parametrisation of the DUIRF(2) class was

elaborated. In the same manner, in chapter §4.1 we will parameterise a subset of the generalised

IRF channels. In both cases let us focus on qubits (d = 2): An element of the unitary group

U(2) may be represented in terms of Euler angles as a matrix

uik = eiϕik

 eiνik cos θik eiηik sin θik

−e−iηik sin θik e−iνik cos θik

 (3.6)

with ϕik, νik, ηik, θik ∈ [0, 2π) where i, k = 1, 2. Thus by only considering the time unitarity

condition we are left with 16 real parameters in total. Let us now add the space unitarity

constraint imposed by the dual: ∑d
m=1(ũjj′)k

m(ũ†
jj′)m

i = ∑d
m=1(umk)j′

j (u∗
mi)

j′

j = δik ∀j, j′ = 1, 2

which results in a set of equations for the angles θik:

cos2 θ11 = sin2 θ12, cos2 θ22 = sin2 θ21 (3.7)

cos θ11 cos θ12 + cos θ21 cos θ22 = 0 (3.8)

sin θ11 sin θ12 + sin θ21 sin θ22 = 0 (3.9)
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as well as a set of linear equations for the other angles given by

ν22 = ν12 + ν21 − ν11 (3.10)

η22 = η12 + η21 − η11 (3.11)

ϕ22 = ϕ12 + ϕ21 − ϕ11 (3.12)

We may then also express all the angles in the first set of equations through θ22:

θ11 = θ22 + π, θ12 = θ21 = θ22 + π

2 (3.13)

As we have 10 free independent parameters {θ22, ν11, ν12, ν21, η11, η12, η21, ϕ11, ϕ12, ϕ21}, we assign

the dimension dim DUIRF(2) = 10 to this class of gates. If one recalls the gauge invariance

group of IRF-gates SU(2) ⊗ U(1)⊗(2−1) with 4 free parameters and one includes an overall

phase, we are effectively left with a 5-parametric set of physically not equivalent DUIRF-gates.

3.2 Solvability of DUIRF Circuits

In this chapter, we will give evidence of the advantages when dealing with correlation functions

within the DUIRF framework. Beginning with the computation of spatio-temporal correlation

functions, we then also analyse spatial correlation functions after quantum quenches.

3.2.1 Spatio-temporal Correlation Functions

Let us first return to the space-time lattice illustrated in (3.2). An important physical problem

is the computation of space-time correlation functions of local observables in the tracial, infinite

temperature state, which was introduced in §2.2.1. These are of fundamental interest in many

areas of condensed matter and statistical physics [Pro21]. For a pair of two-site, traceless[1]

observables ax and by acting on sites (x, x + 1) and (y, y + 1) respectively, one defines the

correlation function

fa,b(x, y; t) = lim
L→∞

1
dimH

tr(axU tbyU−t) (3.14)

where U t denotes the unitary operator evolving the quantum system until time t. We may again

switch into the folded picture to further simplify this expression by defining W t = U t ⊗ (U t)∗

and the vectorised operators (3.15), (3.16) and (3.17) where dimH = d is the local Hilbert

space dimension.

[1] This simplification can always be done by redefining a → a − tr(a)/tr(1)1 and similarly for b, as well as
using the linearity of the correlation function [CLV23].
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∥a⟩ = 1
d

d∑
i,i′=1

d∑
j,j′=1

ai′j′

ij (|i′⟩ ⊗ |i⟩) ⊗ (|j′⟩ ⊗ |j⟩) (3.15)

∥b⟩ = 1
d

d∑
i,i′=1

d∑
j,j′=1

bi′j′

ij (|i′⟩ ⊗ |i⟩) ⊗ (|j′⟩ ⊗ |j⟩) (3.16)

∥◦⟩ = 1√
d

d∑
i=1

|i⟩ ⊗ |i⟩ (3.17)

With ∥ax⟩ = ∥◦⟩⊗(x−1) ⊗ ∥a⟩ ⊗ ∥◦⟩⊗(L−x−1) and ∥by⟩ = ∥◦⟩⊗(y−1) ⊗ ∥b⟩ ⊗ ∥◦⟩⊗(L−y−1), equation

(3.14) eventually reduces to the simpler form

fa,b(x, y; t) = lim
L→∞

⟨by∥W t∥ax⟩ (3.18)

which in TNN corresponds to the left side of figure (3.9). By applying the time unitarity

condition (3.4), the quantum circuit can be simplified to the blue shaded faces which in general

does not yet guarantee solvability. If we additionally assume space unitarity (3.7), the quantum

circuit either vanishes or can be computed efficiently.

Figure 3.9: Computation of spatio-temporal correlation functions in TNN

The computations suggest that only if the support of the operators a and b is shifted precisely

by 2t, as on the right side of figure (3.9), we have non vanishing correlation functions. The

time steps are chosen such that a single application of one of the generators U e,o corresponds

to ∆t = 0.5. In case that we allow for dual unitarity on the left side of the upper figure, the

simplifications include the contraction ⟨◦∥a⟩ = ⟨b∥◦⟩ = 0 and therefore yield zero correlations.

Also note that causal interaction between different sites may only happen within the two light

cones originating from the local observables. One therefore says that the light-cone correlators

are non-vanishing along the light rays. We may summarise our result with

fa,b(x, y; t) = δy,x+2t δmod(x,2),1 tr(bK 2t
+ (a)) + δy,x−2t δmod(x,2),0 tr(bK 2t

− (a)) (3.19)
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by expressing the correlators in terms of sequences of CPTMs over the two-site Hilbert space

≡
K−(a) = 1

d
(1⊗ 1⊗ tr)(U †

IRF (1⊗ a)UIRF ) (3.20)

K+(a) = 1
d

(tr ⊗ 1⊗ 1)(U †
IRF (a ⊗ 1)UIRF ) (3.21)

Figure 3.10: Correlation maps of the light cone correlators

The correlation maps K± have large trivial subspace and can still be reduced to a simpler form.

