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Abstract
We study the parameterized complexity of #IndSub(Φ), where given a graph 𝐺 and an integer 𝑘, the task is to count
the number of induced subgraphs on 𝑘 vertices that satisfy the graph property Φ. Focke and Roth [STOC 2022]
completely characterized the complexity for each Φ that is a hereditary property (that is, closed under vertex deletions):
#IndSub(Φ) is #W[1]-hard except in the degenerate cases when every graph satisfies Φ or only finitely many graphs
satisfy Φ. We complement this result with a classification for each Φ that is edge monotone (that is, closed under edge
deletions): #IndSub(Φ) is #W[1]-hard except in the degenerate case when there are only finitely many integers 𝑘 such
that Φ is nontrivial on 𝑘-vertex graphs. Our result generalizes earlier results for specific properties Φ that are related
to the connectivity or density of the graph.

Further, we extend the #W[1]-hardness result by a lower bound which shows that #IndSub(Φ) cannot be solved in
time 𝑓 (𝑘) · |𝑉(𝐺)|𝑜(

√
log 𝑘/log log 𝑘) for any function 𝑓 , unless the Exponential-Time Hypothesis (ETH) fails. For many

natural properties, we obtain even a tight bound 𝑓 (𝑘) · |𝑉(𝐺)|𝑜(𝑘); for example, this is the case for every property Φ
that is nontrivial on 𝑘-vertex graphs for each 𝑘 greater than some 𝑘0.
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1 Introduction

Searching and counting patterns is one of the oldest algorithmic tasks in computer science and has many
applications in other scientific fields. The theoretical notion of graphs give a useful and widely used way
to model various types of data. In this work, we focus on the parameterized complexity of counting
small-size patterns in graphs, which is motivated by related applications in the study of database systems
[GSS01], neural and social networks [MSOI+02, SJHS15], biology [SS05], and many other fields.

When counting patterns (such as cycles or connected graphs) of some small size 𝑘 in an 𝑛-vertex
graph, one can use an obvious brute-force approach that enumerates all 𝑂(𝑛𝑘) subsets of 𝑘 vertices in the
graph. While this is polynomial for fixed 𝑘, it would be desirable to have a running time less sensitive to
the size 𝑘 of the pattern. Flum and Grohe [FG04] initiated the study of the parameterized complexity of
counting problems, with the goal of determining which counting problems are fixed-parameter tractable

(FPT), that is, can be solved in time 𝑓 (𝑘)𝑛𝑂(1) for some computable function 𝑓 . It is widely believed that
many basic counting problems, such as #Clique are not FPT. The notion of #W[1]-hardness can be used
to give evidence that a counting problem is unlikely to be FPT by showing that it is at least as hard as
#Clique. For example, it is known that counting paths of length 𝑘, cycles of length 𝑘, matchings of size 𝑘,
and many other types of subgraphs are #W[1]-hard [FG04, Cur13, CM14, CDM17].

While the parameterized complexity of counting different types of subgraphs is well understood,
the complexity of more general properties of patterns is far from clear. Formally, a graph property is
a computable function Φ from the set of graphs to {0, 1} that is invariant under relabeling. Common
examples are is bipartite, is clique, is independent set, is connected, or is planar, to name but a few. Given
a property Φ, we would like to count the number of subsets of vertices of a specified size that induce
a graph with this property. That is, for a fixed graph property Φ, Jerrum and Meeks [JM15a, JM15b]
introduced the #IndSub(Φ) problem, where given a graph 𝐺 and a nonnegative integer 𝑘, the task is to
compute the number of induced subgraphs of 𝐺 of size 𝑘 that satisfy Φ. We denote this number by
#IndSub((Φ, 𝑘) → 𝐺) and write #IndSub((Φ, 𝑘) → ★) for the function that maps𝐺 to #IndSub((Φ, 𝑘) → 𝐺).
This problem for specific types of properties Φ has been in the focus of a large amount of research in
recent years [JM17, CDM17, RS20, RSW23, DRSW22, FR22].

It is obvious that #IndSub(Φ) is #W[1]-hard if Φ is the graph property is a complete graph since
#IndSub((Φ, 𝑘) → 𝐺) is the number of 𝑘-cliques. However, it turns out that #IndSub(Φ) is also #W[1]-hard
for many other graph properties. Early works in that area focused on showing #W[1]-hardness for
specific graph properties [JM15a, JM17], and it looks like #IndSub(Φ) is #W[1]-hard for all possible graph
properties Φ except trivial ones. In this setting, we say that Φ is trivial on 𝑘 if it is constant on 𝑘-vertex
graphs, hence #IndSub((Φ, 𝑘) → 𝐺) is either 0 or

( |𝑉(𝐺)|
𝑘

)
. We say that Φ is trivial if there is an 𝑁 such that

Φ is trivial on all 𝑘 ≥ 𝑁 . It is easy to verify that #IndSub(Φ) is FPT whenever Φ is trivial.

Conjecture 1.1 ([FR22, RSW23]). For all nontrivial, computable graph properties Φ the #IndSub(Φ) problem

is #W[1]-hard. Otherwise, #IndSub(Φ) is FPT.

Curticapean, Dell, and Marx showed in [CDM17] that #IndSub(Φ) is always FPT or #W[1]-hard.
However, the proof does not give an easy way to determine which case holds for a given property Φ.
As we review it in Section 1.1, Conjecture 1.1 is known to hold for many classes of graph properties. In
particular, Focke and Roth [FR22] showed that Conjecture 1.1 holds if Φ is a hereditary property, that is,
closed under deletion of vertices. In this paper, we show a complementary result for graph properties
that are edge monotone (closed under deletion of edges). We also provide quantitative lower bounds on the
exponent of 𝑛 under the Exponential-Time Hypothesis (ETH) [IPZ01].
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Main Theorem 1. Let Φ denote a nontrivial edge-monotone graph property.

The problem #IndSub(Φ) is #W[1]-hard.

Further, assuming ETH, there is a universal constant 𝛾 > 0 (independent of Φ) such that for any integer 𝑘 ≥ 3
on which Φ is nontrivial, no algorithm (that reads the whole input) computes for every graph 𝐺 the number

#IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛾
√

log 𝑘/log log 𝑘).
As an example, the following nontrivial graph properties are all edge-monotone and not covered by

any method in Section 1.1, but Main Theorem 1 shows their #W[1]-hardness.

Example 1.2. Φ𝑐
1(𝐺) = 1 if and only if 𝐺 is disconnected or diam(𝐺) ≥ 𝑐 |𝑉(𝐺)| for a fixed constant

𝑐 ∈ (0, 1).
Φ𝑐

2(𝐺) = 1 if and only if 𝐺 is bipartite or contains an independent set of size at least 𝑐 for a fixed
constant 𝑐 ≥ 3.
Φ𝑐

3(𝐺) = 1 if and only if the maximum degree of𝐺 is at most 𝑐 |𝑉(𝐺)| for a fixed constant 𝑐 ∈ (1/2, 1).

A notable difference between hereditary and edge-monotone properties is that an edge-monotone
property might be nontrivial only on a sparse set of integers: for example, one can define Φ(𝐺) to be 1 if
and only if 𝐺 is a clique with |𝑉(𝐺)| being a power of two (or a prime, or the product of the first 𝑖 primes,
or . . .). On the other hand, if Φ is a nontrivial hereditary property, then it is an easy exercise to show that
it has to be nontrivial for every 𝑘 larger than some 𝑁 . Our algebraic proof techniques for Main Theorem 1
are very sensitive to the number-theoretic properties of the size 𝑘, hence it is a significant challenge to
make it work when Φ can be nontrivial only on certain integers.

In [RS20, RSW23, DRSW22, FR22], it was proven that for specific classes of nontrivial graph propertiesΦ,
there is a function 𝑔 such that the problem #IndSub(Φ) cannot be solved in time 𝑓 (𝑘) · |𝑉(𝐺)|𝑜(𝑔(𝑘)) for
any computable function 𝑓 , unless ETH fails. The second part of Main Theorem 1 shows a similar lower
bound on the exponent of the running time for edge-monotone properties. However, readers familiar
with the way ETH-based lower bounds are stated in the parameterized complexity literature should
notice that the second part of Main Theorem 1 uses a very different formulation (a similar formulation
was given by Cohen-Addad et al. [CCMdM21] for various problems). We use a stronger approach by
showing that, assuming ETH, there is a constant 𝛾 > 0 such that for all edge-monotone graph properties
Φ and any fixed nontrivial 𝑘 ≥ 3 the function #IndSub((Φ, 𝑘) → 𝐺) cannot be computed for all graphs 𝐺
in time 𝑂(|𝑉(𝐺)|𝛾𝑔(𝑘)) unless ETH fails. That is, our stronger statement applies not only to algorithms
solving the problem in general, but also gives a meaningful statement for algorithms solving the problem
for a fixed 𝑘. It is easy to observe that this approach implies that no algorithm solves #IndSub(Φ) in time
𝑓 (𝑘) · |𝑉(𝐺)|𝑜(𝑔(𝑘)) for any computable function 𝑓 , unless ETH fails.

Corollary 1.3. Let Φ denote a nontrivial edge-monotone graph property.

The problem #IndSub(Φ) is #W[1]-hard.

Further, assuming ETH, no algorithm computes for every graph 𝐺 and every positive integer 𝑘 the number

#IndSub((Φ, 𝑘) → 𝐺) in time 𝑓 (𝑘) · |𝑉(𝐺)|𝑜(
√

log 𝑘/log log 𝑘)
for any computable function 𝑓 .

Proof. Suppose that #IndSub(Φ) can be solved in 𝑂( 𝑓 (𝑘)|𝑉(𝐺)|𝑔(𝑘)) for 𝑔(𝑘) ∈ 𝑜(√log 𝑘/log log 𝑘). Then,
there is an 𝑁 with 𝑔(𝑘′) ≤ 𝛾

√
log 𝑘′/log log 𝑘′ for all 𝑘′ ≥ 𝑁 ≥ 3. Since Φ is nontrivial, there is a

𝑘 ≥ 𝑁 such that Φ is nontrivial on 𝑘. Main Theorem 1 shows that no algorithm solves #IndSub(Φ) in
𝑂( 𝑓 (𝑘)|𝑉(𝐺)|𝑔(𝑘)).
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Thus our formulation of the second part of Main Theorem 1 implies the usual formulation. Further, even
though the statement is stronger, it turns out that it is somewhat easier to work with this formulation:
technicalities involving the little-𝑜 notation and the function 𝑓 (𝑘) disappear, which results in more
streamlined proofs.

Observe that quantitative lower bounds for #IndSub(Φ) in Main Theorem 1 are fairly weak: we say
that the exponent cannot be much better than

√
log 𝑘/log log 𝑘. Naturally, we would like to show lower

bounds for #IndSub(Φ) of the form 𝑂(|𝑉(𝐺)|𝛾𝑘), that is, we would like to show bounds that are tight in
the sense that we can indeed solve #IndSub(Φ) in time 𝑂(|𝑉(𝐺)|𝑘) using a brute force approach. While
we cannot prove such tight lower bounds in full generality, we are able to obtain tight lower bounds for
specific cases that cover most properties of interest.

Main Theorem 2. For each prime 𝑝, there is a constant 𝛾𝑝 > 0 such that for each integer 𝑚 with 𝑝𝑚 ≥ 3 and

each edge-monotone graph property Φ that is nontrivial on 𝑝𝑚 , no algorithm (that reads the whole input) computes

for every graph 𝐺 the number #IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛾𝑝𝑝𝑚 ), unless ETH fails.

As before, we also restate Main Theorem 2 in terms of ruling out 𝑜(𝑘) in the exponent.

Corollary 1.4. For all edge-monotone Φ that for fixed prime number 𝑝 are nontrivial on infinitely many

numbers of the form 𝑝𝑚 , no algorithm computes for every graph 𝐺 end every positive integer 𝑘 the number

#IndSub((Φ, 𝑘) → 𝐺) in time 𝑓 (𝑘) · |𝑉(𝐺)|𝑜(𝑘) for any computable function 𝑓 , unless ETH fails.

Proof. Suppose that #IndSub(Φ) can be solved in 𝑂( 𝑓 (𝑘)|𝑉(𝐺)|𝑔(𝑘)) for 𝑔(𝑘) ∈ 𝑜(𝑘). Then, there is an
𝑁 with 𝑔(𝑘′) ≤ 𝛾𝑘 for all 𝑘′ ≥ 𝑁 ≥ 3. Since Φ is nontrivial, there is a 𝑘 ≥ 𝑁 with Φ is nontrivial on 𝑘.
Main Theorem 2 shows that no algorithm solves #IndSub(Φ) in 𝑂( 𝑓 (𝑘)|𝑉(𝐺)|𝑔(𝑘)).
Observe that Corollary 1.4 holds whenever there is a constant 𝑁 such that Φ is nontrivial on all 𝑘 ≥ 𝑁 . It
is easy to check that this condition holds for all Φ𝑖 in Example 1.2. Thus, we obtain tight lower bounds for
all #IndSub(Φ𝑖) using Corollary 1.4.

1.1 Prior Work

In the following, we summarize recent results for the parameterized complexity of the #IndSub(Φ)
problem. The results are ordered by their date of publication.

(a) #IndSub(Φ) is #W[1]-hard for
(i) Φ(𝐺) = 1 if and only if 𝐺 is connected [JM15a]

(ii) Φ(𝐺) = 1 if and only if |𝐸(𝐺)| is even, Φ(𝐺) = 1 if and only if |𝐸(𝐺)| is odd (both in [JM17])

(b) In [JM15b], Jerrum and Meeks proved #W[1]-hardness if the number of distinct edge densities
of graphs that satisfy Φ is low. This also shows that #IndSub(Φ) is #W[1]-hard whenever Φ is
minor-closed.

(c) In [Mee16], Meeks proved that #IndSub(Φ) is #W[1]-hard if Φ is closed under the addition of edges
and the edge-minimal graphs of Φ have unbounded treewidth. A Graph is edge-minimal if Φ(𝐺) = 1
and Φ(𝐺′) = 0 for all proper edge-subgraphs of 𝐺.

(d) In [RS20], Roth and Schmitt proved that #IndSub(Φ) is #W[1]-hard if Φ is nontrivial, edge-monotone
and satisfies at least one of the following conditions.

(i) Φ is false for odd cycles. A cycle has vertex set {0, . . . , 𝑛 − 1} and {𝑎, 𝑏} is an edge if and only if
𝑎 − 𝑏 ≡𝑛 1.
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nontrivial

edge-monotone
(closed under
removal of edges)
#W[1]-hard
[this work]

hereditary
(closed under

removal of vertices)
#W[1]-hard

[FR22]

monotone
(closed under removal
of vertices and edges)

#W[1]-hard
[RSW23]

other results
[Mee16, JM15a, RS20] minor-closed

[JM15b]

Figure 1 Hierarchy of classes of graph properties Φ, together with the results that show #W[1]-hardness for the
corresponding problem #IndSub(Φ) (if such results exist).

(ii) Φ is true for odd anti-holes. An anti-hole is the complement graph of a cycle.
(iii) There is a 𝑐 ∈ N such that Φ(𝐻) = 1 if and only if 𝐻 is not c-edge-connected
(iv) There is a graph 𝐹 such that Φ(𝐻) = 1 if and only if there is no homomorphism from 𝐹 to 𝐻.

(e) In [DRSW22], Dörfler, Roth, Schmitt, and Wellnitz proved that #IndSub(Φ) is #W[1]-hard if there are
infinitely many prime powers 𝑡 such that Φ(𝐾𝑡 ,𝑡) ≠ Φ(IS2𝑡).

(f) In [RSW23], Roth, Schmitt, and Wellnitz proved the following criteria for checking #W[1]-hardness.
Let 𝑓 Φ,𝑘𝑖 B #{𝐴 ⊆ 𝐸(𝐾𝑘) : #𝐴 = 𝑖 ∧Φ(𝐾𝑘[𝐴]) = 1} denote a vector and hw( 𝑓 Φ,𝑘) B #{𝑖 : 𝑓 Φ,𝑘𝑖 ≠ 0} the
hamming weight of 𝑓 Φ,𝑘 . We define the function 𝛽 : 𝒦(Φ) → Z≥0; 𝑘 ↦→ (𝑘

2
) − hw( 𝑓 Φ,𝑘), where 𝒦(Φ) is

the set of 𝑛 ∈ Nwith Φ is nontrivial on 𝑛. The problem #IndSub(Φ) is #W[1]-hard if 𝛽(𝑘) ∈ 𝜔(𝑘).
They also proved that #IndSub(Φ) is #W[1]-hard if Φ is monotone, meaning closed under taking
subgraphs.

(g) In [FR22], Focke and Roth proved that #IndSub(Φ) is #W[1]-hard if Φ is nontrivial and hereditary.
A property is called hereditary if it is closed under vertex-deletion, meaning that if 𝐺 satisfies Φ, then
each induced subgraph of 𝐺 also satisfies Φ.

(h) Lastly, we observe that the counting problem #IndSub(Φ) is #W[1]-hard if and only if #IndSub(¬Φ) is
#W[1]-hard; and #IndSub(Φ) is #W[1]-hard if and only if #IndSub(Φ) is #W[1]-hard. Here, ¬Φ(𝐺) B
1 −Φ(𝐺); and Φ(𝐺) B Φ(𝐺), where 𝐺 is the complement of 𝐺 (see [RSW23, see Fact 2.3]). This means
that we can prove #W[1]-hardness of #IndSub(Φ) by analyzing #IndSub(¬Φ) or #IndSub(Φ).

1.2 High-level Ideas

Our results build on concepts introduced in earlier work, but we need to develop substantial new technical
ideas to be able to deploy them in our setting. We briefly review these concepts here and highlight our
main new technical contributions; a more detailed technical overview follows in Section 2.

Given a graph property Φ, we define the alternating enumerator Φ̂ as

Φ̂(𝐻) B
∑

𝑆⊆𝐸(𝐻)
Φ(𝐻{𝑆})(−1)#𝑆 .
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Here, 𝐻{𝑆} denotes the subgraph of 𝐻 that contains the same set of vertices but only the edge set 𝑆.
Dörfler et al. [DRSW22] proved that #IndSub(Φ) is #W[1]-hard if there are graphs with arbitrary large
treewidth and nonzero alternating enumerator. Thus, #W[1]-hardness can be established by showing that
such graphs exist. However, the complicated definition of Φ̂(𝐻) does not make this task easy, even for a
specific property Φ. Dörfler et al. [DRSW22] made the following observation that can help in arguing
that Φ̂(𝐻) is nonzero. Write Γ for a group that consists in automorphisms of 𝑉(𝐻) and suppose that
the order of Γ is a power of 𝑝. We say that a subset 𝑆 ⊆ 𝐸(𝐻) is a fixed point with respect to Γ if every
automorphism in Γ moves every edge in 𝑆 to an edge in 𝑆. Clearly, we can show that Φ̂(𝐻) is nonzero
by showing that it is nonzero modulo 𝑝. The main observation is that if we want to compute the sum
in Φ̂(𝐻) modulo 𝑝, then we do not need to sum over all sets 𝑆 ⊆ 𝐸(𝐻): it is sufficient to sum over the
fixed points with respect to Γ, as the other subgraphs somehow cancel out. Thus, #W[1]-hardness can be
established by finding graphs 𝐻 with large treewidth and appropriate groups Γ to show that Φ̂(𝐻) is
nonzero modulo some prime 𝑝.

It is not difficult to show that every fixed point with respect to Γ is the disjoint union of orbits of edges.
This means that the fixed points have a natural lattice structure: we can imagine the fixed points that are
the disjoint union of ℓ orbits as the ℓ -th level of the lattice. In broad terms, our approach is to define some
group Γ, consider the fixed points of the complete graph on 𝑘 vertices with respect to Γ, and then try to
find a fixed point of sufficiently high level whose alternating enumerator is nonzero. Fixed points on
higher levels have more edges and hence larger treewidth. Now, we invoke (adaptations of) the earlier
results of Dörfler et al. [DRSW22] to show hardness with such graphs. In more detail, our proofs are
based on the following four main technical ideas.

(1) Duality of the highest nonzero level. We use linear algebra arguments to show that if Φ is 0 on
every fixed point on the topmost 𝑐 levels, then there is a fixed point on level ≥ 𝑐 whose alternating
enumerator is nonzero, and the level implies that treewidth is at least 𝑐. Thus, we may assume that
there is a fixed point of fairly high level that is nonzero in Φ. Note that this statement is true for every
property Φ, even if Φ is not edge-monotone.

(2) Avalanche effect for difference graphs on F𝑝𝑚 . Write 𝐴 for a subset of F𝑝𝑚 . Then we can define the
difference graph on the vertex set F𝑝𝑚 , where there is an edge between 𝑥 and 𝑦 if and only if 𝑥 − 𝑦 ∈ 𝐴.
Write Γ for the additive group of F𝑝𝑚 . One can observe that the fixed points with respect to Γ are
exactly the difference graphs. If Φ is edge-monotone and Φ is nonzero on a fixed point 𝑆, then this
implies that Φ should be nonzero on all the other fixed points that are subsets of 𝑆′. In particular,
a single nonzero fixed point on one of the top 𝑐 levels starts an “avalanche” that forces every fixed
point on a level of at most roughly 𝑝𝑚/𝑐 to be nonzero in Φ. The proof is based on the fact that F𝑝𝑚
multiplication is an isomorphism of the difference graph. Thus, if we pick the fixed point with the
lowest level that does not satisfy Φ, then it has a level of at least 𝑝𝑚/𝑐 and hence fairly large treewidth.
A simple calculation using the binomial theorem shows that the any fixed point of the lowest level
that do not satisfy Φ always has a nonzero alternating enumerator.

We combine the previous two ideas to obtain #W[1]-hardness if Φ is nontrivial on infinitely many prime
powers. If 𝑘 = 𝑝𝑚 , then we use the following win/win approach: if Φ is 0 on the topmost 𝑐 =

√
𝑝𝑚 levels,

then (1) gives a fixed point of treewidth at least
√
𝑝𝑚 with nonzero alternating enumerator; otherwise, (2)

gives such a fixed point. To obtain the #W[1]-hardness result in Main Theorem 1, we extend our proof
to the case when 𝑘 = 𝑑 · 𝑝𝑚 with the following idea. We also prove the ETH-based quantitative part of
Main Theorem 1 by observing that the largest prime power divisor of 𝑘 is always at least logarithmic in 𝑘.
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(3) Product construction and reduction. We extend the lower bound for properties that are nontrivial on
some prime powers to the general case in the following way. Write Γ for a group of permutations on
𝑝𝑚 vertices. There is a natural way to raise Γ to a group Γ𝑑 of permutations on 𝑑 · 𝑝𝑚 vertices. We
observe that the fixed points of Γ𝑑 can be described as the disjoint unions of the fixed points of Γ, plus
additionally fully connecting some pairs of these fixed points. Let us take a look at the fixed point 𝐹
with the lowest level that is zero in Φ (which we know to have nonzero alternating enumerator). If 𝐹
contains one of the aforementioned full connections, then 𝐹 has high treewidth, which is what we
wanted. Otherwise, 𝐹 is the disjoint union of fixed points of Γ; write 𝐹′ for one of them and write 𝐻
for the union of the remaining 𝑑 − 1 fixed points. Then by “pinning” 𝐻 we can define a nontrivial
property Φ′ on 𝑝𝑚 : set Φ′(𝐺) B Φ(𝐻 ⊎ 𝐺), which is zero on the 𝑝𝑚-vertex graph 𝐹′. Now a standard
reduction based on the Inclusion-Exclusion principle shows how to reduce #IndSub(Φ′) to #IndSub(Φ),
hence the lower bounds for prime powers can be used.

Unfortunately, a square root loss between 𝑘 and the treewidth of the identified fixed point is inevitable
when using (1) and (2), hence they cannot lead to tight bounds. The last idea allows us to obtain tight
bounds in at least some cases.

