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Abstract

We study the fundamental problem of fairly allocating a set of indivisible goods among n
agents with additive valuations using the desirable fairness notion of maximin share (MMS).
MMS is the most popular share-based notion, in which an agent finds an allocation fair to her
if she receives goods worth at least her MMS value. An allocation is called MMS if all agents
receive at least their MMS value. Since MMS allocations need not exist when n > 2, a series
of works showed the existence of approximate MMS allocations with the current best factor of
3

4
+ O( 1

n
). However, a simple example in [DFL82, BEF21, AGST23] showed the limitations of

existing approaches and proved that they cannot improve this factor to 3/4+Ω(1). In this paper,
we bypass these barriers to show the existence of (3

4
+ 3

3836
)-MMS allocations by developing new

reduction rules and analysis techniques.

1 Introduction

Fair allocation of resources (goods) is a fundamental problem in the intersection of computer science,
economics, and social choice theory. This age-old problem arises naturally in a wide range of real-
life settings, which was formally introduced in the seminal work of Steinhaus in the 1940s [Ste48].
Depending on what properties the goods have and what notion of fairness is considered, one can
address a wide range of problems. Extensive work has been done for the case of divisible goods,
where goods can be fractionally allocated, e.g., [Var74, Fol67, AM16a, AM16b].

More recently, fair division of indivisible goods has received significant attention due to their
applications in various multi-agent settings. Formally, an instance of fair division of indivisible
goods consists of a set N = {1, 2, . . . , n} of agents, a set M of m indivisible goods, and valuation
vector V = (v1, . . . , vn) where vi : 2

M → R≥0 is the valuation function of agent i. The goal is to
find an allocation A = 〈A1, A2, . . . , An〉, in which agent i gets Ai, and A satisfies some fairness
criteria.

Two main categories of fairness are envy-based notions and share-based notions. Roughly
speaking, in envy-based notions, an agent finds an allocation fair by comparing her bundle with
other agents’ bundles. Under allocation A, if certain conditions are met for all agents (e.g., vi(Ai) ≥
vi(Aj) for all i, j ∈ N in the case of envy-freeness), then A is fair. Popular examples of envy-based
notions are envy-freeness (EF) and its relaxations envy-freeness up to any good (EFX) [CKM+19],
and envy-freeness up to one good (EF1) [LMMS04].

In share-based notions, an agent finds an allocation fair only through the value she obtains from
her bundle (irrespective of what others receive). For each agent i, if the value i receives is at least
some threshold ti, then the allocation is said to be fair. An example of a share-based notion is
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proportionality. An allocation A is proportional if all agents receive their proportional share, i.e.,
vi(Ai) ≥ vi(M)/n for all agents i ∈ N . It is easy to see that proportionality is too strong to be
satisfied in the discrete setting.∗ This necessitates studying relaxed fairness notions when goods
are indivisible.

In this paper, we consider a natural relaxation of proportionality called maximin share (MMS),
introduced by Budish [Bud11]. It is also preferred by participating agents over other notions, as
shown in real-life experiments by [GGD20]. Maximin share of an agent is the maximum value she
can guarantee to obtain if she divides the goods into n bundles (one for each agent) and receives
a bundle with the minimum value. Basically, for an agent i, assuming that all agents have i’s
valuation function, the maximum value one can guarantee for all the agents is the i’s maximin
share, denoted by MMSi. Formally, for a set S of goods and any positive integer d, let Πd(S)
denote the set of all partitions of S into d bundles. Then,

MMSdi (S) := max
P∈Πd(S)

d
min
j=1

vi(Pj).

For all agents i, MMSi = MMSni (M). An allocation is MMS if all agents value their bundles at
least as much as their MMS values. Formally, allocation A is MMS if vi(Ai) ≥ MMSi for all agents
i ∈ N .

Since MMS allocations do not always exist when there are three or more agents with additive
valuations [PW14, FST21], the focus shifted to study approximations of MMS. An allocation A is α-
MMS if vi(Ai) ≥ α·MMSi for all agents i ∈ N . We note that the MMS notion is closely related to the
popular max-min objective or the classic Santa Claus problem (maxAmini vi(Ai)) [BS06]. Unlike
the max-min objective, the (α-)MMS objective satisfies the desirable scale-invariance property. In
the case of agents with identical valuations, an exact MMS allocation exists, and in this case,
finding α-MMS allocation is equivalent to α-approximation of the Santa Claus problem. The best
approximation factor known for the max-min objective under additive valuations is Õ(mε) for any
ε > 0 [CCK09].

For the MMS problem, Procaccia and Wang [PW14] showed the existence of 2/3-MMS alloca-
tions. Many follow-up works have improved the approximation factor [BK20, GHS+18, GMT19,
AMNS17, KPW18, GT21] with the current best result of α = 3

4 +min( 1
36 ,

3
16n−4) [AGST23]. How-

ever, since the work of Ghodsi et al. [GHS+18], the best known constant approximation factor for
MMS has remained 3/4 for large n. In this work, we break this 3/4 wall by proving the existence
of (34 +

3
3836 )-MMS allocations.

After Ghodsi et al. [GHS+18] proved the existence of 3/4-MMS allocations and gave a PTAS to
compute one, Garg and Taki [GT21] gave a simple algorithm with complicated analysis proving the
existence of (34 + 1

12n)-MMS allocations and also computing a 3/4-MMS allocation in polynomial
time. Very recently, Akrami et al. [AGST23] simplified the analysis of (a slight modification
of) the Garg-Taki algorithm significantly and proved the existence of (34 + min( 1

36 ,
3

16n−4 ))-MMS
allocations. However, a simple example in [DFL82, BEF21, AGST23] shows that no constant factor
better than 3/4 can be obtained for approximate MMS using Garg-Taki algorithm. In Section 3,
we discuss the known techniques’ barriers in more detail and how our algorithm overcomes these
barriers.

The complementary problem is to find upper bounds on the largest α for which α-MMS alloca-
tions exist. Feige et al. [FST21] constructed an example with three agents and nine goods for which

∗As a counter-example, consider two agents and one good with a positive utility to both of the agents. Note
that no matter how we allocate this good, one agent receives 0 utility, which rules out the existence of proportional
allocations and any approximation of proportionality.
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Existence Non-existence

n = 3 11/12 [FN22] > 39/40 [FST21]

n = 4 4/5 [GHS+18, BF22] > 67/68 [FST21]

n > 4

2/3 [PW14, AMNS17, KPW18, GMT19]
2/3(1 + 1/(3n − 1)) [BK20] > 1−O( 1

2n ) [PW14]
3/4 [GHS+18]
3/4 + 1/(12n) [GT21] > 1− 1

n4 [FST21]
3/4 + min(1/36, 3/(16n − 4)) [AGST23]
3/4 + 3/3836 (Theorem 5)

Table 1: Summary of the approximate MMS results when agents have additive valuations

no allocation is better than 39/40-MMS. For n ≥ 4, their construction gives an example for which
no allocation is better than (1 − n−4)-MMS. Table 1 summarizes all these results. We note that
most of these existence results can be easily converted into PTAS for finding such an allocation
using the PTAS for finding the MMS values [Woe97].

1.1 Further related work

Special cases. There has been a line of work on the instances with a limited number of agents
or goods. When m ≤ n + 3, an MMS allocation always exists [AMNS17]. Feige et al. [FST21]
improved this bound to m ≤ n+5. For n = 2, MMS allocations always exist [BL16]. For n = 3, the
MMS approximation was improved from 3/4 [PW14] to 7/8 [AMNS17] to 8/9 [GM19], and then to
11/12 [FN22]. For n = 4, Ghodsi et al. [GHS+18] showed the existence of 4/5-MMS. For n ≥ 5,
the best known factor is the general (34 +min( 1

36 ,
3

16n−4 )) bound given by Akrami et al. [AGST23].

Ordinal approximation. An alternative way of relaxing MMS is guaranteeing 1-out-of-d maximin
share (MMS) for d > n, which is the maximum value that an agent can ensure by partitioning the
goods into d bundles and choosing the least preferred bundle. This notion only depends on the
bundles’ ordinal ranking and is not affected by a small perturbation in the value of every single
good (as long as the ordinal ranking of the bundles does not change). A series of works studied this
notion [AS22, HS21] with the state-of-the-art being the existence of 1-out-of-⌊3n2 ⌋ MMS allocations
for goods [HSSH21].

Chores. MMS can be analogously defined for fair division of chores. MMS allocations do not
always exist for chores [ARSW17], which motivated the study of approximate MMS [ARSW17,
BK20], with the current best approximation ratio being very recently improved from 11/9 [HL21]
to 13/11 [HSH23]. In the case of n = 3, 19/18-MMS allocations exist [FN22].

MMS in the chores setting is closely related to the well-studied variants of bin-packing and
job scheduling problems. In particular, the recent paper [HSH23] utilizes the Multifit algorithm
for makespan minimization to obtain the best approximation factor. Therefore, many ideas which
are already developed are proven to be useful when dealing with chores. On the other hand,
when dealing with goods, the related variants of bin packing and scheduling problems do not make
much sense where the objective becomes to maximize the number/capacity of bins or maximize the
minimum processing time of a machine while allocating all the items. Therefore, new ideas specific
to this problem are required. Furthermore, although the explicit study of MMS for goods started
much before chores, the advancement in approximate MMS for chores has been faster. Also, the
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current best factor (13/11) is much better than the analogous factor for goods (3/4 + 3/3836),
despite the extensive work by many researchers on the goods problem.

For ordinal approximation, the best-known factor for existence is 1-out-of-⌊3n4 ⌋MMS allocations
for chores. The discrepancy carries on to the ordinal approximations of MMS. While the best known
d for which 1-out-of-d MMS allocations exist in the goods setting is ⌊3n/2⌋ [HSSH21], the analogous
factor for the chores setting is ⌊3n/4⌋ [HSSH22].

Other settings. The MMS notion has also been studied when agents have more general valuations
than additive, e.g., [BK20, GHS+18, LV21, UF23]. Generalizations have also been studied where
restrictions are imposed on the set of feasible allocations, such as matroid constraints [GM19],
cardinality constraints [BB18], and graph connectivity constraints [BILS22, TL20]. Strategyproof
versions of fair division have also been studied [BGJ+19, ABM16, ABCM17, ALW19]. MMS has also
inspired other notions of fairness, like weighted MMS [FGH+19], AnyPrice Share (APS) [BEF21],
Groupwise MMS [BBKN18, CKMS21], 1-out-of-d share [HS21], and self-maximizing shares [BF22].
MMS has also been studied in best-of-both-worlds settings, where both ex-ante and ex-post guar-
antees are sought [BEF22].

2 Preliminaries

For all n ∈ N, let [n] = {1, 2, . . . , n}. A fair division instance I = (N,M,V) consist of a set of
agents N = [n], a set of goods M = [m] and a vector of valuation functions V = (v1, v2, . . . , vn)
such that for all i ∈ [n], vi : 2

M → R≥0 indicates how much agent i likes each subset of the goods.
In this paper, we assume the valuation functions are additive, i.e., for all i ∈ [n] and S ⊆ M ,
vi(S) =

∑

g∈S vi({g}). For ease of notation, for all g ∈M , we use vi(g) or vi,g instead of vi({g}).
For a set S of goods and any positive integers d, let Πd(S) denote the set of all partitions of S

into d bundles. Then for any valuation function v,

MMSdv(S) := max
P∈Πd(S)

d
min
j=1

v(Pj). (1)

When the instance I = (N,M,V) is clear from the context, we denote MMSnvi by MMSi(I) or
MMSi for all i ∈ [n]. For each agent i, let P i = (P i

1, P
i
2, . . . , P

i
n) be a partition of M into n bundles

admitting the MMS value of agent i. Formally, MMSi = minj∈[n] vi(P
i
j ). We call such a partition,

an MMS partition of agent i. An allocation X is MMS if for all agents i ∈ N , vi(Xi) ≥ MMSi.
Similarly, for any 0 < α ≤ 1, an allocation X is α-MMS if vi(Xi) ≥ α ·MMSi for all agents i ∈ N .