Consider the rank-1 projector D(|j⟩ ⟨j′|) = δj,j′ |j⟩ ⟨j′| and the invariance of the maps under

K−(1⊗ D) = (D ⊗ 1)K− = K− (3.22)

K+(D ⊗ 1) = (1⊗ D)K+ = K+ (3.23)

Let us then define the diagonally projected maps K ′
± = (D ⊗ D)K±(D ⊗ D). Together with

the projector property D2 = D equations (3.22) and (3.23) imply for the diagonally projected

sequence of correlation maps that (K ′
±)t = (D ⊗ D)K t

±(D ⊗ D). In the formula for fa,b we can

therefore substitute tr(bK t
±(a)) = tr(bd(K ′

±)t(ad)) with ad = D ⊗ Da and bd = D ⊗ Db. One

can further specify the matrix elements of the correlation maps in the computational basis to

(K ′
+)i′j′

ij = 1
d

∣∣∣(uij′)i′

j

∣∣∣2 and (K ′
−)i′j′

ij = 1
d

∣∣∣(ui′j)i
j′

∣∣∣2 (3.24)

revealing bistochastic[2] and even dual bistochastic matrices under space-time flipping [Pro21][3].

Since the maps K ′
± annihilate operators acting trivially on only one site, the simplest non-

trivial correlations are two-site observables. In summary, the decay of the correlation along the

light ray is determined by the spectra of the matrices (3.24). The computation time of fa,b only

scales linearly with the size of the quantum circuit, hence we call this model exactly solvable.

3.2.2 Spatial Correlation Functions after Quantum Quenches

In close analogue to the computation of spatial correlation functions after a quantum quench

in [KS23], we demonstrate how these can be computed efficiently for DUIRF quantum circuits.

That is, we consider the spatial correlations of an initial density matrix which has evolved under

some unitary operation:

ga,b(x, y; t) = lim
L→∞

⟨axby∥W t∥ρ(0)⟩ (3.25)

[2] Square matrices x = (x)ij whose columns and rows sum up to one:
∑

i xij =
∑

j xij = 1.
[3] In fact, one can also identify the maps K ′

± with classical Markov chains from probability theory.
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Let us by W t again denote a unitary operation in the folded picture and we further define

the operator ∥axby⟩ = ∥◦⟩⊗(x−1) ⊗ ∥a⟩ ⊗ ∥◦⟩⊗(y−x) ⊗ ∥b⟩ ⊗ ∥◦⟩⊗(L−y−1) which includes two two-

site observables ax and by. Other than in §3.2.1, we now contract with an initial state |ρ(0)⟩

which we will generally assume to be a translation-invariant MPDO as defined in §2.2.1. The

computation of ga,b graphically translates to the evaluation of

Figure 3.11: Computation of spatial correlation functions after a quantum quench

The MPDO is taken to be normalised in the thermodynamic limit L → ∞, meaning that the

space transfer matrix E(0) = has to satisfy limL→∞ trρ(0) = limL→∞ trE(0)L = 1.

By only considering trace preservation, that is time unitarity in the backwards time direction,

the computation reduces to the blue shaded faces. In order to guarantee solvability, we have

to impose additional structure on the local matrices of the MPDO. It turns out that the

characterisation of such solvable states for DUIRF circuits is highly non-trivial and requires

a deeper analysis[4] which is outside the scope of this work. However, we provide solvability

conditions for trivial boundary conditions. That is, we define

Figure 3.12: Definition of solvability conditions

which corresponds to the infinite temperature state and reduces the circuit immediately to zero

if the two-site observables are taken traceless. More generally one expects that for other classes

of solvable initial states, the circuit further simplifies with the space unitarity condition to a

quantum circuit that is generically of the following form:
[4] For conventional dual-unitary circuits such an analysis has been done in [KS23]. Furthermore, [Pro21]

suggests that results on solvable initial states should have their analogues in the DUIRF model.
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Figure 3.13: Reduced spatial correlation function after a quantum quench

and where boundary conditions come into play at the intersection of the two light rays. It

remains an open question whether non-trivial solvable states require translational invariance

over matrices with local support larger than one, which might still modify the concrete structure

of the reduced state on the bottom of figure (3.13). Since in this scenario, correlations are

non-zero if and only if the supports of the two-site observables are at the respective reflected

positions of the light ray, the computational complexity is expected to scale linearly again.

Hence, we have outlined two physical applications in the realm of closed quantum systems

where the DUIRF model guarantees solvability. Chapter §4 shall now propose an extension of

this model to noisy quantum circuits preserving solvability in the above mentioned sense.
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CHAPTER 4

Extension of the IRF Model to Quantum Channels

4.1 The Class of IRF Channels

The key idea of this thesis is to embed the IRF(d) class in the formalism of quantum channels.

We have seen in §2.1.2 that for unitary quantum gates the summation index disappears in

the Kraus representation of the corresponding channel. Hence, for U ∈ IRF(d), the quantum

channel ε can be written in vectorised form as

⇔ ε = U ⊗ U∗ (4.1)

Figure 4.1: Representation of an IRF-gate in the vectorised picture

We may ask if there is an extension of the IRF class to quantum channels, including (dual-)

unitary dynamics as a special case, such that global solvability features are preserved. We will

investigate on solvability aspects in more detail in chapter §4.3. Henceforth, such generalisations

of unitary IRF gates will be referred to as IRF channels that are elements of the IRFC(d) class.