(4) Avalanche effect for lexicographic product of graphs. For a prime 𝑝 and integer 𝑚 ≥ 2, we show
another way of defining fixed points on 𝑝𝑚 vertices that have better avalanche properties. We define a
group Γ (which is in fact the Sylow 𝑝-group of the automorphism group of 𝐾𝑝𝑚 ) such that the fixed
points with respect to Γ are exactly the so-called 𝑚-dimensional lexicographic products of difference
graphs on F𝑝 . Let us consider the lowest level ℓ that contains a fixed point where Φ is 0. We observe
that every level ℓ has fixed points that contain the complete bipartite graph 𝐾𝑝𝑚−1 ,𝑝𝑚−1 . If Φ is 0 on one
such fixed point 𝐹 on level ℓ , then it is easy to show that the alternating enumerator of 𝐹 is nonzero.
Now, earlier work shows how to reduce the counting of 𝑝𝑚−1-cliques to #IndSub(Φ) with 𝑘 = 𝑝𝑚 .
Otherwise, if Φ is nonzero on every such fixed point on level ℓ , then the avalanche effect shows that Φ
is nonzero also on every other fixed point on the same level ℓ , a contradiction.

Specifically, if 𝑘 = 𝑝𝑚 for some constant prime 𝑝, then we obtain the tight bound that #IndSub(Φ) for 𝑘
is at least as hard as counting 𝑝𝑚−1-cliques, which proves Main Theorem 2.

2 Technical Overview

In this section, we present an overview of the most important techniques and ideas that we use to
show #W[1]-hardness of #IndSub(Φ) for each nontrivial edge-monotone graph property Φ, as well as
the ETH-based quantitative lower bounds. We start with a review of the techniques that we use from
previous work and then elaborate on our novel technical ideas.

Alternating Enumerator, #W[1]-hardness, and Lower Bounds

A problem instance of #Hom(ℋ) is a pair of a graph 𝐻 ∈ ℋ and a graph 𝐺 ∈ 𝒢 and the output is the
number of homomorphisms from 𝐻 to 𝐺 (that is, #Hom(𝐻 → 𝐺)); we parameterize by 𝜅(𝐻, 𝐺) B |𝑉(𝐻)|.
Dalmau and Jonsson [DJ04] proved that #Hom(ℋ) is #W[1]-hard if and only if the treewidth of the set ℋ
is unbounded (that is, there is no constant 𝑐 such that the treewidth of all elements in ℋ is below 𝑐).

Further results follow from the fact that a certain colored version of Hom(ℋ) can be reduced to
#Hom(ℋ) [CCMdM21, Mar10]. We prove our #W[1]-hardness results by using a parameterized Turing
reduction from #Hom(ℋ) to #IndSub(Φ), which was first developed by Dörfler et al. [DRSW22].
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For this reduction to work, the methods of [DRSW22] require that the alternating enumerator Φ̂(𝐻) is
nonvanishing for each graph 𝐻 ∈ ℋ .1

Definition 2.1. For a graph property Φ and a graph 𝐻, we define the alternating enumerator ˆΦ(𝐻) as

ˆΦ(𝐻) B
∑

𝑆⊆𝐸(𝐻)
Φ(𝐻{𝑆})(−1)#𝑆 .

We say that a graph 𝐻 is nonvanishing for a graph property Φ if the alternating enumerator of Φ and 𝐻 is

nonzero. We say that a sequence of graphs 𝐻𝑘 is nonvanishing for a graph property Φ if every 𝐻𝑘 is nonvanishing

for Φ, that is, if for all 𝑘, we have
ˆΦ(𝐻𝑘) ≠ 0.

This means that we can show #W[1]-hardness by finding a nonvanishing sequence 𝐻𝑘 that has
unbounded treewidth. Further, assuming ETH, the reduction of [DRSW22] yields a lower bound for
#IndSub((Φ, 𝑘) → 𝐺) for a fixed 𝑘. To be more precise, we show that if 𝐻 is nonvanishing for Φ, we can
use the reduction of [DRSW22] to solve Hom({𝐻}) using an oracle for #IndSub((Φ, |𝑉(𝐻)|) → ★).

From the work of Cohen-Addad et al. [CCMdM21], we obtain that #Hom({𝐻}) cannot be solved in
time 𝑂(𝑛𝛼Hom ·tw(𝐻)/log tw(𝐻)), where 𝑛 is the number of vertices of the input graph. Hence, if we could
compute #IndSub((Φ, |𝑉(𝐻)|) → ★) fast enough, then our reduction shows that we can solve Hom({𝐻})
in time 𝑂(𝑛𝛼Hom ·tw(𝐻)/log tw(𝐻)), which contradicts ETH. Summarizing the previous discussion, we obtain
the following lemma, which essentially follows from previous work. For completeness, we include a
proof in Appendix A.

Lemma A.8 ([DRSW22, CCMdM21]). Let Φ denote a nontrivial graph property.

If there is a sequence of graphs with unbounded treewidth where each graph has an alternating enumerator that

is nonvanishing for Φ, then #IndSub(Φ) is #W[1]-hard.

Assuming ETH, there is a universal constant 𝛼IndSub > 0 (that is independent of Φ) such that for any

positive integer 𝑘 for which there is a graph 𝐻𝑘 with 𝑘 vertices,
ˆΦ(𝐻𝑘) ≠ 0, and tw(𝐻𝑘) ≥ 2, no algo-

rithm (that reads the whole input) computes for every graph 𝐺 the number #IndSub((Φ, 𝑘) → 𝐺) in time

𝑂(|𝑉(𝐺)|𝛼IndSub tw(𝐻𝑘 )/log tw(𝐻𝑘 )).
For edge-monotone graph properties Φ, the alternating enumerator of the 𝑘-clique Φ̂(𝐾𝑘) is equal to the

reduced Euler characteristic of the simplicial graph complex �̂�(Δ(Φ𝑘)), where Φ𝑘 is Φ restricted on 𝑘-vertex
graphs (see [DRSW22, Lemma 14]). The reduced Euler characteristic is in turn closely related to Karp’s
famous evasiveness conjecture (see [KSS84]), which conjectures that each nontrivial edge-monotone Φ𝑘 is
evasive. This conjecture holds if the reduced Euler characteristic �̂�(Δ(Φ𝑘)) is nonvanishing (see [DRSW22,
Theorem 4] and [KSS84]).

However, this means that the computation of Φ̂(𝐻) is highly nontrivial, which makes it hard to
apply Lemma A.8. Fortunately for us, it suffices to show that Φ̂(𝐻) .𝑝 0 for a prime number 𝑝—which
turns out to be easier. In particular, as observed by Dörfler et al. [DRSW22], for a prime 𝑝, we can
compute Φ̂(𝐻) mod 𝑝 in an elegant way using the fixed points of a 𝑝-subgroup Γ of Aut(𝐻) when acting
on edge-subgraphs of 𝐻. Thus, we heavily rely on the following lemma (whose proof is presented in
Appendix A for completeness).

Lemma A.1 ([DRSW22]). Let 𝐻 denote a graph and let Γ ⊆ Aut(𝐻) denote a 𝑝-group, then

ˆΦ(𝐻) ≡𝑝
∑

𝐴∈FP(Γ,𝐻)
Φ(𝐴)(−1)#𝐸(𝐴).

1 In [RS20, DRSW22], the authors use �̂�(Φ, 𝐻) to denote the alternating enumerator.
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Combining Lemmas A.1 and A.8, we immediately obtain the following tool to show hardness.

Corollary 2.2. Let Φ denote a graph property and let (𝐻𝑘) denote a sequence of graphs such that

(𝐻𝑘) has unbounded treewidth and

for each graph 𝐻𝑘 , there is a prime 𝑝𝑘 and a 𝑝𝑘-group Γ𝑘 ⊆ Aut(𝐻𝑘) such that

ˆΦ(𝐻𝑘) ≡𝑝𝑘
∑

𝐴∈FP(Γ𝑘 ,𝐻𝑘 )
Φ(𝐴)(−1)#𝐸(𝐴) is nonzero modulo 𝑝𝑘 .

Then, #IndSub(Φ) is #W[1]-hard.

A fixed point 𝐴 of Γ in 𝐻 is an edge-subgraph of 𝐻 such that 𝑔𝐴 = 𝐴 for all 𝑔 ∈ Γ. We use FP(Γ, 𝐻) to
denote the set of all fixed points. The advantage of this approach is that the set of fixed points FP(Γ, 𝐻) is
usually much smaller than the set of all edge-subgraphs of 𝐻. As it turns out, the set FP(Γ, 𝐻) itself has a
natural lattice structure, which we exploit to find nonvanishing graphs with large treewidth.

Fixed Points as a Union of Orbits

Our goal is to find, for a given graph property Φ and value 𝑘, a nonvanishing graph 𝐻 with 𝑘 vertices that
has large treewidth. To find these graphs, we analyze the fixed point structure of a certain graph 𝐻 under
a certain 𝑝-group Γ ⊆ Aut(𝐻).

In Section 4, we introduce a systematic way to analyze and describe the fixed points of a group Γ and
a graph 𝐻. Write 𝐸(𝐻)/Γ B {𝑂1 , . . . , 𝑂𝑠} for the orbits of the group action · : Γ × 𝐸(𝐻) that maps 𝑔 ∈ Γ
and {𝑢, 𝑣} ∈ 𝐸(𝐻) to {𝑔(𝑢), 𝑔(𝑣)}.

Our first observation is that every fixed point 𝐹 ∈ FP(Γ, 𝐻) decomposes into a set of orbits of 𝐸(𝐻)/Γ;
that is, we have 𝑉(𝐹) = 𝑉(𝐻) and 𝐸(𝐹) = ∪𝑖∈𝐴𝑂𝑖 for some 𝐴 ⊆ [𝑠]. This means that the orbits 𝐸(𝐻)/Γ are
the basic building blocks of the fixed points FP(Γ, 𝐻).

Lemma 4.1. Let 𝐻 denote a graph and let Γ ⊆ Aut(𝐻) denote a group. Further, let Γ act on 𝐸(𝐻) and write

𝐸(𝐻)/Γ for the set of all resulting orbits. Finally, let Γ act on edge-subgraphs of 𝐻 and write FP(Γ, 𝐻) for the set of

all resulting fixed points of Γ in 𝐻.

Then, the edge set of each fixed point 𝐹 ∈ FP(Γ, 𝐻) is the (possible empty) disjoint union of orbits 𝑂1 , . . . , 𝑂𝑠 ,

where 𝑂𝑖 ∈ 𝐸(𝐻)/Γ and each disjoint union of orbits yields a fixed point. The partition into orbits is unique.

The level of a fixed point 𝐹, denoted by ℓ (𝐹), is the number of orbits that 𝐹 is made up of. The level
allows us to classify the fixed points into low fixed points (consisting of a few orbits) and high fixed points
(consisting of many orbits). Usually, fixed points with a high level also have a high treewidth since they
contain more edges. Additionally, if Γ is a 𝑝-group, we can use the Orbit-stabilizer Theorem (which
implies that the size of the orbit divides the size of the group) to show that (−1)#𝐸(𝐹) ≡𝑝 (−1)ℓ (𝐹) for all
𝐹 ∈ FP(Γ, 𝐻).

Our second observation is that fixed points of fixed points lie within each other, that is, for all
𝐴 ∈ FP(Γ, 𝐻), we have

FP(Γ, 𝐴) = {𝐵 ∈ FP(Γ, 𝐻) : 𝐸(𝐵) ⊆ 𝐸(𝐴)}.
We use 𝐵 ⊆ 𝐴 to denote that 𝐵 is a fixed point that lies in 𝐴, and say that 𝐴 is a sub-point 𝐵.

Combining our two observations with Lemma A.1, we obtain

Φ̂(𝐴) ≡𝑝
∑

𝐵∈FP(Γ,𝐻)
𝐵⊆𝐴

Φ(𝐵)(−1)ℓ (𝐴). (1)
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Observe that we are summing only over fixed points 𝐵 ∈ FP(Γ, 𝐻) that lie in 𝐴.
Hence, for computing the alternating enumerator of all 𝐴 ∈ FP(Γ, 𝐻) it suffices to analyze the fixed

point structure FP(Γ, 𝐻) for a single 𝐻. Equation (1) helps significantly in understanding the alternating
enumerator. For instance, Equation (1) plays a central role in proving the following key lemma.

Lemma 4.8. Let 𝐻 denote a graph, let Γ ⊆ Aut(𝐻) denote a 𝑝-group, and let Φ denote a graph property.

Further, let 𝐴 ∈ FP(Γ, 𝐻) denote a fixed point without property Φ, such that all of the proper sub-points of 𝐴 do

have property Φ; that is, we have Φ(𝐴) = 0 and Φ(𝐵) = 1 for every 𝐵 ⊊ 𝐴. Then 𝐴 is nonvanishing.

We employ the following strategy. Instead of directly finding one specific nonvanishing graph 𝐻 with
𝑘 vertices and large treewidth, we use Equation (1) to find some nonvanishing fixed point 𝐴 ∈ FP(Γ, 𝐻).
The advantage of this approach is that we can use Equation (1) to analyze the alternating enumerator of
many different fixed points simultaneously to find a nonvanishing fixed point. Naturally, we still have
to ensure that our fixed point has large treewidth. To that end, we prove that for certain graphs 𝐻 and
groups Γ, the level of 𝐴 is lower bound for the treewidth.

The Prime Power Case: Difference Graphs

For a prime 𝑝 and a positive integer 𝑚, we write F𝑝𝑚 for the finite field with 𝑝𝑚 elements. For 𝑚 = 1, we
write F𝑝 = [0 . . 𝑝). The elements that are invertible are denoted with F∗𝑝𝑚 = F𝑝𝑚 \ {0}.

For a prime 𝑝, we set F+𝑝 B {1, . . . , ⌈(𝑝 − 1)/2⌉}, which is a subset of F∗𝑝 that contains exactly one
of 𝑥 and −𝑥 for every 𝑥 ∈ F∗𝑝 . We generalize this notion to finite fields with a prime power number of
elements and write F+𝑝𝑚 for a set of elements that we obtain by including into it exactly one of 𝑥 and −𝑥
for every 𝑥 ∈ F∗𝑝𝑚 (observe that if 𝑝 = 2, then 𝑥 = −𝑥 and hence F+𝑝𝑚 = F∗𝑝𝑚 ). We use F+𝑝𝑚 only in situations
where the specific choice of elements does not matter. It is instructive to make explicit the following easy
observation.

Lemma 2.3. Let 𝑝 denote a prime and let𝑚 > 0 denote an integer. Then, |F∗𝑝𝑚 | = 𝑝𝑚−1 and |F+𝑝𝑚 | ≥ (𝑝𝑚−1)/2.

Proof. For the bound |F+𝑝𝑚 | ≥ (𝑝𝑚 − 1)/2, we observe that in the special case 𝑝 = 2, we have 𝑥 = −𝑥 and
thus |F+2𝑚 | = |F∗2𝑚 | = (2𝑚 − 1).

Suppose that Φ is nontrivial on 𝑘 = 𝑝𝑚 . Let us consider the graph 𝐾𝑝𝑚 whose vertex set is the finite
field F𝑝𝑚 with 𝑝𝑚 elements. The rotation subgroup⟳𝑝𝑚 ⊆ Aut(𝐾𝑝𝑚 ) contains those permutations of 𝐾𝑝𝑚
that are described by addition in 𝐹𝑝𝑚 , that is,

⟳𝑝𝑚 B {𝜑𝑐 ∈ Aut(𝐾𝑝𝑚 ) : 𝑐 ∈ F𝑝𝑚 and 𝜑𝑐(𝑣) = 𝑣 + 𝑐 for all 𝑣 ∈ 𝐾𝑝𝑚 }.
We observe that fixed points of the group⟳𝑝𝑚 acting on 𝐾𝑝𝑚 are exactly the difference graphs, as

defined below.

Definition 2.4. For a prime 𝑝, an integer 𝑚 > 0, and a set 𝐴 ⊆ F+𝑝𝑚 , we define the difference graph 𝐶𝐴𝑝𝑚 via

𝑉(𝐶𝐴𝑝𝑚 ) B F𝑝𝑚 and 𝐸(𝐶𝐴𝑝𝑚 ) B {{𝑢, 𝑣} : 𝑢, 𝑣 ∈ F𝑝𝑚 , (𝑢 − 𝑣) ∈ 𝐴 ∪ (−𝐴)},
where −𝐴 = {−𝑥 : 𝑥 ∈ 𝐴}. Observe that 𝐶𝐴𝑝𝑚 = 𝐾𝑝𝑚 whenever 𝐴 = F+𝑝𝑚 .

The level of a difference graph 𝐶𝐴𝑝𝑚 is the cardinality of 𝐴; we write ℓ (𝐶𝐴𝑝𝑚 ) for the level of 𝐶𝐴𝑝𝑚 .
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As 𝐶𝐴𝑝𝑚 is 2|𝐴|-regular if 𝑝 ≠ 2 and |𝐴|-regular if 𝑝 = 2, it has treewidth at least |𝐴|. This means that
it is sufficient to find a nonvanishing difference graph (fixed point) with a high level. To that end, we
consider two different cases.

First, let us consider the case when Φ(𝐶𝐴𝑝𝑚 ) = 0 for all fixed points 𝐶𝐴𝑝𝑚 with ℓ (𝐴) ≥ 𝑝𝑚 − √
𝑝𝑚 .

We introduce two vectors: the vector showing the total value of Φ on the fixed points on each level, and
the analogous vector for Φ̂. The two vectors are related by an invertible linear transform. A careful
inspection of the matrix of the transformation shows that if Φ is 0 on fixed points of a level of at least
𝑝𝑚 − √

𝑝𝑚 , then fixed points of a level of at least
√
𝑝𝑚 cannot all have zero alternating enumerator.

Lemma 4.13. Let 𝐻 denote a graph, let Γ ⊆ Aut(𝐻) denote a 𝑝-group, and let Φ denote a graph property. Let

𝑐 < ℓ (𝐻) denote a nonnegative integer. Suppose that we have Φ(∅) = 1 and Φ(𝐹) = 0 for every 𝐹 ∈ FP(Γ, 𝐻) with

level ℓ (𝐹) > ℓ (𝐻) − 𝑐. Then, there is a fixed point 𝑆 ∈ FP(Γ, 𝐻) with
ˆΦ(𝑆) .𝑝 0 and ℓ (𝑆) ≥ 𝑐.

Second, let us consider the case when Φ(𝐶𝐴𝑝𝑚 ) ≠ 0 for some fixed point 𝐶𝐴𝑝𝑚 with ℓ (𝐴) ≥ 𝑝𝑚 − √
𝑝𝑚 .

Since 𝐶𝐴𝑝𝑚 is true in Φ, all edge-subgraphs of 𝐶𝐴𝑝𝑚 are also true (here is the point where we use that Φ is
edge-monotonicity). Further, each fixed point 𝐶𝐵𝑝𝑚 that is isomorphic to an edge-subgraph of 𝐶𝐴𝑝𝑚 (that
is, 𝐶𝐵𝑝𝑚 is isomorphic to a graph 𝐶𝐴

∗
𝑝𝑚 with 𝐴∗ ⊆ 𝐴) satisfies Φ as well. Since 𝐶𝐴𝑝𝑚 has a high level, this

“starts an avalanche” and at some point, all fixed points below a certain level satisfy Φ. We show that
this happens at level roughly

√
𝑝𝑚 . Now let us look at the fixed point 𝐶𝐴𝑝𝑚 with Φ(𝐶𝐴𝑝𝑚 ) = 0 such that all

proper edge-subgraphs satisfy Φ. We have that ℓ (𝐶𝐴𝑝𝑚 ) is at least roughly
√
𝑝𝑚 and Lemma 4.8 yields that

𝐶𝐴𝑝𝑚 is nonvanishing.

Lemma 5.14. Let 𝑝 denote a prime, let 𝑚 > 0 denote an integer, and let Φ denote an edge-monotone graph

property that is nontrivial on 𝑝𝑚 . Further, write 𝑐 and 𝑑 for positive integers with 𝑐𝑑 ≤ |F+𝑝𝑚 |. Suppose that there is

a fixed point 𝐶𝐴𝑝𝑚 ∈ FP(⟳𝑝𝑚 , 𝐾𝑝𝑚 ) with ℓ (𝐶𝐴𝑝𝑚 ) ≥ |F+𝑝𝑚 | − 𝑑 and Φ(𝐶𝐴𝑝𝑚 ) = 1.

Then, there is a fixed point 𝐶𝐵𝑝𝑚 ⊆ 𝐶𝐴𝑝𝑚 with ℓ (𝐶𝐵𝑝𝑚 ) ≥ 𝑐 and
ˆΦ(𝐶𝐵𝑝𝑚 ) .𝑝 0.

Both cases together allow us to find a nonvanishing fixed point 𝐶𝐴𝑝𝑚 with a level of roughly
√
𝑝𝑚 , thus

𝐶𝐴𝑝𝑚 has treewidth roughly
√
𝑝𝑚 . Thus, if Φ is nontrivial on infinitely many prime powers, then we can

use this insight to find a sequence of nonvanishing graphs with unbounded treewidth.

Theorem 5.16. Let Φ denote an edge-monotone graph property.

If Φ is nontrivial on infinitely many prime powers, then #IndSub(Φ) is #W[1]-hard.

Further, assuming ETH, there is a universal constant 𝛼 > 0 (independent of Φ) such that for any prime power

𝑘 ≥ 3 on which Φ is nontrivial, no algorithm (that reads the whole input) computes for every graph 𝐺 the

number #IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛼
√
𝑘/log 𝑘).

General Case: Reduction to Prime Powers

After showing #W[1]-hardness for edge-monotone graph properties Φ that are nontrivial on infinitely
many prime powers, our next goal is to find a reduction from the general case (that is Φ is nontrivial
on infinitely many numbers) to this prime power case. If Φ is nontrivial on a 𝑘, then we analyze the
largest prime power factor 𝑞(𝑘) of 𝑘. Set 𝑑 B 𝑘/𝑞(𝑘) and 𝑝𝑚 B 𝑞(𝑘). We join 𝑑 copies of the complete
graph 𝐾𝑞(𝑘) into a graph 𝐾𝑑𝑞(𝑘) B 𝐾𝑞(𝑘)▽ · · ·▽𝐾𝑞(𝑘) which is isomorphic to 𝐾𝑑·𝑞(𝑘). Further, we take the
group-theoretical product of 𝑑 copies of⟳𝑞(𝑘) to obtain the 𝑝-group⟳𝑑

𝑞(𝑘) that acts on the vertices of 𝐾𝑑𝑞(𝑘).
The advantage of this construction is that we can understand the fixed points FP(⟳𝑑

𝑞(𝑘) , 𝐾
𝑑
𝑞(𝑘)) in terms

of the fixed points FP(⟳𝑞(𝑘) , 𝐾𝑞(𝑘)). Specifically, each fixed point 𝐹 ∈ FP(⟳𝑑
𝑞(𝑘) , 𝐾

𝑑
𝑞(𝑘)) is made up of
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a graph 𝐶 with 𝐸(𝐶) ⊆ [𝑑] and 𝑑 fixed points 𝐶𝐴1
𝑞(𝑘) , . . . , 𝐶

𝐴𝑑
𝑞(𝑘) ∈ FP(⟳𝑞(𝑘) , 𝐾𝑞(𝑘)),

where each pair of fixed points 𝐶𝐴𝑖𝑞(𝑘) and 𝐶
𝐴𝑗
𝑞(𝑘) is either fully connected or not connected at all,

depending on whether the edge {𝑖 , 𝑗} is present in 𝐸(𝐶).
Consult Figure 4 for visualizations of examples.