Definition 1 (Ordered instance). An instance I = (N,M,V) is ordered if there exists an ordering
of the goods (g1, g2, . . . , gm) such that for all agents i ∈ N , vi(g1) ≥ vi(g2) ≥ . . . ≥ vi(gm).

It is known that the hardest instances of MMS are the ordered instances [BK20]. We use the
notations used in [AGST23].

Definition 2 ([AGST23]). For the fair division instance I = ([n], [m],V), order(I) is defined as
the instance ([n], [m],V ′), where for each i ∈ [n] and j ∈ [m], v′i(j) is the jth largest number in the
multiset {vi(g) | g ∈ [m]}.

The transformation order is α-MMS-preserving, i.e., for a fair division instance I, given an α-
MMS allocation of order(I), one can compute an α-MMS allocation of I in polynomial time [BK20].
Given any ordered instance I = ([n], [m],V), without loss of generality, we assume vi(1) ≥ vi(2) ≥
. . . ≥ vi(m) for all i ∈ [n].
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Algorithm 1 normalize(N,M,V)

1: for i ∈ N do
2: Compute agent i’s MMS partition P i.
3: ∀j ∈ N , ∀g ∈ P i

j , let v
′
i,g ← vi,g/vi(P

i
j ).

4: end for
5: return (N,M,V ′).

Lemma 1 ([BK20]). Given an instance I and an α-MMS allocation of order(I), one can compute
an α-MMS allocation of I in polynomial time.

Definition 3 (Normalized instance). An instance I = (N,M,V) is normalized, if for all i, j ∈ [n],
vi(P

i
j ) = 1.

Note that since vi is additive, if I is normalized, then for all MMS partitions of i like Q =
(Q1, . . . , Qn) and for all j ∈ [n] we have vi(Qj) = 1. [AGST23] shows that given any instance I =
(N,M,V), one can compute a normalized instance I ′ = (N,M,V ′) such that any α-MMS allocation
for I ′ is an α-MMS allocation for I. Their algorithm converting an instance to a normalized instance
is shown in Algorithm 1. We note that since finding an agent’s MMS value is NP-hard, this is not
a polynomial-time algorithm, but a PTAS exists.

Lemma 2 ([AGST23]). Let I ′ = (N,M,V ′) = normalize(I = (N,M,V)). Then for any allocation
A, vi(Ai) ≥ v′i(Ai)MMSi(I) for all i ∈ N .

Lemma 2 implies that normalize is α-MMS-preserving, since if A is an α-MMS allocation for
the normalized instance (N,M,V ′), then A is also an α-MMS allocation for the original instance
(N,M,V). [AGST23] give some structural property of ordered normalized instances which we
repeat here in Lemma 3. For completeness, we repeat its proof in Appendix A.

Lemma 3. [AGST23] Let ([n], [m],V) be an ordered and normalized fair division instance. For all
k ∈ [n] and agent i ∈ [n], if vi(k) + vi(2n− k + 1) > 1, then vi(2n− k + 1) ≤ 1/3 and vi(k) > 2/3.

2.1 Reduction rules

Given any instance I, a reduction rule R(I) is a procedure that allocates a subset S ⊆M of goods
to an agent i and outputs the instance I ′ = (N \ {i},M \ S,V).

Definition 4 (Valid reductions). Let R be a reduction rule and R(I) = (N ′,M ′,V) such that
{i} = N \N ′ and S = M \M ′. Then R is a “valid α-reduction” if

1. vi(S) ≥ α ·MMS
|N |
vi (M), and

2. for all j ∈ N ′, MMS
|N |−1
vj (M ′) ≥ MMS

|N |
vj (M).

Furthermore, a reduction rule R is a “valid reduction for agent j ∈ N ′”, if MMS
|N |−1
vj (M ′) ≥

MMS
|N |
vj (M) where N ′ and M ′ are the set of remaining agents and remaining goods respectively

after the reduction.

Note that if R is a valid α-reduction and an α-MMS allocation A exists for R(I), then an α-
MMS allocation exists for I. Such an allocation can be obtained by allocating S to i and allocating
the rest of the goods as they are allocated under A.
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Lemma 4. Given an instance I = (N,M,V), let S ⊆M be such that vi(S) ≤ MMSi and |S| ≤ 2.
Then allocating S to an arbitrary agent j 6= i, is a valid reduction for agent i.

Proof. Let P = (P1, P2, . . . , Pn) be an MMS partition of M for agent i. Let g1, g2 ∈ S. In case
|S| = 1, g1 = g2. Without loss of generality, we assume g1 ∈ P1. If g2 ∈ P1, then (P2, . . . , Pn)
is a partition of a subset of M \ S into n − 1 bundles with minimum value at least MMSnvi(M).
Therefore, MMSn−1

vi (M \S) ≥ MMSnvi(M). In case g2 /∈ P1, without loss of generality, let us assume
g2 ∈ P2. Then vi(P1∪P2\S) = vi(P1)+vi(P2)−vi(S) ≥ MMSnvi . Therefore, (P1∪P2\S,P3, . . . , Pn)
is a partition of M \ S into n− 1 bundles with minimum value at least MMSnvi(M). Hence also in
this case, MMSn−1

vi (M \S) ≥ MMSnvi(M). Thus, allocating S to an arbitrary agent j 6= i, is a valid
reduction for agent i.

Now we define four reduction rules that we use in our algorithm.

Definition 5. For an ordered instance I = (N,M,V) and α > 0, reduction rules Rα
1 , R

α
2 , R

α
3 and

Rα
4 are defined as follows.

• Rα
1 (I) : If vi(1) ≥ α for some i ∈ N , allocate {1} to agent i and remove i from N .

• Rα
2 (I) : If vi({2n− 1, 2n, 2n+ 1}) ≥ α for some i ∈ N , allocate {2n− 1, 2n, 2n+ 1} to agent

i and remove i from N .

• Rα
3 (I) : If vi({3n−2, 3n−1, 3n, 3n+1}) ≥ α for some i ∈ N , allocate {3n−2, 3n−1, 3n, 3n+1}

to agent i and remove i from N .

• Rα
4 (I) : If vi({1, 2n + 1}) ≥ α for some i ∈ N , allocate {1, 2n + 1} to agent i and remove i

from N .

We note that Rα
1 , R

α
2 , R

α
4 in addition to one more rule of allocating {n, n + 1} to an agent is

used in [GT21, AGST23]. Our algorithm does not use the rule of allocating {n, n+ 1}. Moreover,
Rα

3 (allocating {3n− 2, 3n − 1, 3n, 3n + 1}) is used in our work and not elsewhere.

Lemma 5. Given any α > 0 and an ordered instance I, Rα
1 , R

α
2 , and Rα

3 are valid reductions for
all the remaining agents.

Proof. For a remaining agent i, let P = (P1, . . . , Pn) be an MMS partition of M for i. It suffices
to prove that after each of these reduction rules, there exists a partition of the remaining goods for
each remaining agent into n− 1 bundles with a minimum value of MMSni (M) for agent i.

• Rα
1 : Let 1 ∈ Pk. Then removing Pk from P results in a partition of a subset of M \ {1} into

n− 1 bundles of value at least MMSni (M) for agent i.

• Rα
2 : By the pigeonhole principle, there exists k such that |Pk ∩ {1, 2, . . . , 2n + 1}| ≥ 3. Let

g1, g2, g3 ∈ Pk ∩ {1, 2, . . . , 2n + 1} and g1 < g2 < g3. Replace g1 with 2n − 1, g2 with 2n and
g3 with 2n+1 and remove Pk from P . Note that the value of the remaining bundles can only
increase. Thus, the result is a partition of a subset of M \ {2n − 1, 2n, 2n + 1} into n − 1
bundles with a minimum MMSni (M) for agent i.

• Rα
3 : The proof is very similar to Rα

2 case. By the pigeonhole principle, there exists k such that
|Pk ∩ {1, 2, . . . , 3n+1}| ≥ 4. Let g1, g2, g3, g4 ∈ Pk ∩ {1, 2, . . . , 3n+1} and g1 < g2 < g3 < g4.
Replace g1 with 3n − 2, g2 with 3n − 1, g3 with 3n and g4 with 3n + 1 and remove Pk from
P . Note that the value of the remaining bundles can only increase. Thus, the result is a
partition of a subset of M \ {3n − 2, 3n − 1, 3n, 3n + 1} into n − 1 bundles with a minimum
value of MMSni (M) for agent i.
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Proposition 1. If I is ordered and for a given α ≥ 0, none of the rules Rα
1 , R

α
2 or Rα

3 is applicable,
then

1. for all k ≥ 1, vi(k) < α, and

2. for all k > 2n, vi(k) < α/3, and

3. for all k > 3n, vi(k) < α/4.

Proof. We prove each case separately.

1. Since Rα
1 is not applicable, vi(k) ≤ vi(1) < α for all agents i and all k ≥ 1.

2. Since Rα
2 is not applicable, 3vi(k) ≤ 3vi(2n+1) ≤ vi(2n− 1) + vi(2n)+ vi(2n+1) < α for all

agents i and all k > 2n. Therefore, vi(k) < α/3.

3. Similar to the former case, since Rα
3 is not applicable, 4vi(k) ≤ 4vi(3n + 1) ≤ vi(3n − 2) +

vi(3n−1)+vi(3n)+vi(3n+1) < α for all agents i and all k > 3n. Therefore, vi(k) < α/4.

Definition 6 (α-irreducible and δ-ONI). We call an instance I α-irreducible if none of the rules
Rα

1 , R
α
2 , R

α
3 or Rα

4 is applicable. Moreover, we call an instance δ-ONI if it is ordered, normalized,
and (3/4 + δ)-irreducible.

3 Technical overview

Most algorithms for approximating MMS, especially those with a factor of at least 3/4 [GHS+18,
GT21, AGST23], utilize two simple tools: valid reductions and bag filling. Although these tools
are easy to use in a candidate algorithm, the novelty of these works is in the analysis, which is
challenging. Like previous works, the analysis is the most difficult part of our algorithm based on
these tools. Unlike previous works, we also need to use a new reduction rule and initialize bags
differently, which are counterintuitive.

First, we discuss the algorithm given by [AGST23], which is a slight modification of the algo-
rithm in [GT21]. For α ≤ 3/4, [AGST23] showed how to obtain an ordered normalized α-irreducible
instance from any arbitrary instance such that the transformation is α-MMS preserving.† That is,
given an α-MMS allocation for the resulting ordered normalized irreducible instance, one can obtain
an α-MMS allocation for the original instance. In the first phase of their algorithm, they obtain
an ordered normalized α-irreducible instance Î and in the second phase, they compute an α-MMS
allocation for Î. Let Î = ([n], [m],V). Without loss of generality, we can assume that m ≥ 2n
(Observation 2).

In the second phase, they initialize n bags with the first 2n goods as follows.

Bk := {k, 2n − k + 1} for k ∈ [n] (2)

See Figure 1 for a better intuition. As long as an agent i values a bag Bk at least α, allocate Bk to
i and remove Bk and i. Then, as long as an unallocated bag exists (and thus a remaining agent),
pick an arbitrary remaining bag Bk and add unassigned goods g > 2n until some remaining agent i
values it at least α. Then, allocate Bk to i and continue. The second phase is called the bag-filling
phase. Algorithm 2 shows the pseudocode of the bag-filling phase of [AGST23].

†[AGST23] uses R
α
1 , R

α
2 , R

α
4 and one more rule as reduction rules. However, all that matters in their proof is

that the applied reduction rules are valid α-reduction rules.
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2n

1

B1

2n−k+1

k

Bk

n+1

n

Bn

Figure 1: Configuration of Bags B1, B2, . . . , Bn

Algorithm 2 bagFill(I, α)

Input: Ordered normalized α-irreducible instance I = ([n], [m],V) and approximation factor α
Output: (Partial) allocation A = 〈A1, . . . , An〉.

