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Band gap formation in commensurate twisted bilayer graphene/hBN moiré lattices
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We report on the investigation of periodic superstructures in twisted bilayer graphene (tBLG) van der
Waals heterostructures, where one of the graphene layers is aligned to hexagonal boron nitride (hBN). Our
theoretical simulations reveal that if the ratio of the resulting two moiré unit-cell areas is a simple fraction,
the graphene/hBN moiré lattice acts as a staggered potential, breaking the degeneracy between tBLG AA
sites. This leads to additional band gaps at energies where a subset of tBLG AA sites is fully occupied.
These gaps manifest as Landau fans in magnetotransport, which we experimentally observe in an aligned
tBLG/hBN heterostructure. Our study demonstrates the identification of commensurate tBLG/hBN van der
Waals heterostructures by magnetotransport, highlights the persistence of moiré effects on length scales of tens
of nanometers, and represents an interesting step forward in the ongoing effort to realize designed quantum
materials with tailored properties.
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I. INTRODUCTION

The periodic structure of a crystalline solid is a key factor
for its electronic band structure and hence its electrical and
optical properties. The periodic potential leads to Bloch states
as solutions of the Schrödinger equation [1] and to the for-
mation of band gaps, well-known cornerstones of solid state
physics. In conventional crystalline solids, the modulation of
the periodic potential is fixed at the atomic scale. However,
progress has been made to engineer artificial lattices, both at
the atomic and nanoscale, to control electronic band struc-
tures, topological material properties, and exotic quantum
phases in solids [2–7]. A remarkable class of such engineered
solids are two-dimensional (2D) van der Waals materials with
moiré lattices, where a small lattice misalignment or twist
angle between two layers results in particularly large unit
cells, orders of magnitude larger than the underlying crystal
lattice constant [8].

A prominent example of such a 2D van der Waals mate-
rial is twisted bilayer graphene (tBLG) [Fig. 1(a)]. In tBLG,
two layers of graphene are stacked with a small twist angle,
creating a moiré lattice with a large periodic modulation on
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the order of several nanometers. The periodic modulation
localizes the electronic wave function on sites where the car-
bon atoms of the individual graphene layers align within the
trigonal tBLG moiré lattice (known as AA sites), leading to
the formation of additional band gaps [9]. Near the so-called
magic angle of 1.1◦, tBLG shows a wealth of interesting
quantum phases, including superconductivity, correlated insu-
lators, and orbital magnetism, all of which depend sensitively
on the flat electronic bands in this system [10–22]. Further-
more, tBLG can be combined in a single van der Waals
heterostructure with a second moiré lattice formed by align-
ing the crystallographic axes of one of the graphene layers
with one of the encapsulating hexagonal boron nitride (hBN)
layers, exploiting the small lattice constant mismatch between
these two materials [23–28]. In this case, an overall composite
supermoiré lattice is formed [29–31], which breaks the in-
version symmetry of tBLG, leading to an altered electronic
structure [32–36], and to the emergence of novel phases such
as ferromagnetism [18,19,37–39] or anomalous quantum Hall
states [19,34].

In this work we present a theoretical model for commensu-
rate tBLG/hBN heterostructures and show that, in the special
case where the ratio of the areas of the unit cells of tBLG and
of the graphene/hBN (gr/hBN) moiré lattice form a simple
fraction, the degeneracy of the AA sites of the tBLG is lifted
in a periodic manner, which leads to a stronger localization
of the electronic wave function on a subset of the tBLG AA
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FIG. 1. (a) Schematic representation of a tBLG moiré lattice.
Gray circles represent the AA sites while the gray rhombus denotes
the tBLG unit cell. (b) Schematic representation of a composite
supermoiré lattice consisting of a tBLG moiré lattice [same as in (a)]
and a graphene/hBN (gr/hBN) moiré lattice. Blue circles represent
the AA sites of the resulting supermoiré lattice. The shaded rhombus
denotes the corresponding supermoiré unit cell.

sites. This results in turn in a further flattening of the bands
of tBLG and in the appearance of additional band gaps, which
manifest themselves as Landau fans at fractional filling factors
in the magnetotransport characteristic of the system. This
prediction is confirmed experimentally by magnetotransport
measurements in a tBLG sample aligned to hBN. Remarkably,
the additional band gaps are not related to full filling of a
specific (super)moiré cell but to the filling of a subset of AA
sites of the tBLG, selected by the graphene/hBN moiré lattice.

II. THEORETICAL MODEL OF tBLG MOIRÉ SYSTEMS

The theoretical modeling of tBLG [see Fig. 1(a)] involves
large unit cells, e.g., about 13 × 103 atoms for a twist angle
of approximately 1◦. For tBLG, we parametrize our model di-
rectly from density functional theory (DFT), by evaluating the
relative, local stacking configurations of the carbon atoms in
the top and bottom graphene layers [40]. Using the local DFT
parametrization, we assemble a tight-binding Hamiltonian of
the entire tBLG moiré unit cell. Given the different energies
of the different stacking configurations, the two layers will
stretch and corrugate to minimize their energy. We account
for this relaxation and for the resulting strain by a membrane
model [41]. We efficiently describe transport through such
a system by considering a ribbon geometry of finite width
W in one direction (y direction) [40]. We choose W ≈ 210
nm (corresponding to 15 tBLG moiré unit cells) to reduce
finite-size effects (for further details see Appendix E). The
band structure of the modeled tBLG ribbon features a number
of quite flat, nearly degenerate bands close to the charge
neutrality point at E = 0 meV [Fig. 2(a)]. The correspond-
ing density of states (DOS) shows the expected peak around

charge neutrality. The energy of the flat bands is confined
to a narrow energy interval delimited by the ν = ±4 band
insulating states [see arrows in Fig. 2(a)] (note that our
single-particle model does not include correlation effects, and
therefore no further interaction-induced gaps are visible). For
small fillings, the spatial distributions of the charge carrier
density shows the expected localization on the AA sites of the
tBLG moiré lattice [Fig. 2(b)]. According to this localization
on a regular triangular lattice, each tBLG moiré unit cell
contains a total of four charge carriers due to the spin and
valley degeneracy, and a band gap opens at full filling of all
AA lattice sites [9,42].

III. THEORETICAL MODEL OF tBLG/hBN COMPOSITE
MOIRÉ SYSTEMS

Including into the model the graphene/hBN moiré lattice
poses a further challenge, as the additional alignment between
one graphene layer and the hBN substrate results in an even
larger overall composite supermoiré unit cell [see Fig. 1(b)].
This applies already to the parametrization by DFT: using
the same approach as for tBLG alone would require many
additional DFT calculations for all possible shifts between
the two graphene layers and all possible alignments of the
additional hBN layer. To alleviate this further parametrization
effort, we only consider the tBLG parameters from DFT, and
add the graphene/hBN moiré lattice based on an effective
potential approach [43]. We use DFT to derive slowly vary-
ing, effective potentials that describe the local modulations
induced by the graphene/hBN moiré lattice in the tBLG. De-
scribing the short-range variations induced by the alternating
boron and nitrogen atoms requires short-range components of
the effective potential, modeled by a second potential with
opposite signs on the two sublattices of the graphene layer in
contact with the hBN [44,45]. This combination of a smooth
and an alternating potential allows us to model the influence
of the hBN alignment and to introduce the length scale of the
graphene/hBN moiré lattice into the tBLG Hamiltonian in an
easily adaptable manner. We have verified numerically that
this effective potential approach leads to qualitatively similar
predictions (concerning the additional satellite Landau levels,
single-particle band gaps etc.) as the full DFT-based atomistic
parametrization of the graphene/hBN moiré lattice. While our
ribbon geometry allows, in principle, incommensurate unit-
cell sizes perpendicular to the ribbon, we impose a periodic
cell of moderate size in x direction along the ribbon. For
a tBLG twist angle of θtBLG = 0.987◦ and a graphene/hBN
twist angle of θgr/hBN = 0.62◦, both unit cells feature one
identical spatial dimension, which we orient in x direction
of our ribbon geometry. A suitable shift of the hBN layer
then allows to obtain a supermoiré cell with comparatively
small periodicity of 24.8 nm in the x direction. This super-
moiré cell features roughly 8 × 104 carbon atoms, and an
area of roughly 300 nm2. The 15 tBLG moiré unit cells
in the y direction, perpendicular to the transport direction,
correspond to 20 graphene/hBN moiré unit cells. The areas
of these two single moiré unit cells thus are commensurate,
with AtBLG/Agr/hBN = 20