Their graphical representation in deep purple colouring is given in the folded picture by

⇔ ε =
∑

l

Cl ⊗ C∗
l (4.2)

Figure 4.2: Definition of IRF channels in the folded picture representation

The coefficients of the Kraus operators {Cl}l=1,...,n of this generalised channel are now equipped

with an additional summation index l and the number of Kraus operators needed to represent
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the quantum channel is bounded by n ≤ d3. Such Kraus operators take the following form

Cl =
d∑

i,j,k,j′=1
(cikl)j′

j |i⟩ ⊗ |j′⟩ ⊗ |k⟩ ⟨i| ⊗ ⟨j| ⊗ ⟨k| (4.3)

In analogy to the DUIRF subset of IRF gates which has been parameterised in §3.1.2, we now

attempt to identify subsets of IRF channels which satisfy the following solvability conditions:

Figure 4.3: Solvability conditions of IRF channels in the folded picture

However, we will see in chapter §4.3 that in many cases not all of these conditions are necessary

to ensure solvability. We hence introduce another subscript in IRFC,n(d) indicating the number

n of unitality conditions that are fulfilled by the respective subset of IRF channels. The

identities from figure (4.3) translate into unitality conditions[1] along each space-time direction:

(i)
n∑

l=1

d∑
m=1

(c†
ikl)j′

m(cikl)m
j = δjj′ ∀i, k = 1, ..., d Trace Preservation

(ii)
n∑

l=1

d∑
m=1

(cikl)j′

m(c†
ikl)m

j = δjj′ ∀i, k = 1, ..., d Time Unitality

(iii)
n∑

l=1

d∑
m=1

(c̃jj′l)k
m(c̃†

jj′l)m
i = δik ∀j, j′ = 1, ..., d Left Unitality

(iv)
n∑

l=1

d∑
m=1

(c̃†
jj′l)k

m(c̃jj′l)m
i = δik ∀j, j′ = 1, ..., d Right Unitality

with the coefficients of the dual quantum channel being related by (c̃jj′l)k
i := (cikl)j′

j . It should be

noted that condition (i) describing trace preservation, or unitality in the reversed time direction,

is the only necessary condition for the quantum channel to behave physically. When imposing

the other conditions (ii)-(iv), we gradually reduce the number of independent parameters in the

representation of the IRF channel. One can readily see that convex combinations of dual unitary

gates ∑n
l=1 λluikl ⊗ u∗

ikl are elements of IRFC,4(d) because the coefficients of the corresponding

channel decompose into cikl =
√

λluikl for λl ≥ 0 with ∑
l λl = 1 and uik ∈ DUIRF(d). For this

[1] A map T is called unital if it satisfies T (1) = 1.
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reason, non-trivial convex combinations are examples of IRF channels which preserve solvability

and cannot be reduced to dual unitary dynamics. In the following we want to further restrict

ourselves to the qubit case d = 2 with regard to an explicit parametrisation of solvable IRF

classes. In contrast to §3.1.2, a complete parametrisation of such IRF classes would even require

the examination of at most 128 coefficients which does not appear to be tractable analytically.

However, we note from the equations below that even the most restricted class IRFC,4(2) is

particularly large since it allows for up to 64 degrees of freedom in the choice of coefficients,

where any gauge invariance groups have not been considered yet.

(i) Trace Preservation (d = 2) (iii) Left Unitality (d = 2)xxxx

n∑
l=1

(c∗
ikl)1

1(cikl)1
1 + (c∗

ikl)2
1(cikl)2

1 = 1 (4.4)

n∑
l=1

(c∗
ikl)1

1(cikl)1
2 + (c∗

ikl)2
1(cikl)2

2 = 0 (4.5)

n∑
l=1

(c∗
ikl)1

2(cikl)1
1 + (c∗

ikl)2
2(cikl)2

1 = 0 (4.6)

n∑
l=1

(c∗
ikl)1

2(cikl)1
2 + (c∗

ikl)2
2(cikl)2

2 = 1 (4.7)

n∑
l=1

(c∗
1il)1

1(c1kl)1
1 + (c∗

2il)1
1(c2kl)1

1 = δik (4.8)

n∑
l=1

(c∗
1il)2

1(c1kl)2
1 + (c∗

2il)2
1(c2kl)2

1 = δik (4.9)

n∑
l=1

(c∗
1il)1

2(c1kl)1
2 + (c∗

2il)1
2(c2kl)1

2 = δik (4.10)

n∑
l=1

(c∗
1il)2

2(c1kl)2
2 + (c∗

2il)2
2(c2kl)2

2 = δik (4.11)

xxx(ii) Time Unitality (d = 2) (iv) Right Unitality (d = 2)xxxxxx

n∑
l=1

(c∗
ikl)1

1(cikl)1
1 + (c∗

ikl)1
2(cikl)1

2 = 1 (4.12)

n∑
l=1

(c∗
ikl)1

1(cikl)2
1 + (c∗

ikl)1
2(cikl)2

2 = 0 (4.13)

n∑
l=1

(c∗
ikl)1

1(cikl)2
1 + (c∗

ikl)1
2(cikl)2

2 = 0 (4.14)

n∑
l=1

(c∗
ikl)1

1(cikl)2
1 + (c∗

ikl)1
2(cikl)2

2 = 1 (4.15)

n∑
l=1

(c∗
i1l)1

1(ck1l)1
1 + (c∗

i2l)1
1(ck2l)1

1 = δik (4.16)

n∑
l=1

(c∗
i1l)2

1(ck1l)2
1 + (c∗

i2l)2
1(ck2l)2

1 = δik (4.17)

n∑
l=1

(c∗
i1l)1

2(ck1l)1
2 + (c∗

i2l)1
2(ck2l)1

2 = δik (4.18)

n∑
l=1

(c∗
i1l)2

2(ck1l)2
2 + (c∗

i2l)2
2(ck2l)2

2 = δik (4.19)

For the unitary case n = 1, one can verify that conditions (i) and (ii) imply the parametrisation

(3.6) whereas conditions (iii) and (iv) correspond to the additional space unitarity constraint.

