
Integration of cell differentiation and initiation of monoterpenoid
indole alkaloid metabolism in seed germination of
Catharanthus roseus

Mai Uzaki1,2 , Tetsuya Mori2 , Mayuko Sato2, Mayumi Wakazaki2, Noriko Takeda-Kamiya2,

Kotaro Yamamoto3 , Akio Murakami4 , Delia Ayled Serna Guerrero5 , Chizuko Shichijo4, Miwa Ohnishi4,6,

Kimitsune Ishizaki4 , Hidehiro Fukaki4 , Sarah E. O’Connor5 , Kiminori Toyooka2 ,

Tetsuro Mimura4,7,8,9 and Masami Yokota Hirai1,2

1Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan; 2RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan;

3School of Science, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan; 4Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan; 5Department of

Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, D-07745, Germany; 6Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan; 7College of

Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; 8The Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and

Life Sciences, The University of Tokyo, Tokyo, 188-0002, Japan; 9Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kyoto, 621-8555, Japan

Authors for correspondence:
Masami Yokota Hirai
Email: masami.hirai@riken.jp

Tetsuro Mimura

Email: mimura.tetsuro@kuas.ac.jp

Received: 1 December 2023

Accepted: 22 February 2024

New Phytologist (2024) 242: 1156–1171
doi: 10.1111/nph.19662

Key words: Catharanthus roseus, cell
differentiation, idioblast, laticifer, metabolic
differentiation, monoterpenoid indole
alkaloid, seed germination.

Summary

� In Catharanthus roseus, monoterpenoid indole alkaloids (MIAs) are produced through the

cooperation of four cell types, with final products accumulating in specialized cells known as

idioblasts and laticifers. To explore the relationship between cellular differentiation and cell

type-specific MIA metabolism, we analyzed the expression of MIA biosynthesis in germinat-

ing seeds.
� Embryos from immature and mature seeds were observed via stereomicroscopy, fluores-

cence microscopy, and electron microscopy. Time-series MIA and iridoid quantification, along

with transcriptome analysis, were conducted to determine the initiation of MIA biosynthesis.

In addition, the localization of MIAs was examined using alkaloid staining and imaging mass

spectrometry (IMS).
� Laticifers were present in embryos before seed maturation. MIA biosynthesis commenced

12 h after germination. MIAs accumulated in laticifers of embryos following seed germination,

and MIA metabolism is induced after germination in a tissue-specific manner.
� These findings suggest that cellular morphological differentiation precedes metabolic differ-

entiation. Considering the well-known toxicity and defense role of MIAs in matured plants,

MIAs may be an important defense strategy already in the delicate developmental phase of

seed germination, and biosynthesis and accumulation of MIAs may require the tissue and cel-

lular differentiation.

Introduction

Plants, bacteria, and fungi produce various species-specific com-
pounds known as specialized metabolites (formerly referred to as
secondary metabolites). These metabolites, although not essential
for the survival of these organisms, are crucial for their environ-
mental adaptation and interactions with other organisms. They
are of significant interest due to their roles in everyday human
life, including in drugs, fragrances, and dyes. Consequently, spe-
cialized metabolism has been extensively studied, including the
chemical structure and physiological properties of metabolites
themselves, but also at the protein/gene level of enzymes of the
biosynthetic pathways, transporters, and transcription factors
(TFs; Weng et al., 2021). In plants, many of these metabolites

are biosynthesized and stored in specific cells. For instance, arte-
misinin from Artemisia annua, which is used as an antimalarial
drug, is produced and specifically accumulated in glandular tri-
chomes (Olsson et al., 2009). Morphine in Papaver somniferum is
biosynthesized in sieve elements and laticifers (Onoyovwe
et al., 2013), while glucosinolates in Arabidopsis thaliana are gen-
erated in S-cells and surrounding sieve elements, accumulating
specifically in S cells (Koroleva et al., 2000). This compartmenta-
lization is thought to be a strategy to isolate bioactive, potentially
self-toxic compounds from other cells within the plant (Fos-
ter, 1955), but the precise physiological importance of this
mechanism remains unclear.

Catharanthus roseus (Apocynaceae) is a well-known medicinal
plant that produces > 130 types of monoterpenoid indole alkaloid
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(MIA; Van Der Heijden et al., 2004). These MIAs are thought to
be important for defense against pests and in the stress response:
The MIA biosynthetic pathway is partially activated by the stress
hormone jasmonate (Dug�e De Bernonville et al., 2017). The bio-
synthetic pathways of MIAs, including medically important ones
such as vinblastine and vincristine, have been well studied (Kula-
gina et al., 2022). MIAs are biosynthesized through the collabora-
tion of four cell types, namely internal phloem-associated
parenchyma (IPAP) cells, epidermal cells, idioblasts, and laticifers

(Fig. 1), with the final products, and intermediate accumulating
in the latter two (St-Pierre et al., 1999; Miettinen et al., 2014;
Yamamoto et al., 2016, 2019; Sun et al., 2022; Li et al., 2023;
Guedes et al., 2024).

Idioblasts are distinguished by their unique morphology com-
pared with surrounding cells (Foster, 1955). Their characteristics
vary widely and include a variety of cells such as S-cells and myr-
osin cells in A. thaliana (Koroleva et al., 2000; Shirakawa
et al., 2014), fluorescent idioblasts in Egeria densa (Hara et al.,