15 = 4
3 , i.e., the resulting supermoiré

unit cell contains three (four) tBLG (graphene/hBN) moiré
unit cells (see Appendix E).
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FIG. 2. (a) Band structure and density of states calculation of a tBLG moiré system at a twist angle of θtBLG = 0.987◦ (black arrows mark
the tBLG moiré-induced single-particle band gaps). To distinguish bulk from edge states in our ribbon geometry (width W ≈ 210 nm), we
color each line according to the probability P|�|2 to find the Bloch state at the center of the ribbon, i.e., within [0.2, 0.8] × W . (b) Spatial
distribution of the charge carrier density in one graphene layer, averaged over different energy windows (shaded areas). The charge carrier
density accumulates at the AA sites located at the corners of the tBLG moiré unit cell (see sketched rhombus) forming a uniform triangular
lattice in real space. One tBLG moiré unit cell contains one AA site (proportional contributions from the corners). The y axis is identical for
all panels. (c), (d) Same as in (a) and (b) but with an additional hBN alignment of θgr/hBN = 0.62◦. Blue arrows mark the positions of the
additional gaps forming due to the hBN alignment. Black rhombus in the upmost panel represents the unit cell of the supermoiré lattice defined
by the tBLG and the graphene/hBN moiré lattices. The supermoiré unit cell contains a total of 3 AA sites. On this scale three tBLG moiré unit
cells feature the same area as four graphene/hBN moiré unit cells (second panel from top). The presence of the graphene/hBN moiré strongly
modulates the electron density on the different AA sites of the tBLG moiré lattice.

A. Influence of the graphene/hBN moiré lattice
to the tBLG system

The graphene/hBN moiré lattice induces interactions be-
tween the tBLG moiré flat bands, breaking their degeneracy
since adjacent tBLG moiré unit cells now feature different
alignments with the graphene/hBN moiré lattice. The result-
ing level repulsion between the flat bands causes a pronounced
broadening of the flat band region [compare Figs. 2(a) and
2(c)], enhancing the asymmetry of the ν = ±4 band gaps. The
DOS for the composite system features a much broader region
of peaks, with substantial substructures, delimited by the two
band gaps of the bulk tBLG moiré lattice excluding the edge
states [see Fig. 2(c)].

To further understand the effects of the commensurate
graphene/hBN moiré lattice, we investigate the spatial dis-
tribution of the charge carrier density. Because the charge
occupation of the triangular lattice of AA sites in the orig-
inal tBLG is uniform [Fig. 2(b) and line cuts in Fig. 3(a)],
the resulting filling factor corresponds to four charge car-
riers per AA site (due to the spin and valley degree of
freedoms). The situation is different in the presence of the
commensurate graphene/hBN moiré lattice [Figs. 2(c) and
2(d)]. In this case, we observe an additional band gap at an
energy of approximately |E | ≈ ±7 meV [see blue arrows in
Fig. 2(c)]. Considering the distribution of charge carrier den-
sity |ψ |2, we find the occupation of the three AA sites within

the supermoiré unit cell is now no longer uniform [see shaded
regions in Fig. 2(c) and density plots in Fig. 2(d) as well as
the corresponding line cuts in Fig. 3(b)]. The newly induced
energy gap separates energy regions with varying occupation
of the three tBLG AA sites [Fig. 2(d)]. In particular, only one
out of the three AA sites is occupied in the range from 7 to
11 meV and from −6 to −11 meV [Fig. 2(d), top and bottom
pictures]. Indeed, when counting the number of bands above
and below the additional gap, we find that one third of the
moiré flat bands lies above the new gap. In magnetotransport,
this gap should appear as an additional Landau fan at a filling
of two out of three states, or νsat ≈ ±4 × 2/3 = ±2.67.

B. Magnetotransport simulation

We simulate the magnetotransport behavior of the tBLG
and the tBLG/hBN systems based on the associated band
structure. To investigate the dependence on magnetic field
B, we use a Peierl’s substitution to include the correspond-
ing gauge phase in each hopping in the tight-binding model.
For the Bloch states we extract the group velocities vn(E ) =
(1/h̄) ∂En(k, B)/∂k. We then calculate the magnetoconduc-
tance by summing at a fixed energy over all available modes
with positive group velocity vn(E ) > 0 (i.e., the right-moving
modes, summing over all modes would result in zero due to
time-reversal symmetry), weighted by the respective group
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FIG. 3. (a) Line cuts of the charge carrier density distribution
averaged over specific energy ranges as shown in Fig. 2(b) for
y = 25 nm of the tBLG system. The energy ranges are given by
E1 ∈ [2.5, 12] meV, E2 ∈ [1.3, 2.5] meV, E3 ∈ [−0.153, 1.3] meV,

and E4 ∈ [−4.2,−0.153] meV. The charge distribution on the dif-
ferent AA sites is uniform for tBLG. The y axis is identical for all
panels. (b) Same as in (a) but with the additional hBN alignment
of θgr/hBN = 0.62◦ [line cuts are taken from corresponding panels in
Fig. 2(d)]. The energy ranges are given by E1 ∈ [11, 7] meV, E2 ∈
[−0.4, 7] meV, E3 ∈ [−6,−0.4] meV, and E4 ∈ [−11, −6] meV.
The presence of the graphene/hBN moiré lattice strongly modulates
the electron density on the tBLG AA sites.

velocity of the underlying Bloch states [40] (see Appendix F
for a derivation)

G(E ) = e2

h

d

dE

∑
n: vn(E )>0

En<E

h̄vn(E )�k ≡ R−1(E ), (1)

where �k is the k-point spacing of the band structure (we use
5760 k points for the Brillouin zone with a size of 0.25 nm−1).
We compare the magnetoresistance R(E ), obtained by invert-
ing Eq. (1), of the bare tBLG in Fig. 4(a) to the case of
tBLG/hBN in Fig. 4(b) as a function of the filling factor ν

and normalized magnetic flux per tBLG moiré unit cell (uc)
φ = 	uc/	0, where 	0 = h/e is the magnetic flux quantum
(ν and φ are thus both defined with respect to the tBLG unit
cell). In both cases, the band gaps caused by the tBLG moiré
lattice give rise to Landau fans at integer fillings ν = ±4, i.e.,
at full filling of four charge carriers per tBLG moiré unit cell.
In the case of tBLG/hBN in Fig. 4(b) the expected additional
set of Landau fans emerge from the band gaps induced by the
supermoiré structure at noninteger filling ν ≈ ±2.67 ≡ νsat

(see arrows in Fig. 4). In our single-particle calculations,
this fractional filling (of two out of three AA sites times 4)
emerges because the graphene/hBN moiré potential acts as a
staggered potential and breaks the degeneracy of the AA sites
within the supermoiré unit cell. Crucially, in order to observe
an additional band gap at full filling of a selected subset of
AA sites, we need the very same partitioning of AA sites

in each supermoiré unit cell, so we require a commensurate
moiré supercell.