4.2 The Minimal Example

In the next paragraphs, we now aim to explicitly parameterise a solvable subset of IRF chan-

nels by initially reducing the number of non-zero coefficients drastically, and in the hope that

efficiently many parameters remain to extract insightful examples of such channels. Following
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the idea of [KS23], one may consider quantum channels ε in a subspace of the superopera-

tor space spanned by only some of the Pauli matrices. In our case of tripartite local Hilbert

space with superoperators ε : (C4)⊗3 → (C4)⊗3, the corresponding matrix representation of

the quantum channel requires only 64 elements in the Hilbert-Schmidt normalised Pauli basis

{ 1
2
√

2 |σα ⊗ σβ ⊗ σγ⟩ ≡ |σαβγ⟩} with α, β, γ ∈ {0, z} and σ0 ≡ 1. Physically, such a scenario

corresponds to applying local dephasing channels after the operation of each quantum channel

in the IRF circuit. From there, we successively specify the matrix elements in keeping with the

above-mentioned unitality conditions. One may obtain the former for a given quantum channel

from the formula

Eα′β′γ′

αβγ := tr [σα′β′γ′ ε(σαβγ)] where ε(·) =
∑

{αβγ,α′β′γ′=0,z}
σα′β′γ′tr (·σαβγ)Eα′β′γ′

αβγ (4.20)

which renders the following matrix representation:

ε =



E000
000 E000

z00 E000
0z0 E000

00z E000
zz0 E000

z0z E000
0zz E000

zzz

Ez00
000 Ez00

z00 Ez00
0z0 Ez00

00z Ez00
zz0 Ez00

z0z Ez00
0zz Ez00

zzz

E0z0
000 E0z0

z00 E0z0
0z0 E0z0

00z E0z0
zz0 E0z0

z0z E0z0
0zz E0z0

zzz

E00z
000 E00z

z00 E00z
0z0 E00z

00z E00z
zz0 E00z

z0z E00z
0zz E00z

zzz

Ezz0
000 Ezz0

z00 Ezz0
0z0 Ezz0

00z Ezz0
zz0 Ezz0

z0z Ezz0
0zz Ezz0

zzz

Ez0z
000 Ez0z

z00 Ez0z
0z0 Ez0z

00z Ez0z
zz0 Ez0z

z0z Ez0z
0zz Ez0z

zzz

E0zz
000 E0zz

z00 E0zz
0z0 E0zz

00z E0zz
zz0 E0zz

z0z E0zz
0zz E0zz

zzz

Ezzz
000 Ezzz

z00 Ezzz
0z0 Ezzz

00z Ezzz
zz0 Ezzz

z0z Ezzz
0zz Ezzz

zzz



(4.21)

The explicit computation of this so-called minimal example is outsourced to the appendix A.3.

As expected, we note that from trace preservation (i), the first row is immediately fixed to zero

except for the first entry. Furthermore, due to the specific delta-tensor structure of the IRF

channel on the left and right Hilbert spaces, the same condition allows to eliminate even more

coefficients. Without any further constraints, this corresponds to the matrix (4.22) below.

ε =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
µ µ ζ µ ν µ ξ a

0 0 0 1 0 0 0 0
µ µ ν µ ζ µ a ξ

0 0 0 0 0 1 0 0
µ µ ξ µ a µ ζ ν

µ µ a µ ξ µ ν ζ


(4.22)
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If one allows for time unitality (ii), not only the first column vanishes, but also several other

sites with coefficients µ. In addition, the left unitality condition (iii) eliminates coefficients ξ

whereas the right unitality condition (iv) sets all ν to zero. Eventually, we introduce the letter

ζ for coefficients that yield zero for either or both of the conditions (iii) and (iv). Assuming

all unitality conditions, this subset of quantum channels possesses exactly one free parameter

a. In the scenario of only three fulfilled unitality conditions, this solvable subset extends to a

2-parametric set {a, ν} for left unital, or {a, ξ} for right unital quantum channels respectively.

In any case, one still needs to verify complete positivity of the quantum channel for the specific

choice of parameter values, which will be addressed later in this chapter.

Let us firstly analyse and interpret our intermediate result by graphically confirming our com-

putations. That is, we would like to understand why only such coefficients remain in the 4-way

unital case where the indices satisfy α ̸= α′, β = β′ = z and γ ̸= γ′. For this purpose we

draw the TNN representation of equation (4.20) in the unfolded picture to make explicit use of

delta-tensor manipulations. The restriction to the diagonal matrices σ0 = 1 and σz gives rise

to four scenarios I-IV as presented in the figure below.

Figure 4.4: Graphical computation of the coefficients in the minimal example

It should be noticed that the appearing σz matrices may be shifted freely upwards and down-

wards along the outer Hilbert spaces in the pictures above. In scenario I, this property allows

us to apply conditions (i) or (ii), and since σz is trace free, the network vanishes immediately.

The only case where this is not possible corresponds to the choice of indices β = β′ = z, as

we would expect from the matrix representation (4.22). In scenario II, one finds with the same

arguments that the network equals zero but for the case where both β = β′ = 0, which renders
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the one entries on the diagonal of the matrix. The zero contribution of the case β = β′ = z

clarifies after the analysis of the two other scenarios. In the scenarios III and IV, all coefficients

disappear analogously except for the more complex case β = β′ = z. We now remind ourselves

of the form of the two space unitality constraints (iii) and (iv) in the unfolded picture. On the

left hand side of the tensor network (4.5), we apply left unitality at the second equivalent sign

which subsequently cancels out the coefficients with β = β′ = z in scenario III. Equivalently,

on the right hand side, the same procedure is executed taking advantage of the right unitality

condition to make the network disappear. In case that only one of the two constraints (iii) and

(iv) is applied, we gain the predicted additional degree of freedom.