Fig. 1 Schematic of the monoterpenoid indole
alkaloid (MIA) biosynthetic pathway of
Catharanthus roseus. 16OMT, tabersonine 16-
O-methyltransferase; 7DLGT, 7-deoxyloganetic
acid glucosyl transferase; 7DLH, 7-deoxyloganic
acid hydroxylase; 8HGO, 8-hydroxygeraniol
oxidoreductase; D4H, deacetoxyvindoline
4-hydroxylase; DAT, deacetylvindoline
O-acetyltransferase; DPAS,
dihydroprecondylocarpine acetate synthase;
G8O, geraniol 8-oxidase; GES, geraniol synthase;
GO, geissoschizine oxidase; GS, geissoschizine
synthase; HL1, hydrolase1; HL2, hydrolase2;
HYS, heteroyohimbine synthase; IO, iridoid
oxidase; IPAP cell, internal phloem-associated
parenchyma cell; IS, iridoid synthase; LAMT,
loganic acid methyl transferase; NMT, 3-
hydroxy-16-methoxy-2,3-dihydrotabersonine
N-methyltransferase; PAS, precondylocarpine
acetate synthase; PRX, peroxidase; SAT,
stemmadenineO-acetyltransferase; SGD,
strictosidine beta-glucosidase; SLS, secologanin
synthase; SS, serpentine synthase; STR,
strictosidine synthase; T16H, tabersonine 16-
hydroxylase; T3O, tabersonine 3-oxygenase;
T3R, 16-methoxy-2,3-dihydro-3-
hydroxytabersonine synthase; TDC, tryptamine
decarboxylase.
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2015), and oilbody cells in Marcantia polymorpha (Suire, 2000;
Kanazawa et al., 2020). Tubular idioblasts that accumulate latex
are termed laticifers (Esau, 1965). These cells are found across
diverse plant groups, from mosses to angiosperms, and are often
associated with specialized metabolism (Hagel et al., 2008).
C. roseus has globular and tubular idioblasts; the former is often
referred to as idioblasts and the latter as laticifers. These cells are
found in every tissue in C. roseus plant.

The morphological differentiation of laticifers has been
studied in various plants. Laticifers are categorized into four
types: articulated-anastomosing, articulated-nonanastomosing,
nonarticulated-branched, and nonarticulated-unbranched (Esau,
1965). C. roseus laticifers fall into the nonarticulated-unbranched
category. Nonarticulated laticifers originate from a single cell,
forming a tubular structure; they are multinucleated due to cell
division without cell plate formation (Esau, 1965; Wilson &
Mahlberg, 1978). While nonarticulated-branched laticifers
have been extensively studied, less is known about
nonarticulated-unbranched laticifers (Mahlberg, 1961; Castel-
blanque et al., 2016).

A study on Papaver bracteatum established a link between
increases in alkaloid level and the development of articulated lati-
cifers in germinating seed embryos (Rush et al., 1985). Castel-
blanque et al. (2016) demonstrated that mutants with impaired
laticifer formation produced less triterpene, suggesting a connec-
tion between laticifer differentiation and specialized metabolism.
Similarly, C. roseus cells showed reduced MIA production during
dedifferentiation, indicating a close relationship between MIA
biosynthesis and cellular differentiation (Datta & Srivas-
tava, 1997). However, the specifics of the onset of specialized
metabolism and the metabolic differentiation of various cell types
during plant development are not fully understood.

In this study, we investigated the relationship between the
initiation of cell type-specific MIA metabolism and cellular dif-
ferentiating state, focusing on embryos of germinating seeds. We
found that laticifers in developing embryos were morphologically
differentiated and noted gradual induction of MIA biosynthesis
during germination, with variation in the timing of MIA biosyn-
thetic gene expression. MIA metabolism primarily occurred in
roots and hypocotyls 24–48 h after germination (HAG) and was
not observed in cotyledons, suggesting later metabolic differentia-
tion in cotyledons. These findings highlight the importance of
organ development stages and cell differentiation in the initiation
of MIA metabolism during embryogenesis and germination in
C. roseus.

Materials and Methods

Plant materials and culture

Catharanthus roseus (L.) G. Don (cv Equator White Eye) seeds
were obtained from Sakata Seed Corp. (Kanagawa, Japan). The
mature seeds were sterilized by soaking in 70% ethanol for
10 min and then treated with 3% sodium hypochlorite contain-
ing 0.2% Triton X-100 for 10 min with vortexing. Subsequently,
the seeds were washed with sterile water for 10 min. Sterilized

seeds were incubated on 0.8% agar plates (ultrapure water solidi-
fied with agar, without any nutrients) at 25°C in darkness in an
incubator (BR-43FL; Taitec, Saitama, Japan). For light condition
experiments, 0 HAG seed plates were transferred to a growth
chamber with white fluorescent light (Nippon Medical & Che-
mical Instruments Co., Ltd, Osaka, Japan), under a 16 h : 8 h,
light : dark photoperiod.

For MIA extraction from leaves, stems, hypocotyls, and roots,
2-month-old plants with three leaf pairs were used. These plants
were cultivated in a mixture of PRO-MIX BX (Premier Horticul-
ture, Rivi�ere-du-Loup, QC, Canada) and vermiculite (VS Kakou
Corp., Tokyo, Japan) in a prefabricated room-type chamber at
22°C under a 16 h photoperiod. The plants were watered twice
weekly with MGRL medium (Fujiwara et al., 1992). Collected
samples were observed either via microscopy or immediately fro-
zen in liquid nitrogen and stored at �80°C until further use.

Microscopic observation

Whole embryos dissected from immature or mature seeds were
examined under a stereomicroscope (MZ10FA; Leica Microsys-
tems, Wetzlar, Germany) and a fluorescence microscope (BX53;
Olympus, Tokyo, Japan). The fluorescence microscope was
equipped with a 100W mercury lamp and a U-FUW mirror unit
providing an excitation wavelength range of 340–390 nm and an
emission wavelength of 420 nm and longer.

Compound extraction

Compound extraction involved using 10 embryos (c. 1–3 mg dry
weight) or endosperms with seed coat (c. 10 mg dry weight), or
3.0 mg dry weight mature leaves, stems, hypocotyls, and roots
per sample. Samples were lyophilized in a dry chamber (DRC-
1000; Eyela, Tokyo, Japan) equipped with a freeze dryer (FDU-
2100; Eyela) and pulverized into a fine powder using a bead
crusher (Shake Master NEO; BioMedical Science, Tokyo,
Japan). Then, 0.5 ml methanol containing 20 ng ml�1 ajmaline
was added to the powdered samples and mixed by inversion for
1 h. The supernatant was collected, and the procedure was
repeated with another 0.5 ml methanol containing 20 ng ml�1

ajmaline added to the residue. The two supernatants were com-
bined and filtered through a 0.2 lm diameter filter (Millex-LG
Syringe Driven Filter Unit SLLGH04NL; Merck, Millipore,
MA, USA) for measurement.