We use 𝐶
〈
𝐶𝐴1
𝑞(𝑘) , . . . , 𝐶

𝐴𝑑
𝑞(𝑘)

〉
to denote said fixed points; we have

𝑉(𝐶〈
𝐶𝐴1
𝑞(𝑘) , . . . , 𝐶

𝐴𝑑
𝑞(𝑘)

〉) B [𝑑] × F𝑞(𝑘)
𝐸(𝐶〈

𝐶𝐴1
𝑞(𝑘) , . . . , 𝐶

𝐴𝑑
𝑞(𝑘)

〉) B {{(𝑖 , 𝑣𝑖), (𝑗 , 𝑢𝑗)} : {𝑖 , 𝑗} ∈ 𝐸(𝐶) or (𝑖 = 𝑗 and 𝑣𝑖 − 𝑢𝑖 ∈ 𝐴𝑖)}.
We show that FP(⟳𝑑

𝑞(𝑘) , 𝐾
𝑑
𝑞(𝑘)) = {𝐶〈

𝐶𝐴
1

𝑞(𝑘) , . . . , 𝐶
𝐴𝑑
𝑞(𝑘)

〉
: 𝐶 is a 𝑑-vertex graph, 𝐴𝑖 ⊆ F+𝑞(𝑘)} (see Corol-

lary 6.8). A very important observation is that if 𝐶 is not the empty graph, then the fixed point 𝐶
〈 · · · 〉

contains 𝐾𝑞(𝑘),𝑞(𝑘) as a subgraph, and has thus a treewidth of at lest 𝑞(𝑘). Our discussion motivations the
following notation.

Definition 6.17. Let Φ denote an edge-monotone graph property and write 𝑀Φ for the set of numbers on which

Φ is nontrivial. We say that Φ is concentrated on an integer 𝑘 ∈ 𝑀Φ if there is a graph 𝐻 on 𝑘 vertices with

ˆΦ(𝐻) ≠ 0 and 𝐻 contains 𝐾𝑞(𝑘),𝑞(𝑘) as a subgraph.

We say that Φ is scattered on an integer 𝑘 ∈ 𝑀Φ if it is not concentrated for Φ.

If Φ is nontrivial, then we consider the following case distinction. First, we assume that Φ is (nontrivial
and) concentrated on infinitely many values 𝑘. For each concentrated 𝑘, by definition, we have a
nonvanishing graph with a treewidth of at least 𝑞(𝑘). We observe that 𝑞(𝑘) ≥ 𝑐 log(𝑘) for some constant
𝑐 > 0 (see Lemma 6.16). This means that if Φ is (nontrivial and) concentrated on infinitely many 𝑘, then we
can use these values to construct a nonvanishing sequence with unbounded treewidth. Now, Lemma A.8
shows that #IndSub(Φ) is #W[1]-hard.

Otherwise, Φ is (nontrivial and) scattered on infinitely many values 𝑘. For any such 𝑘, let us consider
a fixed point 𝐶

〈
𝐶𝐴1
𝑞(𝑘) , . . . , 𝐶

𝐴𝑑
𝑞(𝑘)

〉
of minimum level that is zero in Φ; as we have seen (Lemma 4.8), the

alternating enumerator is nonzero for this graph. As 𝑘 is scattered, we have that 𝐶 is the empty graph,
hence the fixed point is the disjoint union of 𝐶𝐴1

𝑝𝑚 , . . . , 𝐶𝐴𝑑𝑝𝑚 . Assume without loss of generality that 𝐴𝑑 ≠ ∅
and let 𝐻 denote the disjoint union of 𝐶𝐴1

𝑝𝑚 , . . . , 𝐶𝐴𝑑−1
𝑝𝑚 . Let us define a graph property whose value is

Φ(𝐺 ⊎ 𝐻) on 𝐺. Then, this property is nontrivial on 𝑞(𝑘)-vertex graphs: it is zero on 𝐶𝐴𝑑𝑝𝑚 and nonzero on
IS𝑝𝑚 . Thus for each 𝑘 on which Φ is scattered, we can construct a graph property that is nontrivial on the
prime power 𝑞(𝑘).

Lemma 6.19. Let Φ denote an edge-monotone graph property and write 𝑀Φ for the set of numbers on which Φ
is nontrivial. For any number 𝑘 ∈ 𝑀Φ on which Φ is scattered, there is a graph 𝐻 on 𝑘 − 𝑞(𝑘) vertices such that the

property (Φ − 𝐻) B {𝐺 : 𝐺 ⊎ 𝐻 ∈ Φ} is edge-monotone and nontrivial on 𝑞(𝑘).
Now, the idea is to combine the infinitely many graph properties from Lemma 6.19 into a single

graph property Φ′ that is nontrivial on infinitely many prime powers. The problem #IndSub(Φ′) is now
#W[1]-hard due to Theorem 5.16. Further, we show how to compute #IndSub((Φ′, 𝑝𝑚) → ★) with an oracle
for #IndSub((Φ, 𝑘) → ★) using the Inclusion-Exclusion principle (see Lemma 6.12). Thereby we obtain
a parameterized Turing reduction from #IndSub(Φ′) to #IndSub(Φ). Since the problem #IndSub(Φ′) is
#W[1]-hard, we thus obtain that #IndSub(Φ) is #W[1]-hard. Combining both cases leads to Main Theorem 1.

Main Theorem 1. Let Φ denote a nontrivial edge-monotone graph property.

The problem #IndSub(Φ) is #W[1]-hard.
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Further, assuming ETH, there is a universal constant 𝛾 > 0 (independent of Φ) such that for any integer 𝑘 ≥ 3
on which Φ is nontrivial, no algorithm (that reads the whole input) computes for every graph 𝐺 the number

#IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛾
√

log 𝑘/log log 𝑘).

Tight Lower Bounds via Large Bicliques

Lastly, in Section 7, we show stronger lower bounds assuming ETH. We write 𝑛 for the number of
vertices of the input graph. So far, we proved our lower bounds by showing that we can solve Hom({𝐻})
using an oracle for #IndSub((Φ, |𝑉(𝐻)|) → ★) whenever Φ̂(𝐻) ≠ 0. Further, we used that Hom({𝐻})
cannot be solved in time 𝑂(𝑛𝛼Hom ·tw(𝐻)/log tw(𝐻)) which yields an 𝑂(𝑛𝛼IndSub ·tw(𝐻)/log tw(𝐻)) lower bound
for #IndSub((Φ, |𝑉(𝐻)|) → ★). However, we would like to prove that #IndSub((Φ, 𝑘) → ★) cannot be
solved in time 𝑂(𝑛𝛾𝑘) for a global constant 𝛾 > 0 that does not depend on 𝑘. This is not possible with
our current method since we cannot get rid of the log factor in the denominator of the exponent. A
lower bound of 𝑂(𝑛𝛾𝑘) for #IndSub((Φ, 𝑘) → ★) would also prove that we cannot solve #IndSub(Φ) in
time 𝑓 (𝑘)𝑛𝑜(𝑘) for any computable function unless ETH fails. This is tight in the sense that there is a
brute-force algorithm that solves #IndSub(Φ) in time 𝑂( 𝑓 (𝑘)𝑛𝑘), which is achieved by simply iterating
through induced subgraphs of size 𝑘.

To achieve this goal, we use a reduction from [DRSW22, Theorem 1] that uses nonvanishing graphs
that contain large bicliques 𝐾𝑘,𝑘 . Moreover, instead of starting the reduction from #Hom({𝐻}), we start
from the 𝑘-Clique problem (which is the problem of deciding whether an input graph 𝐺 contains a
𝑘-clique). It is known that Clique has no algorithm with running time 𝑓 (𝑘)𝑛𝑜(𝑘) for any computable
function 𝑓 , unless ETH fails [CFK+15]. However, we need a stronger form of this statement saying that
there exists a constant 𝛼 such that 𝑘-Clique cannot be solved in time 𝑂(𝑛𝛼𝑘) unless ETH fails; we prove
this statement in Appendix B. The idea is to find a reduction from 𝑘-Clique to #IndSub((Φ, 𝑘) → ★) such
that an algorithm computing #IndSub((Φ, 𝑘) → ★) in time 𝑂(𝑛𝛾𝑘) could be used to compute 𝑘-Clique in
time 𝑂(𝑛𝛼𝑘) which is not possible unless ETH fails. We reprove the reduction of [DRSW22, Theorem 1] in
Appendix C in the form that we need.

Theorem C.2 (Modification of [DRSW22]). There is a global constant 𝛽 > 0 and a positive integer 𝑁 such

that for all graph properties Φ, functions ℎ, numbers 𝑘 with

ℎ(𝑘) ≥ 𝑁
there is a graph 𝐹 with 𝑘 vertices and

ˆΦ(𝐹) ≠ 0,

and 𝐹 contains 𝐾ℎ(𝑘),ℎ(𝑘) as a subgraph

there is no algorithm (that reads the whole input) that for every 𝐺 computes #IndSub((Φ, 𝑘) → 𝐺) in time

𝑂(|𝑉(𝐺)|𝛽ℎ(𝑘)) unless ETH fails.

This means that we can prove stronger lower bounds for #IndSub((Φ, 𝑘) → ★) by finding nonvanishing
graphs that contain large bicliques. As discussed below, for a prime 𝑝 and 𝑚 ≥ 1, we can construct
a 𝑝-group Syl𝑝𝑚 such that we can find a fixed point of Syl𝑝𝑚 in 𝐾𝑝𝑚 that is nonvanishing and contains
𝐾𝑝𝑚−1 ,𝑝𝑚−1 as a subgraph. If 𝑝 is small (constant) compared to 𝑝𝑚 , then the size of this biclique is
approximately the same as the number of vertices (however, this means that we cannot use these fixed
points if Φ is nontrivial only on prime numbers). Therefore, Theorem C.2 allow us to prove tight lower
bounds whenever Φ is nontrivial on a prime power 𝑘 = 𝑝𝑚 .

Main Theorem 2. For each prime 𝑝, there is a constant 𝛾𝑝 > 0 such that for each integer 𝑚 with 𝑝𝑚 ≥ 3 and

each edge-monotone graph property Φ that is nontrivial on 𝑝𝑚 , no algorithm (that reads the whole input) computes

for every graph 𝐺 the number #IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛾𝑝𝑝𝑚 ), unless ETH fails.
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Finding Nonvanishing Graphs with Large Bicliques

To find nonvanishing graphs with large bicliques, we use a new 𝑝-group Syl𝑝𝑚 , defined as follows. We still
use the complete graph 𝐾𝑝𝑚 , but with vertex set {0, 1, . . . , 𝑝 − 1}𝑚 . For all 𝑚-tuples 𝜑 = (𝜑0 , . . . , 𝜑𝑚−1) of
functions with 𝜑 𝑗 : [0 . . 𝑝)𝑗 → [0 . . 𝑝), we define the following function on 𝑉(𝐾𝑝𝑚 ).2

𝜑(𝑥1 , . . . , 𝑥𝑚) = (𝑥1 + 𝜑0 , 𝑥2 + 𝜑1(𝑥1), 𝑥3 + 𝜑2(𝑥1 , 𝑥2), . . . , 𝑥𝑚 + 𝜑𝑚−1(𝑥1 , . . . , 𝑥𝑚−1))
where all computations are done modulo 𝑝. It is easy to see that each 𝜑 is a bijection on the vertex set and
therefore in Aut(𝐾𝑝𝑚 ) � 𝔖𝑝𝑚 , where 𝔖𝑝𝑚 is the symmetric group on 𝑝𝑚 elements. We denote by Syl𝑝𝑚 the
set of all 𝑚-tuples of functions 𝜑 = (𝜑0 , . . . , 𝜑𝑚−1) with 𝜑 𝑗 : [0 . . 𝑝)𝑗 → [0 . . 𝑝).

It is easy to check that |Syl𝑝𝑚 | is a 𝑝-power. To describe the fixed points of Syl𝑝𝑚 in 𝐾𝑝𝑚 we need
a concept that is known as the lexicographic product of the graphs. We use the following standard
definition [Har94, Page 22].

Definition 7.8. For graphs 𝐺1 , . . . , 𝐺𝑚 , we define their lexicographic product 𝐺1 ◦ · · · ◦ 𝐺𝑚 via

𝑉(𝐺1 ◦ · · · ◦ 𝐺𝑚) B 𝑉(𝐺1) × · · · ×𝑉(𝐺𝑚) and

𝐸(𝐺1 ◦ · · · ◦ 𝐺𝑚) B {{(𝑢1 , . . . , 𝑢𝑚), (𝑣1 , . . . , 𝑣𝑚)}
: there is an 𝑖 ∈ [𝑚] with 𝑢𝑗 = 𝑣 𝑗 for all 𝑗 < 𝑖 and {𝑢𝑖 , 𝑣𝑖} ∈ 𝐸(𝐺𝑖)}.

Lemma 7.11. For any prime 𝑝 and any positive integer 𝑚, we have

FP(Syl𝑝𝑚 , 𝐾𝑝𝑚 ) = {𝐶𝐴1
𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 : 𝐴𝑖 ⊆ F+𝑝 }.

One important observation is that a fixed point 𝐶𝐴1
𝑝 ◦ . . . ◦ 𝐶𝐴𝑚𝑝 has a large biclique if there is a small

number 𝑖 with 𝐴𝑖 ≠ ∅. We capture this observation by introducing the empty-prefix of a graph. The empty-
prefix of 𝐻 = 𝐶𝐴1

𝑝 ◦ . . . ◦𝐶𝐴𝑚𝑝 is the smallest index 𝑖 with 𝐴𝑖 ≠ ∅, minus one; that is, 𝜀(𝐴1 , . . . , 𝐴𝑚) B 𝑖 − 1,
where 𝑖 is the smallest index with 𝐴𝑖 ≠ ∅. We observe that a graph with a low empty-prefix contains a
large biclique as a subgraph.

Lemma 7.15. Let 𝑝 denote a prime number and let 𝑚 denote a positive integer. For each 𝑖 ∈ [𝑚], let 𝐴𝑖 ⊆ F+𝑝
denote a subset and set 𝐴 B (𝐴1 , . . . , 𝐴𝑚). Then, 𝐶𝐴1

𝑝 ◦ · · · ◦𝐶𝐴𝑚𝑝 contains 𝐾𝑝𝑚−1−𝜀(𝐴) ,𝑝𝑚−1−𝜀(𝐴) as a subgraph.

Suppose that our graph property is nontrivial on 𝑝𝑚 for𝑚 ≥ 2. If we find a fixed point𝐻 = 𝐶𝐴1
𝑝 ◦. . .◦𝐶𝐴𝑚𝑝

with a minimal empty-prefix of 𝜀(𝐴1 , . . . , 𝐴𝑚) = 0, then we know that the treewidth of 𝐻 is at least 𝑝𝑚−1.
Thus, our goal is to find a fixed point 𝐻 with 𝜀(𝐴1 , . . . , 𝐴𝑚) = 0 and Φ̂(𝐻) .𝑝 0.

To that end, we prove that a fixed point with a high empty-prefix is always isomorphic to an edge-
subgraph of a fixed point with a low empty-prefix, which allows us to always consider fixed points with
the low empty-prefix. To be more precise, we show that each fixed point 𝐶∅

𝑝 ◦ . . . 𝐶∅
𝑝 ◦ 𝐶𝐴1

𝑝 ◦ . . . ◦ 𝐶𝐴𝑚−𝑗
𝑝

is isomorphic to an edge-subgraph of 𝐶𝐴1
𝑝 ◦ . . . ◦ 𝐶𝐴𝑚𝑝 . Intuitively, we achieve thus by defining an

isomorphism that pushes the edges of each 𝐶𝐴𝑖𝑝 one level down.

Lemma 7.17. Let 𝑝 denote a prime number and let 𝑚 denote a positive integer. For each 𝑖 ∈ [𝑚], let 𝐴𝑖 ⊆ F+𝑝
denote a subset. Then, for all 𝑗 ∈ [𝑚], the graph 𝐶∅

𝑝 ◦ · · ·𝐶∅
𝑝 ◦ 𝐶𝐴1

𝑝 ◦ · · · ◦ 𝐶𝐴𝑚−𝑗
𝑝 is isomorphic to an edge-subgraph

of 𝐶𝐴1
𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 .

2 We write 𝜑0 for 𝜑0(∅) since 𝜑0 is a function that is defined on a single element
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Now, we are ready to show that there is always a nonvanishing fixed point of Syl𝑝𝑚 in 𝐾𝑝𝑚 that contains
𝐾𝑝𝑚−1 ,𝑝𝑚−1 as a subgraph. We show this by finding a fixed point 𝐻 with Φ(𝐻) = 0, an empty-prefix of 0,
and Φ(�̃�) = 1 for all �̃� ⊆ 𝐻 (that is, fixed points �̃� that lie in 𝐻). To do this, we consider the first level
𝑖 such that there is a fixed point of level 𝑖 that does not satisfy Φ. Observe that the only fixed point of
level 0 is the independent set and Φ(IS𝑝𝑚 ) = 1 thus 𝑖 ≥ 1. Further, if we assume that all fixed points
𝐶𝐴1
𝑝 ◦ . . . 𝐶𝐴𝑚𝑝 of level 𝑖 with 𝜀(𝐴1 , . . . , 𝐴𝑚) = 0 satisfy Φ, then we use Lemma 7.17 to show that each fixed

point of level 𝑖 satisfy Φ, a contradiction. Thus, there is a fixed point 𝐻 with Φ(𝐻) = 0, an empty-prefix of
0, and Φ(�̃�) = 1 for all �̃� ⊆ 𝐻. Lastly, we use Lemmas 4.8 and 7.15 and to show that Φ̂(𝐻) ≠ 0 and that 𝐻
contains 𝐾𝑝𝑚−1 ,𝑝𝑚−1 as a subgraph.

Theorem 7.18. Let Φ denote an edge-monotone graph property that is nontrivial on a prime power 𝑝𝑚 , then

there is a nonvanishing fixed point of Syl𝑝𝑚 in 𝐾𝑝𝑚 that contains 𝐾𝑝𝑚−1 ,𝑝𝑚−1 as a subgraph.

3 Additional Preliminaries

Numbers and Sets

For a natural number 𝑛, we write [𝑛] for the set {1, . . . , 𝑛}. For natural numbers 𝑎 and 𝑏, we write [𝑎 . . 𝑏)
for the set {𝑎, . . . , 𝑏 − 1}.

Next, we write
(𝑛
𝑘

)
for the binomial coefficient and we set

(𝑛
𝑘

)
B 0 whenever 𝑘 < 0 or 𝑛 < 𝑘. If 𝐴 is a

set then
(𝐴
𝑘

)
is the set of all subsets 𝐵 ⊆ 𝐴 with size 𝑘.

For a subset 𝐵 ⊆ 𝑅 of a field 𝑅, we set −𝐵 B {−𝑏 : 𝑏 ∈ 𝐵}; for a set 𝐵 ⊆ 𝑅 and an element 𝜆 ∈ 𝑅 we set
𝜆𝐵 B {𝜆𝑏 : 𝑏 ∈ 𝐵}.

We use 𝑎 ≡𝑚 𝑏 as a shorthand for 𝑎 ≡ 𝑏 mod 𝑚.

Graphs

We consider only simple graphs, that is undirected graphs that have neither weights, loops, nor parallel
edges. We write 𝒢 for the set of all (simple) graphs and 𝒢𝑛 for the set of all (simple) graphs with the
vertex set [𝑛].

For a graph 𝐺, we write 𝑉(𝐺) for its vertices and we write 𝐸(𝐺) for its edges. Given a subset of edges
𝐴 ⊆ 𝐸(𝐺), we write 𝐺{𝐴} for the graph with vertex set 𝑉(𝐺{𝐴}) B 𝑉(𝐺) and edge set 𝐸(𝐺{𝐴}) B 𝐴. We
say that 𝐺{𝐴} is an edge-subgraph of 𝐺 and we write ℰ(𝐺) for the set of all edge-subgraphs of 𝐺. For a set
𝑋 ⊆ 𝑉(𝐺), we write 𝐺 \ 𝑋 for the graph that is obtained from 𝐺 by removing the vertices in 𝑋 and all
edges with at least one endpoint in 𝑋.

For two graphs 𝐺 and 𝐻 with a common vertex set 𝑉 , we write 𝐺 ∪ 𝐻 for the graph on 𝑉 with edges
𝐸(𝐺) ∪ 𝐸(𝐻).

We write IS𝑘 for the independent set with 𝑘 vertices. Further, we write 𝐾𝑛 for the complete graph on 𝑛
vertices and we write 𝐾𝑛,𝑚 for the complete bipartite graph on 𝑛 + 𝑚 vertices.

We write tw(𝐺) for the treewidth of a graph 𝐺. As we use the treewidth of a graph in a black-box
manner, we refer an interested reader to [CFK+15, Chapter 7.2], for a formal definition. Intuitively, the
treewidth of a graph measures how far away a given graph is from being a tree. For example, the
treewidth of a tree is 1; the treewidth of a complete graph on 𝑛 vertices is 𝑛 − 1.
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Group Theory and Morphisms between Graphs

For a finite set 𝑋 of size 𝑛, the set of all bijections 𝑋 → 𝑋 and the function composition together form a
group which we call the symmetric group 𝔖𝑛 . We also write 𝔖𝑋 if we wish to emphasize the set 𝑋.

A group Γ is a permutation group if Γ is a subgroup of the symmetric group 𝔖𝑋 for some finite set 𝑋. A
permutation group Γ ⊆ 𝔖𝑋 is transitive if every 𝑥 ∈ 𝑋 can be mapped to any other element 𝑦 ∈ 𝑋 via
some 𝑔 ∈ Γ. Finally, a 𝑝-group is a finite group Γ that has an order that is a power of 𝑝 (that is, the number
of elements of Γ is a power of 𝑝).

A graph homomorphism ℎ : 𝑉(𝐻) → 𝑉(𝐺) from 𝐻 to 𝐺 is a function between the vertex sets of two
graphs that preserves adjacencies (but not necessarily non-adjacencies), that is, ℎ maps the vertices
of every edge {𝑢, 𝑣} ∈ 𝐸(𝐻) to vertices {ℎ(𝑢), ℎ(𝑣)} ∈ 𝐸(𝐺). We write Hom(𝐻 → 𝐺) for the set of all
homomorphisms from 𝐻 to 𝐺.

We say a homomorphism ℎ : 𝑉(𝐻) → 𝑉(𝐺) is an isomorphism if ℎ is a bijection on the vertex
sets and ℎ−1 : 𝑉(𝐻) → 𝑉(𝐺) also defines a homomorphism (that is, {𝑢, 𝑣} ∈ 𝐸(𝐻) if and only if
{ℎ(𝑢), ℎ(𝑣)} ∈ 𝐸(𝐺)). We say that two graphs 𝐺 and 𝐻 are isomorphic, denoted by 𝐺 � 𝐻 if there is an
isomorphism between them. An automorphism of 𝐺 is an isomorphism from 𝐺 to 𝐺. We write Aut(𝐺) for
the set of all automorphism of 𝐺.

For each graph 𝐺, the set of automorphisms Aut(𝐺) forms a group with composition as the group
operation. Observe that the automorphism group of a clique Aut(𝐾𝑛) is just the symmetric group 𝔖𝑛 .

For primes 𝑝 and prime powers 𝑝𝑚 , the group Aut(𝐾𝑝𝑚 ) contains a useful subgroup with order
𝑝𝑚 : in particular, Aut(𝐾𝑝𝑚 ) contains automorphisms 𝜑𝑐 of 𝐺 that “rotate” the vertices of 𝐺, that is,
automorphisms that send every vertex 𝑖 to vertex 𝑖 + 𝑐 for some 𝑐 ∈ F𝑝𝑚 (where we identify the vertices of
𝐾𝑝𝑚 with the elements of F𝑝𝑚 ); we say that 𝜑𝑐 is a rotation (by 𝑐) of 𝐺. In particular, we write⟳𝑝𝑚 for the
subgroup of all rotations of Aut(𝐾𝑝𝑚 ), that is

⟳𝑝𝑚 B {𝜑𝑐 ∈ Aut(𝐾𝑝𝑚 ) : 𝑐 ∈ F𝑝𝑚 and 𝜑𝑐(𝑣) = 𝑣 + 𝑐 for all 𝑣 ∈ 𝐾𝑝𝑚 }.
Observe that⟳𝑝𝑚 is a group with 𝑝𝑚 elements.