Figure 4.5: Scenario III (left) and IV (right): Application of the left (right) unitality condition

In summary, both the analytical and graphical approach yield identical results for the matrix

coefficients. Let us then shortly present some immediate implications of our findings so far.

From the matrix (4.22) one can conclude that some important representatives of quantum

quannels are not embedded in the IRFC(2) class. Most importantly, the Completely Depolarising

Channel ε(·) = tr(·) 1

d3 , as graphically defined in (4.6), is incompatible with the structure of this

class. This is due to the fact that this channel would require only the element E000
000 = 1 and

does not allow for any further matrix coefficients with values other than zero. Moreover, one

finds that also the Dephasing Channel ε(·) = ΠD(·) is generally irreconcilable with additional

space unitality constraints. The projector ΠD on the diagonal subspace of the quantum state

corresponds to an identity matrix representation which is no longer possible as soon as ζ = 0.

Figure 4.6: Completely Depolarising Channel in the folded picture

Let us now systematically study the action of the matrix (4.22): We recognise that we have to

deal with permutation matrices intrinsically. In the case of 3-way unital channels, one may set



4.2 The Minimal Example 33

the parameter a = 0. Furthermore, the choice ν = 1 for left unital channels and ξ = 1 for right

unital channels reveals some important characteristics. In the same spirit, one may set a = 1

for the case of 4-way unital quantum channels. The following TNN illustrations summarise the

action of the IRF channel on the reduced Pauli basis in these three cases. In any of them, the

basis states remain unchanged if |σ0⟩ is acting on the middle entry of the gate.

x |σ0σ0σ0⟩ → |σ0σ0σ0⟩ xx |σzσ0σ0⟩ → |σzσ0σ0⟩ xx |σ0σ0σz⟩ → |σ0σ0σz⟩ xx |σzσ0σz⟩ → |σzσ0σz⟩

Figure 4.7: Unflipped states for 3- and 4-way unital quantum channels

Deep purple colouring again refers to the IRFC,4(2) class whereas green colours highlight ele-

ments of IRFC,3(2) that only satisfy one space unitality condition. The double circles on the

middle tensors accent the folded picture notation.

For left unital channels, with a = ξ = 0 and ν = 1, the state on the left Hilbert space is flipped

if |σz⟩ acts on the middle Hilbert space.

xxxxxxxxxx |σ0σzσ0⟩ ↔ |σzσzσ0⟩ xxxxxxxxxxxxxxxxxxxx |σ0σzσz⟩ ↔ |σzσzσz⟩

Figure 4.8: a = ξ = 0 and ν = 1: Flipped states of 3-way unital quantum channels

Conversely, for the right unital case with a = ν = 0 and ξ = 1, the flipping is only performed

on the right Hilbert space if |σz⟩ enters in the middle position:
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xxxxxxxxxx |σ0σzσ0⟩ ↔ |σ0σzσz⟩ xxxxxxxxxxxxxxxxxxxx |σzσzσ0⟩ ↔ |σzσzσz⟩

Figure 4.9: a = ν = 0 and ξ = 1: Flipped states of 3-way unital quantum channels

For 4-way unital quantum channels, where ξ = ν = 0, the choice a = 1 yields both flipping

operations on the outer Hilbert spaces when |σz⟩ is applied on the middle entry.

xxxxxxxxxx |σ0σzσ0⟩ ↔ |σzσzσz⟩ xxxxxxxxxxxxxxxxxxxx |σzσzσ0⟩ ↔ |σ0σzσz⟩

Figure 4.10: a = 1 and ξ = ν = 0: Flipped states of 4-way unital quantum channels

In conclusion, we have shown that these parametrisations allow an interpretation in terms of

Controlled NOT (CNOT) gates if we map |σ0⟩ 7→ |0⟩ and |σz⟩ 7→ |1⟩.

Figure 4.11: Identification with Controlled NOT gates of 3- and 4-way unital IRF-channels
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With this knowledge, we are now also in a position to further specify the structure of the

folded middle tensors of figure (4.11). As summarised in figure (4.12), one can assign to the

middle tensor another reduced tensor L′, or R′ respectively, whose two non-zero components

completely determine the action of the 3-way unital IRF-channel. These middle tensors are the

fundamental objects of this class of quantum channels because both the IRF-gate and its dual

can be constructed by simply adding the delta tensors at their respective positions. It should

be mentioned that our examples of IRFC,3(2) may not be produced by convex combinations of

DUIRF gates since these would imply 4-way unitality immediately. This might not be the case

for our example of IRFC,4(2).

Figure 4.12: Characterisation of the middle tensor of 3- and 4-way unital IRF-channels

Let us now briefly sketch the computation of the respective Choi state σε which is required

for the verification of complete positivity of our examples of IRF quantum channels. We make

use of the fact that a quantum channel is completely positive if the corresponding σε has a

positive semi-definite matrix representation. Let us firstly recall the definition of the Choi state:

σε = (ε ⊗18)(|Ψ⟩ ⟨Ψ|) = ∑8
i,j=1 ε(|i⟩ ⟨j|) ⊗ |i⟩ ⟨j|, expressed in the 8-dimensional computational

basis. Inserting definition (4.20) and using the fact that we have restricted us to the reduced

Pauli basis where ⟨i| σαβγ |j⟩ = 0 for i ̸= j, we only need to evaluate the diagonal terms. For

the three examples the resulting expression σε = ∑
{αβγ,α′β′γ′=0,z}

∑
i ⟨i| σαβγ |i⟩ Eα′β′γ′

αβγ (σα′β′γ′ ⊗

|i⟩ ⟨i|) yields contributions for exactly 8 non-zero matrix coefficients Eα′β′γ′

αβγ . It was checked with

Mathematica that σε is indeed positive semi-definite for the above-mentioned combinations of

parameter values, that is, we have found new valid quantum channels.
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4.3 Solvability of IRF Channel Circuits
In contrast to quantum circuits of unitary gates which may have an additional space unitarity

property, we can distinguish several more classes in the realm of networks of quantum channels.