Analysis of MIAs and iridoids by liquid chromatography–
tandem mass spectrometry

The analysis of MIAs and iridoids, extracted as described above,
was conducted using an ultrahigh-performance liquid chromato-
graphy (UPLC) system (Nexera X2; Shimadzu Co., Kyoto, Japan).
This was followed by electrospray injection into a triple quadru-
pole tandem mass spectrometer (LCMS-8050; Shimadzu Co.).

For MIA chromatographic separation, a C18 column (Kinetex
2.6 lm XB-C18 100�A, LC column 1009 2.1 mm; Phenomenex
Co., Torrance, CA, USA) was used, employing a method outlined
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in prior research (Stavrinides et al., 2015). The mobile phase con-
sisted of (A) 0.1% (v/v) formic acid and (B) acetonitrile. The elu-
tion program was as follows: 10–30% B (0–5.0 min), 30–100% B
(5.0–6.0 min), 100% B (6.0–7.5 min), 100–10% (7.5–8.0min)
and 10% B (8.0–10.0min). The column temperature was main-
tained at 40°C, with a flow rate of 0.6 mlmin�1 and an injection
volume of 1.0 ll.

For iridoid separation, an ACQUITY UPLC BEH C18 Col-
umn (130�A, 1.7 lm, 2.1mm9 50 mm; Waters Co., Milford,
MA, USA) was used. The mobile phase consisted of (A) 0.1%
(v/v) formic acid and (B) acetonitrile. The elution program for iri-
doids was optimized as follows: 8% B (0–0.5 min), 8–20% B
(0.5–3.0min), 20% B (3.0–3.3 min), 20–100% B (3.3–4.0 min),
100% B (4.0–5.0 min), and 8% B (5.5–7.0min). The column
temperature was kept at 40°C with a flow rate of 0.3 ml min�1

and an injection volume of 1.0 ll.
Mass spectrometry (MS) detection was performed using an

electrospray ionization source in positive-ion detection mode and
operated in multiple reaction monitoring (MRM) mode. The
MRM transitions used to monitor the elution are listed in Sup-
porting Information Table S1. More than five biological repli-
cates were performed for each analysis.

The standard compound was measured multiple times via
LC–MS/MS, and the most diluted concentration yielding a rela-
tive standard deviation < 10% was set as the limit of quantifica-
tion.

Data analysis was carried out using LABSOLUTIONS LCMS
v.5.97 SP1 (Shimadzu Co.). The processed data were visualized
using R 3.6.3 (R Core Team, 2020). Data shaping employed the
TIDYVERSE (Wickham et al., 2019), DPLYR (Wickham et al., 2023),
STRINGR (Wickham, 2023), and HMISC (Harrell Jr & Dupont,
2019) packages. Bar graphs of MIA/iridoid concentration were
generated using GGPLOT2 (Wickham, 2016) and GGPRISM (Dawson,
2022) packages.

Commercially available standard chemicals, tryptamine
(Sigma-Aldrich Co. LLC), catharanthine (Enzo Life Sciences,
New York, NY, USA), tabersonine HCl (AvaChem Scientific,
San Antonio, TX, USA), ajmalicine (AdipoGen Life Sciences,
Liestal, Switzerland), serpentine hydrogen tartrate (ChromaDex,
Irvine, CA, USA), deacetylvindoline (Toronto Research
Chemicals, North York, ON, Canada), vindoline (ChromaDex),
3,4-anhydrovinblastine sulfate (Toronto Research Chemicals),
vinblastine sulfate (Toronto Research Chemicals), and vincristine
sulfate (Toronto Research Chemicals) were purchased, and stric-
tosidine was produced in Dr Sarah E. O0Connor’s laboratory.
These commercial chemicals were used as standards for MIA
quantification. Ajmaline was purchased from Toronto Research
Chemicals and used as an internal standard.

Imaging mass spectrometry analysis

The preparation of frozen sections for imaging mass spectrometry
(IMS) analysis followed a protocol established in previous
research (Nakabayashi et al., 2019). Collected germinating seeds
of C. roseus were embedded in Surgipath FSC22 compound
(Leica Microsystems) and frozen in a �75°C acetone bath

(Histo-Tek Pino; Sakura Finetek Japan Co., Ltd, Tokyo, Japan).
Then, the frozen block was sectioned with a knife blade until the
desired tissue surface was exposed. Transfer tape (Adhesive Tape
Windows; Leica Microsystems) was applied to the face of the
block, and 11 lm sections were produced using a cryostat
(CM3050S; Leica Microsystems). Then, the sections attached to
the transfer tape were transferred to conductive copper tape
(double-sided No. 796; Teraoka Seisakusho Co., Ltd, Tokyo,
Japan) on an ITO-coated glass slide (Bruker Daltonics GmbH,
Billerica, MA, USA). These sections were subsequently freeze-
dried overnight at �30°C.

An a-cyano-4-hydroxycinnamic acid (CHCA) matrix solution
was sprayed onto the prepared sections on the glass slides using a
TM-Sprayer (HTX Technologies, LLC, Chapel Hill, NC, USA).
Then, these were analyzed via Fourier transform ion cyclotron
resonance mass spectrometry (FTICR-MS; SolariX 7.0 T; Bruker
Daltonics Inc.). Matrix-assisted laser desorption/ionization
(MALDI)-IMS was conducted in positive-ion detection mode,
covering a mass range of m/z 150–600 with 30 lm spatial resolu-
tion (Fig. S1). Visualization analysis was performed using SCILS
LAB software v.2023a Core (Bruker Daltonics Inc.).

Results

Establishment of a time-series sampling method for
germinating seeds

To examine the early developmental regulation of the MIA path-
way, a method for sampling embryos of germinating seeds was
established. Microscopic observation was used to define imbibi-
tion start time and germination time. The end of seed steriliza-
tion was marked as the start of imbibition (0 h after start of
imbibition; 0 HAI). Embryos and endosperms were separately
collected at 8, 16, 24, and 32 HAI (Fig. 2). For the 32 HAI sam-
ples, only ungerminated seeds were included, as some seeds had
germinated by this time. Due to the asynchronous germination
of C. roseus seeds (Fig. S2), the imbibing seeds were monitored
every 2 h from 30 HAI. Seeds showing seed coat rupture were
considered 0 HAG seeds and were transferred to a new agar plate.
Subsequent sampling of embryos and endosperms occurred at
12, 24, 36, 48, and 60 HAG (Fig. 2). However, our endosperm
samples contain the seed coat because it is quite difficult to
remove the seed coat from small seeds of C. roseus.