Let 𝐺 denote a graph and consider a subgroup Γ ⊆ Aut(𝐺). Any 𝑔 ∈ 𝐺 is a bijection on 𝑉(𝐺), which
we may interpret as 𝑔 permuting the vertices of 𝐺. Thus, we may also interpret 𝑔 as an operation on the
edges of 𝐺. However, as we wish to use results from the literature (such as the Orbit-stabilizer Theorem),
we need to describe this operation on the edges of 𝐺 using the language of group actions.

Formally, we can turn the operation on vertices into a group action · : Γ×𝐸(𝐺) → 𝐸(𝐺) that tells us how
each member of Γ moves the edges of 𝐺. Specifically, we define 𝑔 · {𝑢, 𝑣} B {𝑔(𝑢), 𝑔(𝑣)}. We interpret
said group action · multiplicatively and typically write just 𝑔{𝑢, 𝑣}.

Extending the previous group action, Γ also acts on edge-subgraphs of 𝐺 via

𝑉(𝑔 · 𝐴) B 𝑉(𝐴), and
𝐸(𝑔 · 𝐴) B {{𝑔(𝑢), 𝑔(𝑣)} : {𝑢, 𝑣} ∈ 𝐸(𝐴)},

for each 𝑔 ∈ Γ and each 𝐴 ∈ ℰ(𝐺). Again, we interpret said group actions · multiplicatively and typically
write just 𝑔𝐴.

For each {𝑢, 𝑣} ∈ 𝐸(𝐺) the set Γ · {𝑢, 𝑣} B {𝑔 · {𝑢, 𝑣} : 𝑔 ∈ Γ} is the orbit of {𝑢, 𝑣}. Two different edges
either have disjoint orbits or equal orbits. We write 𝐸(𝐺)/Γ to denote the set of all orbits of ·. Recall that
𝐸(𝐺)/Γ forms a partition of 𝐸(𝐺). In a slight abuse of notation, for an orbit 𝑂, we also write 𝑂 for the
edge-subgraph 𝐺{𝑂}; similarly, we use 𝐸(𝐻)/Γ to denote the set of all such edge-subgraphs.

We say that an edge-subgraph 𝐴 ∈ ℰ(𝐺) is a fixed point of Γ in 𝐺 if 𝑔𝐴 = 𝐴 for all 𝑔 ∈ Γ. We write
FP(Γ, 𝐺) for the set of all fixed points of Γ in 𝐺.
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As it turns out, a graph 𝐻 being a fixed point of Γ in 𝐺 is a strong property that is very useful to us.
For now and as a first useful observation, we see that 𝐻 inherits key properties from 𝐺.

Lemma 3.1. Let 𝐺 denote a graph and let Γ ⊆ Aut(𝐺) denote a group. For any 𝐻 ∈ FP(Γ, 𝐺) all of the

following hold.

(1) We have Γ ⊆ Aut(𝐻).
(2) Any fixed point of Γ in𝐻 is also a fixed point of Γ in𝐺 and we have FP(Γ, 𝐻) = {𝐴 ∈ FP(Γ, 𝐺) : 𝐸(𝐴) ⊆ 𝐸(𝐻)}.

Proof. For (1), we first recall that as 𝐻 is a fixed point of Γ in 𝐺, we have 𝑔𝐻 = 𝐻 for every 𝑔 ∈ Γ. In
particular, this means that every 𝐺-automorphism 𝑔 ∈ Γ is also an automorphism of 𝐻. This in turn
yields the claim.

For (2), we first see that by (1), FP(Γ, 𝐻) is indeed well-defined. Now, consider a fixed point𝐴 ∈ FP(Γ, 𝐻).
By definition, we have 𝐸(𝐴) ⊆ 𝐸(𝐻) ⊆ 𝐸(𝐺) and 𝑔𝐴 = 𝐴 for every 𝑔 ∈ Γ, so 𝐴 is indeed also a fixed point
of Γ in 𝐺.

For the other direction, observe that a fixed point 𝐴 ∈ FP(Γ, 𝐺) with 𝐸(𝐴) ⊆ 𝐸(𝐻) is just a fixed point
of Γ in 𝐻, which completes the proof.

Next, we observe that the notion of fixed points is compatible with set operations (on the edges of the
underlying graph).

Lemma 3.2. Let 𝐺 denote a graph and let Γ ⊆ Aut(𝐺) denote a group. For any 𝐻1 , 𝐻2 ∈ FP(Γ, 𝐺) all of the

following hold.

(1) We have 𝐻1 ∪ 𝐻2 ∈ FP(Γ, 𝐺).3
(2) If 𝐻2 ⊆ 𝐻1, then we have 𝐻1 \ 𝐻2 ∈ FP(Γ, 𝐺).
Proof. For (1), we wish to show that for any 𝑔 ∈ Γ, we have 𝑔(𝐻1 ∪ 𝐻2) = 𝐻1 ∪ 𝐻2. To that end, observe
that we have 𝑔𝐻1 = 𝐻1 and 𝑔𝐻2 = 𝐻2; that is, 𝑔 is an automorphism when restricted to either 𝐻1 or 𝐻2.
As unions of automorphisms are automorphisms, we obtain the claim.

For (2), as in the proof of (1), observe that any automorphism 𝑔 ∈ Γ (which is also an automorphism
on 𝐻1 as 𝐻1 is a fixed point) stays an automorphism when restricted to 𝐻2. In particular, this means that
any such automorphism decomposes into an automorphism on𝐻2 and an automorphism on𝐻1 \𝐻2.

Counting Problems and Parameterized Complexity A parameterized (counting) problem consists of a
function 𝑃 : Σ∗ → N and a computable parameterization 𝜅 : Σ∗ → N. A parameterized problem (𝑃, 𝜅) is
called fixed-parameter tractable (FPT) if there is a computable function 𝑓 and a deterministic algorithm A
such that A computes 𝑃(𝑥) in time 𝑓 (𝜅(𝑥))|𝑥 |𝑂(1) for all 𝑥 ∈ Σ∗.

A parameterized Turing reduction from (𝑃, 𝜅) to (𝑃′, 𝜅′) is a deterministic FPT algorithm with
oracle access to 𝑃′ that computes 𝑃(𝑥) such that there is a computable function 𝑔 with the property
that 𝜅′(𝑦) ≤ 𝑔(𝜅(𝑦)) holds for each oracle access to 𝑃′. We write 𝐴 ≤fpt

T 𝐵 to denote that there is a
parameterized Turing reduction from 𝐴 to 𝐵.

In the counting version #𝑃 of a decision problem 𝑃, the task is to compute the number of valid
solutions for a given input 𝑥. Of special importance is the counting problem #Clique, which gets as input
a graph 𝐺 and a natural number 𝑘. The output is the number of induced subgraphs of 𝐺 of size 𝑘 which
form a 𝑘-clique. We parameterize #Clique by 𝜅(𝐺, 𝑘) B 𝑘. We are interested in barriers to obtain fast
algorithms for #Clique and for parameterized counting problems in general.

3 Slightly abusing notation, we use set operation for fixed points to mean the same operation on the edge sets of the
corresponding edge-subgraphs.
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A problem (𝑃′, 𝜅′) is #W[1]-hard if there is parameterized Turing reduction from (#Clique, 𝜅) to
(𝑃′, 𝜅′). It is widely believed that #Clique has no FPT algorithm [FG04, CCF+05], ; hence #W[1]-hardness
rules out FPT algorithms based on said belief.

For more fine-grained lower bounds, we also rely on the Exponential Time Hypothesis (ETH).

Exponential Time Hypothesis (ETH) ([CFK+15, Conjecture 14.1] [IPZ01]). There is a positive real value

𝜀 > 0 such that the problem 3-SAT cannot be solved in time 𝑂∗(2𝜀𝑛), where 𝑛 is the number of variables used in the

formula.

The Exponential Time Hypothesis is a stronger hypothesis and in fact implies there are no FPT
algorithms for #W[1]-hard problems. For example, it can be used to show that no algorithm solves
Clique in time 𝑓 (𝑘)𝑛𝑜(𝑘), where 𝑛 is the number of vertices. Observe, that this implies that there is no FPT
algorithm for the #W[1]-hard Clique (see Lemma B.2).

4 Fixed Points and the Alternating Enumerator

In this section, we introduce the framework of how we can use fixed points of groups that act on graphs to
show that the alternating enumerator is nonvanishing on certain graphs. In particular, the key technical
result of this section is Lemma 4.13, which states a duality between the highest nonzero levels in Φ and Φ̂.
That is, it is not possible that both levels are low: their sum must be at least 𝑛.

4.1 Fixed Points as Unions of Orbits and Sub-points of Fixed Points

As a first step, we discuss how to construct any fixed point from a small set of basic building blocks.

Lemma 4.1. Let 𝐻 denote a graph and let Γ ⊆ Aut(𝐻) denote a group. Further, let Γ act on 𝐸(𝐻) and write

𝐸(𝐻)/Γ for the set of all resulting orbits. Finally, let Γ act on edge-subgraphs of 𝐻 and write FP(Γ, 𝐻) for the set of

all resulting fixed points of Γ in 𝐻.

Then, the edge set of each fixed point 𝐹 ∈ FP(Γ, 𝐻) is the (possible empty) disjoint union of orbits 𝑂1 , . . . , 𝑂𝑠 ,

where 𝑂𝑖 ∈ 𝐸(𝐻)/Γ and each disjoint union of orbits yields a fixed point. The partition into orbits is unique.

Proof. We readily confirm that the empty set is indeed a fixed point; we may obtain the empty set as the
empty union of orbits.

Next, we turn to single orbits and verify that, indeed, they are fixed points as well.

Claim 4.2. We have 𝐸(𝐻)/Γ ⊆ FP(Γ, 𝐻).4
Proof. Consider an orbit 𝑂 ∈ 𝐸(𝐻)/Γ and an automorphism 𝑔 ∈ Γ. We intend to show that 𝑔𝑂 = 𝑂,
which suffices to prove the claim.

To that end, by definition of an orbit, we have 𝑔𝑒 ∈ 𝑂 for every edge 𝑒 ∈ 𝑂. As 𝑔 is an automorphism
of 𝐺, no two different edges from 𝑂 are mapped to the same edge; this yields the claim.

Observe that Claim 4.2 and Lemma 3.2 together yield that the union of orbits is indeed a fixed point.
Finally, we show that we can always split off some orbit from a (non-empty) fixed point.

Claim 4.3. (The edge set of) any fixed point 𝐹 ∈ FP(Γ, 𝐻) can be obtained as the (disjoint) union of and orbit

𝑂 ∈ 𝐸(𝐻)/Γ and a fixed point from FP(Γ, 𝐻).

4 Recall that we use 𝑂 ∈ 𝐸(𝐻)/Γ to denote both the edge set as well as the edge-subgraph.
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Proof. Consider an arbitrary edge 𝑒 ∈ 𝐸(𝐹) and let 𝑂 denote the corresponding orbit in 𝐸(𝐻)/Γ. By
definition of 𝑂 and 𝐹, we have 𝑂 ⊆ 𝐸(𝐹). Combining Claim 4.2 and Lemma 3.2 yields the claim.

Iterating Claim 4.3 and recalling that the orbits 𝐸(𝐻)/Γ partition 𝐸(𝐻) completes the proof.

Remark 4.4. Observe that Lemma 4.1 allows us to strengthen Lemma 3.2 to all set operations: the
orbits of different edges are either equal or disjoint, which for any 𝐻1 , 𝐻2 ∈ FP(Γ, 𝐺) directly yields all of
the following.
(1) We have 𝐻1 ∪ 𝐻2 ∈ FP(Γ, 𝐺).
(2) We have 𝐻1 ∩ 𝐻2 ∈ FP(Γ, 𝐺).
(3) We have 𝐻1 \ 𝐻2 ∈ FP(Γ, 𝐺).

Lemma 4.1 and in particular Claim 4.3 induce an order of the fixed points in FP(Γ, 𝐻): we say a fixed
point 𝐹 is a sub-point of another fixed point 𝐺 if we can obtain 𝐺 from the union of 𝐹 and (potentially
multiple) orbits in 𝐸(𝐻)/Γ.

Definition 4.5. Let 𝐻 denote a graph and let Γ ⊆ Aut(𝐻) denote a group. Further, let Γ act on 𝐸(𝐻) and write

𝐸(𝐻)/Γ for the set of all resulting orbits. Finally, let Γ act on edge-subgraphs of 𝐻 and write FP(Γ, 𝐻) for the set of

all resulting fixed points of Γ in 𝐻.

For a fixed point 𝐹 ∈ FP(Γ, 𝐻), its orbit factorization O(𝐹) is the unique subset of 𝐸(𝐻)/Γ whose union is 𝐹:

𝐹 =
⋃
O(𝐹).

The level of 𝐹, denoted by ℓ (𝐹), is the size of the orbit factorization of 𝐹

ℓ (𝐹) B |O(𝐹)|.
Finally, for two fixed points 𝐹1 , 𝐹2 ∈ FP(Γ, 𝐻), we say that 𝐹2 is a sub-point of 𝐹1, denoted by 𝐹2 ⊆ 𝐹1, if the orbit

factorization of 𝐹2 is a subset of the orbit factorization of 𝐹1. If the inclusion is strict, we say that 𝐹2 is a proper
sub-point of 𝐹1.

Observe that for two fixed points 𝐹1 and 𝐹2 of some group Γ with 𝐹2 ⊆ 𝐹1, we may equivalently write
𝐹2 ∈ FP(Γ, 𝐹1).

The next lemma makes it possible to group the sub-points of a fixed point according to their level.

Lemma 4.6. Let 𝐻 denote a graph and let Γ ⊆ Aut(𝐻) denote a 𝑝-group.

For any fixed point 𝐹 ∈ FP(Γ, 𝐻), we have

(−1)#𝐸(𝐹) ≡𝑝 (−1)ℓ (𝐹).
Proof. Write O(𝐹) = {𝑂1 , . . . , 𝑂ℓ (𝐹)} for the orbit factorization of 𝐹. By the Orbit-stabilizer Theorem, the
size of each 𝑂𝑖 is a divider of the group order of Γ. Thus, |𝑂𝑖 | is always odd if 𝑝 is an odd prime number,
which implies the claim.

For 𝑝 = 2, we have (−1) ≡2 1, which immediately yields the claim.

Using Lemma 4.6, we can obtain yet another expression for the alternating enumerator.

Corollary 4.7. Let 𝐻 denote a graph, let Γ ⊆ Aut(𝐻) denote a 𝑝-group, and let Φ denote a graph property.

We have

ˆΦ(𝐻) ≡𝑝
∑

𝐴∈FP(Γ,𝐻)
Φ(𝐴)(−1)ℓ (𝐴).

Further, for any fixed point 𝐴 ∈ FP(Γ, 𝐻), we have

ˆΦ(𝐴) ≡𝑝
∑
𝐵⊆𝐴

Φ(𝐵)(−1)ℓ (𝐵).
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4.2 Nonvanishing of the Alternating Enumerator via Sub-points

In the next step, we use sub-points to analyze the alternating enumerator. As a first result, we use
Corollary 4.7 to obtain that the alternating enumerator is nonvanishing on fixed points that are “minimally
vanishing” for the corresponding graph property.

Lemma 4.8. Let 𝐻 denote a graph, let Γ ⊆ Aut(𝐻) denote a 𝑝-group, and let Φ denote a graph property.

Further, let 𝐴 ∈ FP(Γ, 𝐻) denote a fixed point without property Φ, such that all of the proper sub-points of 𝐴 do

have property Φ; that is, we have Φ(𝐴) = 0 and Φ(𝐵) = 1 for every 𝐵 ⊊ 𝐴. Then 𝐴 is nonvanishing.

Proof. By definition, the fixed point 𝐴 has exactly
(ℓ (𝐴)
𝑖

)
sub-points that have a level of exactly 𝑖. Starting

from Corollary 4.7, we rewrite the alternating enumerator and obtain

Φ̂(𝐴) ≡𝑝
∑
𝐵⊆𝐴

Φ(𝐵)(−1)ℓ (𝐵)

≡𝑝 −(−1)ℓ (𝐴) +
∑
𝐵⊆𝐴

(−1)ℓ (𝐵) (Φ(𝐴) = 0 and Φ(𝐵) = 1 for all 𝐵 ⊊ 𝐴)

≡𝑝 −(−1)ℓ (𝐴) +
ℓ (𝐴)∑
𝑖=0

(
ℓ (𝐴)
𝑖

)
(−1)𝑖 (group by level)

≡𝑝 −(−1)ℓ (𝐴) + (−1 + 1)ℓ (𝐴) (Binomial Theorem).

In total, this yields the claim.

For our next steps toward the proof Lemma 4.13, it is instructive to group sub-points by their level. In
particular, we are interested in how many sub-points have a given graph property and we are interested
in the sum of the alternating enumerators of said sub-points.

Definition 4.9. Let 𝐻 denote a graph, let Γ ⊆ Aut(𝐻) denote a 𝑝-group, and let Φ denote a graph property.

For every level 𝑖 ∈ [0 . . ℓ (𝐻)], we write 𝑤𝑖 for the number (modulo 𝑝) of sub-points of 𝐻 with level 𝑖 that

satisfy Φ; that is,

𝑤𝑖 B
∑

𝐴∈FP(Γ,𝐻)
ℓ (𝐴)=𝑖

Φ(𝐴) mod 𝑝.

We write w B (𝑤𝑖) for the (ℓ (𝐻) + 1)-dimensional vector that consists of the values 𝑤𝑖 .
Further, for every level 𝑖 ∈ [0 . . ℓ (𝐻)], we write 𝑤𝑖 for the sum (modulo 𝑝) of the alternating enumerators of the

sub-points of 𝐻 with level 𝑖; that is,

𝑤𝑖 B
∑

𝐴∈FP(Γ,𝐻)
ℓ (𝐴)=𝑖

ˆΦ(𝐴) mod 𝑝.

We write ŵ B (𝑤𝑖) for the (ℓ (𝐻) + 1)-dimensional vector that consists of the values 𝑤𝑖 .

Let us take a step back and discuss Definition 4.9 for a bit. First, observe that 𝑤𝑖 .𝑝 0 implies Φ̂(𝐴) .𝑝 0
for some sub-point 𝐴 with level 𝑖. Hence, for our purposes, it suffices to understand when 𝑤𝑖 is nonzero.

Second, observe that understanding 𝑤𝑖 directly is thus not much easier compared to understanding
a single alternating enumerator. However, this is where 𝑤𝑖—which is very easy to understand and
compute—turns out to be useful. As we show next, we can express 𝑤𝑖-values as a linear combination
of 𝑤𝑖-values and—more importantly—vice versa. In particular, this then allows us to show that some
𝑤𝑖-value has to be nonzero when enough 𝑤 𝑗-values are nonzero.

Let us start by defining the transformation matrix that we use in the following.
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Definition 4.10. For a positive integer 𝑛, we define the
ˆΦ-transformation matrix 𝐶𝑛 ∈ Z(𝑛+1)×(𝑛+1)

as

(𝐶𝑛)𝑖 , 𝑗 B (−1)𝑗
(
𝑛 − 𝑗

𝑖 − 𝑗

)
, where 𝑖 , 𝑗 ∈ [0 . . 𝑛 + 1].

Further, for each 0 ≤ 𝑐 ≤ 𝑛, we define the 𝑐-restricted Φ-
ˆΦ-transformation matrix 𝐶𝑛;𝑐 ∈ Z(𝑛−𝑐+1)×(𝑛−𝑐+1)

as the

square submatrix of 𝐶𝑛 that consists in the first 𝑛 − 𝑐 + 1 columns and the last 𝑛 − 𝑐 + 1 rows of 𝐶𝑛 ; that is,

(𝐶𝑛;𝑐)𝑖 , 𝑗 B (𝐶𝑛)𝑖+𝑐,𝑗 = (−1)𝑗
(
𝑛 − 𝑗

𝑖 + 𝑐 − 𝑗

)
,

where 𝑖 , 𝑗 ∈ [0 . . 𝑛 − 𝑐].
Recall that we set

(𝑎
𝑏

)
= 0 whenever 𝑏 < 0 or 𝑏 > 𝑎. In particular, this means that we have (𝐶𝑛)𝑖 , 𝑗 = 0

for all 𝑗 > 𝑖, that is, 𝐶𝑛 is a lower triangular matrix.
We proceed to show that Definition 4.10 indeed relates the ŵ-vector with the w-vector.

Lemma 4.11. Let 𝐻 denote a graph, let Γ ⊆ Aut(𝐻) denote a 𝑝-group, and let Φ denote a graph property.

Define 𝑛 B ℓ (𝐻).
Then, we have ŵ ≡𝑝 𝐶 w; that is, for every level 𝑖 ∈ [0 . . 𝑛], we have

𝑤𝑖 ≡𝑝
𝑛∑
𝑗=0

(−1)𝑗
(
𝑛 − 𝑗

𝑖 − 𝑗

)
𝑤 𝑗 .

Proof. Fix a level 𝑖 ∈ [0 . . 𝑛]. First, we use Corollary 4.7 to rewrite 𝑤𝑖 . We obtain

𝑤𝑖 ≡𝑝
∑

𝐴∈FP(Γ,𝐻)
ℓ (𝐴)=𝑖

Φ̂(𝐴) ≡𝑝
∑

𝐴∈FP(Γ,𝐻)
ℓ (𝐴)=𝑖

∑
𝐵⊆𝐴

Φ(𝐵)(−1)ℓ (𝐵).

Next, we group the terms of
∑
𝐵⊆𝐴 Φ(𝐵) according to their level. We obtain

𝑤𝑖 ≡𝑝
∑

𝐴∈FP(Γ,𝐻)
ℓ (𝐴)=𝑖

𝑖∑
𝑗=0

(−1)𝑗
∑
𝐵⊆𝐴
ℓ (𝐵)=𝑗

Φ(𝐵) ≡𝑝
𝑖∑
𝑗=0

(−1)𝑗
∑

𝐴∈FP(Γ,𝐻)
ℓ (𝐴)=𝑖

∑
𝐵⊆𝐴
ℓ (𝐵)=𝑗

Φ(𝐵).

Next, we reorder the summation and group single fixed points 𝐵 to obtain

𝑤𝑖 ≡𝑝
𝑖∑
𝑗=0

(−1)𝑗
∑

𝐵∈FP(Γ,𝐻)
ℓ (𝐵)=𝑗

∑
𝐴∈FP(Γ,𝐻)

𝐴⊇𝐵
ℓ (𝐴)=𝑖

Φ(𝐵).

Finally, we compute the cardinality of the set {𝐴 ∈ FP(Γ, 𝐻) : 𝐴 ⊇ 𝐵 and ℓ (𝐴) = 𝑖} as the number of
possible ways to choose 𝑖 − 𝑗 elements from 𝑛 − 𝑗 elements when disregarding the order of the chosen
elements and allowing each element to be selected at most once. We obtain the claimed equality

𝑤𝑖 ≡𝑝
𝑖∑
𝑗=0

(−1)𝑗
(
𝑛 − 𝑗

𝑖 − 𝑗

) ∑
𝐵∈FP(Γ,𝐻)
ℓ (𝐵)=𝑗

Φ(𝐵) ≡𝑝
𝑛∑
𝑗=0

(−1)𝑗
(
𝑛 − 𝑗

𝑖 − 𝑗

)
𝑤 𝑗 ,

where for the last step, we use the definition of 𝑤 𝑗 and we exploit that
(𝑎
𝑏

)
= 0 whenever 𝑏 < 0.
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0

𝐶𝑛;𝑐ŵ𝑐

w𝑐

𝐶𝑛= ·ŵ w

= ·

Figure 2 Lemma 4.11 visualized. Assume that the last 𝑐 levels of the w-vector are 0 (that is, 𝑤𝑖 = 0 for 𝑖 > 𝑛 − 𝑐).
Then the last 𝑛 − 𝑐 + 1 levels of the ŵ-vector can be obtained by multiplying the first 𝑛 − 𝑐 + 1 levels of the w-vector
by the lower left (𝑛 − 𝑐 + 1) × (𝑛 − 𝑐 + 1) submatrix 𝐶𝑛;𝑐 of 𝐶. As 𝐶𝑛;𝑐 is invertible, this transformation is a bijection
(Lemma 4.12).