C. General selection rule

To generalize our discussed model we consider a com-
mensurate supermoiré structure consisting of l tBLG moiré
unit cells and m graphene/hBN moiré unit cells (l, m both
integers), so that the area of the supermoiré unit cell is given
by lAtBLG = mAgr/hBN. If the graphene/hBN moiré lattice se-
lects a subset p of the l tBLG AA sites within the overall
supermoiré lattice, we expect the appearance of an additional
band gap and the accompanying Landau fan at a noninteger
filling factor of

νsat (l, p) = 4
p

l
= 4

pAtBLG

mAgr/hBN
, p < l. (2)

The geometry of the model system we considered above de-
fines l = 3 and m = 4. In the corresponding supermoiré unit
cell, one of the three tBLG AA sites is directly aligned with
an AA site of the graphene/hBN moiré lattice below, and thus
differs from the other two tBLG AA sites (see Appendix G).
This observation suggests that the threefold-degenerate AA
sites of the unperturbed tBLG are split into a doublet and a
singlet. Consequently, possible values for p are either p = 1
or 2, depending on whether the final energy of the single
hBN-aligned tBLG AA site or the two other non-hBN-aligned
tBLG AA sites is lower. The hBN-aligned tBLG AA site is
less energetically favorable [45], suggesting that the doublet
is filled first, and thus p = 2. Indeed, the numerical value
νsat ≈ 2.67 is consistent with p = 2 for our model system, as
νsat (3, 2) = 4 × 2/3 ≈ 2.67 according to Eq. (2).

We find that the appearance of an additional gap is robust
with respect to different twist angles of the tBLG moiré lattice
(see Appendix F). The geometric constraints of a periodic,
commensurate moiré lattice allow only for a limited set of
combinations of l and m (see Appendix G). In general, we
expect values of l and m to be limited by the experimentally
realizable size of a regular supermoiré lattice, as otherwise
twist-angle inhomogeneities would wash out any additional
Landau fans (see Appendix D). The associated fraction p/l
depends on the specific details of the (staggered) potential
induced by the graphene/hBN moiré lattice within the tBLG,
and the relative geometrical orientation of the two moiré
lattices [46]: The energetic shift due to the presence of the
graphene/hBN moiré lattice originates from its three high-
symmetry sites with local energetic shifts [45]; the exact value
of p/l will therefore depend on the precise relative alignment
of these sites with the AA sites of the tBLG moiré lattice.

IV. EXPERIMENTAL OBSERVATION

Next, we turn to transport experiments which show that
a Landau fan can indeed be observed at a noninteger filling
factor, conclusively due to commensurate tBLG/hBN moiré
lattices. In a four-terminal setup, we investigate a tBLG/hBN
Hall bar device at a temperature of T ≈ 30 mK (see Ap-
pendices A1–A4 for details on the fabrication and further
experimental characterization) and perform magnetotransport
measurements which we compare to theory (see Figs. 4 and
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FIG. 4. (a) Magnetoresistance R [see Eq. (1)] simulation of a
tBLG system with a twist angle of θtBLG = 0.987◦. Landau levels
emerge from the charge neutrality point (ν = 0) and the single-
particle band gaps at full filling of the tBLG moiré lattice unit cell
(ν = 4). (b) Same as in (a) but for a composite tBLG/hBN system
with an additional hBN alignment of θgr/hBN = 0.62◦. For this case
there are additional Landau levels emerging from noninteger filling
factors of (νsat ≈ ±2.67) (see black arrows).

5). In Fig. 5(a), we show the derivative of the longitudinal
resistance with respect to the magnetic field dRxx/dB as a
function of ν and φ (see Appendix D for a plot without
the derivative along the magnetic field axis). We observe
Landau fans emerging from the charge-neutrality point at
ν = 0, and the band-insulating states at ν = ±4, as well as
a set of Landau levels arising from the correlated insulator at
ν = 2, as it is expected for tBLG near magic angle [10,13].
In addition, we also observe a set of Landau fans emerging
from noninteger fillings νsat = ±(2.50 ± 0.11) [see Fig. 5(b);
the fractional fillings where the additional feature occurs are
marked by the black arrows]. If we attribute the additional
Landau fans at filling νsat to full filling from a hypothetical
moiré unit cell of size Ahyp, we would get Ahypnsat = 4, where
nsat is the charge carrier density where the Landau fan appears.
In units of fillings of the tBLG moiré unit cell, this results
in Ahyp = 4AtBLG/νsat = 1.6AtBLG. Assigning this hypotheti-
cal moiré unit cell Ahyp to a graphene/hBN moiré unit cell
yields a moiré wavelength of λ

gr/hBN
hyp ≈ 18.5 nm, which is

larger than the theoretical maximal value for a graphene/hBN
moiré lattice of λmax

gr/hBN ≈ 14.7 nm [29], making this scenario
impossible. Furthermore, the area Ahyp cannot correspond to
any unit cell of the supermoiré lattice either since this would
require an area of at least 2AtBLG. We thus conclude that the
observed Landau fans cannot be explained by full filling of
a hypothetical cell size. Instead, the real-space selection rule
described by Eq. (2) can easily explain the observed additional
Landau fans.

The question remains whether the observed feature of addi-
tional Landau fans at fractional fillings is due to correlations.
The phase diagram of twisted bilayer graphene is very com-
plex, with a plethora of phenomena driven by many-body
effects [47], some of which could give rise to fractional states.
However, here we identify a number of key experimental fea-
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FIG. 5. (a) Magnetic field derivative of the longitudinal resis-
tance as a function of the filling factor ν and normalized magnetic
flux per tBLG moiré superlattice unit cell φ. We observe clear Lan-
dau levels emerging from charge neutrality and an integer filling
factor of ν = 2. The Landau levels emerging from ν = ±4 are less
pronounced. Furthermore, additional Landau levels emerging from
a noninteger filling factor of around ν ≈ ±2.5 ≡ νsat tilted towards
the charge neutrality point are visible. (b) Zoom-in into the relevant
area from (a). The lines are plotted as a guide to the eye to highlight
relevant Landau fans at the charge neutrality point (light blue), the
integer filling ν = +2 (dark blue), and at the noninteger filling factor
ν ≈ ±2.5 (black).

tures that are inconsistent with a many-body explanation: (i)
The additional Landau fans extend over a wide density range
from ν ≈ ±2.5 at φ = 0 to ν ≈ ±0.5 at φ ≈ 0.2. In con-
trast, reports of correlation-driven Landau fans are extremely
limited in carrier density (as correlated states emerge from the
physics of specific fillings). The latter is particularly true for
the many-body physics of fractional states [11,47]. (ii) The
slope of the Landau fans we observe implies a Landau-level
degeneracy of νLL = −12,−8,−4, 4, 8, 12, consistent with
single-particle predictions but inconsistent with predictions
from fractional many-body physics [47–50]. (iii) The features
of the additional Landau fans emanating from the fractional
filling cross through those from the charge-neutrality point
without interruption, which is not expected for Landau levels
emerging from correlated states in tBLG [16,51]. We therefore
attribute these additional Landau fans to the presence of the
graphene/hBN moiré lattice acting as a staggered potential
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that selects a subset of tBLG AA sites within each supermoiré
unit cell, as shown by the magnetotransport simulation [see
Fig. 4(b)]. This also serves as a warning that additional Lan-
dau fans do not necessarily imply the emergence of correlated
physics. Indeed, our mean-field tight-binding approach ex-
plains the resulting band gap at fractional fillings of the tBLG
moiré lattice at νsat entirely based on an effective single-body
Hamiltonian by the lifting of the degeneracies of the tBLG AA
sites, in line with both experimental observations mentioned
above.