Idioblasts and laticifers morphologically differentiate in
embryos during seed maturation

After flowering and fertilization, C. roseus produces siliques con-
taining 1–20 seeds (Fig. 3a,b). Immature seeds are characterized
by green, soft seed coats, which harden and darken as they
mature. Once mature, the silique breaks open, revealing the
black, hardened seeds.

We first observed the embryos dissected from immature
(Figs 2a, 3c–f) and mature seeds (Figs 2b, 3b,i) under a stereomi-
croscope and a fluorescence microscope to see whether idioblasts
and laticifers were morphologically differentiated at this time,
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because idioblasts and laticifers in leaves or stems typically exhi-
bit fluorescent granular or elongated shapes (St-Pierre et al.,
1999; Yamamoto et al., 2016, 2019; Uzaki et al., 2022).
Embryos from immature seeds displayed red autofluorescence
from chlorophyll and blue autofluorescence from unidentified
substances in the radicle (Fig. 3c,d). Fluorescent, laticifer-like
elongated structures were observed in some embryos as the
seed coat hardened (Fig. 3e,g,h), indicating that laticifers had
morphologically differentiated and accumulated fluorescent
compounds at this stage. However, in more mature seeds, these
fluorescent laticifers were not evident (Fig. 3f).

Embryos from dried, mature seeds before germination showed
blue autofluorescence throughout, and fluorescent laticifer-like
structures were not observed (Fig. 3i 8 HAI and 0 HAG). These
structures reappeared in roots at 24 HAG and in hypocotyls at
36 HAG, and a few fluorescent idioblasts were noted in embryos
at 48 HAG and 60 HAG. They were also present in cotyledons
at 60 HAG. Sectioning of 48 HAG embryos revealed fluorescent
cells exist at the periphery (Fig. S3a,c), where laticifers are
expected to be located, with xylem displaying spiral structures at
the center (Fig. S3d,f). Laticifers in many plant species, including
C. roseus, accumulate lipids (Castelblanque et al., 2016). Staining
of 48 HAG seed embryos with Nile blue, a marker for fatty acid
and lipid-soluble compounds, also highlighted these fluorescent
elongated structures as in laticifers in leaves (Methods S1, Fig. S4).
These observations suggest that the fluorescent, elongated struc-
tures seen after germination of embryos were indeed laticifers.

Composition of fluorescent compound in embryos seem to
be different from that of mature leaf and stem

We then investigated whether the fluorescent compounds accu-
mulated in embryonic laticifers were the same as those in mature

plants (Methods S2). Analysis of in situ single laticifers via fluor-
escent microscopy suggested a distinct composition of fluorescent
compounds compared with those in laticifers of leaves and stems
(Fig. S5a). In addition, methanol extracts of whole embryos from
48 HAG seeds and extracts from leaves, stems, and roots were
analyzed using a liquid chromatography (LC)-fluorescence detec-
tor (Methods S3). The extract from leaves and stems predomi-
nantly showed a peak with a retention time (RT) corresponding
to serpentine. The root extract, however, revealed two additional
peaks of unknown compounds in addition to the serpentine
peak. The endosperm extract exhibited a peak with a slightly dif-
ferent RT from serpentine, suggesting that fluorescence in endo-
sperm did not originate from serpentine. The embryo extract
contained four fluorescent compounds, including a small peak
with an RT-matching serpentine, and the elution pattern was
similar to that of the extract from roots (Fig. S5b).

These findings suggest that laticifers in embryos of developing
immature seeds undergo morphological differentiation and tran-
siently accumulate cell type-specific fluorescent metabolites. In
germinating seed embryos, certain fluorescent compounds are
specifically accumulated in laticifers after 24 HAG.

Intracellular structures in laticifers changed dramatically
during seed maturation and germination

To examine intracellular structural changes in laticifers during
seed maturation and germination, resin-embedded semithin sec-
tions of embryos from immature seeds and seeds at 0 HAG, 12
HAG, 24 HAG, and 36 HAG were examined using an upright
microscope and field emission scanning electron microscopy
(FE-SEM) (Methods S4, S5). We focused on laticifers in the
hypocotyl, as idioblasts were not morphologically distinct from
other cells at these stages.

Fig. 2 Timetable for processing and sampling of
seeds of Catharanthus roseus. (a) Seed
maturation process in C. roseus, highlighting the
nonsynchronized maturation of seeds. Immature
seeds were randomly collected, with maturity
inferred from their appearance. (b) Sampling
methodology for imbibing/germinating seeds.
The start of imbibition is marked by the end of
seed sterilization. Embryos and endosperms were
collected every 8 h up to 32 h after start of
imbibition (HAI). Seed coat rupture, indicative of
germination commencement, was monitored
every 2 h after 30 h of imbibition. Seeds were
sampled at intervals of 12 h up to 60 h after
germination (HAG). Bar: 1 mm.
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Laticifers were identified in the hypocotyls of all samples,
including embryos in immature seeds (Figs S6, S7). Most epider-
mal cells, cortical cells, and laticifers in embryos of immature
seeds were filled with globular structures, likely lipid droplets
(LDs, oil bodies) encased in a lipid monolayer membrane
(Fig. S8). In one embryo of an immature seed, most cells, includ-
ing laticifers, contained embryonic vacuoles (EVs) surrounded by
a unit membrane (lipid bilayer) with an interior with a low elec-
tron density (Fig. S8a,e). Another embryo displayed what seemed
to be protein storage vacuoles (PSVs) with an interior with a high
electron density in epidermal and cortical cells, but no vacuoles
were observed in laticifers, similar to the embryos of 0 HAG
seeds (Figs 4, S8f,j).