1: for k ∈ [n] do
2: Bk = {k, 2n + 1− k}.
3: end for
4: UG = [m] \ [2n] ⊲ unassigned goods
5: UA = [n] ⊲ unsatisfied agents
6: UB = [n] ⊲ unassigned bags
7: while UA 6= ∅ do
8: if ∃i ∈ UA, ∃k ∈ UB , such that vi(Bk) ≥ α then
9: Ai = Bk

10: UA = UA \ {i}
11: UB = UB \ {k}
12: else
13: g = arbitrary good in UG

14: k = arbitrary bag in UB

15: Bk = Bk ∪ {g}.
16: UG = UG \ {g}
17: end if
18: end while
19: return 〈A1, . . . , An〉

To prove that the algorithm’s output is α-MMS, it suffices to prove that we never run out of
goods in the bag-filling phase or, equivalently, all agents receive a bag at some point during the
algorithm. To prove this, they categorize agents into two groups. Let N1 = {i ∈ N | ∀k ∈ [n] :
vi(Bk) ≤ 1} and N2 = N \ N1 = {i ∈ N | ∃k ∈ [n] : vi(Bk) > 1}. We note that the sets N1

and N2 are defined based on the instance Î at the beginning of phase 2, and they do not change
throughout the algorithm.

Agents in N1 Proving that all agents in N1 receive a bag is easy. Using the fact that at the
beginning of Phase 2, the instance is ordered, normalized, and α-irreducible, they prove vi(g) < 1/4
for all i ∈ N and all g ∈ M \ [2n]. This helps to prove that any bag which is not assigned to an
agent i ∈ N1 while i was available has a value at most 1 to i. Therefore, since vi(M) = n, running
out of goods is impossible before agent i receives a bag.

8



Agents in N2 The main bulk and difficulty of the analysis of [GT21] is to prove that all agents
in N2 receive a bag. By normalizing the instance, [AGST23] managed to simplify this argument
significantly. [AGST23] prove vi(g) < 1/12 for all i ∈ N2 and all g ∈ M \ [2n]. This helps to
bound the value of the bags that receive some goods in the bag-filling phase by 5/6 for all available
i ∈ N2. Again, if the number of such bags is high enough, it is easy to prove that the algorithm
does not run out of goods in the bag-filling phase. The difficult case is when the total value of the
bags which are of value more than 1 to some agent i ∈ N2 is large. Roughly speaking, in this case,
it seems that the bags which receive goods in the bag-filling phase and their values are bounded
by 5/6 cannot compensate for the large value of the bags that do not require any goods in the
bag-filling phase. This is where the normalized property of Î simplifies the matter significantly.
Intuitively, there are many goods with a high value that happened to be paired in the same bag in
the bag initialization phase. Since the instance is normalized, we know that in the MMS partition
of i, these goods cannot be in the same bag. This implies that many bags in the MMS partition of i
have at most 1 good in common with the goods in [2n]. This means that the value of the remaining
goods (the goods in M \ [2n]) must be large since they fill the bags in the MMS partition such that
the value of each bag equals 1. Hence, enough goods remain in M \ [2n] to fill the bags.

There are two main obstacles to generalizing this algorithm to obtain α-MMS allocations when
α > 3/4. The first obstacle lies in the first phase of the algorithm. Rα

4 is a valid α-reduction when
α ≤ 3/4 and Rα

1 and Rα
2 are not applicable. This no longer holds when α > 3/4. In this case, the

MMS value of the agents can indeed decrease after applying Rα
4 . When α = 3/4 +O(1/n), [GT21]

and [AGST23] managed to resolve this issue by adding some dummy goods after each iteration
of Rα

4 and proving that the total value of these dummy goods is negligible. Essentially, since we
only need to guarantee the last agent a value of α, the idea is to divide the excess 1−α among all
agents and improve the factor. However, this can only improve the factor by at most O(1/n). If
α > 3/4+ ǫ for a constant ǫ > 0, the same technique does not work since the value of dummy goods
cannot be reasonably bounded. We resolve this issue in Section 4. Unlike the previous works, we
allow the MMS values of the remaining agents to drop. Although the MMS values of the agents
can drop, we show that they do not drop by more than a multiplicative factor of (1 − 4ǫ) after an

arbitrary number of applications of R
3/4+ǫ
k for k ∈ [4]. Basically, while for α ≤ 3/4, one can get

α-irreduciblity for free (i.e., without losing any approximation factor on MMS), for α = 3/4 + ǫ
and ǫ > 0, we lose an approximation factor of (1− 4ǫ).

The second obstacle is that for goods in M \ [2n], we do not get the neat bound of vi(g) < 1/4
for i ∈ N . Instead, we get this bound with an additive factor of O(ǫ). This even complicates the
analysis for agents in N1, which was trivial in [AGST23]. Furthermore, a tight example in [DFL82,
BEF21, AGST23] shows that this algorithm cannot do better than 3/4+O(1/n) and all the agents
are in N1 in this example. To overcome this hurdle, we further categorize the agents in N1. One
group consists of the agents with a reasonable bound on the value of good 2n + 1, and the other
agents, the problematic ones, do not.

We break the problem into two cases depending on the number of these problematic agents.
In Section 5.1, we consider the case when the number of problematic agents is not too large. In
this case, we work with a slight modification of the algorithm in [AGST23], and using an involved
analysis, we show that it gives a (3/4+ǫ)-MMS allocation. Otherwise, we introduce a new reduction
rule for the first time that allocates the two most valuable goods to an agent. Although allocating
these goods seem counterintuitive, surprisingly, that seems to be the only way to obtain a (3/4+ǫ)-
MMS allocation for the tight example in [DFL82, BEF21, AGST23]. In Section 5.2, we give another
algorithm to handle the case where the number of problematic agents is too large. In this case,
we first apply the reduction rules (including the new one), and then initialize the bags with three
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Algorithm 3 reduce((N,M,V), ǫ)

1: I ← order(N,M,V)
2: for i ∈ N do
3: vi,g ← vi,g/MMSi,∀g ∈ [m]
4: end for
5: while R

(3/4+ǫ)
1 or R

(3/4+ǫ)
2 or R

(3/4+ǫ)
3 or R

(3/4+ǫ)
4 is applicable do

6: I ← R
(3/4+ǫ)
k (I) for smallest possible k

7: end while
8: return I.

goods, unlike the previous works. Precisely, we set Ck := {k, 2n − k + 1, 2n + k} and then do
bag-filling.

To summarize, the structure of the rest of the paper is as follows. In Section 4, given any
instance I = (N,M,V) and ǫ > 0, for δ ≥ 4ǫ/(1 − 4ǫ) we obtain an ordered normalized (3/4 + δ)-
irreducible (δ-ONI) instance I ′ = (N ′,M ′,V ′) such that N ′ ⊆ N , M ′ ⊆M and all agents in N \N ′

receive a bag of value at least (3/4 + ǫ)MMSi(I). Moreover, we prove from any (3/4 + δ)-MMS
allocation for I ′, one can obtain a min (3/4 + ǫ, (3/4 + δ)(1 − 4ǫ))-MMS allocation for I.

In Section 5, we prove a (3/4 + δ)-MMS allocation exists for all δ-ONI instances for any δ ≤
3/956. Therefore, we prove that for 4ǫ/(1 − 4ǫ) ≤ δ ≤ 3/956, a min (3/4 + ǫ, (3/4 + δ)(1 − 4ǫ))-
MMS exists for all instances. Setting δ = 3/956 and ǫ = δ/(4(δ +1)) = 3/3836, there always exists
a (3/4 + 3/3836)-MMS allocation.

4 Reduction to δ-ONI instances

In this section, for any ǫ > 0 and δ ≥ 4ǫ/(1 − 4ǫ) we show how to obtain a δ-ONI instance I ′

from any arbitrary instance I, such that from any α-MMS allocation for I ′, one can obtain a
min (3/4 + ǫ, (1 − 4ǫ)α)-MMS allocation for I. To obtain such an allocation, first, we obtain a
(3/4 + ǫ)-irreducible instance, and we prove that the MMS value of no remaining agent drops by
more than a multiplicative factor of (1− 4ǫ). Then, we normalize and order the resulting instance,

giving us a δ-ONI instance (for δ ≥ 4ǫ/(1−4ǫ)). In the rest of this section, by Rk we mean R
(3/4+ǫ)
k

for k ∈ [4].
We start with transforming the instance into an ordered one using the order algorithm. Then

we scale the valuations such that for all i ∈ N , MMSi = 1. Then, as long as one of the reduction
rules R1, R2, R3, or R4 is applicable, we apply Rk for the smallest possible k. Algorithm 3 shows
the pseudocode of this procedure.

In this section, we prove the following two theorems.

Theorem 1. Given an instance I = (N,M,V) and ǫ ≥ 0, let I ′ = (N ′,M ′,V ′) = reduce(I, ǫ).
For all agents i ∈ N ′, MMSi(I

′) ≥ 1− 4ǫ.

Theorem 2. Given an instance I and ǫ ≥ 0, let Î = order(normalize(reduce(I, ǫ))). Then
Î is ordered, normalized and (34 + 4ǫ

1−4ǫ)-irreducible ( 4ǫ
1−4ǫ -ONI). Furthermore, from any α-MMS

allocation of Î one can obtain a min(3/4 + ǫ, (1− 4ǫ)α)-MMS allocation of I.

Note that once R1 is not applicable, we have vi(1) < 3/4 + ǫ for all remaining agents i. Since
we never increase the values, R1 can no longer apply. So reduce(I, ǫ) first applies R1 as long as it
is applicable and then applies the rest of the reduction rules. Since R1 is a valid reduction rule for
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all the remaining agents i by Lemma 5, MMSi ≥ 1 after applications of R1. So to prove Theorem 1
without loss of generality, we assume R1 is not applicable on I = ([n],M,V). Let I ′ = (N ′,M ′,V) =
reduce(I, ǫ). For the rest of this section, we fix agent i = N ′. Let P = (P1, P2, . . . , Pn) be the
initial MMS partition of i (in I). We construct a partition Q = (Q1, Q2, . . . , Q|N ′|) of M

′ such that
vi(Qj) ≥ 1− 4ǫ for all j ∈ [|N ′|].

Let G2, G3, and G4 be the set of goods removed by applications of R2, R3, and R4, respectively.
Also, let r2 = |G2|/3, r3 = |G3|/4, and r4 = |G4|/2 be the number of times each rule is applied,
respectively. Note that in the end, all that matters is that we construct a partition Q of M \ (G2 ∪
G3∪G4) into n−(r2+r3+r4) bundles of value at least 1−4ǫ for i. For this sake, it does not matter in
which order the goods are removed. Therefore, without loss of generality, we assume all the goods
in G4 are removed first, and then the goods in G2 and G3 are removed in their original order.
Note that we are not applying the reduction rules in a different order. We are removing the same
goods that would be removed by applying the reduction rules in their original order. Only for the
sake of our analysis, we remove these goods in a different order. For better intuition, consider the
following example. Assume reduce(I, ǫ) first applies R2 removing {a1, a2, a3}, then R4 removing
{b1, b2}, then another R2 removing {c1, c2, c3} and then R3 removing {d1, d2, d3, d4}. Without loss
of generality we can assume that first {b1, b2} is removed, then {a1, a2, a3}, then {c1, c2, c3} and
then {d1, d2, d3, d4}.

We know that when there are n agents, removing {2n−1, 2n, 2n+1} (or {3n−2, 3n−1, 3n, 3n+
1}) and an agent is a valid reduction for i by Lemma 5. With the same argument, it is not difficult
to see that removing {g1, g2, g3} where g1 ≥ 2n − 1, g2 ≥ 2n and g3 ≥ 2n + 1 (or {g1, g2, g3, g4}
where g1 ≥ 3n − 2, g2 ≥ 3n − 1, g3 ≥ 3n and g4 ≥ 3n + 1) and an agent is also a valid reduction
for i. For completeness, we prove this in Lemma 6.

Lemma 6. Let I = (N,M,V) be an ordered instance and i ∈ N .