The key insight in the proof of Lemma 4.13 is the following. Assuming that the last 𝑐 levels of w-vector
are 0 (that is, 𝑤𝑖 = 0 for 𝑖 > 𝑛 − 𝑐), then the last 𝑛 − 𝑐 + 1 levels of the ŵ-vector are determined from w by
the lower left (𝑛 − 𝑐 + 1) × (𝑛 − 𝑐 + 1) submatrix of 𝐶𝑛 (consult Figure 2). We show next that this submatrix
𝐶𝑛;𝑐 is invertible, hence we can revert the operation. This allows us to prove that the last 𝑛 − 𝑐 + 1 levels of
ŵ do not vanish.

Lemma 4.12. For a prime 𝑝 and integers 0 ≤ 𝑐 ≤ 𝑛, the matrix 𝐶𝑛;𝑐 is invertible in F
(𝑛−𝑐+1)×(𝑛−𝑐+1)
𝑝 .

Proof. We compute the determinant of 𝐶𝑛;𝑐 and in particular show that det(𝐶𝑛;𝑐) .𝑝 0, which suffices to
prove the claim.

To that end, first consider the matrix 𝐷𝑛;𝑐 with

(𝐷𝑛;𝑐)𝑖 , 𝑗 B |(𝐶𝑛;𝑐)𝑖 , 𝑗 | =
(
𝑛 − 𝑗

𝑐 + 𝑖 − 𝑗

)
, for 𝑖 , 𝑗 ∈ [0 . . 𝑛 − 𝑐].

As we have 𝐶𝑛;𝑐 = 𝐷𝑛;𝑐 · diag(1,−1, 1,−1, . . . , (−1)𝑛−𝑐+1), we also have

|det(𝐶𝑛;𝑐)| = |det(𝐷𝑛;𝑐) · det(diag(1,−1, . . . , (−1)𝑛−𝑐+1))| = |det(𝐷𝑛;𝑐)|.
Next, write 𝐸𝑛;𝑐 for the matrix that is obtained from 𝐷𝑛;𝑐 by reversing its rows and columns, that is,

(𝐸𝑛;𝑐)𝑖 , 𝑗 B (𝐷𝑛;𝑐)(𝑛−𝑐−𝑖),(𝑛−𝑐−𝑗)
=

(
𝑛 − (𝑛 − 𝑐 − 𝑗)

𝑐 + (𝑛 − 𝑐 − 𝑖) − (𝑛 − 𝑐 − 𝑗)
)
=

(
𝑐 + 𝑗

𝑐 + 𝑗 − 𝑖
)
=

(
𝑐 + 𝑗

𝑖

)
, for 𝑖 , 𝑗 ∈ [0 . . 𝑛 − 𝑐];

where the last equality uses
( 𝑎
𝑎−𝑏

)
=

(𝑎
𝑏

)
. As permuting rows and columns of a matrix does not change (up

to the sign) the determinant of a matrix, we have |det(𝐷𝑛;𝑐)| = |det(𝐸𝑛;𝑐)|.
Now, we use Vandermonde’s Identity to obtain

(𝐸𝑛;𝑐)𝑖 , 𝑗 =
(
𝑐 + 𝑗

𝑖

)
=

𝑖∑
𝑎=0

(
𝑐

𝑖 − 𝑎
) (
𝑗

𝑎

)
. (2)
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Equation (2) in turn shows that we have (𝐸𝑛;𝑐) = (𝐿𝑛;𝑐)(𝑈𝑛;𝑐) for the matrices

(𝐿𝑛;𝑐)𝑖 , 𝑗 B
(
𝑐

𝑖 − 𝑗

)
and (𝑈𝑛;𝑐)𝑖 , 𝑗 B

(
𝑗

𝑖

)
, for 𝑖 , 𝑗 ∈ [0 . . 𝑛 − 𝑐].

Hence, we have det(𝐸𝑛;𝑐) = det(𝐿𝑛;𝑐)det(𝑈𝑛;𝑐).
Finally, observe that 𝐿𝑛;𝑐 is a lower-triangular matrix (as

( 𝑐
𝑖−𝑗

)
= 0 whenever 𝑖 < 𝑗) and observe that

𝑈𝑛;𝑐 is an upper-triangular matrix (as
( 𝑗
𝑖

)
= 0 whenever 𝑖 > 𝑗). Hence, we obtain

det(𝐿𝑛;𝑐) =
𝑛−𝑐∏
𝑎=0

(𝐿𝑛;𝑐)𝑎,𝑎 =
𝑛−𝑐∏
𝑎=0

(
𝑐

0

)
= 1 and det(𝑈𝑛;𝑐) =

𝑛−𝑐∏
𝑎=0

(𝑈𝑛;𝑐)𝑎,𝑎 =
𝑛−𝑐∏
𝑎=0

(
𝑎

𝑎

)
= 1;

which yields det(𝐸𝑛;𝑐) = 1 and thus det(𝐶𝑛;𝑐) ∈ {−1, 1}. Hence, we have det(𝐶𝑛;𝑐) .𝑝 0, which implies
that 𝐶𝑛;𝑐 is regular in F(𝑛−𝑐+1)×(𝑛−𝑐+1)

𝑝 ; completing the proof.

We combine Lemmas 4.11 and 4.12 to obtain the main result of the section.

Lemma 4.13. Let 𝐻 denote a graph, let Γ ⊆ Aut(𝐻) denote a 𝑝-group, and let Φ denote a graph property. Let

𝑐 < ℓ (𝐻) denote a nonnegative integer. Suppose that we have Φ(∅) = 1 and Φ(𝐹) = 0 for every 𝐹 ∈ FP(Γ, 𝐻) with

level ℓ (𝐹) > ℓ (𝐻) − 𝑐. Then, there is a fixed point 𝑆 ∈ FP(Γ, 𝐻) with
ˆΦ(𝑆) .𝑝 0 and ℓ (𝑆) ≥ 𝑐.

Proof. Let us define 𝑛 = ℓ (𝐻). Write w𝑐 for the vector that consists in the 𝑛 − 𝑐 + 1 first entries of the
vector w and write ŵ𝑐 for the vector that consists in the 𝑛 − 𝑐 + 1 last entries of the vector ŵ. First, we
show ŵ𝑐 ≡𝑝 𝐶𝑛;𝑐 w𝑐 . Observe that we have 𝑤𝑖 = 0 for all 𝑖 > 𝑛 − 𝑐. Hence, Lemma 4.11 yields

𝑤𝑖 ≡𝑝
𝑛∑
𝑗=0

(−1)𝑗
(
𝑛 − 𝑗

𝑖 − 𝑗

)
𝑤 𝑗 ≡𝑝

𝑛−𝑐∑
𝑗=0

(−1)𝑗
(
𝑛 − 𝑗

𝑖 − 𝑗

)
𝑤 𝑗 ;

This can be rewritten into ŵ𝑐 ≡𝑝 𝐶𝑛;𝑐 w𝑐 by shifting the indices.
From Φ(∅) = 1, we conclude 𝑤0 = 1 .𝑝 0; hence, w𝑐 is not the zero vector. Now, by Lemma 4.12,

the matrix 𝐶𝑛,𝑐 is regular; hence we obtain that ŵ𝑐 ≡𝑝 𝐶𝑛;𝑐 w𝑐 cannot be the zero vector, either. As ŵ𝑐

contains the 𝑛 − 𝑐 + 1 last entries of ŵ, there is thus a fixed point 𝑆 ∈ FP(Γ, 𝐻) with Φ̂(𝑆) .𝑝 0 and 𝑛 ≥ 𝑐;
completing the proof.

5 Prime Powers and Difference Graphs

In this section, we obtain a first application of the techniques from Section 4. In particular, our goal for
this section is to prove the following theorem.

Theorem 5.16. Let Φ denote an edge-monotone graph property.

If Φ is nontrivial on infinitely many prime powers, then #IndSub(Φ) is #W[1]-hard.

Further, assuming ETH, there is a universal constant 𝛼 > 0 (independent of Φ) such that for any prime power

𝑘 ≥ 3 on which Φ is nontrivial, no algorithm (that reads the whole input) computes for every graph 𝐺 the

number #IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛼
√
𝑘/log 𝑘).

For our proof of Theorem 5.16, we consider the complete graph 𝐾𝑝𝑚 for a prime 𝑝 and a nonnegative
integer 𝑚. In particular, we identify the vertices of 𝐾𝑝𝑚 with elements of the finite field F𝑝𝑚 and consider
the rotation subgroup⟳𝑝𝑚 ⊆ Aut(𝐾𝑝𝑚 )—recall that the rotation group⟳𝑝𝑚 consists in all automorphisms
of 𝐾𝑝𝑚 that map every vertex 𝑣 to the vertex 𝑣 + 𝑏 (for some 𝑏 ∈ F𝑝𝑚 , where addition is in F𝑝𝑚 ).
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In a first step, we use Lemma 4.1 to understand the fixed points FP(⟳𝑝𝑚 , 𝐾𝑝𝑚 ) by computing the
orbits 𝐸(𝐾𝑝𝑚 )/⟳𝑝𝑚 . In a second step, we then use Lemma 4.13 to obtain useful fixed points that have
both nonvanishing alternating enumerator and high level. Finally, we show how to construct a suitable
sequence of useful fixed points to obtain the desired hardness via Lemma A.8.

5.1 The Fixed Points of Rotations of 𝐾𝑝𝑚

As described, we wish to understand the orbits 𝐸(𝐾𝑝𝑚 )/⟳𝑝𝑚 . To that end, it is instructive to recall the
definition of difference graphs and of the level of a difference graph.

Definition 2.4. For a prime 𝑝, an integer 𝑚 > 0, and a set 𝐴 ⊆ F+𝑝𝑚 , we define the difference graph 𝐶𝐴𝑝𝑚 via

𝑉(𝐶𝐴𝑝𝑚 ) B F𝑝𝑚 and 𝐸(𝐶𝐴𝑝𝑚 ) B {{𝑢, 𝑣} : 𝑢, 𝑣 ∈ F𝑝𝑚 , (𝑢 − 𝑣) ∈ 𝐴 ∪ (−𝐴)},
where −𝐴 = {−𝑥 : 𝑥 ∈ 𝐴}. Observe that 𝐶𝐴𝑝𝑚 = 𝐾𝑝𝑚 whenever 𝐴 = F+𝑝𝑚 .

The level of a difference graph 𝐶𝐴𝑝𝑚 is the cardinality of 𝐴; we write ℓ (𝐶𝐴𝑝𝑚 ) for the level of 𝐶𝐴𝑝𝑚 .

For 𝑚 = 1, the graphs 𝐶𝐴𝑝 are also called circulant graphs in the literature [ABD+18, AP79].
Next, let us quickly confirm the intuitive statement that different sets 𝐴, 𝐵 ⊆ F+𝑝𝑚 give rise to different

difference graphs 𝐶𝐴𝑝𝑚 and 𝐶𝐵𝑝𝑚 .

Lemma 5.1. For any sets 𝐴 ≠ 𝐵 ⊆ F+𝑝𝑚 , we have 𝐶𝐴𝑝𝑚 ≠ 𝐶𝐵𝑝𝑚 .

Proof. Assume without loss of generality that 𝐵 \ 𝐴 ≠ ∅; otherwise swap 𝐴 and 𝐵. Now, consider an
element 𝑏 ∈ 𝐵 \ 𝐴 and an 𝑥 ∈ F𝑝𝑚 . Clearly, we have {𝑥, 𝑥 + 𝑏} ∈ 𝐸(𝐶𝐵𝑝𝑚 ) and {𝑥, 𝑥 + 𝑏} ∉ 𝐸(𝐶𝐴𝑝𝑚 ).

Now, we obtain that the orbits 𝐸(𝐾𝑝𝑚 )/⟳𝑝𝑚 are the difference graphs of the singleton subsets of F+𝑝𝑚 .

Lemma 5.2. Let 𝑝 denote a prime and let 𝑚 > 0 denote an integer. Further, let⟳𝑝𝑚 act on 𝐸(𝐾𝑝𝑚 ).
Then, we have 𝐸(𝐾𝑝𝑚 )/⟳𝑝𝑚 = {𝐶{𝑥}

𝑝𝑚 : 𝑥 ∈ F+𝑝𝑚 }.5

Proof. First, we show that each edge set 𝐸(𝐶{𝑥}
𝑝𝑚 ) defines a unique orbit.

Claim 5.3. For every 𝑥 ∈ F+𝑝𝑚 , we have⟳𝑝𝑚 · {0, 𝑥} = 𝐸(𝐶{𝑥}
𝑝𝑚 ).

Proof. For a 𝑏 ∈ F𝑝𝑚 , write 𝜑𝑏 ∈⟳𝑝𝑚 for the rotation 𝑥 ↦→ (𝑥 + 𝑏). Fix an 𝑥 ∈ F+𝑝𝑚 . We compute the orbit
of the edge {0, 𝑥} ∈ 𝐸(𝐾𝑝𝑚 ) under⟳𝑝𝑚 as

⟳𝑝𝑚 · {0, 𝑥} = {{𝜑𝑏(0), 𝜑𝑏(𝑥)} : 𝜑𝑏 ∈⟳𝑝𝑚 }
= {{𝑏, 𝑥 + 𝑏} : 𝑏 ∈ F𝑝𝑚 }
= {{𝑢, 𝑣} : 𝑢, 𝑣 ∈ F𝑝𝑚 , 𝑢 − 𝑣 = 𝑥}
= 𝐸(𝐶{𝑥}

𝑝𝑚 ).

Now, Claim 5.3 and Lemma 5.1 indeed yield that the edge sets 𝐸(𝐶{𝑥}
𝑝𝑚 ) form disjoint orbits.

Lastly, we check that {𝐶{𝑥}
𝑝𝑚 : 𝑥 ∈ F+𝑝𝑚 } are all orbits.

Claim 5.4. We have 𝐸(𝐾𝑝𝑚 ) = ⋃
𝑥∈F+𝑝𝑚 ⟳𝑝𝑚 · {0, 𝑥}.

5 Again, we abuse notation and identify subsets of edges with the corresponding edge-subgraphs.
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Proof. Consider an arbitrary edge {𝑢, 𝑣} ∈ 𝐸(𝐾𝑝𝑚 ). Via the rotation 𝜑𝑢 , we have {𝑢, 𝑣} ∈ ⟳𝑝𝑚 · {0, 𝑣−𝑢};
via the rotation 𝜑𝑣 , we have {𝑢, 𝑣} ∈ ⟳𝑝𝑚 · {0, 𝑢 − 𝑣}. Finally, we observe that F+𝑝𝑚 contains exactly one
out of 𝑢 − 𝑣 and 𝑣 − 𝑢; completing the proof.

Taken together, Claims 5.3 and 5.4 yield the desired 𝐸(𝐾𝑝𝑚 )/⟳𝑝𝑚 = {𝐶{𝑥}
𝑝𝑚 : 𝑥 ∈ F+𝑝𝑚 }.

Combining Lemmas 4.1 and 5.2, we obtain a classification of the fixed points FP(⟳𝑝𝑚 , 𝐾𝑝𝑚 ).

Lemma 5.5. Let 𝑝 denote a prime and let 𝑚 > 0 denote an integer. Further, let⟳𝑝𝑚 act on ℰ(𝐾𝑝𝑚 ).
Then, we have

FP(⟳𝑝𝑚 , 𝐾𝑝𝑚 ) = {𝐶𝐴𝑝𝑚 : 𝐴 ⊆ F+𝑝𝑚 }.

Proof. From Lemma 5.2, we obtain 𝐸(𝐾𝑝𝑚 )/⟳𝑝𝑚 = {𝐶{𝑥}
𝑝𝑚 : 𝑥 ∈ F+𝑝𝑚 }.

From Lemma 4.1, we obtain that each fixed point in FP(⟳𝑝𝑚 , 𝐾𝑝𝑚 ) is the (disjoint) union of orbits from
𝐸(𝐾𝑝𝑚 )/⟳𝑝𝑚 .

Finally, we readily convince ourselves that for sets 𝐴, 𝐵 ⊆ F+𝑝𝑚 we have 𝐶𝐴∪𝐵𝑝𝑚 = 𝐶𝐴𝑝𝑚 ∪ 𝐶𝐵𝑝𝑚 .

Remark 5.6. Recall that the level of 𝐶𝐴𝑝𝑚 is the cardinality of 𝐴. From Lemma 5.5 we see that, indeed,
𝐶𝐴𝑝𝑚 (as a fixed point) consists in |𝐴| orbits and thus also has a level of |𝐴| as a fixed point.

Also consult Figure 3 for a visualization of an example.

Finally, we use that 𝐶𝐴𝑝𝑚 is regular to show a lower bound for the treewidth.

Corollary 5.7. Let 𝑝 denote a prime and let 𝑚 > 0 denote an integer.

Then, every fixed point 𝐶𝐴𝑝𝑚 ∈ FP(⟳𝑝𝑚 , 𝐾𝑝𝑚 ) has treewidth of at least ℓ (𝐴).

Proof. First, for all 𝑥 ∈ 𝑉(𝐶𝐴𝑝𝑚 ) = F𝑝𝑚 , we obtain that 𝑥 is adjacent to all vertices of the form 𝑥 + 𝑐 for
𝑐 ∈ 𝐴 ∪ (−𝐴).

If 𝑝 ≠ 2, then𝐴 and −𝐴 are disjoint by construction of F+𝑝𝑚 , hence the graph is 2ℓ (𝐴)-regular. Otherwise,
𝑝 = 2 and 𝐴 = −𝐴, thus the graph is ℓ (𝐴)-regular. According to [BK11, Lemma 4] a 𝑑-regular graph has
treewidth at least 𝑑, which proves the claim.

5.2 Nonvanishing Alternating Enumerators via Avalanches

Next, we wish to exploit our understanding of the fixed points FP(⟳𝑝𝑚 , 𝐾𝑝𝑚 ). In particular, we intend to
show that for an edge-monotone property Φ, a single high-level fixed point𝐴 ∈ FP(⟳𝑝𝑚 , 𝐾𝑝𝑚 ) that satisfies
Φ already implies that all fixed points of a small level also satisfy Φ. We can exploit this “avalanche” effect
to obtain another criterion for #W[1]-hardness of #IndSub(Φ). To that end, we first need to understand
when fixed points of FP(⟳𝑝𝑚 , 𝐾𝑝𝑚 ) are isomorphic.

Definition 5.8. Let 𝑝 denote a prime and let 𝑚 > 0 denote an integer. Two sets 𝐴, 𝐵 ⊆ F+𝑝𝑚 are isomorphic,

denoted by 𝐴 ∼ 𝐵, if there is a 𝜆 ∈ F∗𝑝𝑚 such that 𝜆 · (𝐴 ∪ (−𝐴)) = 𝐵 ∪ (−𝐵).

Lemma 5.9. Let 𝑝 denote a prime and let 𝑚 > 0 denote an integer. For any two sets 𝐴, 𝐵 ⊆ F+𝑝𝑚 with 𝐴 ∼ 𝐵,

we have 𝐶𝐴𝑝𝑚 � 𝐶
𝐵
𝑝𝑚 .
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𝐶{1,2,3,4,5}
11

𝐶{1,2,3,4}
11 𝐶{1,2,3,5}

11 𝐶{1,2,4,5}
11 𝐶{1,3,4,5}

11 𝐶{2,3,4,5}
11

𝐶{1,2,3}
11 𝐶{1,2,4}

11 𝐶{1,2,5}
11 𝐶{1,3,4}

11 𝐶{1,3,5}
11 𝐶{1,4,5}

11 𝐶{2,3,4}
11 𝐶{2,3,5}

11 𝐶{2,4,5}
11 𝐶{3,4,5}

11

𝐶{1,2}
11 𝐶{1,3}

11 𝐶{1,4}
11 𝐶{1,5}

11 𝐶{2,3}
11 𝐶{2,4}

11 𝐶{2,5}
11 𝐶{3,4}

11 𝐶{3,5}
11 𝐶{4,5}

11

𝐶{1}
11 𝐶{2}

11 𝐶{3}
11 𝐶{4}

11 𝐶{5}
11

𝐶{}
11

5

4

3

2

1

0

𝐶{1,2,3,4,5}
11

𝐶{1,2,3,4}
11 𝐶{1,2,3,5}

11 𝐶{1,2,4,5}
11 𝐶{1,3,4,5}

11 𝐶{2,3,4,5}
11

𝐶{1,2,3}
11 𝐶{1,2,4}

11 𝐶{1,2,5}
11 𝐶{1,3,4}

11 𝐶{1,3,5}
11 𝐶{1,4,5}

11 𝐶{2,3,4}
11 𝐶{2,3,5}

11 𝐶{2,4,5}
11 𝐶{3,4,5}

11

𝐶{1,2}
11 𝐶{1,3}

11 𝐶{1,4}
11 𝐶{1,5}

11 𝐶{2,3}
11 𝐶{2,4}

11 𝐶{2,5}
11 𝐶{3,4}

11 𝐶{3,5}
11 𝐶{4,5}

11

𝐶{1}
11 𝐶{2}

11 𝐶{3}
11 𝐶{4}

11 𝐶{5}
11

𝐶{}
11

Figure 3 The fixed points FP(⟳11 , 𝐾11) form the same lattice as subsets of a 5-element universe. We group the
fixed points according to their level (which is denoted on the left side). Isomorphic graphs are colored with the same
color. Two fixed points of adjacent levels are connected with an edge if one of them is a sub-point of the other. Double
edges highlight the sub-points of 𝐶{1,2,3,4}

11 . Observe that if this fixed point satisfies an edge-monotone property Φ,
then every fixed point on the third level (every fixed point in red or blue) satisfies Φ as well.
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Proof. By definition, there is a 𝜆 ∈ F+𝑝𝑚 such that 𝜆 · (𝐴 ∪ (−𝐴)) = 𝐵 ∪ (−𝐵).
Now, consider the function 𝜑𝜆 : 𝑉(𝐾𝑝𝑚 ) → 𝑉(𝐾𝑝𝑚 ) with 𝑥 ↦→ 𝜆𝑥. As 𝜆 is invertible, 𝜑𝜆 is an

automorphism of 𝐾𝑝𝑚 and thus bijective.
Next, for any 𝑢, 𝑣 ∈ F𝑝𝑚 with 𝑢 − 𝑣 ∈ 𝐴 ∪ (−𝐴), we have 𝜆𝑢 − 𝜆𝑣 = 𝜆(𝑢 − 𝑣) ∈ 𝜆(𝐴 ∪ (−𝐴)) = 𝐵 ∪ (−𝐵).

Hence, 𝜑𝜆 maps each edge {𝑢, 𝑣} of 𝐶𝐴𝑝𝑚 to the edge {𝜆𝑢,𝜆𝑣} of 𝐶𝐵𝑝𝑚 . Thus, 𝜑𝜆 is also a homomorphism
from 𝐶𝐴𝑝𝑚 to 𝐶𝐵𝑝𝑚 ; which is also surjective as |𝜆 · (𝐴 ∪ (−𝐴))| = |𝐵 ∪ (−𝐵)|.