In embryos of germinating C. roseus seeds, notable differences
were observed between cells located near the cotyledon (Figs 4,
S10) and those near the radicle (Figs S9, S11). Changes in intracel-
lular structure typically occurred first in cells near the radicle and
then in cells near the cotyledon. This analysis focused primarily on
changes observed in the cells of the hypocotyl near the cotyledon.

In embryos of 0 HAG seeds, including laticifers, cells were
filled with globular structures with a monolayered membrane,
likely LDs (Figs 4a–c, S10a,c). Similarly, at 12 HAG, 24 HAG,
and 36 HAG, many LDs were present in all cells. However, the
electron density and size of LDs in laticifers differed significantly
from those in epidermal and cortical cells, indicating potential
differences in contents (Figs 4, S10).

Fig. 3 Microscopic images of seeds and embryos
of Catharanthus roseus. (a) Immature siliques of
C. roseus. (b) Mature siliques and seeds. (c–f)
Microphotographs of immature seeds (top) and
embryos (middle and bottom), with seed coats
progressively hardening and drying from c to f.
(g, h) Magnification of boxed areas in (e), with
yellow arrows indicating laticifer-like structures.
(i) Microphotographs of matured (8 h after start
of imbibition, HAI) and germinating (0–60 h after
germination, HAG) seeds (top) and embryos
dissected from the seeds (middle and bottom).
Time points (8 HAI–60 HAG) correspond to those
detailed in Fig. 2. (j–n) Magnification of boxed
areas in (i), with yellow arrows indicating
laticifers and red arrowheads highlighting
idioblasts. Bars: 0.5 mm.
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In laticifers of 0 HAG embryos, no vacuoles were present,
unlike the PSVs observed in epidermal and cortical cells
(Figs 4a–c, S10a,c). Lytic vacuole (LV)-like structures with unit
membranes and interiors with a low electron density emerged in
laticifers of 12 HAG embryos, developing further in 24 HAG
and 36 HAG embryos (Fig. 4b,l). By contrast, PSVs were
observed in epidermal and cortical cells, with no LV identified in
these cells on the cotyledon side throughout germination

(Fig. S10). These observations suggest that the laticifers show a
significantly different cell differentiation process, compared with
the surrounding cells, especially regarding the vacuole: epidermal
and cortical cells store proteins, whereas laticifers store alkaloids.

Multinuclear laticifers were identified in 12–36 HAG embryos
(Figs S12, S13), consistent with previous reports of
nonarticulated-unbranched laticifers (Esau, 1965; Wilson & Mahl-
berg, 1978; Mahlberg, 1993; Hagel et al., 2008).

Fig. 4 Electron micrographs of laticifers in germinating seeds of Catharanthus roseus. (a, d, g, j) Images of laticifers in the hypocotyl near the cotyledon of
embryos at (a) 0 h after germination (HAG), (d) 12 HAG, (g) 24 HAG, and (j) 36 HAG. Elongated laticifers are highlighted within dashed yellow lines. Bars:
100 lm. (b, c, e, f, h, i, k, l) Magnifications of boxed areas in (a, d, g, or j). Bars: 10 lm. LD, lipid droplet; LV, lytic vacuole; N, nucleus; PSV, protein storage
vacuole; * in (e, f), LV-like unknown organelle.
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MIA accumulation increased immediately after germination

Having found that laticifers are morphologically differentiated
before seed germination and that their intracellular structure
changes significantly with germination, the next step is to under-
stand the initiation of MIA metabolism during seed germination
and its correlation with cellular structural differentiation. For this
purpose, time-series liquid chromatography–tandem mass spec-
trometry (LC–MS/MS) analysis of embryos and endosperms of
mature seeds after imbibition was conducted. To determine how
nutrients in seeds are allocated to MIAs during germination, the
seeds were germinated without external nutrient sources and
MIAs were measured per 10 embryos/endosperm, without nor-
malizing to dry weight. Seeds germinated and grew under dark
conditions.

Initially, MIAs in mature tissues were quantified for compari-
son with embryo composition. In mature leaves, stems, and
hypocotyls, catharanthine was highly accumulated, whereas the
level of tabersonine, which is biosynthesized from dehydroseco-
dine as happens with catharanthine, was relatively low (Figs 1,
S14). Vindoline predominantly accumulated in leaves but was
undetected in other tissues, indicating leaf-specific accumulation
(Fig. S14). In embryos, tabersonine was highly accumulated,
catharanthine levels were relatively low, and deacetylvindoline and
vindoline were very low and below quantification limits (Fig. 5a).
Meanwhile, compounds such as 3,4-anhydrovinblastine (synthe-
sized from catharanthine and vindoline), along with vinblastine
and vincristine were accumulated in embryos before imbibition as
well as germination (Figs 1, 5a).

A detailed analysis revealed that most MIAs increased dramati-
cally at 12 HAG (Fig. 5b). The level of catharanthine was low,
almost one-hundredth of tabersonine, until 36 HAG. Similarly,
serpentine levels were about one-tenth of its precursor, ajmalicine,
until 36 HAG. The levels of 3,4-anhydrovinblastine, vinblastine,
and vincristine gradually increased after germination. Tryptamine,
strictosidine, tabersonine, catharanthine, ajmalicine, serpentine,
and bis-indole alkaloids were detected in embryos before germina-
tion (0 HAI–0 HAG), although below the limit of quantification.

Iridoid compounds such as loganic acid, loganin, and secolo-
ganin in embryos and endosperms were also quantified
(Fig. S15). Loganic acid levels were high before germination and
decreased after germination, while loganin levels were low before
germination and increased in both embryos and endosperms after
germination (Fig. S15). Secologanin was detected but below the
quantification limit.

Considering previous findings that vindoline biosynthesis is
stimulated by red light (Liu et al., 2019), MIAs in embryos from
seeds germinated under light conditions were also quantified
(Fig. S16). The amount of vindoline slightly increased under
light conditions, but not substantially, compared with mature
leaves. This suggests that MIA composition in embryos differs
from that in mature tissues.

Some MIAs, including tryptamine, strictosidine, tabersonine,
catharanthine, and ajmalicine, accumulated in the endosperm
before imbibition (Fig. S17). After germination, the levels of
these compounds increased while those of vinblastine and

vincristine decreased (Fig. S17). Deacetylvindoline, vindoline,
and serpentine were also detected in endosperms but below the
quantification limit.