All of them have to obey the trace preservation condition (i) but may beyond that include any

of the other unitality conditions (ii), (iii) and (iv). In the same way as for conventional bipartite

quantum gates discussed in [KS23], we mostly focus on the analysis of 3-way unital quantum

channels since they still guarantee solvability in many applications. This class imposes condition

(ii) and either of the conditions (iii) and (iv) such that it possesses more degrees of freedom

than generic 4-way unital channels, and therefore is more general. For illustration purposes,

one may again consider the computation of spatio-temporal correlation functions from chapter

§3.2.1. This time, we replace the unitary gates with IRF quantum channels:

Figure 4.13: Computation of spatio-temporal correlation functions of IRF channel circuits

On the left hand side of figure (4.13) we have only applied the trace preservation condition (i)

which reduces the quantum circuit to the deep purple coloured faces. Next to it we further

imposed time unitality (ii) which produces an identical picture to circuits of unitary IRF gates

(3.9). Other than in the latter, we now have two different possibilities to contract the circuit

space-wise by either applying the left unitality (iii) or right unitality (iv) condition:

Figure 4.14: Reduced circuits for left or right unital IRF channels
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In analogy to (3.10), one may again find correlation maps that give explicit solutions to the

remaining network of tensors. Most importantly, one realises that there are more non-vanishing

correlations than in the dual-unitary or 4-way unital setup. Namely, figure (4.14) suggests that

such correlations may exist for any position of the lower observable a such that the light cone of

the upper observable b completely encloses the support of a. The linear shape of the remaining

tensor network renders this problem exactly solvable for only 3-way unital quantum channels.
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CHAPTER 5

Conclusion and Outlook

In this work, we have reviewed the notion of quantum channels and how implementations of

these into quantum circuits allow for the analysis of noisy dynamics. In contrast to the DUIRF

model, a complete parametrisation of the class of IRF quantum channels IRFC(d) over qudits

does not seem to be tractable analytically. However, by restricting ourselves to a solvable subset

of the qubit case (d = 2), we have gained valuable insights into the structure of this class. It

could be shown that the Completely Depolarising Channel does not respect the structure of

IRF quantum channels and that the Dephasing Channel is incompatible with any additional

space unitality conditions. Furthermore, we elaborated on the specific structure of examples in

IRFC,3(2) that go even beyond convex combinations of DUIRF gates which always proved to

be included in IRFC(d) for any local Hilbert space dimension d. Interestingly, our examples of

IRF channels are in one-to-one correspondence to specific constructions of CNOT gates.

It remains for future work to explore the scope of application and the advantages of circuits

constructed by these gates. Moreover, it might be of interest to find the Kraus operators for

our examples which follow from the diagonalisation of the corresponding Choi matrices. This

would clarify whether our example in IRFC,4(2) can be written in terms of convex combinations

of DUIRF gates or possesses other interesting features. It could also be illuminating to study

the existence of IRF channels for a different combination of parameter values for {a, ξ, ν}.

Another step in the characterisation of this class could be to develop perturbatively around

elements of IRFC(d) to such an extent that complete positivity and solvability are still preserved.

This could reveal generic structural information about IRF channels and turned out to be a

rewarding approach in the case of circuits of bipartite quantum channels in [KS23]. Similarly

to [CLV23], where a formalism has been developed to collectively describe both dual-unitary

gates with bi- and tripartite support, one may ask if such description would also extend to

quantum channels.
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APPENDIX A

Explanatory Notes and Computations

A.1 The Relative State Method

The idea of the Relative State Method is to completely determine the action of an operator A

over H ≡ Hint by looking at the larger Hilbert space H ⊗ Hext. It can be shown that it

suffices to describe the action of A ⊗ 1ext on a single pure maximally entangled state in the

composite Hilbert space. We therefore consider[1]

|Ψ⟩ = 1√
n

n∑
i=1

|αi⟩int ⊗ |βi⟩ext (A.1)

where we assume that dim(Hext) ≡ d ≥ dim(H ) ≡ n. The states {|αi⟩int}n
i=1 and {|βi⟩ext}d

i=1

are chosen to form an orthonormal basis on H and Hext respectively. One can express any

state in H as |ϕ⟩int = ∑n
i=1 ci |αi⟩int with ∑n

i=1 |ci|2 = 1. Equally, we obtain the same state by

partially contracting the composite system

1√
n

|ϕ⟩int = ext ⟨ϕ∗|Ψ⟩ with |ϕ∗⟩ext =
n∑

i=1
c∗

i |βi⟩ext (A.2)

where we have identified the relative state |ϕ⟩int with respect to an index state |ϕ∗⟩ext. They are

related by an antilinear and antiunitary map |ϕ⟩int 7→ |ϕ∗⟩ext between H and a n-dimensional

subspace of Hext. If we act with local operators A ⊗ 1ext on our composite state and again

contract the external Hilbert space, we are left with the relative state

ext ⟨ϕ∗| (A ⊗ 1ext) |Ψ⟩ = 1√
n

A |ϕ⟩int (A.3)

In conclusion, we have realized the local operation A on an extended maximally entangled
[1] |Ψ⟩ is maximally entangled since trHext(|Ψ⟩ ⟨Ψ|) ∝ 1n
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state and found that the state |ϕ⟩int is prepared if the outcome of the measurement in Hext is

|ϕ∗⟩ext. We will use this result to show that every quantum channel has a Kraus decomposition

by applying the relative state method to superoperators in chapter §2.1.2.