1. Let g1 ≥ 2n− 1, g2 ≥ 2n and g3 ≥ 2n + 1. Then MMSn−1
vi (M \ {g1, g2, g3}) ≥ MMSnvi(M).

2. Let g1 ≥ 3n− 2, g2 ≥ 3n− 1, g3 ≥ 3n and g4 ≥ 3n+1. Then MMSn−1
vi (M \ {g1, g2, g3, g4}) ≥

MMSnvi(M).

Proof. 1. By the pigeonhole principle, there exists k such that |Pk ∩ {1, 2, . . . , 2n+1}| ≥ 3. Let
h1, h2, h3 ∈ Pk ∩ {1, 2, . . . , 2n + 1} and h1 < h2 < h3. Replace h1 with g1, h2 with g2 and
h3 with g3 and remove Pk from P . Note that the value of the remaining bundles can only
increase. Thus, the result is a partition of a subset of M \ {g1, g2, g3} into n− 1 bundles with
a minimum value of MMSni (M) for agent i.

2. By the pigeonhole principle, there exists k such that |Pk ∩ {1, 2, . . . , 3n + 1}| ≥ 4. Let
h1, h2, h3, h4 ∈ Pk ∩ {1, 2, . . . , 3n + 1} and h1 < h2 < h3 < h4. Replace h1 with g1, h2 with
g2, h3 with g3 and h4 with g4 and remove Pk from P . Note that the value of the remaining
bundles can only increase. Thus, the result is a partition of a subset of M \ {g1, g2, g3, g4}
into n− 1 bundles with a minimum value of MMSni (M) for agent i.

Observation 1. Given an ordered instance I = (N,M,V), let vi(g1) ≥ . . . ≥ vi(gm),∀i ∈ N . Let
I ′ = (N ′,M ′,V) be the instance after removing an agent i and a set of goods {a, b} from I. Let
g ∈M ′ be the jth most valuable good in M and the j′th most valuable good in M ′. Then j′ ≥ j − 2.

Corollary 1 (of Observation 1). Given an ordered instance I = (N,M,V), let I ′ = (N ′,M ′,V)
be the instance after removing an agent i and a set of goods {a, b} from I. Let n = |N | and
n′ = |N ′| = n− 1. Let g ∈M ′ be the jth most valuable good in M and the j′th most valuable good
in M ′. Then,
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• for any k, in particular, k ∈ {−1, 0, 1}, if j ≥ 2n+ k, then j′ ≥ 2n′ + k, and

• for any k, in particular, k ∈ {−2,−1, 0, 1}, if j ≥ 3n+ k, then j′ ≥ 3n′ + k.

Next, assume at a step where the number of agents is n, {g2n−1, g2n, g2n+1} (or {g3n−2, g3n−1,
g3n, g3n+1}) is removed with an application of R2 (or R3). Corollary 1 together with Lemma 6
imply that removing {g2n−1, g2n, g2n+1} (or {g3n−2, g3n−1, g3n, g3n+1}) at a later step where the
number of agents is n′ ≤ n is also valid for agent i. Therefore, all that remains is to prove that
after removing the goods in G4 and r4 agents, the MMS value of i remains at least 1− 4ǫ. That is,
MMSn−r4

i (M \G4) ≥ 1− 4ǫ.

Lemma 7. Let (N ′,M ′,V) = reduce(([n],M,V), ǫ). Let r4 be the number of times R4 is applied
during reduce(I, ǫ) and let G4 be the set of removed goods by applications of R4. Then for all
agents i ∈ N ′, MMSn−r4

vi (M \G4) ≥ 1− 4ǫ.

Proof. Without loss of generality, assume all the goods in G4 are in P1 ∪ P2 ∪ . . . ∪ Pk for some
k ≤ 2r4. Namely, we have Pj ∩G4 6= ∅ for all j ∈ [k] and (Pk+1∪ . . .∪Pn)∩G4 = ∅. If k ≤ r4, then
(Pk+1, . . . , Pn) is already a partition of a subset of M \G4 into at least n− r4 bundles. Therefore
the lemma follows.

So assume k > r4. In each application of R4, two goods h and ℓ are removed. Let h be
the more valuable good. We call h the heavy good and ℓ the light good of this application of
R4. By Proposition 1, for all heavy goods h and light goods ℓ we have, vi(h) < 3/4 + ǫ and
vi(ℓ) < 1/4 + ǫ/3. Let H be the set of all heavy goods and L be the set of all light goods removed
during these reductions. Hence, G4 = H ∪ L, |H| = |L| = r4.

We prove that we can partition (P1 ∪ . . . Pk) \ G4 into k − r4 bundles Q1, . . . , Qk−r4 , each
of value at least 1 − 4ǫ. Or equivalently MMSk−r4

vi

(

(P1 ∪ . . . ∪ Pk) \ G4

)

≥ 1 − 4ǫ. Then,
(Q1, . . . , Qk−r4 , Pk+1, . . . , Pn) is a partition of M \ G4 into n − r4 bundles, each of value at least
1− 4ǫ and the lemma follows. It suffices to prove the following claim.

Claim. For r < k ≤ 2r, if |(P1 ∪ P2 ∪ . . . ∪ Pk) ∩H| ≤ r and |(P1 ∪ P2 ∪ . . . ∪ Pk) ∩ L| ≤ r, then
MMSk−r

vi

(

(P1 ∪ . . . ∪ Pk) \G4

)

≥ 1− 4ǫ for all 0 < r < k.

The proof of the claim is by induction on k. For k = 2, we have r = 1 and vi(P1∪P2)−vi(H∪L) ≥
2 − (34 + ǫ) − (14 + ǫ

3) > 1 − 4ǫ and therefore, MMS1vi(P1 ∪ P2 \ G4) ≥ 1 − 4ǫ. Now assume that
the statement holds for all values of k′ ≤ k − 1, and we prove it for k > 2. First, we prove the
claim when at least one of the inequalities is strict. Assume |(P1 ∪ P2 ∪ . . . ∪ Pk) ∩ H| < r and
|(P1∪P2∪ . . .∪Pk)∩L| ≤ r. The proof of the other case is symmetric. If (P1∪P2∪ . . .∪Pk)∩L 6= ∅,
without loss of generality assume Pk ∩ L 6= ∅. Therefore, |(P1 ∪ . . . ∪ Pk−1) ∩H| ≤ r − 1 < k − 1
and |(P1 ∪ . . . ∪ Pk−1) ∩ L| ≤ r − 1 < k − 1. We have,

MMSk−r
vi

(

(P1 ∪ . . . ∪ Pk) \G4

)

≥MMS(k−1)−(r−1)
vi

(

(P1 ∪ . . . ∪ Pk−1

)

\G4)

≥ 1− 4ǫ. (by induction assumption)

Now assume |(P1 ∪ P2 ∪ . . . ∪ Pk) ∩H| = r and |(P1 ∪ P2 ∪ . . . ∪ Pk) ∩ L| = r.

Case 1: There exists j ∈ [k], such that Pj ∩ H 6= ∅ and Pj ∩ L 6= ∅. Without loss of
generality, assume Pk ∩H 6= ∅ and Pk ∩L 6= ∅. In this case |(P1 ∪ . . .∪Pk−1)∩H| ≤ r− 1 < k− 1
and |(P1 ∪ . . . ∪ Pk−1) ∩ L| ≤ r − 1 < k − 1. Therefore,

MMSk−r
vi

(

(P1 ∪ . . . ∪ Pk) \G4

)

≥MMS(k−1)−(r−1)
vi

(

(P1 ∪ . . . ∪ Pk−1) \G4

)

≥ 1− 4ǫ. (by induction assumption)
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Case 2: There exist j, ℓ ∈ [k], such that |Pj ∩ H| ≥ 2 and |Pℓ ∩ L| ≥ 2. Similar to the
former case, we have

MMSk−r
vi

(

(P1 ∪ . . . ∪ Pk) \G4

)

≥MMS(k−2)−(r−2)
vi

(

(P1 ∪ . . . ∪ Pk−2) \G4

)

≥ 1− 4ǫ. (by induction assumption)

Case 3: Neither Case 1 nor Case 2 holds. For all j ∈ [k], we have Pj ∩H = ∅ or Pj ∩L = ∅;
otherwise, we are in case 1. Let S1 := {j ∈ [k] | Pj∩L 6= ∅} and S2 = [k]\S1 = {j ∈ [k] | Pj∩H 6= ∅}.
If there exist bundles Pj and Pℓ such that |Pj ∩H| ≥ 2 and |Pℓ∩L| ≥ 2, we are in case 2. Therefore,
for all j ∈ S1, |Pj ∩ L| = 1 or for all j ∈ S2, |Pj ∩H| = 1. Hence, there are r bundles P1, . . . , Pr

such that either |Pj ∩H| = 1 (and |Pj ∩ L| = 0) for all j ∈ [r] or |Pj ∩ L| = 1 (and |Pj ∩H| = 0)
for all j ∈ [r].

Case 3.1: k > r + 1. Assume |Pj ∩H| = 1 for all j ∈ [r]. (The case where |Pj ∩ L| = 1 for
all j ∈ [r] is symmetric when k > r+1.) Let |Pk ∩L| = a. Then |(P1 ∪ . . .∪Pa ∪Pk)∩H| = a and
|(P1 ∪ . . . ∪ Pa ∪ Pk) ∩ L| = a. Thus by the induction assumption, we have

MMS(a+1)−a
vi

(

(P1 ∪ . . . ∪ Pa ∪ Pk) \G4

)

≥ 1− 4ǫ.

Moreover, |(Pa+1 ∪ . . . ∪ Pk−1) ∩H| ≤ r − a and |(Pa+1 ∪ . . . ∪ Pk−1) ∩ L| ≤ r − a. Thus by the
induction assumption, we have

MMS(k−a−1)−(r−a)
vi

(

(Pa+1 ∪ . . . ∪ Pk−1) \G4

)

≥ 1− 4ǫ.

So we can partition (P1 ∪ . . . ∪ Pa ∪ Pk) \G4 into one bundle of value at least 1− 4ǫ for i and also
we can partition (Pa+1 ∪ . . .∪Pk−1) \G4 into k− r− 1 bundles of value at least 1− 4ǫ for i. Thus,
the lemma holds.

Case 3.2: k = r + 1. Let B = (P1 ∪ . . . ∪ Pk) \G4. We want to show MMS1vi(B) ≥ 1− 4ǫ.
Hence it suffices to show vi(B) ≥ 1− 4ǫ.

vi(B) ≥
∑

j∈[k−1]

vi (Pj \ (H ∪ L))

=
∑

j∈[k−1]

(vi(Pj)− vi(Pj ∩ (H ∪ L)))

> (k − 1)

(

1− (
3

4
+ ǫ)

)

(since |Pj ∩ (H ∪ L)| = 1, vi(Pj ∩ (H ∪ L)) ≤ 3
4 + ǫ)

= (k − 1)(
1

4
− ǫ) ≥ 1− 4ǫ. (for k > 4)

It remains to prove the claim when k = 3 and k = 4. If there are two bundles P1 and P2 such that
|P1 ∩ L| = |P2 ∩ L| = 1, vi(B) ≥ vi(P1 \ L) + vi(P2 \ L) > 2

(

1− (14 + ǫ
3 )
)

> 1− 4ǫ. Otherwise, for
k = 3, there are two bundles P1 and P2 such that |P1 ∩H| = |P2 ∩H| = 1 and |P3 ∩L| = 2. Then,

vi(B) = vi(P1 \H) + vi(P2 \H) + vi(P3 \ L)

> 2

(

1− (
3

4
+ ǫ)

)

+

(

1− 2(
1

4
+

ǫ

3
)

)

= 1−
8ǫ

3
> 1− 4ǫ.
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For k = 4, we have |P1 ∩H| = |P2 ∩H| = |P3 ∩H| = 1 and |P4 ∩ L| = 3. Then,

vi(B) = vi(P1 \H) + vi(P2 \H) + vi(P3 \H) + vi(P4 \ L)

> 3

(

1− (
3

4
+ ǫ)

)

+

(

1− 3(
1

4
+

ǫ

3
)

)

= 1− 4ǫ.