The expression of MIA biosynthetic enzyme genes and
MIA content are well correlated

To further analyze the initiation of MIA biosynthesis by examin-
ing the timing of activation of MIA biosynthesis, time-series
RNA-seq analysis of whole embryos after imbibition was con-
ducted (Methods S6). The results revealed that the expression of
most MIA biosynthetic enzyme genes increased at 12 HAG,
aligning with the spike in MIA accumulation (Figs 5, S18). The
expressions of the genes T16H, T16H2, DAT, and SS were too
low for quantification; indeed, T16H2 and DAT expression are
inhibited in darkness (Liu et al., 2019).

In hierarchical clustering analysis and heatmaps of Z-scored
gene expression, MIA-related genes were divided into five clusters
(Fig. 6). Many MIA biosynthetic enzyme genes were in the first
and second cluster, showing increased expression during 12–24
HAG. Biosynthetic enzyme genes for the iridoid pathway
expressed in IPAP cells and genes for the late pathway of vinblas-
tine/vincristine biosynthesis were in the third cluster, with
increased expression at 36 HAG (Figs 6, S18, S19). Iridoid bio-
synthetic enzyme genes such as 7DLGT and 7DLH showed
increased expression at 36 HAG, whereas LAMT and SLS2
expression increased at 12 HAG (Figs 6, S19).

The expression levels of certain TFs known to regulate MIA
biosynthesis were correlated with those of enzyme genes.
ORCA3, a positive regulator of STR identified from the T-DNA
insertion line of suspension cell culture (van der Fits & Meme-
link, 2000), was coexpressed with MYC2, the master regulator of
jasmonate signaling and a positive regulator of ORCA3, with an
expression pattern similar to that of STR (Zhang et al., 2011;
Figs 6, S18, S20). BIS 1–3, positive regulators of iridoid bio-
synthesis, were coexpressed with iridoid biosynthetic genes (GES,
G8O, 8HGO, IS, IO, 7DLGT, and 7DLH ), aligning with pre-
vious research (Van Moerkercke et al., 2015, 2016; Colinas
et al., 2021). GATA, a positive regulator of T16H2, T3O, T3R,
D4H, and DAT under PIF TF control (Liu et al., 2019), was not
coexpressed with any other gene analyzed in this study, and the
known iridoid transporters NPF2.4 and NPF2.6 were not coex-
pressed with iridoid biosynthetic genes. These findings suggest
that transcriptional regulation is involved in MIA biosynthesis
during seed germination, but that still unknown regulators of
MIA biosynthesis must exist.

Alkaloid staining and imaging mass spectrometry analysis
revealed the cellular localization of MIAs and iridoids

The localization of alkaloids in embryos was investigated using
Dragendorff’s reagent staining, which reacts with alkaloids to cre-
ate brownish precipitates (Carqueijeiro et al., 2016) (Methods
S7). Laticifers in 48 HAG embryos were stained dark brown,
similar to leaf section laticifers, indicating high alkaloid accumu-
lation in laticifers in embryos (Fig. 7).
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Imaging mass spectrometry analysis was conducted on 24 HAG
and 48 HAG germinating seeds, before and after the 36 HAG per-
iod of increased expression of iridoid biosynthetic enzyme genes
and late MIA pathway enzyme genes (Fig. 6). Many compounds,
including those with m/z values of 353.18, 349.15, 355.20,

337.19, 415.10, 429.11, or 427.10, were detected and annotated
as MIAs or iridoids (Figs 8, S21). However, other MIAs or iridoids
could not be detected, possibly due to low abundance or ionization
difficulty. LC–MS/MS analysis of embryo extracts identified other
compounds with these m/z values, but they could not be

Fig. 5 Changes in monoterpenoid indole alkaloid
(MIA) content in the Catharanthus roseus
embryo during imbibition and germination of
seeds. (a) Combined plot including the levels of
all quantified MIAs. Bars represent standard error
(SE). (b) Individual plots for each MIA. Boxes
expand the data range from 0 HAI to 24 HAG.
HAI, hours after imbibition; HAG, hours after
germination. n ≥ 5.
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definitively identified via IMS (Methods S8). Nevertheless, based
on the LC–MS/MS results, it was concluded that the most abun-
dant compounds detected with m/z values of 337.19, 353.18, and
349.15 were tabersonine, ajmalicine/tetrahydroalstonine, and ser-
pentine, respectively (Table S2). Ajmalicine and tetrahydroalsto-
nine could not be distinguished due to their nearly equal
abundance. MIAs mainly accumulated in hypocotyls and roots,

not in cotyledons, at 24 HAG and 48 HAG (Fig. 8). Compounds
at m/z = 415.10, 429.11, and 427.10 were annotated as loganic
acid, loganin, and secologanin, respectively, with loganic acid
detected in the cotyledon at 24 HAG, and loganin and secologanin
primarily in hypocotyls and roots. These results strongly suggest
that alkaloids and iridoids are biosynthesized and/or accumulate in
a cell type- and tissue-specific manner.

Fig. 6 Heatmap of known monoterpenoid indole alkaloid (MIA) enzyme genes, Transcription factors (TFs), and transporters of Catharanthus roseus from
RNA-seq analysis. MIA biosynthetic enzyme genes expressed in internal phloem-associated parenchyma (IPAP) cells, epidermis, and idioblasts/laticifers are
surrounded in blue, yellow, and red boxes, respectively. Gene names highlighted in green represent TFs, while those in pink denote transporters. The color
of each cell represents the Z-scored gene expression. Localizations of transcripts of MIA biosynthetic genes are based on single-cell transcriptome analysis
of leaves (Sun et al., 2022). Enzyme gene abbreviations are provided in Fig. 1. HAG, hours after germination; HAI, hours after imbibition.
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Discussion

Morphological differentiation of idioblasts and laticifers
during embryo development in C. roseus