A.2 Purification of Quantum States

In order to proof that any Kraus representation relates to a unique quantum channel, we need

to introduce the purification of a quantum state. The GHJW theorem which characterises such

purifications in [Pre98] can be understood elegantly in TNN as described in [BC17]. If we have

a generic quantum state ρ ∈ H decomposed into an ensemble of pure states |Φk⟩ ∈ H

ρ =
∑

k

qk |Φk⟩ ⟨Φk| (A.4)

with coefficients qk ≥ 0 such that ∑
k qk = 1, then such quantum state can be thought of as the

partial trace of a pure state in a larger Hilbert space H ⊗ Hpur. The extension Hpur is called

the purification space. For some mutually orthogonal and normalized |γk⟩pur we may write

ρ = trHpur(|Υ⟩)(⟨Υ|) where |Υ⟩ =
∑

k

√
qk |Φk⟩ ⊗ |γk⟩pur (A.5)

having identified |Υ⟩ as the purification of ρ. In graphical notation, when grouping the k indices

in both spaces, purification implies the equation

Figure A.1: Purification of a density operator in TNN

and partially tracing over the purification space yields the original quantum state as desired:

Figure A.2: Partial trace of a purified quantum state in TNN

When performing the partial trace, one readily notices that purification is unique up to a

unitary freedom on the purification space |γk⟩pur 7→ Upur |γk⟩pur where U †
purUpur = 1. The so-



A.3 Computations of the Minimal Example 43

called GHJW theorem[2] summarises this observation: If we have two realisations of the same

quantum state in terms of mixed states ρ = ∑
k qk |Φk⟩ ⟨Φk| and ρ = ∑

k′ pk′ |Φ′
k′⟩ ⟨Φ′

k′ |, then

their corresponding purifications read

|Υ⟩ =
∑

k

√
qk |Φk⟩ ⊗ |γk⟩pur and |Υ′⟩ =

∑
k′

√
pk′ |Φ′

k′⟩ ⊗ |δk′⟩pur (A.6)

given two different orthonormal bases {|γk⟩pur}m
k=1 and {|δk′⟩pur}m

k′=1 for dim(Hpur) = m. The

GHJW theorem states that purifications of the same quantum state are necessarily linked by

a unitary transformation in order for the density operators to be indistinguishable.

|Υ′⟩ = (1⊗ Upur) |Υ⟩ (A.7)

Practically this means that one can prepare the different ensembles of a mixed state by only

acting on the purifying system such that the density operators remains unchanged.

A.3 Computations of the Minimal Example

Here we provide explicit computations for the minimal example of chapter §4.1. The coefficients

of the quantum channel are given by equation (4.20) that is repeated hereafter

Eα′β′γ′

αβγ := tr [σα′β′γ′ ε(σαβγ)] (A.8)

We simplify the upper equation by only allowing for matrices σ0 and σz on the local Hilbert

spaces. Inserting the formula (4.2) and (4.3) for the superoperator yields the following expres-

sion[3], up to an omitted prefactor of ( 1
2
√

2)2 for the normalisation.

Eα′β′γ′

αβγ = ⟨σα′β′γ′|
∑

l

Cl ⊗ C∗
l |σαβγ⟩

=
[
⟨Ω| (σα′ ⊗ 1) ⊗ ⟨Ω| (σβ′ ⊗ 1) ⊗ ⟨Ω| (σγ′ ⊗ 1)

][∑
l

∑
ijkj′

∑
mnrn′

(cikl)j′

j (c∗
mrl)n′

n (|i⟩ ⟨i| ⊗ |m⟩ ⟨m|)

xx ⊗ (|j′⟩ ⟨j| ⊗ |n′⟩ ⟨n|) ⊗ (|k⟩ ⟨k| ⊗ |r⟩ ⟨r|)
][

(σα ⊗ 1) |Ω⟩ ⊗ (σβ ⊗ 1) |Ω⟩ ⊗ (σγ ⊗ 1) |Ω⟩
]

=
∑

l

∑
ijkj′

∑
mnrn′

(cikl)j′

j (c∗
mrl)n′

n ⟨Ω| (σα′ |i⟩ ⟨i| σα ⊗ |m⟩ ⟨m|) |Ω⟩ · ⟨Ω| (σβ′ |j′⟩ ⟨j| σβ ⊗ |n′⟩ ⟨n|) |Ω⟩

xx · ⟨Ω| (σγ′ |k⟩ ⟨k| σγ ⊗ |r⟩ ⟨r|) |Ω⟩

In a first step, we evaluate the value of the matrix coefficient E000
000 :

x

[2] The GHJW theorem is named after the physicists and mathematicians Nicolas Gisin, Lane P. Hughston,
Richard Jozsa and William Wootters.

[3] Here we used the formula |A⟩ = (A ⊗ 1) |Ω⟩ where |Ω⟩ ≡ |Φ+⟩ corresponds to the first Bell state.
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E000
000 =

∑
l

∑
ijkj′

∑
mnrn′

(cikl)j′

j (c∗
mrl)n′

n ⟨Ω| (|i⟩ ⟨i| ⊗ |m⟩ ⟨m|) |Ω⟩ · ⟨Ω| (|j′⟩ ⟨j| ⊗ |n′⟩ ⟨n|) |Ω⟩ xxxxx

xx · ⟨Ω| (|k⟩ ⟨k| ⊗ |r⟩ ⟨r|) |Ω⟩

=
∑

l

∑
ijkj′

∑
mnrn′

(cikl)j′

j (c∗
mrl)n′

n δimδjnδj′n′δkr

=
∑
ik

∑
l

∑
jj′

(cikl)j′

j (c∗
ikl)

j′

j

By applying the trace preservation condition (i) we obtain the value E000
000 = 1. Furthermore,

one finds that the latter condition also implies that E000
αβγ = 0 except for the case where all

indices are zero. More generally, we note that the following identities hold

⟨Ω| (σα′ |i⟩ ⟨i| σα ⊗ |m⟩ ⟨m|) |Ω⟩ = δα=α′δim + δα ̸=α′(δi1δm1 − δi2δm2)