In total, 𝜑𝜆 is a homomorphism that is both surjective and injective; thus 𝜑𝜆 is an isomorphism.

Next, we show the aforementioned “avalanche” effect. Our key statement shows that every sufficiently
small 𝐵 set is isomorphic to a subset of 𝐴.

Lemma 5.10. Let 𝑝 denote a prime, let 𝑚 > 0 denote an integer, and let 𝐴 ⊊ F+𝑝𝑚 denote a set.

For every 𝐵 ⊆ F+𝑝𝑚 with |𝐵| < |F+𝑝𝑚 |/(|F+𝑝𝑚 | − |𝐴|), there is an isomorphic set 𝐵′ ∼ 𝐵 with 𝐵′ ⊆ 𝐴.

Proof. Let 𝐵 ⊆ F+𝑝𝑚 denote a set with |𝐵| < |F+𝑝𝑚 |/(|F+𝑝𝑚 | − |𝐴|). We order 𝐵 arbitrarily and define a vector
®𝑏 ∈ (F∗𝑝𝑚 )|𝐵| via

®𝑏 B (𝐵[0], . . . , 𝐵[|𝐵| − 1]).
It is easy but instructive to confirm that multiplying ®𝑏 with different nonzero elements yield vectors that
differ at every position.

Claim 5.11. Let 𝜆, 𝜇 ∈ F∗𝑝𝑚 and let 𝑖 ∈ [0 . . |𝐵|) denote a position.

If we have (𝜆®𝑏)𝑖 = (𝜇®𝑏)𝑖 , then 𝜆 = 𝜇.

Proof. By construction, each element ®𝑏𝑖 ∈ F∗𝑝𝑚 is invertible; which yields the claim.

Next, write (★)+ for the function that maps each element from F∗𝑝𝑚 to its corresponding representative
in F+𝑝𝑚 . Now, write F∗𝑝𝑚 ®𝑏 B {𝜆®𝑏 : 𝜆 ∈ F∗𝑝𝑚 } for the set of multiples of ®𝑏 and write (F∗𝑝𝑚 ®𝑏)+ B {(𝜆®𝑏)+ : 𝜆 ∈
F∗𝑝𝑚 } for the set of all multiples of ®𝑏 when “ignoring the signs” of the entries of the multiples. In particular,
each vector in (F∗𝑝𝑚 ®𝑏)+ corresponds to some 𝐵′ ⊆ F+𝑝𝑚 with 𝐵 ∼ 𝐵′ (which need not be different for each
vector).

Claim 5.12. We have |F∗𝑝𝑚 ®𝑏 | = |F∗𝑝𝑚 | and |(F∗𝑝𝑚 ®𝑏)+ | ≥ |F+𝑝𝑚 |.
Proof. The first equality is immediate from Claim 5.11 (applied to the first elements of the vectors in
F∗𝑝𝑚 ®𝑏).

For the second equality, first consider the case 𝑝 = 2. Now, we have F∗2𝑚 = F+2𝑚 and (★)+ is the identity;
which yields the claim.

Now, for 𝑝 ≠ 2, we have |F∗𝑝𝑚 | = 2|F+𝑝𝑚 |. Further, (★)+ identifies at most 2 different elements from F∗𝑝𝑚
to the same element from F+𝑝𝑚 ; which in particular holds for the first elements of the vectors in F∗𝑝𝑚 ®𝑏.
Taken together, we obtain the claim.

Next, we say that an element 𝑠 ∈ F+𝑝𝑚 \ 𝐴 sullies a vector 𝜆®𝑏 ∈ (F∗𝑝𝑚 ®𝑏)+ if there is a position 𝑖 ∈ [0 . . |𝐵|)
with (𝜆®𝑏)𝑖 = 𝑠. Similarly, we say that an element 𝑠 ∈ F+𝑝𝑚 \ 𝐴 sullies a position 𝑖 ∈ [0 . . |𝐵|) if there is a
vector 𝜆®𝑏 ∈ (F∗𝑝𝑚 ®𝑏)+ with (𝜆®𝑏)𝑖 = 𝑠.

We observe that we can prove the lemma by showing that there is a vector in (F∗𝑝𝑚 ®𝑏)+ that is not sullied
by any 𝑠 ∈ F+𝑝𝑚 \ 𝐴.
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To that end, we observe that each element 𝑠 ∈ F+𝑝𝑚 sullies at most one position (by construction, all
entries of ®𝑏 are pairwise different) and at most one vector (by Claim 5.11). In particular, this means that
each element 𝑠 ∈ F+𝑝𝑚 sullies at most |𝐵| vectors of (F∗𝑝𝑚 ®𝑏)+. Hence, in total, at most |𝐵| · |F+𝑝𝑚 \ 𝐴| vectors
of (F∗𝑝𝑚 ®𝑏)+ are sullied. Finally, we plug in |𝐵| < |F+𝑝𝑚 |/(|F+𝑝𝑚 | − |𝐴|) to obtain

|𝐵| · |F+𝑝𝑚 \ 𝐴| < |F+𝑝𝑚 | ≤ |(F∗𝑝𝑚 ®𝑏)+ |;
from which we conclude that, indeed, there is a vector in (F∗𝑝𝑚 ®𝑏)+ that is not sullied. This in turn completes
the proof.

We combine Lemmas 5.9 and 5.10, to readily obtain that any (nontrivial) edge-monotone graph
property has to be true for all difference graphs with a small level.

Corollary 5.13. Let 𝑝 denote a prime, let 𝑚 > 0 denote an integer, and let 𝐴 ⊊ F+𝑝𝑚 denote a set. Further, let Φ
denote an edge-monotone graph property with Φ(𝐶𝐴𝑝𝑚 ) = 1.

For every 𝐵 ⊆ F+𝑝𝑚 with |𝐵| < |F+𝑝𝑚 |/(|F+𝑝𝑚 | − |𝐴|), we have Φ(𝐶𝐵𝑝𝑚 ) = 1.

Proof. Let 𝐵 ⊆ F+𝑝𝑚 denote a set with |𝐵| < |F+𝑝𝑚 |/(|F+𝑝𝑚 | − |𝐴|).
From Lemma 5.10, we obtain an isomorphic subset 𝐵′ ∼ 𝐵 with 𝐵′ ⊆ 𝐴. From Lemma 5.9, we obtain

𝐶𝐵
′
𝑝𝑚 � 𝐶

𝐵
𝑝𝑚 . Combined, we thus obtain that 𝐶𝐵𝑝𝑚 is isomorphic to an edge-subgraph of 𝐶𝐴𝑝𝑚 . Finally, as Φ

is edge-monotone, we obtain Φ(𝐶𝐵𝑝𝑚 ) = 1; which completes the proof.

Next, we combine Corollary 5.13 and Lemma 4.8 to obtain another criterion for #W[1]-hardness of
#IndSub(Φ).

Lemma 5.14. Let 𝑝 denote a prime, let 𝑚 > 0 denote an integer, and let Φ denote an edge-monotone graph

property that is nontrivial on 𝑝𝑚 . Further, write 𝑐 and 𝑑 for positive integers with 𝑐𝑑 ≤ |F+𝑝𝑚 |. Suppose that there is

a fixed point 𝐶𝐴𝑝𝑚 ∈ FP(⟳𝑝𝑚 , 𝐾𝑝𝑚 ) with ℓ (𝐶𝐴𝑝𝑚 ) ≥ |F+𝑝𝑚 | − 𝑑 and Φ(𝐶𝐴𝑝𝑚 ) = 1.

Then, there is a fixed point 𝐶𝐵𝑝𝑚 ⊆ 𝐶𝐴𝑝𝑚 with ℓ (𝐶𝐵𝑝𝑚 ) ≥ 𝑐 and
ˆΦ(𝐶𝐵𝑝𝑚 ) .𝑝 0.

Proof. First, we recall that we have ℓ (𝐶𝐴𝑝𝑚 ) = ℓ (𝐴) = |𝐴|. Further, we have

𝑐 =
𝑐𝑑

𝑑
≤

|F+𝑝𝑚 |
|F+𝑝𝑚 | − (|F+𝑝𝑚 | − 𝑑)

≤
|F+𝑝𝑚 |

|F+𝑝𝑚 | − |𝐴| .

Now, from Corollary 5.13, we obtain that Φ(𝐶𝑆𝑝𝑚 ) = 1 for all 𝑆 with |𝑆 | < 𝑐 ≤ |F+𝑝𝑚 |/(|F+𝑝𝑚 | − |𝐴|).
As Φ is nontrivial on 𝑝𝑚 , we have Φ(𝐶F

+
𝑝𝑚

𝑝𝑚 ) = Φ(𝐾𝑝𝑚 ) = 0. Thus, there is a minimal level 𝑏 ≥ 𝑐 on
which not every fixed point satisfies Φ. Consider such a fixed point 𝐶𝐵𝑝𝑚 with level ℓ (𝐵) = 𝑏 that does not
satisfy Φ. As 𝑏 is minimal, all proper sub-points of 𝐶𝐵𝑝𝑚 do satisfy Φ. Hence, we may use Lemma 4.8 to
obtain Φ̂(𝐶𝐵𝑝𝑚 ) .𝑝 0; thus completing the proof.

On the one hand, we may use Lemma 5.14 whenever we have a fixed point that satisfies Φ and has a
high level. On the other hand, we may use Lemma 4.13 if there is no fixed point with a high level that
satisfies Φ. Hence, if we combine Lemmas 4.13 and 5.14, then we can show that there is a fixed point with
a nonvanishing alternating enumerator and a treewidth of roughly 𝑝𝑚/2 if Φ is nontrivial on 𝑝𝑚 .

Corollary 5.15. Let 𝑝 denote a prime, let 𝑚 > 0 denote an integer, and let Φ denote an edge-monotone graph

property that is nontrivial on 𝑝𝑚 .

Then, there is a fixed point 𝐶𝐴𝑝𝑚 ∈ FP(⟳𝑝𝑚 , 𝐾𝑝𝑚 ) that has a nonvanishing alternating enumerator and a

treewidth of at least 𝑝𝑚/2/2 − 2.
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Proof. We show that there is a fixed point 𝐶𝐴𝑝𝑚 with Φ̂(𝐶𝐴𝑝𝑚 ) .𝑝 0 and ℓ (𝐴) ≥ 𝑝𝑚/2/2 − 2. Then, the claim
follows from Corollary 5.7.

First, suppose that a fixed point 𝐶𝑆𝑝𝑚 with ℓ (𝑆) ≥ |F+𝑝𝑚 | − 𝑑 satisfies Φ. As the property Φ is nontrivial
on 𝑝𝑚 , this means that we can use Lemma 5.14 to obtain a fixed point 𝐶𝐴𝑝𝑚 with Φ̂(𝐶𝐴𝑝𝑚 ) .𝑝 0 and ℓ (𝐴) ≥ 𝑐
for any 𝑐 with 𝑐𝑑 ≤ |F+𝑝𝑚 |.

Next, suppose that no fixed point 𝐶𝑆𝑝𝑚 with ℓ (𝑆) ≥ 𝑛 − 𝑑 satisfies Φ. As the property Φ is nontrivial on
𝑝𝑚 , this means that we can use Lemma 4.13 to obtain a fixed point 𝐶𝐴𝑝𝑚 with Φ̂(𝐶𝐴𝑝𝑚 ) .𝑝 0 and ℓ (𝐴) ≥ 𝑑.

In both cases we obtain a nonvanishing fixed point 𝐶𝐴𝑝𝑚 with level at least 𝑐. Choosing 𝑐 B 𝑑, in both
cases, we obtain a nonvanishing fixed point 𝐶𝐴𝑝𝑚 with level at least 𝑑.

Finally, to ensure that 𝑐𝑑 = 𝑑2 is at most |F+𝑝𝑚 |, set 𝑑 B ⌊|F+𝑝𝑚 |1/2⌋. Recalling Lemma 2.3, we observe

𝑑 = ⌊|F+𝑝𝑚 |1/2⌋ ≥ |F+𝑝𝑚 |1/2 − 1 ≥ (𝑝𝑚/2 − 1)1/2 − 1 ≥ 𝑝𝑚/2/2 − 2.

Now, the claim follows from Corollary 5.7.

5.3 #W[1]-hardness and Quantitative Lower Bounds for Prime Powers

Corollary 5.15 directly implies our first result.

Theorem 5.16. Let Φ denote an edge-monotone graph property.

If Φ is nontrivial on infinitely many prime powers, then #IndSub(Φ) is #W[1]-hard.

Further, assuming ETH, there is a universal constant 𝛼 > 0 (independent of Φ) such that for any prime power

𝑘 ≥ 3 on which Φ is nontrivial, no algorithm (that reads the whole input) computes for every graph 𝐺 the

number #IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛼
√
𝑘/log 𝑘).

Proof. We start with #W[1]-hardness. By assumption on Φ, for every 𝑘 ∈ N, there is a prime number 𝑝𝑘
and a positive integer 𝑚𝑘 such that Φ is nontrivial on 𝑝𝑚𝑘

𝑘 ≥ 𝑘.
From Corollary 5.15, we obtain a graph 𝐻𝑘 B 𝐶𝐴

𝑝
𝑚𝑘
𝑘

with 𝑝𝑚𝑘
𝑘 vertices, nonvanishing alternating

enumerator, and tw(𝐻𝑘) ≥ 𝑝𝑚𝑘/2
𝑘 /2 − 2 ≥ √

𝑘/2 − 2. Now, using the constructed sequence of graphs,
Lemma A.8 yields #W[1]-hardness of #IndSub(Φ).

We proceed to the ETH-based lower bound. To that end, write 𝛼IndSub > 0 for the constant from
Lemma A.8 and set 𝛼′ B 𝛼IndSub/3.

Now, fix a prime power 𝑘 ≥ 122 such that Φ is nontrivial on 𝑘. From Corollary 5.15, we obtain a graph
𝐻𝑘 B 𝐶𝐴𝑘 with 𝑘 vertices, nonvanishing alternating enumerator, and

tw(𝐻𝑘) ≥
√
𝑘/2 − 2 ≥

√
122/2 − 2 ≥ 2.

Thus, by Lemma A.8 and assuming ETH, there is no algorithm that for each graph 𝐺 computes the
number #IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛼IndSub tw(𝐻𝑘 )/log tw(𝐻𝑘 )). We complete the proof by showing
the following inequality.

Claim 5.17. For 122 ≤ 𝑘, we have

𝛼′
√
𝑘

log 𝑘
= 𝛼IndSub

√
𝑘/3

log 𝑘
≤ 𝛼IndSub

tw(𝐻𝑘)
log tw(𝐻𝑘)

.
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Proof. For 𝑘 ≥ 122, we have
√
𝑘/3 ≤ √

𝑘/2 − 2. Further, we define ℎ1 : R>1 → R, 𝑥 ↦→ 𝑥/log(𝑥). The
derivative of this function is (log(𝑥) − 1)/(log2(𝑥)), thus the function is monotonically increasing for 𝑥 ≥ e.
Since e <

√
𝑘/3 ≤ √

𝑘/2 − 2 ≤ tw(𝐻𝑘), we obtain

𝛼IndSub

√
𝑘/3

log(𝑘) ≤ 𝛼IndSub

√
𝑘/3

log(√𝑘/3)
≤ 𝛼IndSub

√
𝑘/2 − 2

log(√𝑘/2 − 2)
≤ 𝛼IndSub

tw(𝐻𝑘)
log tw(𝐻𝑘)

;

which completes the proof.

Now, from Claim 5.17, we obtain

𝑂(|𝑉(𝐺)|𝛼′√𝑘/log 𝑘) ⊆ 𝑂(|𝑉(𝐺)|𝛼IndSub tw(𝐻𝑘 )/log tw(𝐻𝑘 )).
Finally, to obtain the claim also for all 3 ≤ 𝑘 < 122, we chose 𝛼 B min(𝛼′, 1/12). Observe that for 𝑘 < 122,
we obtain

𝑂(|𝑉(𝐺)|𝛼
√
𝑘/log 𝑘) = 𝑜(|𝑉(𝐺)|).

Now, such a running time is unconditionally unachievable for any algorithm that reads the whole input.
This completes the proof.

6 Main Result 1: #W[1]-hardness for Edge-monotone Properties

In this section, we prove Main Theorem 1.

Main Theorem 1. Let Φ denote a nontrivial edge-monotone graph property.

The problem #IndSub(Φ) is #W[1]-hard.

Further, assuming ETH, there is a universal constant 𝛾 > 0 (independent of Φ) such that for any integer 𝑘 ≥ 3
on which Φ is nontrivial, no algorithm (that reads the whole input) computes for every graph 𝐺 the number

#IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛾
√

log 𝑘/log log 𝑘).
We prove Main Theorem 1 by raising the techniques of Section 5 from prime powers 𝑝𝑚 to multiples

𝑑 · 𝑝𝑚 of prime powers. In Sections 6.1 and 6.2, we introduce group-theoretic and graph-theoretic concepts
that allow us to do this generalization. While the notions and the arguments are fairly natural, the
statements and the proofs come with some notational overhead. One important point to keep in mind is
that the resulting fixed points on 𝑑 · 𝑝𝑚 vertices are not just the disjoint unions of 𝑑 fixed points on 𝑝𝑚
vertices, but may contain complete bipartite graphs between some of the copies.

In Sections 6.4 and 6.5, we exploit our understanding of these fixed points to prove Main Theorem 1.
Compared to the hardness proofs in Section 5, there is an extra Inclusion-Exclusion step to obtain a
reduction from 𝑝𝑚 vertices to 𝑑 · 𝑝𝑚 vertices.

6.1 Product Groups, Graphs Unions, and Graph Joins

We start by defining the disjoint union of sets and product groups.

Definition 6.1. For (not necessarily disjoint) sets 𝑋1 , . . . , 𝑋𝑚 , the disjoint union 𝑋1 ⊎ · · · ⊎ 𝑋𝑚 is the set

{(𝑖 , 𝑥) : 𝑖 ∈ [𝑚], 𝑥 ∈ 𝑋𝑖}.

For graphs 𝐺1 , . . . , 𝐺𝑚 and a graph 𝐶 ∈ 𝒢𝑚 , we define the inhabited graph 𝐶
〈
𝐺1 , . . . , 𝐺𝑚

〉
via

𝑉(𝐶〈
𝐺1 , . . . , 𝐺𝑚

〉) B 𝑉(𝐺1) ⊎ . . . ⊎𝑉(𝐺𝑚)
𝐸(𝐶〈

𝐺1 , . . . , 𝐺𝑚
〉) B {{(𝑖 , 𝑣𝑖), (𝑗 , 𝑢𝑗)} : {𝑖 , 𝑗} ∈ 𝐸(𝐶) or (𝑖 = 𝑗 and {𝑣𝑖 , 𝑢𝑖} ∈ 𝐸(𝐺𝑖))}.
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If 𝐶 consists in a single edge {𝑖 , 𝑗}, then we also write

{𝑖 , 𝑗}〈𝐺1 , . . . , 𝐺𝑚
〉
B ([𝑚], {𝑖 , 𝑗})〈𝐺1 , . . . , 𝐺𝑚

〉
.

If 𝐶 = 𝐼𝑆𝑚 , then we call the graph 𝐼𝑆𝑚
〈
𝐺1 , . . . , 𝐺𝑚

〉
the disjoint union of 𝐺1 , . . . , 𝐺𝑚 and also write

𝐺1 ⊎ . . . ⊎ 𝐺𝑚 B 𝐼𝑆𝑚
〈
𝐺1 , . . . , 𝐺𝑚

〉
.

If 𝐶 = 𝐾𝑚 , then we call the graph 𝐾𝑚
〈
𝐺1 , . . . , 𝐺𝑚

〉
the join of 𝐺1 , . . . , 𝐺𝑚 and also write

𝐺1▽ . . .▽𝐺𝑚 B 𝐾𝑚
〈
𝐺1 , . . . , 𝐺𝑚

〉
.

Consult Figure 4 for a visualization of an example for Definition 6.1. It is instructive to briefly discuss
unions of inhabited graphs.

Lemma 6.2. For two inhabited graphs 𝐹1 = 𝐶1
〈
𝐺1 , . . . , 𝐺𝑚

〉
and 𝐹2 = 𝐶2

〈
𝐺′

1 , . . . , 𝐺
′
𝑚

〉
with a common

vertex set, we have6

𝐹1 ∪ 𝐹2 = (𝐶1 ∪ 𝐶2)
〈
𝐺1 ∪ 𝐺′

1 , . . . , 𝐺𝑚 ∪ 𝐺′
𝑚

〉
.

Proof. The union of (edge) sets is an associative operation. Unfolding the definitions of inhabited graphs
and their union yields the claim.

Next, we define a standard operation on groups that mirrors the disjoint union of graphs. Namely, the
products of groups.

Definition 6.3. For permutation groups Γ1 = (𝐺1 , ◦), . . . , Γ𝑚 = (𝐺𝑚 , ◦) with Γ𝑖 ⊆ 𝔖𝑋𝑖 , their product group

Γ B Γ1 × · · · × Γ𝑚 is the set 𝐺 B 𝐺1 × · · · × 𝐺𝑚 together with the component-wise function composition, that is,

for (𝑔1 , . . . , 𝑔𝑚), (𝑔′1 , . . . , 𝑔′𝑚) ∈ Γ, we set

(𝑔1 , . . . , 𝑔𝑚) ◦ (𝑔′1 , . . . , 𝑔′𝑚) B (𝑔1 ◦ 𝑔′1 , . . . , 𝑔𝑚 ◦ 𝑔′𝑚).
We let Γ act on 𝑋 B 𝑋1 ⊎ · · · ⊎ 𝑋𝑚 via

𝑔(𝑗 , 𝑥 𝑗) B (𝑗 , 𝑔𝑗(𝑥 𝑗)), for all 𝑔 = (𝑔1 , . . . , 𝑔𝑚) ∈ 𝐺 and 𝑥 = (𝑗 , 𝑥 𝑗) ∈ 𝑋.

Fact 6.4. The order of 𝐺 is

∏𝑚
𝑖=1 |𝐺𝑖 |. In particular, the product group of 𝑝-groups is still a 𝑝-group.

Further, observe that 𝐺 is a permutation group of 𝑋1 ⊎ · · · ⊎ 𝑋𝑚 . Hence, we have 𝐺 ⊆ 𝔖𝑋1⊎···⊎𝑋𝑚 .

Finally, we let product groups act on joins of graphs; in particular, we are interested in the resulting
fixed points. To that end, we first study the orbits that appear.

Lemma 6.5. For 𝑖 ∈ [𝑚], let 𝐺𝑖 denote a graph with 𝑛(𝑖) B |𝑉(𝐺𝑖)| vertices and let Γ𝑖 ⊆ Aut(𝐺𝑖) denote a

transitive permutation group. Further, let Γ𝑖 act on 𝐸(𝐺𝑖) and write 𝐸(𝐺𝑖)/Γ𝑖 = {𝑂 𝑖
1 , . . . , 𝑂

𝑖
𝑠𝑖 } for the resulting

orbits. Finally, let×𝑚
𝑖=1 Γ𝑖 act on 𝐸(▽𝑚

𝑖=1 𝐺𝑖).
Then, we have

𝐸

(
𝑚

▽
𝑖=1

𝐺𝑖

)
/

𝑚×
𝑖=1

Γ𝑖 = {{𝑖 , 𝑗}〈 IS𝑛(1) , . . . , IS𝑛(𝑚)
〉

: 𝑖 ≠ 𝑗 ∈ [𝑚]}

∪ {IS𝑚
〈

IS𝑛(1) , . . . , IS𝑛(𝑖−1) , 𝑂 𝑖
𝑗 , IS𝑛(𝑖+1) , . . . , IS𝑛(𝑚)

〉
: 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑠𝑖]}.