We performed detailed microscopic observation of embryos dis-
sected from C. roseus seeds, both before and after maturation. The
results showed that laticifers had already morphologically differen-
tiated in developing embryos. These cells accumulated specific
fluorescent compounds (Fig. 3e,g,h). This finding was unex-
pected, as nonarticulated-unbranched laticifers, including those in
C. roseus, were previously thought to differentiate postembryoni-
cally in developing shoots (Esau, 1965; Hagel et al., 2008). Unlike
laticifers, fluorescent idioblasts were not observed at this stage. A
previous study indicated that idioblasts differentiate later than lati-
cifers in developing leaves (Uzaki et al., 2022), suggesting that
idioblast differentiation might not occur before seed maturation.
After seed maturation and germination, fluorescent compounds
accumulated in laticifers after 24 HAG. The fluorescent com-
pound in laticifers of embryos at these stages was not solely ser-
pentine. Despite the detection of small amounts of serpentine in
embryos, the expression of serpentine synthase was almost unde-
tectable, indicating that serpentine is unlikely the primary fluores-
cent substance in laticifer cells in embryos, and that the
composition of fluorescent compounds differs from that in leaves
and stems (Fig. S5). These fluorescent elongated cells were stained
by Nile Blue reagent and Dragendorff’s reagent, suggesting that
they contain lipid-soluble compounds and alkaloids, similar to
laticifers observed in leaves (Figs 7, S3, S4).

Electron microscopy revealed changes in intracellular structures
of laticifers during seed germination (Figs 4, S8–S11). Generally,
LVs are converted from PSVs in embryos during seed germination
(Zheng & Staehelin, 2011). However, our observations showed no

PSVs in laticifers, with LVs appearing instead. LVs have been
described to also have other different biogenetic origins depending
on the cell/tissue/organ (Cui et al., 2020). This suggests that latici-
fers differentiate LVs without differentiating PSVs, which may con-
tribute for MIA accumulation. In addition, the smaller size and
different electron density of LDs in laticifers compared with sur-
rounding epidermal and cortical cells indicate distinct compounds
in laticifer LDs. Previous studies on plants such as Asclepias syriaca
and Papaver somniferum have reported laticifer ultrastructure in
immature or mature embryos but none of these specifically men-
tioned LV structure or distinctive LD contents in laticifers
(Thureson-Klein, 1970; Wilson & Mahlberg, 1978; Inamdar
et al., 1988). A study on A. thaliana reported LDs functioning as
scaffolds for enzyme proteins to synthesize antimicrobial compo-
nents (Shimada et al., 2014), suggesting a potential link between
the unique characteristics of laticifer LDs and laticifer-specific
metabolism.

Multinucleate laticifers were also observed in embryos of ger-
minating seeds (Figs S12, S13). Previous researches have sug-
gested that nonarticulated laticifers possess multiple nuclei
(Esau, 1965; Wilson & Mahlberg, 1978). This observation aligns
with established findings and adds to the understanding of latici-
fer development in C. roseus.

Induction of MIA biosynthesis in germinating seeds in C.
roseus

Monoterpenoid indole alkaloids were present in seeds before
imbibition, with a significant increase observed at 12 HAG
(Fig. 5). Given that compounds such as strictosidine and taberso-
nine were somewhat accumulated, while vindoline was notably
low in embryos, it appears that the MIA biosynthetic pathway is
only partially active, up to the synthesis of tabersonine, in

Fig. 7 Alkaloid staining of leaf sections and 48 h after germination (HAG) embryos of Catharanthus roseus. Microscopic images before and after alkaloid
staining with Dragendorff’s reagent of sections from (a) a leaf and (b) a 48 HAG embryo. The arrows indicate laticifers. Bars: 200 lm.
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embryos of germinating seeds. Lower levels of catharanthine and
serpentine compared with tabersonine or ajmalicine, particularly
before 36 HAG, suggest decreased activity in their biosynthetic
pathways. Enzymes such as SS and DAT were almost not
expressed from 0 HAI to 60 HAG. Moreover, the expression of
genes involved in the vindoline pathway (T3O, T3R, NMT, and
D4H ) and HL1 was upregulated later than genes associated with
the pathway upstream of tabersonine or ajmalicine, such as STR
and HL2, aligning with the observed MIA measurements
(Figs 5, 6, S18).

3,4-Anhydrovinblastine, biosynthesized from catharanthine
and vindoline, was present in embryos before seed imbibition
and germination, although the biosynthetic enzyme genes for
catharanthine and vindoline were not activated at these
stages. This suggests that bis-indole alkaloids such as 3,4-
anhydrovinblastine, vinblastine, and vincristine accumulate
before seed maturation, independent of MIA biosynthesis initia-
tion in germinating seed embryos. This led to the hypothesis that
these compounds are transported from the mother plant or bio-
synthesized in embryonic tissues, before seed maturation.
Furthermore, the accumulation of these bis-indole alkaloids
increases later than 12 HAG, while some of the biosynthetic
enzyme genes for vindoline are not expressed 0 HAI–60 HAG.
We may need to also consider the existence of uncharacterized
isoforms of these enzymes that are specifically expressed during
embryogenesis, or the existence of another pathway for the
biosynthesis of the bis-indole alkaloids via uncharacterized
precursors.

Loganic acid levels were high in embryos before imbibition
and decreased after germination, while loganin was almost unde-
tectable before germination, increasing thereafter. The expression
of 7DLGT was low before germination, increasing from 36
HAG, with LAMT expression increasing at 12 HAG. This indi-
cates that loganic acid is synthesized and stored during seed
maturation and used after germination, with loganin, secologa-
nin, and MIAs being biosynthesized from accumulated loganic
acid (Figs 5, 6, S15, S18, S19).

Vindoline levels in embryos under light conditions were
slightly elevated but still low compared with other compounds
such as tabersonine (Fig. S16), suggesting an additional regula-
tory system for vindoline biosynthesis related to germination or
growth, beyond red light regulation (Aerts & De Luca, 1992; Liu
et al., 2019). In two previous studies, vindoline biosynthesis was
activated under light conditions in 5-d-old seedlings, indicating
that further tissue or cell maturation is necessary before vindoline
can be synthesized (De Luca et al., 1986, 1988).