To estimate the tBLG twist angle θtBLG, we determine
the tBLG superlattice density from magnetotransport mea-
surements to be ns ≈ ±(2.17 ± 0.06) × 1012 cm−2 and use
θtBLG = [

√
3ns/8]1/2a, where a = 0.246 nm is the graphene

lattice constant [11]. This results in a value of θtBLG ≈
0.97◦ ± 0.02◦ (see Appendix B for further details). For the
composite graphene/hBN moiré lattice, the discussion above
suggests a filling of some fraction p/l of the AA sites within
the supermoiré unit cell. However, since the filling factor νsat

and the area of the tBLG moiré unit cell AtBLG are the only
experimental accessible quantities in Eq. (2), the size of the
graphene/hBN moiré unit cell area is not uniquely determined
by the measured filling νsat: it depends still on the fraction p/m
(see Appendix B). Hence, there are triples of integers (l, m, p)
which result in identical values for νsat but correspond to
different angles θgr/hBN. This result might appear surprising,
given that the filling at which moiré-induced Landau fans
appear are usually precise indicators for the underlying moiré
unit-cell areas and thus for the occurring twist angles. The
underlying physical reason is that νsat is not directly deter-
mined by the size of the graphene/hBN moiré lattice, but
rather by the degeneracy lifting induced by the graphene/hBN
moiré lattice on the AA sites of the tBLG. Consequently, it
highlights the importance of the discussed real-space effect
and shows that great care must been taken by the interpretation
of moiré-induced Landau fans. In particular, there are values
for νsat that are compatible with both a particular choice of
integers (l, m, p) or full filling of a meaningful unit-cell area
Ahyp. For example, if p is small, the associated Ahyp becomes
sufficiently large to be potentially caused by full filling of the
supermoiré unit cell.

While we cannot uniquely identify the two variables p
and m from a measurement of νsat, we can identify plausi-
ble candidates. Plausible in this context means that the size
of the superstructure is below 50 nm × 50 nm = 2500 nm2,
such that the influence of twist-angle variations on the satel-
lite features are less likely. Consequently, we expect small
integers for the parameters l and m. Considering simple frac-
tions that correspond to a commensurate moiré lattice and
yield a νsat within the experimental error bounds (see Ap-
pendix B), one finds (l = 13, p = 8) yielding, according to
Eq. (2), νsat = 4 × 8

13 ≈ 2.46 (see Appendix G). To determine
the corresponding value of the parameter m, we search for an
area ratio yielding a commensurate supermoiré lattice, which
gives m = 16 (see also Fig. 13 in Appendix G for a schematic
illustration). Assuming these values, we can estimate the twist
angle of the graphene/hBN moiré lattice by using the general
geometric relation between the moiré unit-cell size λgr/hBN =
[2Agr/hBN/

√
3]1/2 = (13.05 ± 0.50) nm to calculate the twist

angle via [52]

θgr/hBN = arccos

[
1 − (1 + δ)a2

2λ2
gr/hBN

+ δ2

2(1 + δ)

]
, (3)

where δ ≈ 0.017 is the relative lattice constant mismatch be-
tween graphene and hBN. This results in an extracted twist
angle of θgr/hBN = 0.50◦ ± 0.10◦ (Agr/hBN ≈ 147.5 nm2). This
value must be treated with caution, as the next largest pos-
sible commensurate moiré system (just larger by a factor
of about 1.3), providing νsat values within the experimental
error bars, is defined by (l = 13, m = 21, p = 8), giv-
ing a graphene/hBN twist angle of θgr/hBN = 0.79◦ ± 0.08◦
(Agr/hBN ≈ 112.5 nm2). These different estimates nicely il-
lustrate the difficulty of determining the twist angle in such
multilayer van der Waals heterostructures. In both cases, the
noninteger fraction νsat of full filling of the tBLG unit cell at
which we find the additional Landau fans can be expressed as
a simple fraction, as predicted by Eq. (2).

Note that the requirement for the appearance of the addi-
tional Landau fans resulting from the graphene/hBN moiré
lattice is commensurability. In an incommensurate supermoiré
lattice, one would always select different subsets of tBLG AA
sites, which does not result in a well-defined band gap. Only
in the commensurate case, a sufficient number of repetitions
in the resulting superstructure selects the same, well-defined
subsets of tBLG AA sites within each supermoiré unit cell,
imprinting a band gap on the density of states. We can investi-
gate the minimal number of repetitions required numerically:
we find that a prominent gap in the density of states only
emerges upon inclusion of the order of five periodic cells
in one direction. Estimating the characteristic size of the su-
permoiré unit cell as

√
lAgr/hBN = √

13 × 147.5 nm ≈44 nm
results in a minimum length scale of the commensurate area
of ≈220 nm, in agreement with the typical size of domains
with constant twist angle as reported in Ref. [53]. We, how-
ever, expect that the commensurability also contributes to
the stabilization of the moiré geometry suppressing twist-
angle inhomogeneities resulting in even significantly larger
domains. This reduces the disorder for the Bloch states in the
graphene/hBN moiré lattice, making the additional Landau
fan more prominent.

V. CONCLUSION

In conclusion, our work shows that the alignment of hBN
can induce additional periodicity in tBLG-based van der
Waals heterostructures. Our theoretical model shows that the
resulting superstructure leads to additional band gaps and
Landau fans, which we experimentally observe. We find that
the graphene/hBN moiré lattice acts as an additional periodic
potential that breaks the symmetry between AA sites of the
tBLG moiré lattice. As a consequence, the additional Landau
fans do not emerge at full filling of a unit cell of certain size,
but instead at full filling of a subset of selected AA sites
within the supermoiré unit cell. Thus, our work shows that
the effects of moiré materials can extend to the length scales
of tens of nanometers, and that the appearance of additional
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Landau fans does not directly imply an associated supercell
of related size. In future work, further investigation of such
corresponding structures may also shed light on the formation
and stabilization of correlated phases in hBN-aligned tBLG
heterostructures.

The data supporting the findings of this study are available
in a Zenodo repository under Ref. [54].
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APPENDIX A: SAMPLE FABRICATION

We start our fabrication procedure with exfoliating
graphene, graphite (Naturgraphit GmbH), and hBN on stan-
dard Si/SiO2 wafers (oxide thickness: 90 nm). Suitable flakes
for the further process are identified by optical microscopy.
The fabrication of the tBLG follows the “laser cut and stack”
technique [56] using a polycarbonate/polydimethylsiloxane
(PC/PDMS) droplet [57]. We adjust a tBLG twist angle of
1.3◦, while the composite hBN/graphene moiré lattice is
formed by aligning the crystallographic axes of the bottom
hBN flake with the axis of the used graphene flake. We
pick up the hBN flakes (thicknesses of the top and bottom
hBN flakes are approximately 25 and 30 nm, respectively) at
90 ◦C, while the graphene pickups are performed at 40 ◦C.
The final pickup of the graphite back gate is performed at
120 ◦C. The finished stack is dropped on a marked Si/SiO2

chip at 165 ◦C. We remove the PC with chloroform and
clean the stack with isopropanol. An optical image of the
final stack is shown in Fig. 6. The graphite flake is used
as a back gate, allowing homogeneous gating and screen-
ing of the potential disorder from the substrate [58]. With

20 μm
|θ| = 0°

5°° ±± 1°

5°° ±± 1°

10°° ±± 1°

FIG. 6. Optical image of the fabricated van der Waals het-
erostructure. The dashed lines show the outlines of graphite (black),
tBLG (green), top hBN (red), and bottom hBN (blue) flakes. The
graphene/hBN moiré lattice is formed on the interface between the
bottom hBN and a single-layer graphene flake. Solid lines show
the crystallographic axes used for the (mis)alignment during the
fabrication. The angles are given with respect to the horizontal white
line.

standard electron beam lithography and reactive ion etching
(CF4/O2) techniques we define Ohmic contacts to the tBLG
[59,60] which are subsequently evaporated (Cr/Au, 5/50 nm).
With a further lithography and metal evaporation step, we
define the lines to the etched contacts (Cr/Au, 5/50 nm).
The Hall bar geometry is defined after hard mask evaporation
(Al, 60 nm) by a final reactive ion etching step (SF6/O2).
Finally, we remove the aluminium hard mask in TMAH
(2.38% in DI water).