⟨Ω| (σβ′ |j⟩ ⟨j′| σβ ⊗ |n⟩ ⟨n′|) |Ω⟩ = δjnδj′n′ [δβ1δβ′1 + δβ2δβ′2(δj1δj′1 + δj2δj′2 − δj2δj′1 − δj1δj′2)

xxxxxxxxxxxxxxxxxxxxxxxxxx + δβ2δβ′1(δj1δj′1 − δj2δj′2 − δj2δj′1 + δj1δj′2)

xxxxxxxxxxxxxxxxxxxxxxxxxx + δβ1δβ′2(δj1δj′1 − δj2δj′2 + δj2δj′1 − δj1δj′2)]

⟨Ω| (σγ′ |i⟩ ⟨i| σγ ⊗ |m⟩ ⟨m|) |Ω⟩ = δγ=γ′δkr + δγ ̸=γ′(δk1δr1 − δk2δr2)

The structure of this particular quantum channel immediately also cancels out coefficients Eα′0γ′
αzγ

for any choice of the other indices. Let us for instance examine the coefficient E000
0z0 :

E000
0z0 =

∑
l

∑
ijkj′

∑
mnrn′

(cikl)j′

j (c∗
mrl)n′

n ⟨Ω| (|i⟩ ⟨i| ⊗ |m⟩ ⟨m|) |Ω⟩ · ⟨Ω| (|j′⟩ ⟨j| σz ⊗ |n′⟩ ⟨n|) |Ω⟩

xx · ⟨Ω| (|k⟩ ⟨k| ⊗ |r⟩ ⟨r|) |Ω⟩

=
∑

l

∑
ijkj′

∑
mnrn′

δimδjnδj′n′ (δj1δj′1 − δj2δj′2 − δj2δj′1 + δj1δj′2) δkr

=
∑

l

∑
ik

[(cikl)1
1(c∗

ikl)1
1 − (cikl)2

2(c∗
ikl)2

2 − (cikl)1
2(c∗

ikl)1
2 + (cikl)2

1(c∗
ikl)2

1]

which vanishes with trace preservation. In the same manner, such calculations can be retraced

for all the other combinations of indices, still only taking advantage of the first condition.

If we additionally assume time unitality (ii), all the coefficients Eα′β′γ′

000 but for the very first

matrix entry cancel out. Let us further illustrate that coefficients Eα′zγ′

α0γ are set to zero by this

condition as well. For example one may compute E0z0
z00 :

E0z0
z00 =

∑
l

∑
ijkj′

∑
mnrn′

(cikl)j′

j (c∗
mrl)n′

n ⟨Ω| (|i⟩ ⟨i| σz ⊗ |m⟩ ⟨m|) |Ω⟩ · ⟨Ω| (σz |j′⟩ ⟨j| ⊗ |n′⟩ ⟨n|) |Ω⟩

xx · ⟨Ω| (|k⟩ ⟨k| ⊗ |r⟩ ⟨r|) |Ω⟩

=
∑

l

∑
ijkj′

∑
mnrn′

(cikl)j′

j (c∗
mrl)n′

n (δi1δm1 − δi2δm2)δjnδj′n′(δj1δj′1 − δj2δj′2 + δj2δj′1 − δj1δj′2)δkr



A.3 Computations of the Minimal Example 45

=
∑

k

∑
l

[(c1kl)1
1(c∗

1kl)1
1 − (c2kl)1

1(c∗
2kl)1

1 − (c1kl)2
2(c∗

1kl)2
2 + (c2kl)2

2(c∗
2kl)2

2 + (c1kl)1
2(c∗

1kl)1
2xx

xx − (c2kl)1
2(c∗

2kl)1
2 − (c1kl)2

1(c∗
1kl)2

1 + (c2kl)2
1(c∗

2kl)2
1]

which equals zero under the assumption of time unitality. One can further check that either or

both of the conditions (i) and (ii) implies that Eα′0γ′

α0γ = 0 except for the case Eα0γ
α0γ = 1.

Eventually, the quantum channel may also be taken left unital (iii) such that coefficients Eαzγ′
αzγ

disappear. For the right unital case (iv) we obtain Eα′zγ
αzγ = 0 respectively. This is demonstrated

exemplarily for the case of Ezz0
0z0 :

Ezz0
0z0 =

∑
l

∑
ijkj′

∑
mnrn′

(cikl)j′

j (c∗
mrl)n′

n ⟨Ω| (σz |i⟩ ⟨i| ⊗ |m⟩ ⟨m|) |Ω⟩ · ⟨Ω| (σz |j′⟩ ⟨j| σz ⊗ |n′⟩ ⟨n|) |Ω⟩

xx · ⟨Ω| (|k⟩ ⟨k| σz ⊗ |r⟩ ⟨r|) |Ω⟩

=
∑

l

∑
ijkj′

∑
mnrn′

(cikl)j′

j (c∗
mrl)n′

n (δi1δm1 − δi2δm2)δjnδj′n′(δj1δj′1 + δj2δj′2 − δj2δj′1 − δj1δj′2)δkr

=
∑

l

∑
k

[(c1kl)1
1(c∗

1kl)1
1 − (c2kl)1

1(c∗
2kl)1

1 + (c1kl)2
2(c∗

1kl)2
2 − (c2kl)2

2(c∗
2kl)2

2 − (c1kl)1
2(c∗

1kl)1
2

xx + (c2kl)1
2(c∗

2kl)1
2 − (c1kl)2

1(c∗
1kl)2

1 + (c2kl)2
1(c∗

2kl)2
1]

If one carries out the two sums, each term equals one which in total yields the result zero. We

give a summary of all the 64 coefficients in the matrix representation (4.22). In chapter §4.1,

we also provide another graphical approach to these computations for verification purposes.
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