We are ready to prove Theorem 1 and Theorem 2.

Theorem 1. Given an instance I = (N,M,V) and ǫ ≥ 0, let I ′ = (N ′,M ′,V ′) = reduce(I, ǫ).
For all agents i ∈ N ′, MMSi(I

′) ≥ 1− 4ǫ.

Proof. Fix an agent i ∈ N ′. Let I1 be the instance after all applications of R1 and before any
further reduction. By Lemma 5, MMSi(I

1) ≥ 1. So without loss of generality, let us assume
I = I1. Let G2, G3, and G4 be the set of goods removed by applications of R2, R3, and R4,
respectively. Also, let r2 = |G2|/3, r3 = |G3|/4, and r4 = |G4|/2 be the number of times each rule
is applied, respectively. By Lemma 7, MMSn−r4

vi (M \ G4) ≥ 1 − 4ǫ. For an application of R3 (or
R4) at step t, let {a1, a2, a3} (or {b1, b2, b3, b4}) be the set of goods that are removed. By Lemma 6,
removing this set at a step t′ ≥ t is still a valid reduction for i. Therefore, removing G2 and G3

and r2 + r3 agents does not decrease the MMS value of i. Thus, MMSi(I
′) ≥ 1− 4ǫ.

Theorem 2. Given an instance I and ǫ ≥ 0, let Î = order(normalize(reduce(I, ǫ))). Then
Î is ordered, normalized and (34 + 4ǫ

1−4ǫ)-irreducible ( 4ǫ
1−4ǫ -ONI). Furthermore, from any α-MMS

allocation of Î one can obtain a min(3/4 + ǫ, (1− 4ǫ)α)-MMS allocation of I.

Proof. In reduce, as long as R
(3/4+ǫ)
1 is applicable, we apply it. Once it is not applicable anymore,

for all remaining agents i, vi(1) < 3/4+ǫ. In the rest of the procedure reduce, we do not increase the

value of any good for any agent. Therefore, R
(3/4+ǫ)
1 remains inapplicable. As long as one of the rules

R
(3/4+ǫ)
k is applicable for k ∈ {2, 3, 4}, we apply it. Therefore, reduce(I, ǫ) is (3/4 + ǫ)-irreducible.

Let I ′ = (N ′,M ′,V ′) = reduce(I, ǫ). Since MMSi(I
′) ≥ 1 − 4ǫ (by Theorem 1), normalize can

increase the value of each good by a multiplicative factor of at most 1/(1 − 4ǫ). Therefore, after

ordering the instance, none of the rules Rα
k for k ∈ [4] would be applicable for α ≥ 3/4+ǫ

1−4ǫ = 3
4+

4ǫ
1−4ǫ .

Hence, Î = order(normalize(reduce(I, ǫ))) is α-irreducible for α ≥ 3
4 + 4ǫ

1−4ǫ and it is of course
ordered. Since order does not change the multiset of the values of the goods for each agent, the
instance remains normalized.

Now let us assume A is an α-MMS allocation for Î = order(normalize(reduce(I, ǫ))). By
Lemma 1, we can obtain an allocation B which is α-MMS for normalize(reduce(I, ǫ)). Lemma 2
implies that B is α-MMS for I ′ = (N ′,M ′,V ′) = reduce(I, ǫ). For all agents i ∈ N \N ′, v′i(Bi) =
vi(Bi)/MMSi(I). Therefore,

vi(Bi) = v′i(Bi)MMSi(I)

≥ αMMSi(I
′)MMSi(I) (B is α-MMS for I ′)

≥ α(1− 4ǫ)MMSnvi(M). (MMSnv′i
(M) ≥ 1− 4ǫ by Theorem 1)

Thus, B gives all the agents in N ′, α(1 − 4ǫ) fraction of their MMS. All agents in N \N ′ receive
(3/4+ǫ) fraction of their MMS value. Therefore, the final allocation is a min(3/4+ǫ, (1−4ǫ)α)-MMS
allocation of I.
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5 (3/4 + δ)-MMS allocation for δ-ONI instances

In this section, we prove that for δ ≤ 3/956 there exists a (3/4 + δ)-MMS allocation if the input is
a δ-ONI instance. First we prove that in any δ-ONI instance I = ([n], [m],V), m ≥ 2n.

Observation 2. For any δ ≤ 1/4, if I = ([n], [m],V) is δ-ONI, then m ≥ 2n.

Proof. Towards a contradiction, assume m < 2n. Now for an arbitrary agent i, let (P1, P2, . . . , Pn)
be the MMS partition of i. Since m < 2n, there must be a bundle Pj such that |Pj | = 1. Therefore,

vi(1) ≥ vi(Pj) = 1 which means R
3/4+δ
1 is applicable. This contradicts I being (3/4+δ)-irreducible.

Thus, m ≥ 2n.

We initialize n bags {B1, . . . , Bn} with the first 2n goods as follows:

Bk := {k, 2n − k + 1} for k ∈ [n]. (3)

See Figure 1 for a better intuition. Note that by Observation 2, m ≥ 2n and such bag-initialization
is possible.

Given an instance I = ([n], [m],V) (with m ≥ 2n), let N1(I) = {i ∈ [n] | ∀k ∈ [n] : vi(Bk) ≤ 1}
and N2(I) = {i ∈ [n] | ∃k ∈ [n] : vi(Bk) > 1}.

Observation 3. For δ ≤ 1/4 and instance I, if I is δ-ONI, then for all agents i ∈ N2(I),
vi(2n + 1) < 1/12 + δ.

Proof. By the definition of N2, there exist k ∈ [n] such that vi(k) + vi(2n − k + 1) = vi(Bk) > 1.
Therefore, by Lemma 3, vi(k) > 2/3. We have,

vi(2n + 1) <
3

4
+ δ − vi(1) (R

3/4+δ
4 is not applicable)

≤
3

4
+ δ − vi(k) (vi(1) ≥ vi(k))

<
3

4
+ δ −

2

3
=

1

12
+ δ, (vi(k) >

2
3 )

which completes the proof.

We refer to N1(I) and N2(I) by N1 and N2 respectively when I is the initial δ-ONI instance.
Recall that N1 and N2 do not change over the course of our algorithm. Let N1

1 = {i ∈ N1 |
vi(2n + 1) ≥ 1/4 − 5δ} and N1

2 = N1 \ N1
1 . Depending on the number of agents in N1

1 , we run
one of the approxMMS1(I, δ) or approxMMS2(I, δ) shown in Algorithms 4 or 5 respectively. Roughly
speaking, if the size of N1

1 is not too large, we run Algorithm 4 and prioritize agents in N1
1 .

Otherwise, we run Algorithm 5 giving priority to agents in N1
2 ∪N2. Giving priority to agents in

a certain set S means that when the algorithm is about to allocate a bag B to an agent, if there is
an agent in S who gets satisfied upon receiving B (i.e., vi(B) ≥ 3/4 + δ for some i ∈ S), then the
algorithms give B to such an agent and not to someone outside S.

5.1 Case 1: |N1

1
| ≤ n(1

4
− δ)/(1

4
+ δ

3
)

In this case we run Algorithm 4. For k ∈ [n], let Bk and B̂k ⊇ Bk be the kth bag at the beginning
and end of Algorithm 4, respectively.

Lemma 8. Let i be any agent who did not receive any bag by the end of Algorithm 4. For all
k ∈ [n] such that vi(Bk) ≤ 1, we have vi(B̂k) < 1 + 4δ/3.
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Algorithm 4 approxMMS1(I, δ)

Input: δ-ONI I = (N,M,V) and factor δ
Output: Allocation A = 〈A1, . . . , An〉

Bi ← {i, 2n − i+ 1}i∈[n]
B = ∪i∈[n]{Bi}
α = 3/4 + δ
while ∃i ∈ N,B ∈ B s.t. vi(B) ≥ α do

i← an arbitrary agent s.t. vi(B) ≥ α, priority with agents in N1
1

Ai ← B
B ← B \ {B}
N ← N \ {i}
M ←M \B

end while
J ← ∪B∈BB
for B ∈ B do

while ∄i ∈ N s.t. vi(B) ≥ α do
g ← an arbitrary good in M \ J
B ← B ∪ {g}
M ←M \ {g}

end while
i← an arbitrary agent s.t. vi(B) ≥ α, priority with agents in N1

1

Ai ← B
N ← N \ {i}
M ←M \B

end for
return 〈A1, . . . , An〉

Proof. The claim trivially holds if B̂k = Bk. Now assume Bk ( B̂k. Let g be the last good added
to B̂k. We have vi(B̂k \ g) < 3/4+ δ, otherwise g would not be added to B̂k. Also note that g > 2n
and hence vi(g) < 1/4 + δ/3 by Proposition 1. Thus, we have

vi(B̂k) = vi(B̂k \ g) + vi(g)

<

(

3

4
+ δ

)

+

(

1

4
+

δ

3

)

= 1 +
4δ

3
.

Lemma 9. For δ ≤ 1
4 , given a δ-ONI instance with |N1

1 | ≤ n(14 − δ)/(14 + δ
3), all agents i ∈ N1

1

receive a bag of value at least (3/4 + δ) ·MMSi at the end of Algorithm 4.

Proof. It suffices to prove that all agents i ∈ N1
1 receive a bag at the end of Algorithm 4. Towards

a contradiction, assume that i ∈ N1
1 does not receive any bag.

Claim 1. For all bags B not allocated to an agent in N1
1 , vi(B) < 3/4 + δ.

Claim 1 holds since the priority is with agents in N1
1 . Let S be the set of bags allocated to
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agents in N1
1 and S̄ be the set of the remaining bags. We have

vi(M) =
∑

k∈[n]

vi(B̂k) =
∑

B∈S

vi(B) +
∑

B∈S̄

vi(B)

< |N1
1 |

(

1 +
4δ

3

)

+
(

n− |N1
1 |
)

(

3

4
+ δ

)

(Lemma 8 and Claim 1)

≤ n, (|N1
1 | ≤ n(14 − δ)/(14 + δ

3))

which is a contradiction since vi(M) = n. Thus, all agents i ∈ N1
1 receive a bag at the end of

Algorithm 4.

Remark 1. The last inequality in the proof of Lemma 9 is tight for |N1
1 | = n(14 − δ)/(14 + δ

3 ).

Lemma 10. For δ ≤ 1
4 , given a δ-ONI instance with |N1

1 | ≤ n(14 − δ)/(14 + δ
3), all agents i ∈ N1

2

receive a bag of value at least (3/4 + δ) ·MMSi at the end of Algorithm 4.

Proof. It suffices to prove that all agents i ∈ N1
2 receive a bag at the end of Algorithm 4. Towards

a contradiction, assume that i ∈ N1
2 does not receive any bag.

Claim 2. For all k ∈ [n], vi(B̂k) ≤ 1.

Proof. The claim trivially holds if B̂k = Bk. Now assume Bk ( B̂k. Let g be the last good
added to B̂k. We have vi(B̂k \ g) < 3/4 + δ, otherwise g would not be added to B̂k. Also note that
g ≥ 2n+ 1 and hence vi(g) ≤ vi(2n + 1) < 1/4− 5δ by the definition of N1

2 . Therefore, we have

vi(B̂k) = vi(B̂k \ g) + vi(g)

< (
3

4
+ δ) + (

1

4
− 5δ) < 1.

Thus, the claim holds. �

Since agent i did not receive a bag, there exists an unallocated bag with value less than 1 for
agent i. Therefore, vi(M) =

∑

k∈[n] vi(B̂k) < n which is a contradiction. Thus, all agents i ∈ N1
2

receive a bag at the end of Algorithm 4.