APPENDIX B: CONVERSION TO DENSITY AXIS,
TWIST-ANGLE EXTRACTIONS,

AND ERROR ESTIMATIONS

To convert the applied back-gate voltage to the adjusted
charge carrier density, we extract the lever arm of the graphite
back gate αbg from the slopes of the visible Landau levels
emerging from the charge-neutrality point. The slopes are
found by least-squares fitting to the minima in resistance in the
magnetotransport data. The corresponding filling sequence of
the Landau levels emerging from the central fan is given by
νLL = ±4,±8,±12. We calculate the lever arm using

BLL = h

νLLe
αbgVbg + const. (B1)

This results in a numerical value of αbg = (5.148 ± 0.129) ×
1015 V−1m−2. This value is in reasonable agreement with the
geometric lever arm expected from a simple plate capacitor
model:

αbg = ε0εhBN
1

ed
, (B2)

which yields a value of αbg ≈ 6.263 × 1015 V−1 m−2. Here,
we used εhBN = 3.4 [61,62] and a thickness of d ≈ 30 nm
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for the bottom hBN flake which was extracted via atomic
force microscopy. We note that we observed an extrinsic dop-
ing in our device leading to a shift of the charge-neutrality
point away from Vbg = 0 V. During the data analysis we
corrected for this extrinsic shift by fitting according to n =
αbg(Vbg − Vbg,off ) with Vbg,off = 112 mV. The uncertainty on
the experimentally extracted lever arm was used to quantify
the uncertainties on the extracted twist angles of the two moiré
lattices.

We estimate the tBLG moiré superlattice density to be
ns = (2.17 ± 0.06) × 1012 cm−2, which gives a moiré unit-
cell area of AtBLG = 4/ns = (184.3 ± 5.1) nm2. Via θtBLG =
[
√

3nsa2/8]1/2 this directly propagates to a tBLG twist an-
gle of θtBLG = 0.97◦ ± 0.02◦. To determine the error, we
calculate the twist angle with the density values n+

s =
2.23 × 1012 cm−2 and n−

s = 2.11 × 1012 cm−2 and choose
the larger deviation from our mean value as the error
bound (this value agrees with the result obtained from
Gaussian error propagation). The additional Landau fan fea-
ture emerges at a charge carrier density of n = (1.36 ±
0.06) × 1012 cm−2 ≡ nsat which corresponds on the filling
factor axis to νsat = 4nsat/ns = 2.50 ± 0.11. Here again,
we are estimating the uncertainty by calculating the fill-
ing factor via n+

sat and n−
sat and giving the larger bound

(calculation is done with the mean value of ns = 2.17 ×
1012 cm−2). As stated in the main paper, assigning this satel-
lite to full filling of a hypothetical moiré unit cell of size
Ahyp would result in Ahyp = 4/nsat = 4AtBLG/νsat = (1.60 ±
0.07)AtBLG. Associating this hypothetical moiré unit cell with
a graphene/hBN moiré unit cell results in a moiré super-
lattice wavelength of λ

gr/hBN
hyp = [2Ahyp/

√
3]1/2 ≈ 18.5 nm >

14.7 nm ≈ λ
gr/hBN
max , which is larger than the theoretically max-

imal value of λ
gr/hBN
max for a graphene/hBN moiré lattice [29].

Since Ahyp < 2AtBLG holds, the area Ahyp can also not corre-
spond to any supermoiré lattice. We thus conclude that the
observed satellite is caused by the discussed real-space effect,
yielding to the selection rule

νsat (l, p) = 4
p

l
= 4

pAtBLG

mAgr/hBN
,

lAtBLG = mAgr/hBN, p < l (B3)

where l and m are the numbers of the tBLG and
graphene/hBN unit cells and p is the number of selected
tBLG AA sites. The experimental observed value of νsat sug-
gests a priori simple fractions like p/l = 5

8 , 7
11 , or 8

13 which
are all within the experimental uncertainty. In the next step,
we consider the possible ratios m/l of the commensurate
areas of the two moiré unit cells. The simulated ratio of
AtBLG/Agr/hBN = m/l = 4

3 implies for both possible values of
p = 1, 2 either νsat (l, p) = νsat (3, 2) ≈ 2.67, which is close
to the estimated error bound, or νsat (l, p) = νsat (3, 1) ≈ 1.33,
which is far off. There are, however, other commensurate unit-
cell structures with rations AtBLG/Agr/hBN = 16

13 or 21
13 resulting

in νsat (l, p) = νsat (13, 8) ≈ 2.46, which are both in line with
the experimental value. In principle, the experimental value of
νsat ≈ 2.50 implies for the ratio m/l a denominator l of, e.g.,
8 (4p/l = 4 × 5

8 = 2.5), 11 (4 × 7
11 = 2.54), or 13 (4 × 8

13 =
2.46). We note, that for l = 8, 11, there are no commensurate

moiré superstructures with a reasonable graphene/hBN moiré
unit-cell size (see Appendix G). This leaves a fraction of
AtBLG/Agr/hBN = m/l = 16

13 for the area ratio as the closest fit
to the experimental result for νsat. A further culprit for the
remaining differences between theory and experiment might
also be limitations of our model geometry, which does not
allow for additional corrugations of the tBLG due to the
additional hBN/graphene moiré lattice, for shearing of the
moiré unit cell that affects the symmetry of the reconstruction
or relaxation effects in the tBLG/hBN heterostructure. Con-
sequently, the simplest case m/l = 4

3 , slightly outside of the
experimental error bars, might potentially also be relevant.

The twist angle of the graphene/hBN moiré lattice can now
be estimated for different possible cases. To do this, we trace
back the graphene/hBN unit-cell area to the tBLG moiré unit
cell area via Agr/hBN = 4pAtBLG/(mνsat ). For the two cases
(l = 3, m = 4, p = 2) and (l = 13, m = 16, p = 8) this leads
to identical results (since p/m = \ f rac24 = 8

16 ) with a nu-
merical value of Agr/hBN = (147.5 ± 11.1) nm2 (we estimate
the uncertainty by using A+

tBLG = 189.4 cm−2 and ν−
gr/hBN =

2.39 to calculate A+
gr/hBN = 158.6 nm2 and vice versa for

A−
gr/hBN = 137.4 nm2; we then choose the larger deviation

from the mean value to define our error bound). This result
is equivalent to an area ratio of AtBLG/Agr/hBN = 2νsat/4 =
1.25 ± 0.06 (with νsat = 2.50 ± 0.11). Now, by exploiting
λgr/hBN = [2Agr/hBN/

√
3]1/2 we calculate (error estimation

again via A±
gr/hBN) a numerical value of λgr/hBN = (13.05 ±

0.50) nm, which results finally via [52]

θgr/hBN = arccos

[
1 − (1 + δ)a2

2λ2
gr/hBN

+ δ2

2(1 + δ)

]
(B4)

in a graphene/hBN twist angle of θgr/hBN = 0.50◦ ±
0.10◦ (again estimated by performing the calculation with
λ±

gr/hBN). The third case discussed in the main paper (l =
13, m = 21, p = 8) yields in analogous calculation for the
graphene/hBN moiré unit-cell area a value of Agr/hBN =
(112.4 ± 8.5) nm2 (area ratio AtBLG/Agr/hBN = 1.64 ± 0.07),
corresponding to a moiré superlattice wavelength of λgr/hBN =
(11.39 ± 0.44) nm. This results in a corresponding twist angle
of θgr/hBN = 0.79◦ ± 0.08◦. Further possible commensurate
cases up to (l = 13, m = 25) are listed in Table I in Ap-
pendix G.