6 Recall that we use 𝐺 ∪ 𝐻 to denote the graph on 𝑉 = 𝑉(𝐺) = 𝑉(𝐻) with edges 𝐸(𝐺) ∪ 𝐸(𝐻).
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(a) A 5-cycle that is inhabited by 5 difference graphs.
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(b) An independent set that is inhabited by 5 difference graphs. The resulting graph is also the disjoint union of the 5 graphs.
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(c) An clique that is inhabited by 5 difference graphs. The resulting graph is also the join of the 5 graphs.

Figure 4 Examples for fixed points in FP(⟳𝑑
5 , 𝐾

𝑑
5 ), which are also inhabited graphs.
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Proof. Recall that Γ B×𝑚
𝑖=1 Γ𝑖 acts on 𝐸(▽𝑚

𝑖=1 𝐺𝑖) by mapping the group element (𝛼1 , . . . , 𝛼𝑚) and the
edge {(𝑖 , 𝑢), (𝑗 , 𝑣)} to {(𝑖 , 𝛼𝑖(𝑢)), (𝑗 , 𝛼 𝑗(𝑣))}.

We start by analyzing the orbits of the edges inside of the graphs 𝐺𝑖 .

Claim 6.6. For every 𝑖 ∈ [𝑚] and 𝑂 ∈ 𝐸(𝐺𝑖)/Γ𝑖 , we have

IS𝑚
〈

IS𝑛(1) , . . . , IS𝑛(𝑖−1) , 𝑂, IS𝑛(𝑖+1) , . . . , IS𝑛(𝑚)
〉 ∈ 𝐸

(
𝑚

▽
𝑖=1

𝐺𝑖

)
/

𝑚×
𝑖=1

Γ𝑖 .

Proof. Fix an orbit 𝑂 ∈ 𝐸(𝐺𝑖)/Γ𝑖 and write {𝑢, 𝑣} ∈ 𝑂 for an edge of 𝑂. We compute the orbit of the edge
{(𝑖 , 𝑢), (𝑖 , 𝑣)} under Γ.

Observe that whenever Γ acts on an edge {(𝑖 , 𝑢), (𝑖 , 𝑣)} of▽𝑚
𝑖=1 𝐺𝑖 , we recover the action of Γ𝑖 on said

edge: writing ★|2 for the restriction of pairs to their second component, we obtain

(𝑔1 , . . . , 𝑔𝑖 , . . . , 𝑔𝑚) {(𝑖 , 𝑢), (𝑖 , 𝑣)} |2 = {(𝑖 , 𝑔𝑖(𝑢)), (𝑖 , 𝑔𝑖(𝑣))} |2 = {𝑔𝑖(𝑢), 𝑔𝑖(𝑣)} = 𝑔𝑖{𝑢, 𝑣}.
In particular, we obtain Γ{(𝑖 , 𝑢), (𝑖 , 𝑣)}|2 = Γ𝑖{𝑢, 𝑣} = 𝑂.

Finally, we observe that adding isolated vertices to a graph has no effect on the orbits of the edges of
the graph, which yields

Γ{(𝑖 , 𝑢), (𝑖 , 𝑣)} = IS𝑚
〈

IS𝑛(1) , . . . , IS𝑛(𝑖−1) , 𝑂, IS𝑛(𝑖+1) , . . . , IS𝑛(𝑚)
〉
;

and thus the claim.

Next, we analyze the orbits of edges between graphs 𝐺𝑖 .

Claim 6.7. For every 𝑖 ≠ 𝑗 ∈ [𝑚], we have

{𝑖 , 𝑗}〈 IS𝑛(1) , . . . , IS𝑛(𝑚)
〉 ∈ 𝐸

(
𝑚

▽
𝑖=1

𝐺𝑖

)
/

𝑚×
𝑖=1

Γ𝑖 .

Proof. Fix 𝐹 B {𝑖 , 𝑗}〈 IS𝑛(1) , . . . , IS𝑛(𝑚)
〉

and observe that 𝐹 consists in isolated vertices and a complete
bipartite graph on 𝑛(𝑖) + 𝑛(𝑗) vertices.

We consider vertices 𝑢 ∈ 𝑉(𝐺𝑖) and 𝑣 ∈ 𝑉(𝐺 𝑗) and compute the orbit of the edge {(𝑖 , 𝑢), (𝑗 , 𝑣)} under Γ.
To that end, we observe that, as Γ𝑖 and Γ𝑗 are transitive, we have Γ𝑖𝑢 = 𝑉(𝐺𝑖) and Γ𝑗𝑣 = 𝑉(𝐺 𝑗). In
particular, we have Γ{(𝑖 , 𝑢), (𝑗 , 𝑣)} = {(𝑖 , 𝑎), (𝑗 , 𝑏) : 𝑎 ∈ 𝑉(𝐺𝑖), 𝑏 ∈ 𝑉(𝐺 𝑗)}—which are precisely the edges
of 𝐹, which in turn yields the claim.

Finally, we readily see that Claims 6.6 and 6.7 cover all orbits in 𝐸
(
▽𝑚

𝑖=1 𝐺𝑖
) /×𝑚

𝑖=1 Γ𝑖 . First, any
edge {(𝑖 , 𝑢), (𝑖 , 𝑣)} is covered by an orbit that corresponds to an orbit in 𝐸(𝐺𝑖)/Γ𝑖 . Second, any edge
{(𝑖 , 𝑢), (𝑗 , 𝑣)} is covered by the orbit {𝑖 , 𝑗}〈 IS𝑛(1) , . . . , IS𝑛(𝑚)

〉
. In total, this completes the proof.

As before, we use orbits to build fixed points.

Corollary 6.8. For 𝑖 ∈ [𝑚], let 𝐺𝑖 denote a graph and let Γ𝑖 ⊆ Aut(𝐺𝑖) denote a transitive permutation

group. Further, let Γ𝑖 act on 𝐸(𝐺𝑖) and write FP(Γ𝑖 , 𝐺𝑖) for the resulting fixed points. Finally, let×𝑚
𝑖=1 Γ𝑖 act on

ℰ(▽𝑚
𝑖=1 𝐺𝑖).

Then, we have

FP(
𝑚×
𝑖=1

Γ𝑖 ,
𝑚

▽
𝑖=1

𝐺𝑖) =
{
𝐶
〈
𝐴1 , . . . , 𝐴𝑚

〉
: 𝐶 ∈ 𝒢𝑚 , 𝐴𝑖 ∈ FP(Γ𝑖 , 𝐺𝑖)

}
,
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Corollary 6.8 allows us to interpret the fixed points FP(×𝑚
𝑖=1 Γ𝑖 ,▽𝑚

𝑖=1 𝐺𝑖) as combinations of the fixed
points of FP(Γ𝑖 , 𝐺𝑖). In particular, each fixed point 𝐶

〈
𝐴1 , . . . , 𝐴𝑚

〉
of consists in 𝑚 blocks, where the

𝑖-th block is a fixed point 𝐴𝑖 ∈ FP(Γ𝑖 , 𝐺𝑖) and we fully connect two blocks 𝑖 and 𝑗 with each other if
{𝑖 , 𝑗} ∈ 𝐸(𝐶).
Proof. Recall that by Lemma 4.1 (the edge set of) each fixed point 𝐹 ∈ FP(×𝑚

𝑖=1 Γ𝑖 ,▽𝑚
𝑖=1 𝐺𝑖) is a union of

orbits from 𝐸
(
▽𝑚

𝑖=1 𝐺𝑖
) /×𝑚

𝑖=1 Γ𝑖 .
From Lemma 6.5, we understand the orbits 𝐸

(
▽𝑚

𝑖=1 𝐺𝑖
) /×𝑚

𝑖=1 Γ𝑖 as inhabited graphs that are pairwise
compatible. Further, from Lemma 6.2, we obtain that we may compute the union of compatible inhabited
graphs in a block-wise fashion.

Next, we apply Lemma 4.1 to each of the blocks, that is, each fixed point 𝐹𝑖 ∈ FP(Γ𝑖 , 𝐺𝑖) is a union of
orbits from 𝐸(𝐺𝑖)/Γ𝑖 (which are precisely the inner blocks of the orbits 𝐸

(
▽𝑚

𝑖=1 𝐺𝑖
) /×𝑚

𝑖=1 Γ𝑖). Finally, we
observe that we may obtain any 𝑚-vertex graph as the (edge-)union of 𝑚-vertex graphs that have a single
edge.

In total, this completes the proof.

6.2 The Fixed Points of Rotations of 𝐾𝑑𝑝𝑚

For a positive integer 𝑑 and a prime power 𝑝𝑚 , write 𝐾𝑑𝑝𝑚 B 𝐾𝑝𝑚▽ · · ·▽𝐾𝑝𝑚 for the join of 𝑑 copies
of the graph 𝐾𝑝𝑚—observe that 𝐾𝑑𝑝𝑚 is the complete graph on the vertex set [𝑑] × F𝑝𝑚 . Further, write
⟳𝑑

𝑝𝑚 B⟳𝑝𝑚 × . . . ×⟳𝑝𝑚 for the product of 𝑑 copies of the group⟳𝑝𝑚 .
Next, we use Lemma 5.5 and Corollary 6.8 to understand FP(⟳𝑑

𝑝𝑚 , 𝐾
𝑑
𝑝𝑚 ).

Lemma 6.9. Let 𝑝 denote a prime and let 𝑚 and 𝑑 denote positive integers. Further, let⟳𝑑
𝑝𝑚 = 𝐾𝑝𝑚▽ · · ·▽𝐾𝑝𝑚

act on ℰ(𝐾𝑑𝑝𝑚 ) =⟳𝑝𝑚 × . . . ×⟳𝑝𝑚 . Then, we have

FP(⟳𝑑
𝑝𝑚 , 𝐾

𝑑
𝑝𝑚 ) = {𝐺〈

𝐶𝐴
1

𝑝𝑚 , . . . , 𝐶
𝐴𝑑
𝑝𝑚

〉
: 𝐺 ∈ 𝒢𝑑 , 𝐴𝑖 ⊆ F+𝑝𝑚 }.

Proof. Recall that by Lemma 5.5, we have

FP(⟳𝑝𝑚 , 𝐾𝑝𝑚 ) = {𝐶𝐴𝑝𝑚 : 𝐴 ⊆ F+𝑝𝑚 }.
Observe that ⟳𝑝𝑚 is transitive, since for all 𝑥, 𝑦 ∈ F𝑝𝑚 we can find a element 𝜑𝑦−𝑥 ∈ ⟳𝑝𝑚 with
𝜑𝑦−𝑥(𝑥) = 𝑥 + (𝑦 − 𝑥) = 𝑦. Hence, we use Corollary 6.8 to obtain the claim.

Consult again Figure 4 for visualizations of examples for fixed points FP(⟳𝑑
𝑝𝑚 , 𝐾

𝑑
𝑝𝑚 ).

Next, for our ETH-based lower bounds, it is instructive to observe that every fixed point 𝐺
〈 · · · 〉 ∈

FP(⟳𝑑
𝑝𝑚 , 𝐾

𝑑
𝑝𝑚 ) contains a large biclique as a subgraph as long as 𝐺 contains at least one edge.

Lemma 6.10. Let 𝑝 denote a prime and let 𝑚 and 𝑑 denote positive integers.

Every fixed point 𝐺
〈
𝐶𝐴

1

𝑝𝑚 , . . . , 𝐶
𝐴𝑑
𝑝𝑚

〉 ∈ FP(⟳𝑑
𝑝𝑚 , 𝐾

𝑑
𝑝𝑚 ) with 𝐺 ≠ IS𝑚 contains the graph 𝐾𝑝𝑚 ,𝑝𝑚 as a subgraph

and has treewidth of at least 𝑝𝑚 .

Proof. Consider an edge {𝑖 , 𝑗} ∈ 𝐸(𝐺). Both graphs 𝐶𝐴𝑖𝑝𝑚 and 𝐶𝐴
𝑗

𝑝𝑚 have 𝑝𝑚 vertices; by definition of an
inhabited graph, said vertices are connected with a complete bipartite graph.

Finally, a graph with 𝐾𝑝𝑚 ,𝑝𝑚 as a subgraph has a treewidth of at least 𝑝𝑚 .

Finally, let us compute the level of a fixed point 𝐹 ∈ FP(⟳𝑑
𝑝𝑚 , 𝐾

𝑑
𝑝𝑚 ).
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Lemma 6.11. Let 𝑝 denote a prime and let 𝑚 and 𝑑 denote positive integers.

For every fixed point 𝐹 = 𝐺
〈
𝐶𝐴

1

𝑝𝑚 , . . . , 𝐶
𝐴𝑑
𝑝𝑚

〉 ∈ FP(⟳𝑑
𝑝𝑚 , 𝐾

𝑑
𝑝𝑚 )), we have

ℓ (𝐹) = ℓ (𝐺〈
𝐶𝐴

1

𝑝𝑚 , . . . , 𝐶
𝐴𝑑
𝑝𝑚

〉) = |𝐸(𝐺)| +
𝑑∑
𝑖=1

|𝐴𝑖 |.

Proof. Corollary 6.8 and Lemma 6.5 allow us to compute the level of 𝐹 as the sum of the level of 𝐺 and
the levels of the fixed points 𝐶𝐴𝑝𝑚 . To that end, we observe that every edge of 𝐺 contributes one orbit to
the level of 𝐺; each fixed point 𝐶𝐴𝑝𝑚 has a level of |𝐴|. In total, this yields the claim.

6.3 The Property (Φ − 𝐻)
We often use the following definition: given a property Φ and a graph 𝐻, we define (Φ − 𝐻) to be the
property that contains a graph only if it satisfies Φ when we extend the graph with 𝐻 as a disjoint union.
Using standard techniques, we show that #IndSub(Φ − 𝐻) is not harder than #IndSub(Φ): we simply add
a copy of 𝐻 to the input graph and use the Inclusion-Exclusion Principle to count only those induced
subgraphs that fully contain this copy.

Lemma 6.12. Let Φ denote a graph property and suppose that there is an algorithm A that computes for each

graph 𝐺 and integer 𝑘 the value #IndSub((Φ, 𝑘) → 𝐺) in time 𝑔(𝑘, |𝑉(𝐺)|) for some computable function 𝑔 that

is monotonically increasing. Finally, for a graph 𝐻, write (Φ − 𝐻) B {𝐺 : 𝐺 ⊎ 𝐻 ∈ Φ} for the graph property of

all graphs that is extended by 𝐻 to a graph in Φ.

Then, there is an algorithm B with oracle access to A that computes for each graph 𝐺 and positive integer 𝑘 the

value #IndSub(((Φ − 𝐻), 𝑘) → 𝐺) in time

𝑂(2|𝑉(𝐻)| · (|𝑉(𝐺)| + |𝑉(𝐻)|)2 · 𝑔(|𝑉(𝐻)| + 𝑘, |𝑉(𝐻)| + |𝑉(𝐺)|)).
The algorithm B queries A on instances with a parameter of |𝑉(𝐻)| + 𝑘.

Proof. Fix a graph 𝐺 and a positive integer 𝑘. Observe that for any induced subgraph 𝐺[𝑋] ∈ Φ − 𝐻, we
have 𝐺[𝑋] ⊎𝐻 � (𝐺⊎𝐻)[𝑋] ∈ Φ. In particular, once we extend 𝐺 with 𝐻, we may use the algorithmA to
compute the number #IndSub((Φ, 𝑘 + |𝑉(𝐻)|) → 𝐺 ⊎ 𝐻). We then use the Inclusion-Exclusion Principle
to recover the number #IndSub(((Φ − 𝐻), 𝑘) → 𝐺).

For a formal proof, write (𝒢 ⊎ 𝐻)𝑘+|𝑉(𝐻)| for all size-(𝑘 + |𝑉(𝐻)|) induced subgraphs of 𝐺 ⊎ 𝐻 that
satisfy Φ, that is,

(𝒢 ⊎ 𝐻)𝑘+|𝑉(𝐻)| B {(𝐺 ⊎ 𝐻)[𝑋] : |𝑋 | = |𝑉(𝐻)| + 𝑘} ∩Φ.

Next, for each vertex 𝑥 ∈ 𝑉(𝐻), write 𝒢𝑥 for the set of all graphs in (𝒢 ⊎ 𝐻)𝑘+|𝑉(𝐻)| that contain the
vertex 𝑥,7 that is,

𝒢𝑥 B {𝐹 ∈ (𝒢 ⊎ 𝐻)𝑘+|𝑉(𝐻)| : 𝑥 ∈ 𝑉(𝐹)}.
Now, we first show that we can rewrite #IndSub(((Φ − 𝐻)𝑘 , 𝑘) → 𝐺) as the number of graphs of

(𝒢 ⊎ 𝐻)𝑘+|𝑉(𝐻)| that contain all vertices of 𝐻.

7 Technically, the operation ▽ renames the vertex 𝑥 to (𝑖 , 𝑥) for some 𝑖. We may safely ignore this detail, as it is not relevant
for our proof.
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Claim 6.13. We have

#IndSub(((Φ − 𝐻), 𝑘) → 𝐺) = �� ⋂
𝑥∈𝑉(𝐻)

𝒢𝑥
��.

Proof. We prove both inclusions separately.
First, fix a graph 𝐺[𝑋] ∈ IndSub(((Φ − 𝐻), 𝑘) → 𝐺). By definition, the graph 𝐺[𝑋]⊎𝐻 has (𝑘+ |𝑉(𝐻)|)

vertices and the property Φ. Further, as 𝑋 and 𝑉(𝐻) are in disjoint subgraphs of 𝐺[𝑋] ⊎ 𝐻, the graph
𝐺[𝑋] ⊎ 𝐻 is isomorphic to the graph (𝐺 ⊎ 𝐻)[𝑋]; in particular, we have 𝐺[𝑋] ⊎ 𝐻 ∈ (𝒢 ⊎ 𝐻)𝑘+|𝑉(𝐻)| .
Finally, we observe that the graph 𝐺[𝑋] ⊎ 𝐻 contains every vertex 𝑣 ∈ 𝑉(𝐻). Hence, we have

𝐺[𝑋] ⊎ 𝐻 ∈
⋂

𝑥∈𝑉(𝐻)
𝒢𝑥 .

For the other direction, fix a graph 𝐹 B (𝐺 ⊎ 𝐻)[𝑋] with 𝐹 ∈ ⋂
𝑥∈𝑉(𝐻) 𝒢𝑥 . In particular, the graph 𝐹 has

𝑘 + |𝑉(𝐻)| vertices and we have 𝐹 ∈ Φ. As 𝐹 contains every vertex of 𝐻, we also have that 𝐹 contains
𝐻 as an induced subgraph. This in turn means that we have 𝐹 � 𝐺[𝑋] ⊎ 𝐻. Hence, we also have
𝐺[𝑋] ∈ IndSub(((Φ − 𝐻), 𝑘) → 𝐺), which completes the proof.

Ultimately, we wish to remove the graph 𝐻 from our oracle calls. Toward an application of the
Inclusion-Exclusion Principle, we need to understand how to partially remove 𝐻 from our oracle calls. To
that end, write 𝒢𝑥 for the complement of 𝒢𝑥 , that is, set 𝒢𝑥 B (𝒢 ⊎ 𝐻)𝑘+|𝑉(𝐻)| \ 𝒢𝑥 . Now, we show that
for any 𝑋 ⊆ 𝑉(𝐻), we can rewrite #IndSub((Φ, |𝑉(𝐻)| + 𝑘) → 𝐺 ⊎ (𝐻 \ 𝑋)) as the number of graphs of
(𝒢 ⊎ 𝐻)𝑘+|𝑉(𝐻)| that contain no vertex in 𝑋.

Claim 6.14. For every 𝑋 ⊆ 𝑉(𝐻), we have�� ⋂
𝑥∈𝑋

𝒢𝑥
�� = #IndSub((Φ, |𝑉(𝐻)| + 𝑘) → 𝐺 ⊎ (𝐻 \ 𝑋)).

Proof. Unfolding the definition of 𝒢𝑥 , we obtain⋂
𝑥∈𝑋

𝒢𝑥 = (𝒢 ⊎ 𝐻)𝑘+|𝑉(𝐻)| \
⋃
𝑥∈𝑋

𝒢𝑥 .

Now, (𝒢 ⊎𝐻)𝑘+|𝑉(𝐻)| \⋃
𝑥∈𝑋 𝒢𝑥 is the set of all induced subgraphs of 𝐺 ⊎𝐻 of size 𝑘 + |𝑉(𝐻)| that satisfy

Φ and do not contain any vertex in 𝑋; which is precisely #IndSub((Φ, 𝑘 + |𝑉(𝐻)|) → 𝐺 ⊎ (𝐻 \ 𝑋)).
Finally we express |⋂𝑥∈𝑉(𝐻) 𝒢𝑥 | in terms of |⋂𝑥∈𝑋 𝒢𝑥 |.
Claim 6.15. We have �� ⋂

𝑥∈𝑉(𝐻)
𝐺𝑥

�� = ∑
𝑋⊆𝑉(𝐻)

(−1)|𝑋 |+1�� ⋂
𝑥∈𝑋

𝐺𝑥
��.

Proof. After unfolding the definition of 𝒢𝑥 , we see that the claim is equivalent to the classical Inclusion-
Exclusion Principle for set intersection; which yields the claim.

Now, the combination of Claims 6.13 to 6.15 yields

#IndSub(((Φ − 𝐻), 𝑘) → 𝐺) =
∑

𝑋⊆𝑉(𝐻)
(−1)|𝑋 |+1#IndSub((Φ, 𝑘 + |𝑉(𝐻)|) → 𝐺 ⊎ (𝐻 \ 𝑋)).

In particular, we can compute #IndSub(((Φ − 𝐻), 𝑘) → 𝐺) by calling the algorithm A with parameter
𝑘 + |𝑉(𝐻)| on 2|𝑉(𝐻)| graphs 𝐺′ with |𝑉(𝐺′)| ≤ |𝑉(𝐺)| + |𝑉(𝐻)|. Further, we can construct each graph 𝐺′

in time 𝑂((|𝑉(𝐺)| + |𝑉(𝐻)|)2). In total, we obtain a running time of 𝑂(2|𝑉(𝐻)| · (|𝑉(𝐺)| + |𝑉(𝐻)|)2 · 𝑔(𝑘 +
|𝑉(𝐻)|, |𝑉(𝐺)| + |𝑉(𝐻)|)); which completes the proof.
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6.4 Scattered Properties and Reducing to the Prime-Power Case

For a positive integer 𝑛, let us write 𝑞(𝑛) for the largest divisor of 𝑛 that is a prime power; we set 𝑞(1) B 1.
It is instructive to discuss some useful properties of the function 𝑞(𝑛).

Lemma 6.16. (1) For every positive integer 𝑛, we have 𝑛 ≤ 𝑞(𝑛)𝑞(𝑛).
(2) Write 𝑛 B 𝑝𝑎1

1 · · · 𝑝𝑎𝑐𝑐 for a positive integer and its corresponding prime factorization. Then, we have
𝑐
√
𝑛 ≤ 𝑞(𝑛).

(3) There is a universal constant 𝑐 > 0 such that for every positive integer 𝑛, we have 𝑐 log(𝑛) ≤ 𝑞(𝑛).

Proof. For (1), write 𝑛 = 𝑝𝑎1
1 · · · 𝑝𝑎𝑐𝑐 for the prime factorization of 𝑛. We bound each prime power factor of

𝑛 with 𝑞(𝑛), which yields 𝑛 ≤ 𝑞(𝑛)𝑐 . Finally, we use 𝑐 ≤ max(𝑝1 , . . . , 𝑝𝑐) ≤ 𝑞(𝑛) to obtain the claim.
For (2), observe that we have 𝑞(𝑛) = 𝑝𝑎𝑖𝑖 for some 𝑖 ∈ [𝑐]. Since 𝑝𝑎𝑖𝑖 is the largest prime power factor of

𝑛, we obtain 𝑞(𝑛)𝑐 = (𝑝𝑎𝑖𝑖 )𝑐 ≥ 𝑛; which yields the claim.
For (3), write 𝜔(𝑛) for the number of prime divisors of 𝑛. We show 𝑞(𝑛) ≥ 𝑐 log(𝑛) for all 𝑛 ≥ 26;

sufficiently decreasing 𝑐 then yields the claim.
We use the following result due to Robin [Rob83, Theorem 13]. For every 𝑛 ≥ 26, we have

𝜔(𝑛) ≤ log 𝑛
log(log(𝑛)) − 1.1714

. (3)

Combining Equation (3) with Claim (2), for every 𝑛 ≥ 26, we obtain

𝑞(𝑛) ≥ 𝑛𝜔(𝑛)−1 ≥ 𝑛
log(log(𝑛))−1.1714

log(𝑛) = log(𝑛) e−1.1714;

which yields the claim.