5.1.1 Agents in N2

In this section, we prove that all agents in N2 also receive a bag at the end of Algorithm 4.
For the sake of contradiction, assume that agent i ∈ N2 does not receive a bag at the end of
Algorithm 4. Let A+ := {k ∈ [n] | vi(Bk) > 1} and A− := {k ∈ [n] | vi(Bk) < 3/4 + δ} be the
indices of the bags satisfying the respective constraint. Also, let ℓ be the smallest such that for all
k ∈ [ℓ+1, n], vi(k) + vi(2n− k+1+ ℓ) < 1. See Figure 2 taken from [AGST23]. [AGST23] proved
∑

k∈A+ vi(B̂k) < |A
+|+ ℓ( 1

12 + δ). For completeness, we repeat its proof in Appendix A.

Lemma 11. [AGST23]
∑

k∈A+ vi(B̂k) < |A
+|+ ℓ( 1

12 + δ).

Observation 4. For all k ∈ A−, vi(B̂k) <
5
6 + 2δ.

Proof. If B̂k = Bk, then vi(B̂k) < 3/4 + δ < 5/6 + 2δ. Otherwise, let g be the last good added to
B̂k. Note that vi(B̂k \ g) < 3/4 + δ, otherwise the algorithm would assign B̂k \ g to agent i instead
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1

2n

2

2n− 1

· · ·

· · ·

k − ℓ

2n+ 1− k + ℓ

· · ·

· · ·

k

2n+ 1− k

· · ·

· · ·

n− 1

n+ 2

n

n+ 1

+

≤ 1

Figure 2: The items [2n] are arranged in a table, where the kth column is Bk = {k, 2n + 1− k}. ℓ
is the smallest shift such that vi(k) + vi(2n+ 1− k + ℓ) ≤ 1 for all k.

of adding g to it. We have

vi(B̂k) = vi(B̂k \ g) + vi(g)

< (
3

4
+ δ) + vi(2n + 1) (vi(B̂k \ g) <

3
4 + δ and vi(g) ≤ vi(2n + 1))

< (
3

4
+ δ) + (

1

12
+ δ) =

5

6
+ 2δ. (vi(2n + 1) < 1

12 + δ by Observation 3)

Observation 5. For all k ∈ [n], vi(Bk) >
1
2 − 2δ.

Proof. Let t be smallest such that vi(Bt) > 1. By Lemma 3, vi(t) >
2
3 . Therefore, for all k ≤ t,

vi(Bk) ≥ vi(k) ≥ vi(t) >
2

3
>

1

2
.

Note that vi(t)+vi(2n− t+1) > 1 and by Proposition 1, vi(t) < 3/4+ δ. Thus, vi(2n− t+1) >
1/4 − δ. For all k > t, we have

vi(Bk) = vi(k) + vi(2n− k + 1)

≥ 2 · vi(2n− t+ 1) (k < 2n− k + 1 ≤ 2n− t+ 1)

>
1

2
− 2δ. (vi(2n − t+ 1) > 1

4 − δ)

Observation 6. vi(M \ [2n]) > ℓ(14 − δ).

Proof. By the definition of ℓ, there exists a k ∈ {ℓ, . . . , n} such that vi(k) + vi(2n − k + ℓ) > 1.
Therefore, for all j ≤ k and t ≤ 2n − k + ℓ, vi(j) + vi(t) > 1. Let P = (P1, . . . , Pn) be an
MMS partition of agent i. For j ∈ [k], let j ∈ Pj . Note that for different j, j′ ∈ [k], Pj and Pj′ are
different since vi(j)+vi(j

′) > 1 = vi(Pj). Also note that for every good g ∈ [2n−k+ ℓ] and j ∈ [k],
g /∈ Pj , otherwise vi(Pj) > 1. Therefore, there are at least ℓ bundles like Pj among P1, . . . , Pk such
that Pj ∩ [2n] = {j}. We have

vi(M \ [2n]) ≥
∑

j∈[k]

vi(Pj \ {j}) ≥
∑

j∈[ℓ]

(vi(Pj)− vi(j))

>
∑

j∈[ℓ]

(

1− (
3

4
+ δ)

)

= ℓ(
1

4
− δ). (vi(j) <

3
4 + δ by Proposition 1)
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We are now ready to prove Lemma 12.

Lemma 12. For δ ≤ 0.011, given a δ-ONI instance with |N1
1 | ≤ n(14−δ)/(14 +

δ
3), all agents i ∈ N2

receive a bag of value at least (34 + δ) at the end of Algorithm 4.

Proof. It suffices to prove that all agents i ∈ N2 receive a bag at the end of Algorithm 4. Towards
a contradiction, assume that i ∈ N2 does not receive any bag. For all k ∈ N \ (A− ∪ A+), since
vi(Bk) ≥ 3/4 + δ and i has not received a bag, B̂k = Bk. Thus, for all k ∈ N \ (A− ∪A+)

vi(B̂k) = vi(Bk) ≤ 1. (4)

We have

n = vi(M) =
∑

k∈A−

vi(B̂k) +
∑

k∈A+

vi(B̂k) +
∑

k∈N\(A−∪A+)

vi(B̂k)

<

(

|A−|(
5

6
+ 2δ)

)

+

(

|A+|+ ℓ(
1

12
+ δ)

)

+
(

n− |A−| − |A+|
)

(Observation 4, Lemma 11 and Inequality (4))

= n− |A−|(
1

6
− 2δ) + ℓ(

1

12
+ δ).

Therefore, we have

|A−|

ℓ
<

1/12 + δ

1/6 − 2δ
(5)

Next, we bound the value of the goods in M \ [2n] and contradict Inequality (5). We have,

ℓ(
1

4
− δ) ≤ vi(M \ [2n]) (Observation 6)

=
∑

k∈A−

(

vi(B̂k)− vi(Bk)
)

(M \ [2n] =
⋃

k∈A−(B̂k \Bk))

< |A−|

(

(
5

6
+ δ)− (

1

2
− 2δ)

)

(Observation 4 and Observation 5)

= |A−| · (
1

3
+ 3δ).

Thus,

|A−|

ℓ
>

1/4− δ

1/3 + 3δ
(6)

Inequalities (5) and (6) imply that 1/12+δ
1/6−2δ > 1/4−δ

1/3+3δ , which is a contradiction with δ ≤ 0.011. Thus,

all agents i ∈ N2 receive a bag at the end of Algorithm 4.

Theorem 3. Given any δ ≤ 0.011, for all δ-ONI instances where |N1
1 | ≤ n(14 − δ)/(14 + δ

3),
Algorithm 4 returns a (34 + δ)-MMS allocation.

Proof. Since N = N1
1 ∪N

1
2 ∪N

2, by Lemmas 9, 10 and 12 all agents receive a bag of value at least
(34 + δ) ·MMSi in Algorithm 4.
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2n+1

2n

1

C1

2n+k

2n−k+1

k

Ck

3n

n+1

n

Cn

Figure 3: Configuration of Bags C1, C2, . . . , Cn

5.2 Case 2: |N1

1
| > n(1

4
− δ)/(1

4
+ δ

3
)

In this case, we run Algorithm 5. Starting from an ordered normalized (3/4+δ)-irreducible instance,
as long as there is a bag Bk with value at least 3/4 + δ for some agent, we give Bk to such an
agent. The priority is with agents who initially belonged to N1

2 ∪N2. Therefore, in the remaining
instance, all bags are of value less than 3/4+δ for all the remaining agents. We introduce one more
reduction rule in this section.

• Rα
5 : If vi(1) + vi(2) ≥ α for some i ∈ N , allocate {1, 2} to agent i and remove i from N . The

priority is with agents in N1
2 ∪N2.

Starting from an ordered normalized (3/4 + δ)-irreducible instance, after allocating bags of value

at least 3/4 + δ to some agents, we run R
3/4+δ
5 as long as it is applicable. For ease of notation, we

write Rj instead of R
3/4+δ
j for j ∈ [5]. Then, we run R2 and R3 as long as they are applicable.

Afterwards, for all k ∈ [n], we initialize Ck = {k, 2n − k + 1, 2n + k}.‡ See Figure 3 for better
intuition. Then, we do bag-filling. Let Ĉk be the result of bag-filling on bag Ck. The pseudocode
of this algorithm is shown in Algorithm 5.

Lemma 13. For all agents i ∈ N1
2 ∪ N2 and bags B which is allocated to an agent in N1

2 ∪ N2

during Algorithm 5, vi(B) < 3/2 + 2δ.

Proof. We prove the lemma by upper bounding the value of the bags allocated at each step.

Claim 3. For all bags B allocated to an agent before or during R5, vi(B) < 3/2 + 2δ.

Proof. Since we start with a (3/4 + δ)-irreducible instance, by Proposition 1, for all goods g,
vi(g) < 3/4 + δ. Therefore, for all the bags B of size two, we have vi(B) < 3/2 + 2δ. �

Claim 4. For all bags B which is allocated to an agent during R2, vi(B) < 3/2 + 2δ.

Proof. Note that when we run R2, R5 is not applicable. Therefore, vi(1) + vi(2) < 3/4 + δ.
Hence, vi({2n − 1, 2n, 2n + 1}) ≤ vi({1, 2}) + vi(2n + 1) < 2(3/4 + δ) = 3/2 + 2δ. �

Claim 5. For all bags B which is allocated to an agent during R3, vi(B) < 3/2 + 2δ.

‡Note that it is without loss of generality to assume m ≥ 3n. If m < 3n, add dummy goods of value 0 to
everyone. The MMS value of the agents remains the same, and any α-MMS allocation in the final instance is an
α-MMS allocation in the original instance after removing the dummy goods.
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Algorithm 5 approxMMS2(I, δ)

Input: δ-ONI instance I = (N,M,V) and factor δ
Output: Allocation A = 〈A1, . . . , An〉

Bi ← {i, 2n − i+ 1}i∈[n]
B = ∪i∈[n]{Bi}
α = 3/4 + δ
while ∃i ∈ N,B ∈ B s.t. vi(B) ≥ α do

i← an arbitrary agent s.t. vi(B) ≥ α, priority with agents in N1
2 ∪N2

Ai ← B
B ← B \ {B}
N ← N \ {i}
M ←M \B

end while
while Rα

5 (α) is applicable do
apply Rα

5 (α)
end while
while Rα

2 or Rα
3 is applicable do

apply Rα
k for smallest k ∈ {2, 3} s.t. Rα

k is applicable
end while
n← |N |
Ci ← {i, 2n − i+ 1, 2n + i}i∈[n]
for k ← 1 to n do

while ∄i ∈ N s.t. vi(Ck) ≥ α do
g ← an arbitrary good in M \ [3n]
Ck ← Ck ∪ {g}
M ←M \ {g}

end while
i← an arbitrary agent s.t vi(Ck) ≥ α, priority with agents in N1

2 ∪N2

Ai ← Ck

N ← N \ {i}
M ←M \ Ck

end for
return 〈A1, . . . , An〉

Proof. Note that when we run R3, R5 is not applicable. Therefore, vi(1) + vi(2) < 3/4 + δ.
Hence, vi({3n − 2, 3n − 1, 3n, 3n + 1}) ≤ 2vi({1, 2}) < 3/2 + 2δ. �

Claim 6. For all bags B allocated to an agent during the bag-filling phase, vi(B) < 3/2 + 2δ.

Proof. If B = {k, 2n−k+1, 2n+k}, similar to the claims above, vi(B) ≤ vi({1, 2})+vi(2n+k) ≤
2(3/4 + δ) = 3/2 + 2δ. Otherwise, let g be the last good added to B. We have vi(B \ g) < 3/4 + δ,
otherwise g would not be added to B. Therefore, we have vi(B) = vi(B \ g) + vi(g) < 2(3/4 + δ) =
3/2 + 2δ. �

By Claims 3, 4, 5 and 6, all bags that are allocated during Algorithm 5 are of value less than
3/2 + 2δ. Therefore, the lemma holds.
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Lemma 14. For δ ≤ 1/20, given a δ-ONI instance with |N1
1 | > n(14 − δ)/(14 + δ

3), all agents in
N1

2 ∪N2 receive a bag of value at least 3/4 + δ at the end of Algorithm 5.