APPENDIX C: INITIAL CHARACTERIZATION
OF THE DEVICE

The experiments are performed in a 3He/4He dilution
refrigerator at a base temperature of around 30 mK using stan-
dard DC and low-frequency lock-in measurement techniques.
We initially characterize our device by temperature-dependent
transport measurements. An atomic force microscopy image
of the sample is shown in Fig. 7(a), while Fig. 7(b) shows a
cross section of the van der Waals heterostructure. To verify
the existence of a tBLG moiré lattice, we start characterizing
our device by measuring the two-terminal differential con-
ductance dI/dV2T as a function of the charge carrier density
n adjusted by the graphite back-gate voltage by applying a
symmetric AC bias of VAC = 100 µV along the entire Hall
bar structure [see Fig. 7(a)] and separately measuring the
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FIG. 7. (a) Atomic force microscopy image of the measured device. The electrical connections for the two- and four-terminal measurements
are depicted. (b) Schematic cross section of the device showing the composition of the heterostructure. (c) Two-terminal differential
conductance dI/dV2T as a function of the charge carrier density n for different temperatures measured along the entire Hall bar structure. The
minima in conductance correspond to the band insulators (BI), correlated insulators (CI), and the charge-neutrality point (CNP) (d) Arrhenius
plot of the differential resistance dV/dI2T of the band-insulating states as a function of the inverse temperature. The individual data points are
extracted by taking the mean of the minima in the band-insulating states. The error bars represent the standard deviations. (e) Same as in (d),
but for the correlated-insulating states.

current via an in-house built IV converter (gain: 107 VA−1)
for different temperatures T [see Fig. 7(c)]. With decreasing
temperature we observe multiple dips in differential conduc-
tance at certain charge carrier densities, which can be assigned
to both, correlated-insulating states (CI) and band-insulating
states (BI) [10,11,13]. From the rapid decrease of differen-
tial conductance as a function of temperature, we identify
the insulating features around ns/2 ≈ ±1.085 × 1012 cm−2

as correlated-insulating states [see also the Arrhenius plot in
Fig. 7(e)]. Here, ns denotes the superlattice density, i.e., the
density which we associate with the edges of the flat bands.
Consequently, the dips in differential conductance around
ns ≈ ±2.17 × 1012 cm−2 correspond to the band-insulating

TABLE I. Supermoiré unit cells for tBLG and graphene/hBN
submoiré lattices with comparatively small areas, l is the number
of tBLG moiré unit cells, m the number of graphene/hBN unit cells,
and p the number of selected AA sites in the supermoiré unit cell. The
column Asm refers to the total area of the supermoiré unit cell. [For
the case (l = 12, m = 13, p = 8), the superlattice wavelength of the
graphene/hBN moiré lattice yields a numerical value of λgr/hBN =
(14.47 ± 0.55) nm. The upper bound is thus larger than theoretically
possible for a graphene/hBN moiré lattice.]

l m p Asm (nm2) νgr/hBN = 4p/l θgr/hBN (deg) ϕ (deg)

3 4 2 530 2.67 0.50 ± 0.10 90
4 7 3 706 3 0.67 ± 0.08 100
7 9 4 1236 2.28 0.63 ± 0.09 100
9 13 6 1589 2.67 0.59 ± 0.09 73
9 16 6 1589 2.67 0.81 ± 0.08 60
12 13 8 2119 2.67 0.18 ± 0.15 76
12 19 8 2119 2.67 0.69 ± 0.08 76
13 16 8 2296 2.46 0.50 ± 0.10 106
13 19 8 2296 2.46 0.69 ± 0.08 82
13 21 8 2296 2.46 0.79 ± 0.08 95
13 25 8 2296 2.46 0.96 ± 0.08 106

states (BI) or full filling of four holes or electrons of the tBLG
moiré superlattice unit cell while the correlated-insulating
states at n ≈ ±1.085 × 1012 cm−2 correspond to half-filling
of two holes or electrons of the tBLG moiré superlattice
unit cell [see Fig. 7(c) and the Arrhenius plot in Fig. 7(d)].
The hole-doped band insulator shows a plateau in differ-
ential conductance emerging at a charge carrier density of
n ≈ −2 × 1012 cm−2 until the minimum is reached at n ≈
−2.4 × 1012 cm−2. Likewise, the band insulator at electron
doping appears to be split in two separate insulating features
around charge carrier densities of n ≈ 1.95 × 1012 cm−2 and
n ≈ 2.3 × 1012 cm−2.

We attribute this distorted shape to twist-angle variations
along our device [53,63,64], preventing a clean gap open-
ing [65]. This interpretation is supported by the comparison
of two- and four-terminal magnetotransport data in Fig. 8
where the splitting of the electron-doped band insulator is
only visible for the two-terminal measurement and additional
finite-bias spectroscopy measurements on the band-insulating
states [see Figs. 9(a) and 9(b)]. The temperature-activated
transport data of the band-insulating gaps [Fig. 7(d)] show a
qualitative asymmetry between the hole- and electron-doped
sites. Over the accessible temperature range, the hole-doped
band insulator shows a clear thermal activation while the cor-
responding band insulator at electron doping is barely affected
up to the maximum temperature of T = 6 K. This asymmetry
is indicative of a difference in the size of the energy gap
between electron and hole sides, in accordance with the band
structure calculations shown in Fig. 2 (see also Fig. 12).

APPENDIX D: INFLUENCE OF TWIST-ANGLE DISORDER

Twist-angle variations along the device are visible in mag-
netic field- and bias-dependent measurements. In Fig. 8 we
compare the two-terminal differential resistance measured as
a function of magnetic field and carrier density along the
entire Hall bar structure [Fig. 8(a)] and the corresponding
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FIG. 8. (a) Two-terminal differential resistance as a function of
magnetic field and carrier density measured along the entire Hall
bar structure [compare with Fig. 7(a)]. (b) Four-terminal differential
resistance measured in the configuration shown in Fig. 7(a) as a func-
tion of magnetic field and carrier density. The black arrows mark the
positions where the Landau levels emerging from the graphene/hBN
moiré lattice intersect with the Landau levels emerging from the
tBLG moiré lattice. Visible is the narrowing of the lowest Landau
level emerging from the charge-neutrality point at the certain inter-
section positions.

four-terminal measurement of the longitudinal resistance
[Fig. 8(b)]. The splitting of the electron-doped band insula-
tor around n ≈ 2 × 1012 cm−2 is absent in the four-terminal
measurement indicating that it is caused by twist-angle vari-
ations along the device. Furthermore, in the four-terminal
data, narrowing features are present in the most prominent
Landau level emerging from the charge-neutrality point (see
black arrows). These features correspond to the intersec-
tion points between the fan emerging from charge neutrality
and the additional hBN-induced Landau fan. Therefore, they
might indicate the presence of Bloch states (Brown-Zak
fermions) caused by restoring the translational symmetry in
the graphene/hBN moiré lattice. Note that the indications
of a graphene/hBN moiré lattice are only visible in the
four-terminal data which might be explained with a rather
homogeneous twist-angle distribution in that particular area of
the device. In Figs. 9(a) and 9(b) we show two-terminal finite-
bias spectroscopy measurements of the band-insulating (BI)
states. We do not observe a single diamond-shaped feature of
suppressed differential conductance but instead the formation
of a multitude of individual Coulomb diamonds which are
most prominent in the hole regime. We attribute this to the
formation of different moiré domains in the tBLG superlattice
with slightly different twist angles as sketched in Fig. 9(c).
The electron-doped BI seems to be slightly less affected from
the twist-angle disorder. This might be due to stronger stabil-

ity of this gap compared to the hole-doped BI, which was also
observed in the temperature dependence. This is noticeable
in higher-bias values which are necessary to break through
the gap. The difference in the bias values necessary to break
through the gaps for both dopings also indicates the mentioned
asymmetry visible in the band structure calculation.