The patterns of changes in MIA accumulation correlated with
the expression of MIA biosynthetic enzyme genes, indicating
transcriptional regulation in the embryos of germinating seeds
(Figs 5, 6, S18, S20). TFs such as ORCA3 and BIS 1–3 appeared
to regulate some enzyme genes involved in MIA or iridoid bio-
synthesis. However, the distinct expression pattern of HL1,
which was initially upregulated and then remained stable from

Fig. 8 Imaging mass spectrometry (IMS) analysis of the localization of
monoterpenoid indole alkaloids (MIAs) in the embryo of 24 h after
germination (HAG) and 48 HAG seeds of Catharanthus roseus. (a) The
images of thin sections of seeds. The areas surrounded by red line were
analyzed. Distribution and concentration of (b) tetrahydroalstonine/
ajmalicine (m/z = 353.18), (c) serpentine (m/z = 349.15), and (d)
tabersonine (m/z = 337.19) as determined by IMS analysis. Compounds
are detected as [M +H]+ or M+, and compounds for eachm/z value are
annotated based on nontargeted LC–MS/MS analysis (Supporting
Information Table S2). Bars: 1.0 mm.
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12 to 24 HAG before being upregulated again after 36 HAG,
and the delayed increase in expression of genes such as 16OMT1
and 2, T3R, T3O, NMT, D4H, and PRX compared with STR,
were not accounted for by the expression patterns of these pre-
viously identified TFs except for BIS 1–3 (Fig. 6). It could also
be hypothesized that BIS 1–3 might affect the expression of these
genes. However, BIS 1–3 are not coexpressed with T16H1,
T16H2, 16OMT nor D4H in cell culture or seedling, or the
expression of T16H1, T16H2, 16OMT nor D4H was not
affected by overexpression of BIS1 in hairy roots (Van Moer-
kercke et al., 2015, 2016). Based on these facts, if BIS 1–3 play
an important role in the expression of MIA biosynthetic enzyme
genes, it would be specific to embryos of germinating seeds.
Alternatively, there may be other unknown regulators of these
enzyme genes.

Differences in the timing of gene expression among MIA
biosynthetic enzyme genes

Time-series MIA measurements and RNA-seq analysis revealed
the gradual initiation of MIA biosynthesis after 12 HAG (Figs 5,
S18). Hierarchical clustering analysis and heatmapping of Z-
scored gene expression identified five distinct clusters of MIA bio-
synthetic gene expression patterns. Notably, iridoid enzyme genes
expressed in IPAP cells were in cluster 3, showing upregulation
later than 24 HAG (Fig. 6). In addition, several enzyme genes for
the late MIA biosynthetic pathway, such as HL1, 16OMT1,
16OMT2, T3O, T3R, NMT, and D4H, were also in this cluster.
16OMT1, 16OMT2, T3O, and T3R convert tabersonine into
vindoline or vindorosine, which are thought to accumulate in
idioblasts and laticifers as well as D4H, and HL1 converts dehy-
drosecodine into catharanthine, which is also thought to accumu-
late mainly in idioblasts and laticifers (Yamamoto et al., 2016,
2019). These findings suggest physiological reasons for the
delayed synthesis and accumulation of certain MIAs, possibly
linked to cellular differentiation. Future research should investi-
gate the cellular localization of the expression of each gene and
compound in embryos at various stages to validate this hypoth-
esis.

Metabolic differentiation of each cell and tissue

Alkaloid staining with Dragendorff’s reagent revealed alkaloid
accumulation in fluorescent laticifers in embryos, as well as in leaf
laticifers (Fig. 7). This confirms that MIAs are highly accumu-
lated in laticifers also in embryos. Slight staining in the epidermis
suggested minor alkaloid accumulation there, aligning with pre-
vious research indicating MIA accumulation in the epidermis of
young tissues (Yamamoto et al., 2019). The specific MIA accu-
mulation also supports the hypothesis that cell maturation is
related to the regulation of alkaloid metabolism, as indicated by
MIA measurements and transcriptome analysis. Laticifer-specific
MIA accumulation was not observed from IMS analysis, which is
inconsistent with Dragendorff’s reagent staining analysis, due to
its lower spatial resolution. The spatial resolution of IMS
depends not only on the size of the laser used for ionization, but

also on various factors such as crystal size of the matrix and
method of sample preparation. IMS analysis of C. roseus seeds
requires further improvements for metabolome analysis in the
single-cell level with IMS.

Fluorescence microscopy revealed that specific fluorescent
compounds initially accumulated in laticifers in the roots of 24
HAG embryos, then in the hypocotyls at 36 HAG, and finally in
the cotyledons at 60 HAG. Although IMS techniques could not
clarify the precise cellular localization of each MIA, some MIAs
were detected only in roots and hypocotyls, not in cotyledons.
This suggests that MIA metabolism is initiated earlier in roots
and hypocotyls than in cotyledons, consistent with the results of
LC–MS/MS analysis in which vindoline, the compound that spe-
cifically accumulates in leaves, was significantly low in embryos.
Loganic acid (m/z = 415.1001) was mainly detected in cotyledons
at 24 HAG but not at 48 HAG, suggesting early consumption,
in line with the LC–MS/MS results (Figs S15, S21). This indi-
cates that cotyledons at this stage might still be metabolically
immature, serving primarily as accumulation sites.

In dormant seeds, metabolism is quiescent, and germination is
a process of resuming metabolism. Seed germination therefore
offers a valuable model for analyzing cellular metabolic differen-
tiation. Our detailed analyses of the embryo and endosperm of
germinating seeds showed that laticifers morphologically differ-
entiate before seed maturation, MIA metabolism is induced soon
after germination, and morphological differentiation precedes
metabolic differentiation. Due to their toxicity, MIAs have been
discussed as plant defense compounds in mature plants. The
accumulation of MIAs before seed imbibition and the expression
of MIA biosynthetic genes soon after germination suggest the
importance of MIAs as a defense strategy also in the immature
developmental phase of C. roseus. At the same time, the progress
of cellular differentiation before the initiation of MIA biosynth-
esis indicates the requirement of the specific cellular environment
for the MIA biosynthesis. Future research should focus on single-
cell-level metabolomic and transcriptome analyses to further
explore cellular metabolic differentiation.
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