Proof. It suffices to prove that all agents i ∈ N1
2 ∪ N2 receive a bag at the end of Algorithm 5.

Towards a contradiction, assume that i ∈ N1
2 ∪N2 does not receive any bag.

Claim 7. For all bags B which is either unallocated or is allocated to an agent in N1
1 , vi(B) <

3/4 + δ.

The claim holds since the priority is with agents in N1
2 ∪N2 and also that we allocate all the

bags of value at least 3/4 + δ for some remaining agent.
Let S be the set of bags allocated to agents in N1

2 ∪N
2 and S̄ be the set of the remaining bags.

We have

n = vi(M) =
∑

B∈S

vi(B) +
∑

B∈S̄

vi(B)

≤ (n− |N1
1 |)

(

3

2
+ 2δ

)

+ |N1
1 |

(

3

4
+ δ

)

(Lemma 13 and Claim 7)

=

(

3

4
+ δ

)

(2n− |N1
1 |)

< n(
3

4
+ δ)(2 −

1
4 − δ
1
4 +

δ
3

). (|N1
1 | > n(14 − δ)/(14 + δ

3))

= 3n(
5δ

3
+

1

4
)

This implies that 5δ
3 + 1

4 > 1
3 . which is a contradiction with δ ≤ 1/20. Therefore, all agents

i ∈ N1
2 ∪N2 receive a bag at the end of Algorithm 5.

5.2.1 Agents in N1

1

In this section, we prove that all agents in N1
1 also receive a bag at the end of Algorithm 5. First,

we prove a general lemma that lower bounds the MMS value of an agent after allocating 2k goods
to k other agents. This way, we can lower bound the MMS value of agents in N1

1 after the sequence
of R5 rules is applied.

Lemma 15. Given a set of goods M and a valuation function v, let S ⊆M be such that |S| = 2k
for k < n and x ≥ 0 be such that v(g) ≤ MMSnv (M)/2 + x for all g ∈ S. Then, MMSn−k

v (M \S) ≥
MMSnv (M)− 2x.

Proof. We construct a partition of a subset of M \ S into n − k bundles such that the minimum
value of these bundles is at least MMSnv (M) − 2x. Let (P1, . . . , Pn) be an MMS partition of M
according to valuation function v. For all j ∈ [n], let Qj = Pj ∩ S. Without loss of generality,
assume |Q1| ≥ . . . ≥ |Qn|. Let t be largest such that for all ℓ ≤ t,

∑

j∈[ℓ] |Qj | ≥ 2ℓ. This implies
that |Qt+1| ≤ 1.

Claim 8.
∑

j∈[t] |Qj| = 2t.

Proof. If |Qt+1| = 1, and
∑

j∈[t] |Qj| > 2t, then
∑

j∈[t+1] |Qj| ≥ 2(t+1) which is a contradiction
with the definition of t. If |Qt+1| = 0, then

∑

j∈[t] |Qj | = 2k. If t < k, then
∑

j∈[t+1] |Qj | = 2k ≥
2(t+1) which is again a contradiction with the definition of t. So in this case, t = k and therefore,
∑

j∈[t] |Qj | = 2t. Hence, Claim 8 holds. �
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Claim 9. Q2k−t+1 = ∅.

Proof. If Q2k−t+1 6= ∅ then |Q2k−t+1| ≥ 1. Therefore,

∑

j∈[2k−t+1]

|Qj| =
∑

j≤t

|Qj |+
∑

t<j≤2k−t+1

|Qj |

≥ 2t+ (2k − 2t+ 1) (Claim 8, and |Qj| ≥ 1 for j ≤ 2k − t+ 1)

> k,

which is a contradiction. Therefore, Claim 9 holds. �

Now we remove the first t bundles (i.e., P1, . . . , Pt) and merge the next k − t pairs of bundles
after removing S (i.e., (Pt+1 \ S) with (Pt+2 \ S) and so on) as follows:

P̂ =
(

(Pt+1 ∪ Pt+2) \ S, (Pt+3 ∪ Pt+4) \ S, . . . , (P2k−t−1 ∪ P2k−t) \ S,P2k−t+1, . . . , Pn

)

.

Claim 9 implies that for all j > 2k − t, Pj = Pj \ S. Therefore, P̂ is a partition of the goods in

(M\(P1∪. . .∪Pt))\S ⊆M\S. For all j > 2k−t, we have vi(Pj) ≥ MMS
|N |
v (M) ≥ MMS

|N |
v (M)−2x.

Also, for all t < j ≤ 2k − t, we have |Pj ∩ S| ≤ 1 and vi(g) ≤ MMS
|N |
v (M)/2 + x for all g ∈ Pj .

Therefore,

vi(Pj \ S) ≥ vi(Pj)− (MMS|N |
v (M)/2 + x)

≥ MMS|N |
v (M)/2− x.

Thus, for all t < j < 2k − t, vi((Pj ∪ Pj+1) \ S) ≥ MMS
|N |
v (M) − 2x. Hence, P̂ is a partition of

a subset of M \ S into n − k bundles with minimum value at least MMS
|N |
v (M) − 2x. Therefore,

Lemma 15 holds.

Lemma 16. Let i ∈ N1
1 be a remaining agent after no more R5 is applicable. Then, before applying

more reduction rules, MMSi ≥ 1− 12δ.

Proof. We start by proving the following claim.

Claim 10. Right before applying any R5, vi(1) ≤ 1/2 + 6δ.

Proof. Right before applying any R5, no bag is of value at least 3
4 + δ to any agent and in

particular agent i. Therefore, vi(1)+vi(2n+1) ≤ vi(1)+vi(2n) < 3/4+δ. Since vi(2n+1) > 1/4−5δ,
by the definition of R5, we have vi(1) < 1/2 + 6δ. Therefore the claim holds. �

Consider the step right before applying any R5. Note that until this step, only some Bj ’s
are allocated. Since i ∈ N1, vi(Bj) ≤ 1 for all j ∈ [n] and since |Bj | = 2, allocating Bj’s are
valid reductions for agent i by Lemma 4. Thus, before applying any R5, MMSi ≥ 1. Now let
I ′ = ([n′],M ′,V) be the instance after applying the sequence of R5’s. Claim 10 and Lemma 15
imply that MMSn

′

vi (M
′) ≥ 1− 12δ.

For the sake of contradiction, assume that agent i ∈ N1
1 does not receive a bag at the end of

Algorithm 5. By Lemma 16, MMSi ≥ 1−12δ after applying the sequence of R5’s. By Lemma 5, R2

and R3 are valid reductions for i and, therefore, MMSi ≥ 1−12δ at the beginning of the bag-filling
phase. Let us abuse the notation and assume the instance at this step is ([n], [m],V).

Lemma 17. Assuming δ ≤ 1/212, for all k ∈ [n], if vi(Ck) ≤ 1− 12δ, then vi(Ĉk) ≤ 1− 12δ.
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Proof. If Ĉk = Ck, the claim follows. Otherwise, let g be the last good allocated to Ĉk. We have
vi(Ĉk \ g) < 3/4 + δ, otherwise g would not be added to Ĉk. Since g > 3n, by Proposition 1,
vi(g) < 3/16 + δ/4. We have

vi(Ĉk) = vi(Ĉk \ g) + vi(g)

<

(

3

4
+ δ

)

+

(

3

16
+

δ

4

)

=
15

16
+

5δ

4
≤ 1− 12δ. (δ ≤ 1/212)

Lemma 18. If δ ≤ 1/212, there exists k ∈ [n] such that vi(Ck) > 1− 12δ.

Proof. For the sake of contradiction, assume that for all k ∈ [n], vi(Ck) ≤ 1− 12δ. Since i did not
receive a bag at the end of Algorithm 5, there exists an unallocated bag Ĉt such that vi(Ĉt) < 3/4+δ.
We have

vi(M) =
∑

k∈[n]

vi(Ĉk) =
∑

k 6=t

vi(Ĉk) + vi(Ĉt)

< (n− 1)(1 − 12δ) + (
3

4
+ δ) (Lemma 17 and vi(Ĉt) <

3
4 + δ)

< n(1− 12δ), (δ ≤ 1/212)

Note that MMSi ≥ 1 − 12δ and thus vi(M) ≥ n(1 − 12δ) which is a contradiction and therefore,
Lemma 18 holds.

Let t be largest s.t. vi(Ct) > 1− 12δ.

Observation 7. Assuming δ ≤ 1/212, t > 1.

Proof. For the sake of contradiction, assume t = 1. Since 1− 12δ ≥ 3/4 + δ, we have

vi(Ĉ1) = vi(C1) = vi(1) + vi(2n) + vi(2n+ 1)

≤ vi(1) + vi(2) + (
1

4
+

δ

3
) (Proposition 1)

<

(

3

4
+ δ

)

+

(

1

4
+

δ

3

)

= 1 +
4δ

3
. (R5(3/4 + δ) is not applicable)

Also, since no bag is allocated to agent i, there must be a bag like Cℓ with vi(Ĉℓ) <
3
4 + δ.

n(1− 12δ) ≤ vi(M) = vi(Ĉ1) +
∑

k∈([n]\{1,ℓ})

vi(Ĉk) + vi(Ĉℓ)

< (1 +
4δ

3
) + (n− 2)(1− 12δ) +

3

4
+ δ, (Lemma 17)

< n(1− 12δ), (δ ≤ 1/212)

which is a contradiction. Thus, t > 1.

Observation 8. vi(2n + t) > 1/4− 13δ.
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Proof. We have

1− 12δ < vi(Ct) = vi(t) + vi(2n− t+ 1) + vi(2n + t)

≤ vi(1) + vi(2) + vi(2n+ t) (t ≥ 1 and 2n − t+ 1 ≥ 2)

<
3

4
+ δ + vi(2n + t). (R5 is not applicable)

Therefore, vi(2n+ t) > 1/4 − 13δ.

Observation 9. vi(2n − t+ 1) > 3/8 − δ(12 + 5/6).

Proof. Since R5 is not applicable, vi(1)+ vi(2) < 3/4+ δ and therefore, vi(2) < 3/8+ δ/2. We have

1− 12δ < vi(Ct) = vi(t) + vi(2n − t+ 1) + vi(2n+ t) (Ct = {t, 2n − t+ 1, 2n + t})

≤ vi(2) + vi(2n− t+ 1) + (
1

4
+

δ

3
)

(t ≥ 2 by Observation 7 and vi(2n+ t) < 1
4 +

δ
3 by Proposition 1)

< (
3

8
+

δ

2
) + vi(2n− t+ 1) + (

1

4
+

δ

3
) (vi(2) <

3
8 + δ

2 )

= vi(2n − t+ 1) +
5

8
+

5δ

6
.

Therefore, vi(2n− t+ 1) > 3/8 − δ(12 + 5/6).

Now let ℓ be largest such that vi(2n + ℓ) ≥ δ(26 + 2/3).

Observation 10. If δ ≤ 3/476, then ℓ ≥ t.

Proof. By Observation 8, vi(2n+ t) > 1/4− 13δ. For δ ≤ 3/476, we have 1/4− 13δ ≥ δ(26 + 2/3).
Thus, ℓ ≥ t.

Lemma 19. If δ ≤ 3/956, for all k ≤ min(ℓ, n), vi(Ck) ≥ 3/4 + δ.

Proof. By Observation 10, we have ℓ ≥ t. For all k ≤ t we have

vi(Ck) = vi(k) + vi(2n − k + 1) + vi(2n + k) (Ck = {k, 2n − k + 1, 2n + k})

≥ vi(2n − t+ 1) + 2vi(2n + t) (k ≤ 2n − t+ 1 and 2n− k + 1 < 2n+ k ≤ 2n+ t)

>

(

3

8
− δ(12 +

5

6
)

)

+ 2

(

1

4
− 13δ

)

(Observation 8 and 9)

=
7

8
− δ(38 +

5

6
) ≥

3

4
+ δ. (δ ≤ 3/956)

Therefore, no good would be added to Ck for k ≤ t. Now assume t < k ≤ ℓ. We have

vi(Ck) = vi(k) + vi(2n− k + 1) + vi(2n+ k) (Ck = {k, 2n − k + 1, 2n + k})

≥ 2vi(2n − t+ 1) + vi(2n+ ℓ) (k < 2n − k + 1 < 2n− t+ 1 and 2n+ k ≤ 2n+ ℓ)

> 2

(

3

8
− δ(12 +

5

6
)

)

+ δ(26 +
2

3
) (Observation 9 and the definition of ℓ)

=
3

4
+ δ.
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Note that since i does not receive a bag by the end of Algorithm 5, there must be a remaining
bag Ck such that vi(Ck) < 3/4 + δ. Thus, Lemma 19 implies that ℓ < n when δ ≤ 3/956.