APPENDIX E: MODELING TWO MOIRÉ LATTICES
IN UNISON

We combine an atomistic tight-binding Hamiltonian
parametrized from DFT calculations with a continuum elas-
ticity model that accounts for lattice relaxation in tBLG with
an effective symmetry-breaking potential that accurately cap-
tures the influence of alignment to an hBN layer. The local
stacking configuration of the two rotated graphene layers
(parametrized via a displacement vector �d) changes through-
out the large moiré super cell (Fig. 10). We sample the
two-dimensional configuration space of the displacement vec-
tor �d with a 10 × 10 grid of DFT calculations for periodic,
primitive-cell calculations mapping the configuration space
of different displacements �d [Fig. 10(b)]. We obtain tight-
binding parameters for intermediate stackings using Fourier
interpolation. We can then map the different local stackings
within the large supercell to the corresponding tight-binding
parameters. For the primitive bilayer DFT calculations, we use
VASP [66] with LDA, 25 × 25 Monkhorst �k-space grid, and
a plane-wave cutoff of 380 eV. Atomic positions are relaxed
in out-of-plane direction but fixed in plane. We then project
all Kohn-Sham orbitals onto one pz orbital per carbon site
(via WANNIER90 [67–69]) and thus capture all the influence of
the tBLG moiré lattice that is relevant for electronic transport
close to the Fermi energy. From this point on we can smoothly
interpolate tight-binding couplings γi j across the entire moiré
supercell. However, we have yet to account for the significant
strain fields of the real moiré supercell. We do so via exponen-
tial correction factors that depend on the local strain:

γ
(corr)
i, j = γi, je

−�li jαi j , (E1)

where �li j is the change in interorbital distance due to me-
chanical relaxation and αi j encodes the distance sensitivity
of individual tight-binding hopping parameters. We determine
the αi j from a set of DFT calculations on primitive unit cells
of strained single-layer graphene with subsequent Wannier-
ization. Finally, we determine the �li j via an approach that
resembles the elasticity models of Nam and Koshino [41].
Such an approach determines an equilibrium configuration
that balances energy gain due to more favorable stacking fault
energies with the elastic energy cost associated with in-plane
displacements. The corresponding energy functional is of the
form

Utot = UE[�ubot] + UE[�utop] + UB[�ubot, �utop], (E2)

where �ubot/top are the local displacement vectors in bottom and
top layer, respectively. The third, stacking-dependent term is
elegantly expressed via the first few Fourier components c �G of
the generalized stacking fault energy:

UB[�ubot, �utop] =
∫ ∑

�G
c �Gei(( �d+�ubot−�utop )· �G)d�r (E3)
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FIG. 9. (a) Finite-bias spectroscopy on the hole-doped BI state showing individual Coulomb diamonds. (b) Same as in (a) but for the
electron-doped BI. (c) Schematic illustration of the measurement setup.

with �G running over reciprocal lattice vectors. The intralayer
contributions UE of both layers (m = top/bot) read as

UE[�um] =
∫ [

λ + μ

2

(
∂um

x

∂x
+ ∂um

y

∂y

)2

+ μ

2

((
∂um

x

∂x
− ∂um

y

∂y

)2

+
(

∂um
x

∂y
+ ∂um

y

∂x

)2
)]

d�r
(E4)

with Lamé parameters λ = 3.25 eV Å−2 and μ =
9.57 eV Å−2. We then solve the Euler-Lagrange equations of
the system following closely along the procedures in [41].

(a) (b)

(c)

FIG. 10. (a) Closeup of twisted bilayer graphene (large angle for
clarity) (black: top layer, gray: bottom layer). (b) Unit cell in the x-y
plane with local displacement vector �d . (c) Unit cell of tBLG. Each
local configuration can be mapped to a unit cell (see insets) with a
corresponding shift.

The main result of this relaxation is the proliferation of the
energetically favorable AB stacking region in the upper left
half of the moiré supercell.

We next consider models for the additional second moiré
lattice between hBN and one graphene sheet of the tBLG. Due
to the wide band gap of hBN, there is no need to explicitly
model the nitrogen and boron atoms themselves. Instead, we
use additional onsite corrections of the pz orbitals of the
graphene sheet. We describe the effect of the hBN via a slowly
varying background potential Vi and a short-range symmetry-
breaking potential Wi [43]:

VhBN =
∑

i=I,III,V

Vie
− (r−Ri )2

2w2
i σ0 ⊗ τ0

+
∑

i=I,III,V

Wie
− (r−Ri )2

2w2
i σz ⊗ τ0, (E5)

where wi are characteristic length scales, σ0 (σz ) represent
unity (z-Pauli matrix) in sublattice space, and τ0 is the unity
in valley space. The Wi terms proportional to σz reflect the
short-range variations in local chemical environment between
adjacent carbon atoms (e.g., in a configuration where one
carbon atom sits on top of a nitrogen and the other on a
boron atom. While the Vi break particle-hole symmetry, the
Wi introduce sublattice asymmetry. Derived from DFT calcu-
lations [44,45] these terms can accurately describe the effect
of hBN alignment with respect to one of the graphene lay-
ers. We partition the graphene/hBN moiré unit cell in five
regions based on relative local alignment with the graphene
layer (see Fig. 11). Assigning different amplitudes (VI =
VIII = 0 meV, VV = 100 meV, WI = 57 meV, WIII = −34 meV,
WV = −47 meV) and widths (0.63wI = wIII = wV = 7 nm)
to the Gaussians in Eq. (E5) allows us to effectively model
the influence of the hBN alignment and introduces the sec-
ond moiré lattice length scale into the tBLG Hamiltonian
in an elegant and easily adaptable manner. This adaptability
is very important for us to create structures with feasible
periodicity. The relaxed displacement-mapping method we
use for the derivation of the tBLG tight-binding Hamiltonian
can only be applied to commensurate twist angles θtBLG.
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FIG. 11. (a) Schematic of the real-space moiré superlattice unit
cell of the graphene/hBN system. Colored circles (I,II,V) corre-
spond to centers of Gaussians used in the effective moiré potential.
(b) Schematic explanation of the superposition of the two moiré
lattices. Light gray lines indicate edge character of the unit cells. As-
suming a small graphene/hBN twist angle of θgr/hBN ≈ 0.62◦ brings
the two moiré cells to the same periodicity. (c) Lattice constant of the
graphene/hBN moiré lattice as a function of their relative twist angle
θgr/hBN.

Having access to a set of different twist angles of tBLG
Hamiltonians we identify θtBLG = 0.987◦ as the closest one to
the experimentally determined twist angles. The unit cell for
this moiré system is spanned by the vectors a1 = (14.3, 0)T

nm and a2 = (−7.1, 12.4)T nm and features armchair bor-
ders. The effective hBN potential is derived for a perfectly
aligned graphene/hBN moiré cell [b1 = (13.8, 0)T nm, b2 =
(−6.9, 11.9)T nm] that features zigzag borders. Their differ-
ence in border character is easily reconciled via a rotation.
However, this would result in a slightly different periodicity
in the x direction. We avoid cumbersome duplication to their
least common multiple and instead assume a slight rotation
of the graphene/hBN moiré lattice. This bilayer of materials
with unequal lattice constants also features an angle depen-
dence [70] [see Fig. 11(c)]:

λgr/hBN = (1 + δ)a√
δ2 + 2(1 + δ)(1 − cos θgr/hBN)

, (E6)

where δ is the relative mismatch of lattice constants. A small
twist angle θgr/hBN = 0.62◦ results in perfect agreement of x
periodicity for the composite moiré system which we can then
duplicate in the y direction to describe ribbons of realistic
width. Terminating the edges with σz potentials in sublattice
space suppresses surface states.

APPENDIX F: BAND STRUCTURE AND
TRANSPORT CALCULATIONS

We efficiently calculate the band structure of a ribbon
of several of the (by themselves already quite sizable)
moiré unit cells with methods we developed in the study

of graphene/hBN moiré lattices [40]. We partition the final
entire tight-binding Hamiltonian into the (small) part defining
the periodic boundary conditions in the x direction, HI , and
the rest, H0. Bloch states of our structure thus follow

[H0 + eik�xHI + e−ik�xH†
I ]ψn = Enψn. (F1)

To solve this equation, we employ iterative methods for the
eigenvalues close to charge neutrality. We solve via shift-
and-invert in combination with the Lanczos method [71]. In
order to partially avoid cubic scaling we perform several in-
dependent matrix factorizations around different energies to
eventually cover the range E ∈ [−0.25 eV, 0.25 eV]. The ac-
curacy of subsequent evaluations of the conductivity depends
on the sampling resolution in reciprocal space (no further
improvements noticeable beyond Nkpt > 3000 in our system).
We optimize sampling at such high k-point densities by ex-
ploiting the continuity of bands along small distances in k
space. To this extent we avoid solving the Bloch eigenvalue
problem at most of the Nkpt k points and instead span a Krylov
space for a subset Npillars of “pillar” k points. Combining
the Krylov spaces of two adjacent pillar points k j and k j+1

generates a basis {bi} on which to project for all intermediate
k points k′ (k j < k′ < k j+1) and thus evaluate band energies.
The main caveat of this approach is the emergence of un-
physical eigenvalues due to the artificially enlarged size of
the combined Krylov spaces. We remedy this by evaluating
an error norm which sees the solutions projected onto a fixed
set of randomly chosen vectors φi ∈ CN . This error measure
vanishes for an eigenstate of the full problem and thus allows
filtering out unphysical solutions. Matrix vector operations
between the φi and H0 or HI do not depend on k and thus
need only be evaluated once. In Fig. 12 we show the evolution
of the band structure for the nonaligned (left subpanels) and
aligned (right subpanels) cases with increasing tBLG twist
angle.

To express the group velocity vn, we derive Eq. (F1) with
respect to k and form an expectation value

vn = 1

h̄

∂E

∂k
= i�x

h̄
φ†

n[eik�xHI − e−ik�xH†
I ]φn. (F2)

To calculate the magnetoconductance, we include a magnetic
field via Peierl’s substitution. For an infinite ribbon, the con-
ductance is simply given by the number of open modes M+(E )
in positive x direction times the conductance of each mode
e2/h:

G(E ) = e2

h
M+(E ). (F3)

To approximate M+(E ), we consider the integrated density of
states of Bloch eigenstates moving in a single direction in a
certain energy interval �E ,

ρ+(E ) =
∑

n: vn(E )>0
En<E

1. (F4)

ρ+(E ) is related to M+(E ) via

M+(E ) = ρ+(E + �E ) − ρ+(E )

�E
�E ≈ ∂ρ+(E )

∂E
�E

for a small interval �E . When numerically evaluating Bloch
eigenstates, one typically evaluates eigenenergies by solving
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FIG. 12. Band structure calculations for different twist angles without (left subpanels) and with (right subpanels) hBN alignment.

Bloch’s equation (F1) on an equidistant k grid. It is therefore
convenient to replace

�E ≈ ∂En

∂k
�k = h̄vn�k.

Inserting these equations into (F3) yields an estimate for the
conductance G(E ) [40]:

G(E ) ≈ e2

h

d

dE

∑
n: vn(E )>0

En<E

h̄vn(E ) �k. (F5)

The use of Eq. (F5) greatly reduces the computational cost
compared to calculation of G(E ) using the Landau-Büttiker
formalism while yielding nearly identical results [40]. As our
simulation contains the full information on the band structure,
the energy axis can be readily transformed into the charge
carrier density simply by integrating the density of states,

n(E ) =
∫ E

0
ρ(E ′) dE ′,

obtained from counting the bands with appropriate weight
based on their group velocity. We set n = 0 at the charge-
neutrality point E = 0 of graphene and express n in units of
n0 = 1/S, the density of one electron per tBLG moiré unit
cell. Likewise, the magnetic field strength B is conveniently
expressed in units of magnetic flux quanta through one moiré
supercell 	/	0.

APPENDIX G: COMMENSURATE MOIRÉ STRUCTURES

We list the plausible commensurate supermoiré structures
for a tBLG moiré lattice aligned with a graphene/hBN moiré
lattice in Table I. As stated in the main paper, plausible
in this context means that the size of the superstructure is
below 50 nm × 50 nm = 2500 nm2; otherwise, twist-angle
inhomogeneities will probably smear out satellite features.
The size of the tBLG moiré lattice is fixed by the correspond-
ing twist angle of θtBLG = 0.987◦. While we do not know the
relative angle between the graphene layer and the adjacent
hBN, it should be close to zero, otherwise the graphene/hBN
moiré lattice becomes too small. We search for commen-
surate supermoiré unit cells (Table I) by rotating the tBLG
moiré lattice and the graphene/hBN moiré lattice against each
other while varying the graphene/hBN twist angle θgr/hBN and
thus its size. Given the two subtly different origins of the
two moiré effects (different unit-cell size for graphene/hBN,
twist between identical lattices for tBLG), the two moiré
lattices are naturally rotated by ϕ ≈ 90◦ against each other.
Large deviations from ϕ = 90◦, up to the sixfold symmetry
of the tBLG moiré lattice (ϕ is only defined up to 60◦),
do not correspond to physically realizable structures, as one
graphene layer is included in both moiré structures. However,
considering reconstructions due to strain, twist-angle modu-
lations and the small moiré twist angles, ϕ may vary slightly
around this value.

The listing in Table I contains all commensurate moiré
structures with l < 15 and m < 2l . We exclude values m >
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l = 3, m = 4(a) l = 4, m = 7(b) l = 7, m = 9(c) l = 9, m = 13(d)

l = 9, m = 16(e) l = 12, m = 13(f) l = 13, m = 16(g) l = 13, m = 21(h)

FIG. 13. Selection of commensurate moiré structures listed in Table I. Shown is the tBLG moiré lattice (black) as well as the AA site of
the graphene/hBN moiré lattice (blue dots). Depending on the choice of l and m we receive a commensurate structure for different orientations
ϕ of the two moiré lattices with respect to each other. The unit cell of the resulting supermoiré lattice is depicted as a red rhombus. The black
scale bar corresponds to the spacing of the tBLG AA sites.

2l as the resulting twist angles become larger, θgr/hBN > 1◦,
leading to a short-ranged and quite weak moiré potential. Fur-
thermore, we exclude larger values of l since in the presence
of twist-angle disorder, larger supermoiré lattice sizes should
strongly suppress the visibility of moiré satellite peaks.

Determining possible filling sequences and values of p
purely based on geometry quickly becomes challenging for

the larger moiré lattices, as the number of AA sites with
slightly different symmetries increases. For example, the
l/m = 9

16 supermoiré lattice in Fig. 13 features one AA site
aligned with a graphene/hBN AA site, two tBLG AA sites sit-
uated closely to an hBN site, and six tBLG AA sites at the cen-
ter of three graphene/hBN AA sites. Their relative degenera-
cies will depend on details of the two moiré lattice potentials.
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