Corollary 2 (of Lemma 19). If δ ≤ 3/956, for all k ≤ ℓ, Ĉk = Ck.

Observation 11. vi(M \ {1, 2, . . . , 2n + ℓ}) ≥ (n − ℓ)(1/4 − 13δ).

Proof. Consider the set of goods {1, 2, . . . , 2n+ ℓ} in the MMS partition of agent i. At least n− ℓ
bags in the MMS partition have at most two goods in {1, 2, . . . , 2n+ ℓ}. Let P be the set of these
bags. For all B ∈ P , we have vi(B ∩ {1, 2, . . . , 2n+ ℓ}) ≤ 3/4 + δ since |B ∩ {1, 2, . . . , 2n+ ℓ}| ≤ 2
and R5 is not applicable. Therefore, vi(B \ {1, 2, . . . , 2n+ ℓ}) ≥ (1− 12δ)− (3/4 + δ) = 1/4− 13δ.
We have

vi(M \ {1, 2, . . . , 2n + ℓ}) ≥ vi(∪B∈PB \ {1, 2, . . . , 2n+ ℓ})

≥ (n − ℓ)(
1

4
− 13δ).

Lemma 20. If δ ≤ 796, for all k > ℓ, vi(Ĉk \ {k, 2n − k + 1}) < 1/4 − 13δ.

Proof. Since 1/4−13δ ≥ δ(53+1/3) for δ ≤ 3/796, it suffices to prove vi(Ĉk\{k, 2n−k+1}) < δ(53+
1/3). Note that for all k > ℓ, vi(2n+k) < δ(26+2/3). Therefore, if Ĉk = Ck = {k, 2n−k+1, 2n+k},
the observation holds. Moreover, we have

vi({k, 2n − k + 1}) ≥ 2vi(2n − t+ 1) (k < 2n− k + 1 ≤ 2n− t+ 1)

> 2

(

3

8
− δ(12 +

5

6
)

)

(Observation 9)

=
3

4
− δ(25 +

2

3
). (7)

If Ĉk 6= Ck, let g be the last good added to Ĉk. Since g > 3n + 1 > 2n + ℓ, vi(g) < δ(26 + 2/3).
We have vi(Ĉk \ g) < 3/4 + δ otherwise g would not be added to Ĉk. We have

vi(Ĉk) = vi(Ĉk \ g) + vi(g)

<

(

3

4
+ δ

)

+ δ(26 +
2

3
) (Proposition 1)

=
3

4
+ δ(27 +

2

3
).

Hence,

3

4
+ δ(27 +

2

3
) > vi(Ĉk)

= vi({k, 2n − k + 1}) + vi(Ĉk \ {k, 2n − k + 1})

>
3

4
− δ(25 +

2

3
) + vi(Ĉk \ {k, 2n − k + 1}). (Inequality (7))

Thus,

vi(Ĉk \ {k, 2n − k + 1}) < δ(53 +
1

3
).
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Algorithm 6 mainApproxMMS(I, α)

Input: Instance I = (N,M,V) and approximation factor α > 3/4
Output: Allocation A = 〈A1, . . . , An〉

ǫ = α− 3/4
δ = 3/956
I = order(normalize(reduce(I, ǫ)))
N1

1 = {i ∈ [n] | ∀j ∈ [n] : vi(Bj) ≤ 1 and vi(2n+ 1) ≥ 1/4 − 5δ}
if |N1

1 | ≤ n(14 − δ)/(14 + δ
3) then

return aprroxMMS1(I, δ) ⊲ Algorithm 4 in Section 5.1
else

return aprroxMMS2(I, δ) ⊲ Algorithm 5 in Section 5.2
end if
return 〈A1, . . . , An〉

We are ready to prove Lemma 21.

Lemma 21. For δ ≤ 3/956, given a δ-ONI instance with |N1
1 | > n(14 − δ)/(14 + δ

3), all agents in
N1

1 receive a bag of value at least 3/4 + δ at the end of Algorithm 5.

Proof. It suffices to prove that all agents i ∈ N1
1 receive a bag at the end of Algorithm 5. Towards

a contradiction, assume that i ∈ N1
1 does not receive any bag. By Lemma 18, there exists a k ∈ [n]

such that vi(Ck) > 1− 12δ. Recall that ℓ is largest such that vi(2n + ℓ) ≥ δ(26 + 2/3). We have

(n− ℓ)(
1

4
− 13δ) ≤ vi(M \ {1, 2, . . . , 2n+ ℓ}) (Observation 11)

=
∑

k>ℓ

vi(Ĉk \ {k, 2n − k + 1}) (Ĉk = Ck for k ∈ [ℓ] by Corollary 2)

< (n− ℓ)(
1

4
− 13δ), (Lemma 20)

which is a contradiction.

Theorem 4. Given any δ ≤ 3/956, for all δ-ONI instances where |N1
1 | > n(14 − δ)/(14 + δ

3),
Algorithm 5 returns a (34 + δ)-MMS allocation.

Proof. For all other agents i, if i ∈ N1
2 ∪ N2, by Lemma 14, i receives a bag of value at least

3
4 + δ and if i ∈ N1

1 , by Lemma 21 i receives such a bag. Since N = N1
1 ∪ N1

2 ∪ N2, the theorem
follows.

6 (3/4 + ǫ)-MMS allocations

In this section, we give the complete algorithm mainApproxMMS(I, α) that achieves an α-MMS allo-
cation for any instance I with additive valuations and any α = 3/4+ ǫ for ǫ ≤ 3/4220. To this end,
first we obtain a δ-ONI instance for δ = 4ǫ/(1 − 4ǫ) by running order(normalize(reduce(I, ǫ))).
Then depending on whether |N1

1 | ≤ n(14−δ)/(
1
4 +

δ
3) or |N

1
1 | > n(14−δ)/(

1
4 +

δ
3), we run approxMMS1

or approxMMS2. The pseudocode of our algorithm mainApproxMMS(I, α) is shown in Algorithm 6.

Theorem 5. Given any instance I = (N,M,V) where agents have additive valuations and any
α ≤ 3

4 +
3

3836 , mainApproxMMS(I, α) returns an α-MMS allocation for I.
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Proof. Let ǫ = α−3/4 and Î = order(normalize(reduce(I, ǫ))). Then by Theorem 2, Î is ordered,
normalized and (34 + 4ǫ

1−4ǫ)-irreducible ( 4ǫ
1−4ǫ -ONI). Since ǫ ≤ 3

3836 ,
4ǫ

1−4ǫ ≤
3

956 = δ. Thus, Î is δ-

ONI. Furthermore, from any β-MMS allocation of Î one can obtain a min(34 + ǫ, (1 − 4ǫ)β)-MMS
allocation of I.

By Theorem 3, given any δ ≤ 3/956, for all δ-ONI instances where |N1
1 | ≤ n(14 − δ)/(14 + δ

3),
approxMMS1 returns a (34 + δ)-MMS allocation. Also, by Theorem 4, for all δ-ONI instances

where |N1
1 | > n(14 − δ)/(14 + δ

3), approxMMS2 returns a (34 + δ)-MMS allocation. Therefore,
mainApproxMMS(I, α) returns a min(34 + ǫ, (1− 4ǫ)(34 + δ))-MMS allocation of I. We have

(1− 4ǫ)(
3

4
+ δ) ≥ (1−

3

959
)(
3

4
+

3

956
)

=
3

4
+

3

3836

≥
3

4
+ ǫ = α.

Thus, mainApproxMMS(I, α) returns an α-MMS allocation of I.

A Missing Proofs

Lemma 3. [AGST23] Let ([n], [m],V) be an ordered and normalized fair division instance. For all
k ∈ [n] and agent i ∈ [n], if vi(k) + vi(2n− k + 1) > 1, then vi(2n− k + 1) ≤ 1/3 and vi(k) > 2/3.

Proof. It suffices to prove vi(2n−k+1) ≤ 1/3 and then vi(k) > 2/3 follows. Let P = (P1, . . . , Pn) be
an MMS partition of agent i. For j ∈ [k] and j′ ∈ [2n+1−k], vi(j)+vi(j

′) ≥ vi(k)+vi(2n+1−k) > 1,
since the instance is ordered. Furthermore, j and j′ cannot be in the same bundle in P since the
instance is normalized. In particular, no two goods from [k] are in the same bundle in P . Hence,
assume without loss of generality that j ∈ Pj for all j ∈ [k].

For all j ∈ [k] and j′ ∈ [2n − k + 1], j′ 6∈ Pj . Thus, {k + 1, . . . , 2n − k + 1} ⊆ Pk+1 ∪ . . . ∪ Pn.
By pigeonhole principle, there exists a bundle B ∈ {Pk+1, . . . , Pn} that contains at least 3 goods
g1, g2, g3 in {k + 1, . . . , 2n − k + 1}. Hence,

vi(2n− k + 1) ≤ min
g∈{g1,g2,g3}

vi(g) ≤
1

3

∑

g∈{g1,g2,g3}

vi(g) ≤
vi(B)

3
=

1

3
.

Lemma 11. [AGST23]
∑

k∈A+ vi(B̂k) < |A
+|+ ℓ( 1

12 + δ).

Proof. Let S ∈ A+ be the set of ℓ smallest indices in A+ and L ∈ A+ be the set of ℓ largest indices
in A+. Since B̂k = Bk,∀k ∈ A+, we have

∑

k∈A+

vi(B̂k) = (
∑

k∈S

vi(k) +
∑

k∈L

vi(2n − k + 1)) + (
∑

k∈A+\S

vi(k) +
∑

k∈A+\L

vi(2n− k + 1)).

We upper bound (
∑

k∈S vi(k) +
∑

k∈L vi(2n − k + 1)) and (
∑

k∈A+\S vi(k) +
∑

k∈A+\L vi(2n− k + 1))
in Claims 11 and 12 respectively.

Claim 11.
∑

k∈S vi(k) +
∑

k∈L vi(2n − k + 1) < ℓ(1312 + δ).

28



Proof. Note that vi(k) < 3/4 + δ by Proposition 1 and vi(2n − k + 1) ≤ 1/3 by Lemma 3.
Thus,

∑

k∈S

vi(k) +
∑

k∈L

vi(2n − k + 1) < ℓ(
3

4
+ δ +

1

3
) = ℓ(

13

12
+ δ).

Therefore, Claim 11 holds. �

Claim 12.
∑

k∈A+\S vi(k) +
∑

k∈A+\L vi(2n − k + 1) < |A+| − ℓ.

Proof. Assume A+ = {g1, . . . , g|A+|} and g1 < . . . < g|A+|. Then, A+ \ S = {gℓ+1, . . . , g|A+|}
and A+ \ L = {g1, . . . , g|A+|−ℓ}. The idea is to pair the goods gk+ℓ and 2n− gk + 1 and prove that
their value is less than 1 for agent i. Since gk+ℓ ≥ gk + ℓ, vi(gk+ℓ) + vi(2n − gk + 1) < 1 by the
definition of ℓ. We have

∑

k∈A+\S

vi(k) +
∑

k∈A+\L

vi(2n − k + 1) =
∑

k∈[|A+|−ℓ]

(vi(gk+ℓ) + vi(2n− gk + 1)) < |A+| − ℓ.

Therefore, Claim 12 holds. �

Claim 11 and Claim 12 together imply Lemma 11.
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