Let us also recall the definition of concentrated and scattered integers for Φ.

Definition 6.17. Let Φ denote an edge-monotone graph property and write 𝑀Φ for the set of numbers on which

Φ is nontrivial. We say that Φ is concentrated on an integer 𝑘 ∈ 𝑀Φ if there is a graph 𝐻 on 𝑘 vertices with

ˆΦ(𝐻) ≠ 0 and 𝐻 contains 𝐾𝑞(𝑘),𝑞(𝑘) as a subgraph.

We say that Φ is scattered on an integer 𝑘 ∈ 𝑀Φ if it is not concentrated for Φ.

Let us observe that if Φ is computable, then we can decide which case holds for a given 𝑘.

Lemma 6.18. Let Φ denote a computable edge-monotone property. For every integer 𝑘, we can decide if Φ is

trivial, concentrated, or scattered on 𝑘.

Proof. By evaluating Φ on every 𝑘-vertex graph, we can decide if Φ is trivial. If Φ is not trivial on 𝑘, then
computing the alternating enumerator of every 𝑘-vertex graph that contains 𝐾𝑞(𝑘),𝑞(𝑘) as a subgraph tells
us if 𝑘 is concentrated.

In the next step, we show the key result toward our win-win approach: for an edge-monotone
property Φ and any 𝑘 on which Φ is nontrivial, we either win by obtaining a high-treewidth graph with
nonvanishing alternating enumerator (if Φ is concentrated on 𝑘), or we win by reducing to the prime
power case (if Φ is scattered on 𝑘). Formally, we prove Lemma 6.19.

Lemma 6.19. Let Φ denote an edge-monotone graph property and write 𝑀Φ for the set of numbers on which Φ
is nontrivial. For any number 𝑘 ∈ 𝑀Φ on which Φ is scattered, there is a graph 𝐻 on 𝑘 − 𝑞(𝑘) vertices such that the

property (Φ − 𝐻) B {𝐺 : 𝐺 ⊎ 𝐻 ∈ Φ} is edge-monotone and nontrivial on 𝑞(𝑘).
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Proof. Fix an integer 𝑘 ∈ 𝑀Φ. We prove that either 𝑘 is concentrated or the claim holds.
To that end, we let⟳𝑘/𝑞(𝑘)

𝑞(𝑘) act on 𝐾𝑘/𝑞(𝑘)𝑞(𝑘) and consider the resulting fixed points FP(⟳𝑘/𝑞(𝑘)
𝑞(𝑘) , 𝐾𝑘/𝑞(𝑘)𝑞(𝑘) ).

As Φ is nontrivial on 𝑘 = 𝑞(𝑘) · 𝑘/𝑞(𝑘), there is a minimal integer 𝑖 such that

there is a fixed point with a level of 𝑖 that does not satisfy Φ but
all fixed points with a level of less than 𝑖 satisfy Φ.

As Φ is nontrivial on 𝑘, we have Φ(IS𝑞(𝑘)/𝑑𝑞(𝑘) ) = 1 and Φ(𝐾𝑞(𝑘)/𝑑𝑞(𝑘) ) = 0. In particular, as IS𝑞(𝑘)/𝑑𝑞(𝑘) is the (only)
fixed point with the minimum level of 0 and as 𝐾𝑞(𝑘)/𝑑𝑞(𝑘) is the fixed point with the maximum level, we
obtain that 𝑖 satisfies

0 = ℓ (IS𝑞(𝑘)/𝑑𝑞(𝑘) ) < 𝑖 ≤ ℓ (𝐾𝑞(𝑘)/𝑑𝑞(𝑘) ) =
(
𝑘/𝑞(𝑘)

2

)
+ #F+𝑞(𝑘) · 𝑘/𝑞(𝑘).

Write 𝐹 B 𝐶
〈
𝐶𝐴

1

𝑞(𝑘) , . . . , 𝐶
𝐴𝑘/𝑞(𝑘)
𝑞(𝑘)

〉
for a fixed point with ℓ (𝐹) = 𝑖 and Φ(𝐹) = 0. Next, we distinguish two

cases based on whether 𝐶 contains an edge.
First, consider the case that 𝐶 contains some edge. Now, Lemma 4.8 yields Φ̂(𝐹) ≠ 0. Further,

Lemma 6.10 yields that 𝐹 has 𝐾𝑞(𝑘),𝑞(𝑘) as a subgraph. Thus, Φ is concentrated on 𝑘.
Second, consider the remaining case that 𝐶 = IS𝑘/𝑞(𝑘). This in turn means that 𝐹 is the disjoint union

of 𝑘/𝑞(𝑘) fixed points of FP(⟳𝑞(𝑘) , 𝐾𝑞(𝑘)); we write

𝐹 = 𝐶𝐴
1

𝑞(𝑘) ⊎ · · · ⊎ 𝐶𝐴𝑘/𝑞(𝑘)𝑞(𝑘) .

As ℓ (𝐹) = 𝑖 ≥ 1, there is at least one block 𝑥 ∈ [𝑘/𝑞(𝑘)] with 𝐴𝑥 ≠ ∅. Without loss of generality, we may
assume 𝑥 = 1 (otherwise, pick the isomorphic graph with renamed blocks); and in particular 𝐶𝐴1

𝑞(𝑘) ≠ IS𝑞(𝑘).
Now, we set

𝐻 B 𝐶𝐴
2

𝑞(𝑘) ⊎ · · · ⊎ 𝐶𝐴𝑘/𝑞(𝑘)𝑞(𝑘) .

Further, we define the graph property (Φ − 𝐻) via

(Φ − 𝐻) B {𝐺 : 𝐺 ⊎ 𝐻 ∈ Φ}.
As Φ is edge-monotone and computable, so is (Φ −𝐻). Finally, we show that (Φ −𝐻) is nontrivial on 𝑞(𝑘).

Claim 6.20. We have IS𝑞(𝑘) ∈ (Φ − 𝐻) and 𝐶𝐴
1

𝑞(𝑘) ∉ (Φ − 𝐻).
Proof. First, the graph IS𝑞(𝑘) ⊎ 𝐻 is isomorphic to the fixed point 𝐹′ = IS𝑞(𝑘) ⊎ 𝐶𝐴

2

𝑞(𝑘)⊎ · · · ⊎𝐶𝐴𝑘/𝑞(𝑘)𝑞(𝑘) . Further,
we have ℓ (𝐹′) < ℓ (𝐹) = 𝑖 as 𝐶𝐴1

𝑞(𝑘) is not the empty graph. Thus, 𝐹′ satisfies Φ as, by construction, all fixed
points with a level less than 𝑖 satisfy Φ.

Second, observe that we have that 𝐶𝐴1

𝑞(𝑘) ⊎ 𝐻 is isomorphic to 𝐹, hence

(Φ − 𝐻)(𝐶𝐴1

𝑞(𝑘)) = Φ(𝐶𝐴1

𝑞(𝑘) ⊎ 𝐻) = Φ(𝐹) = 0.

Claim 6.20 shows that, indeed, Φ is scattered on 𝑘. This completes the proof.

Next, we show that scattered integers indeed yield a reduction to the prime power-power case. To that
end, we first use the scattered part of a graph property define another graph property on prime powers.

Definition 6.21. Let Φ denote a computable, edge-monotone graph property and write ScΦ for the set of all

integers on which Φ is scattered. Further, write 𝑞(ScΦ) B {𝑞(𝑘) : 𝑘 ∈ ScΦ} for the set of all maximal prime powers

corresponding to ScΦ. Finally, for each 𝑚 ∈ 𝑞(ScΦ) write 𝑞−1(𝑚) for the minimum 𝑘 ∈ ScΦ with 𝑞(𝑘) = 𝑚.

Now, for each 𝑚 ∈ 𝑞(ScΦ), let 𝐻𝑚 denote the lexicographically first graph on 𝑞−1(𝑚) − 𝑚 vertices such that the

graph property (Φ − 𝐻𝑚) B {𝐺 : 𝐺 ⊎ 𝐻𝑚 ∈ Φ} is nontrivial on 𝑚.
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We define the scattered property ΦSc corresponding to Φ as

ΦSc(𝐺) = 1 ⇐⇒ |𝑉(𝐺)| ∈ 𝑞(ScΦ) and Φ(𝐺 ⊎ 𝐻|𝑉(𝐺)|) = 1

Observe that Lemma 6.19 implies that 𝐻𝑚 is well-defined in Definition 6.21, as there is at least one
such graph. Let us verify the main properties of the defined function ΦSc .

Lemma 6.22. Let Φ denote a computable, edge-monotone graph property and write ScΦ for the set of all integers

on which Φ is scattered. If ScΦ is infinite, then the scattered property ΦSc corresponding to Φ is computable,

edge-monotone, and nontrivial on infinitely many prime powers.

Proof. As in Definition 6.21, write 𝑞(ScΦ) B {𝑞(𝑘) : 𝑘 ∈ ScΦ} for the set of all maximal prime powers
corresponding to ScΦ. Next, for each 𝑚 ∈ 𝑞(ScΦ) write 𝑞−1(𝑚) for the minimum 𝑘 ∈ ScΦ with 𝑞(𝑘) = 𝑚.

Claim 6.23. The sets ScΦ and 𝑞(ScΦ), the function 𝑞−1
, and the graphs𝐻𝑚 for every𝑚 ∈ 𝑞(ScΦ) are computable.

Proof. Fix an integer 𝑘. As Φ is computable and by using Lemma 6.18, we can compute whether 𝑘 ∈ ScΦ.
Next, we wish to decide 𝑘 ∈ 𝑞(ScΦ). To that end, we iterate through the integers 𝑖 starting from 𝑘 and

ending with 𝑘𝑘 . For each such 𝑗, we first check if 𝑗 ∈ ScΦ. If this is the case, we compute 𝑞(𝑗) and check if
𝑘 = 𝑞(𝑗). If indeed 𝑘 = 𝑞(𝑗), we return 𝑘 ∈ 𝑞(ScΦ). Otherwise, if we find that for all integers 𝑘 ≤ 𝑗 ≤ 𝑘𝑘 ,
we have 𝑗 ∉ ScΦ, we return 𝑘 ∉ 𝑞(ScΦ).

This algorithm is correct, as by Lemma 6.16(1), any integer 𝑘 may appear as the largest prime power
only for integers that are at most 𝑘𝑘 . Finally, said algorithm also yields the smallest value 𝑗 with 𝑞(𝑗) = 𝑘 ;
which proves that the function 𝑞−1 is computable as well.

Recall that, for 𝑚 ∈ 𝑞(ScΦ), the graph 𝐻𝑚 has 𝑞−1(𝑚) −𝑚 vertices (which is a number we can compute).
Let us enumerate in lexicographic order the graphs 𝐻𝑚 on 𝑞−1(𝑚) − 𝑚 vertices and check if (Φ − 𝐻𝑚) is a
nontrivial property on 𝑚 vertices. As Φ is computable, this can be done by enumerating every graph on
𝑚 vertices.

Finally, we observe that as ScΦ is infinite, so is 𝑞(ScΦ) (as by Lemma 6.16(3), we have 𝑞(𝑘) ≥ 𝑐 log(𝑘)
for all integer 𝑘). Thus ΦSc is nontrivial on infinitely many prime powers. The edge-monotonicity of ΦSc
follows from its definition and from the edge-monotonicity of Φ.

Next, we show that if the scattered property ΦSc corresponding to Φ is computable, edge-monotone,
and nontrivial on infinitely many prime powers, then we can reduce #IndSub(Φ) to #IndSub(ΦSc).

Corollary 6.24. Let Φ denote a computable, edge-monotone graph property and write ΦSc for the scattered

property corresponding to Φ. Then, there is a parameterized Turing reduction from #IndSub(ΦSc) to #IndSub(Φ).
Proof. Write ScΦ for the set of all integers on which Φ is scattered. As in Definition 6.21, write
𝑞(ScΦ) B {𝑞(𝑘) : 𝑘 ∈ ScΦ} for the set of all maximal prime powers corresponding to ScΦ. Next, for each
𝑚 ∈ 𝑞(ScΦ) write 𝑞−1(𝑚) for the minimum 𝑘 ∈ ScΦ with 𝑞(𝑘) = 𝑚. For 𝑚 ∈ 𝑞(ScΦ), define 𝐻𝑚 as in
Definition 6.21.

Fix a graph 𝐺 and an integer 𝑘. We wish to compute #IndSub((ΦSc , 𝑘) → 𝐺). First, we check if 𝑘 is
a prime power that is contained in 𝑞(ScΦ). If we observe 𝑘 ∉ 𝑞(ScΦ), we return 0, as no graph with 𝑘
vertices is in Φℋ

Sc . Otherwise, a 𝑘-vertex graph is in ΦSc if and only if it is in (Φ −𝐻𝑘). Thus, we can return
#IndSub(((Φ − 𝐻𝑘), 𝑘) → 𝐺) using Lemma 6.12 (which we supply with our oracle for #IndSub(Φ)).

Finally, we analyze the running time of the reduction. To that end, we assume that we have access to a
#IndSub(Φ) oracle, that is, we assume that the running time 𝑔(𝑘, |𝑉(𝐺)|) of the oracle is constant. Now,
first observe that all computations in the reduction (other than the call to Lemma 6.12) have a running
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time that depends only on the parameter 𝑘. Next, we observe that |𝑉(𝐻𝑘)| = 𝑞−1(𝑘) − 𝑘. Hence, the call to
Lemma 6.12 takes time

𝑂(2𝑞−1(𝑘)−𝑘 · (𝑞−1(𝑘) − 𝑘 + |𝑉(𝐺)|)2 · 𝑔(𝑞−1(𝑘), 𝑞−1(𝑘) − 𝑘 + |𝑉(𝐺)|)) = 𝑂(𝑔′(𝑘) · |𝑉(𝐺)|2),
for some computable function 𝑔′. Lastly, we observe that the reduction of Lemma 6.12 uses only oracle
calls where the parameter has size (𝑞−1(𝑘) − 𝑘) + 𝑘 = 𝑞−1(𝑘).

Hence, there is a parameterized Turing reduction from #IndSub(ΦSc) to #IndSub(Φ).
Remark 6.25. If the graph property ΦSc is edge-monotone and nontrivial infinitely often (that is,

nontrivial on infinitely many prime powers), then Theorem 5.16 applies and the problem #IndSub(ΦSc) is
#W[1]-hard (and we also obtain an ETH-based lower bound).

6.5 #W[1]-hardness and Quantitative Lower Bounds for Edge-monotone Properties
We are finally ready to prove Main Theorem 1.

Main Theorem 1. Let Φ denote a nontrivial edge-monotone graph property.

The problem #IndSub(Φ) is #W[1]-hard.

Further, assuming ETH, there is a universal constant 𝛾 > 0 (independent of Φ) such that for any integer 𝑘 ≥ 3
on which Φ is nontrivial, no algorithm (that reads the whole input) computes for every graph 𝐺 the number

#IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛾
√

log 𝑘/log log 𝑘).
Proof. Write ScΦ for the set of all integers on which Φ is scattered and write CoΦ for the set of all integers
on which Φ is concentrated.

For the #W[1]-hardness part, let us consider two cases: either ScΦ or CoΦ is infinite. Suppose first
that ScΦ is infinite. Then, the scattered property ΦSc corresponding to Φ is computable and nontrivial on
infinitely many prime powers (Lemma 6.22). Hence, #IndSub(ΦSc is #W[1]-hard (Theorem 5.16) and can
be reduced to #IndSub(Φ) (Lemma 6.12), showing that #IndSub(Φ) is also #W[1]-hard.

Assume now that CoΦ is infinite. Let ℋ contain every graph 𝐻 whose alternating enumerator
is nonvanishing for Φ and contains 𝐾𝑞(|𝑉(𝐻)|),𝑞(|𝑉(𝐻)|) as subgraph. The set ℋ is clearly infinite and
computable. Observe that every 𝐻 ∈ ℋ has treewidth at least 𝑞(𝑘).8 In particular, by Lemma 6.16(3),
as the family ℋ is infinite, it has unbounded treewidth. Thus Lemma A.8 yields #W[1]-hardness for
#IndSub(Φ).

We turn to the ETH-based lower bound next. To that end, fix a 𝑘 for which Φ is nontrivial. Now, Φ is
either scattered or concentrated on 𝑘. We provide a proof for both cases.

First, we consider the case that Φ is scattered on 𝑘. Define 𝑚 B 𝑞(𝑘) ∈ 𝑞(ScΦ). Let 𝐻𝑚 denote the
graph defined in Definition 6.21. Then, (Φ − 𝐻𝑚) B {𝐺 : 𝐺 ⊎ 𝐻𝑚 ∈ Φ} is edge-monotone and nontrivial
on 𝑚 = 𝑞(𝑘) ≥ 𝑐 log(𝑘) ≥ 3 vertices (for some constant 𝑐 and sufficiently large 𝑘).

Now, by Theorem 5.16 and assuming ETH, there is an 𝛼 such that there is no algorithm that for each
graph 𝐺 computes the number #IndSub(((Φ − 𝐻𝑚), 𝑚) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛼

√
𝑞(𝑘)/ log(𝑞(𝑘))). Using the

reduction of Lemma 6.12 (which has a quadratic overhead), we obtain that there is no algorithm that
computes for every graph 𝐺 the number #IndSub((Φ, 𝑘) → 𝐺) in time

𝑂(|𝑉(𝐺)|(𝛼
√
𝑞(𝑘)/ log(𝑞(𝑘)))−2),

We conclude this case by proving the following inequalities.

8 Consult for instance [BK11, Corollary 9 and Lemma 4] for a proof of this folklore fact.
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Claim 6.26. Choosing 𝛾′ B 𝛼
√
𝑐/2, for any sufficiently large 𝑘, we have

𝛾′
√

log 𝑘
log log 𝑘

≤ 𝛾′
√
𝑞(𝑘)/𝑐

log(𝑞(𝑘)/𝑐) ≤ 𝛾′
√
𝑞(𝑘)/𝑐

log(𝑞(𝑘)) ≤ 𝛼

√
𝑞(𝑘)

log(𝑞(𝑘)) − 2.

Proof. (1) For the first inequality we consider the function ℎ1 : R>1 → R; 𝑥 ↦→ √
𝑥/log(𝑥). Observe that ℎ1

is monotonically increasing for 𝑥 ≥ e2.9 Finally, we choose 𝑘 large enough to satisfy e2 ≤ log 𝑘 ≤ 𝑞(𝑘)/𝑐.
(2) The second inequality is immediate.
(3) The last inequality is equivalent to 4 ≤ 𝛼

√
𝑞(𝑘)/log(𝑞(𝑘)), which holds for sufficiently large 𝑞(𝑘) since

ℎ1 is unbounded and monotonically increasing.

Now, by Claim 6.26, for a 𝑘 ≥ 𝑁1 (where 𝑁1 is a sufficiently large constant) and assuming ETH, there
is no algorithm that for each graph 𝐺 computes the number #IndSub((Φ, 𝑘) → 𝐺) in time

𝑂(|𝑉(𝐺)|(𝛼
√
𝑞(𝑘)/ log(𝑞(𝑘)))−2) ⊇ 𝑂(|𝑉(𝐺)|(𝛾′√𝑞(𝑘)/ log(𝑞(𝑘)))).

Next, we consider the case that Φ is concentrated on 𝑘. By definition, there exists a graph 𝐻𝑘 on 𝑘
vertices with a nonvanishing alternating enumerator that contains 𝐾𝑞(𝑘),𝑞(𝑘) as a subgraph. As before, this
implies that 𝐻𝑘 has a treewidth of at least 𝑞(𝑘).

Now, from Lemma 6.16(3), for each integer 𝑁2, we obtain that for some constant 𝑐 and for 𝑘 ≥ 𝛽 (for
some constant 𝛽 B 𝛽(𝑐, 𝑁2) that depends on 𝑐 and 𝑁2), we have

tw(𝐻𝑘) ≥ 𝑞(𝑘) ≥ 𝑐 log(𝑘) ≥ 𝑁2.

Now, by Lemma A.8, assuming ETH, and choosing 𝑁2 B 3, there is no algorithm that for each graph
𝐺 computes the number #IndSub((Φ, 𝑘) → 𝐺) in time

𝑂(|𝑉(𝐺)|𝛼IndSub tw(𝐻𝑘 )/log tw(𝐻𝑘 )) ⊇ 𝑂(|𝑉(𝐺)|𝛼IndSub𝑐 log(𝑘)/log(𝑐 log(𝑘))) ⊇ 𝑂(|𝑉(𝐺)|𝛼IndSub𝑐 log 𝑘/log log 𝑘).
For the first step, we use that the function ℎ2 : R>1 → R, 𝑥 ↦→ 𝑥/log(𝑥) is monotonically increasing
for 𝑥 > e. For the second step, we use 0 < 𝑐 < 1 (which we can assume without loss of generality).
Finally, to obtain the claim also for all values 𝑘 that are less than 𝑁0 B max(𝑁1 , 𝛽(𝑐, 𝑁2)), we choose
𝛾 B min(1/√log(𝑁0), 𝛾′, 𝑐𝛼IndSub). Observe that now, for 𝑘 < 𝑁0, we obtain that

𝑂(|𝑉(𝐺)|𝛾
√

log 𝑘/log log 𝑘) = 𝑜(|𝑉(𝐺)|).
Now, such a running time is unconditionally unachievable for any algorithm that reads the whole input.
This completes the proof.

7 Main Result 2: Tight Bounds for Edge-monotone Properties on Prime Powers

In this section, we prove Main Theorem 2. While we build on our structural understanding of fixed points
from Section 4, the proof is independent of Sections 5 and 6.

Main Theorem 2. For each prime 𝑝, there is a constant 𝛾𝑝 > 0 such that for each integer 𝑚 with 𝑝𝑚 ≥ 3 and

each edge-monotone graph property Φ that is nontrivial on 𝑝𝑚 , no algorithm (that reads the whole input) computes

for every graph 𝐺 the number #IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛾𝑝𝑝𝑚 ), unless ETH fails.

9 First, one may verify that the derivative of ℎ1 is ℎ′1(𝑥) = (log(𝑥) − 2)/(2√𝑥 log2(𝑥)). Next, one verifies that ℎ′1(𝑥) ≥ 0 for all
𝑥 ≥ e2. Thus, ℎ1 is monotonically increasing after e2.
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Recall that by Section 5, the rotation subgroup⟳𝑝𝑚 ⊆ Aut(𝐾𝑝𝑚 ) gives rise to the difference graphs over
F𝑝𝑚 as fixed points. In this section, we consider a much larger subgroup of Aut(𝐾𝑝𝑚 ), namely the Sylow
𝑝-subgroup. Thereby, we obtain fixed points of a different type, the lexicographic product of difference
graphs over F𝑝 . To analyze such fixed points, for the rest of the section, we view the vertex set of 𝐾𝑝𝑚 as
[0 . . 𝑝)𝑚 .

7.1 The Fixed Points of Sylow Groups on 𝐾𝑝𝑚

We intend to construct special subgroups of Aut(𝐾𝑝𝑚 ). To that end, we first define special types of
bijections on [0 . . 𝑝)𝑚 .

Definition 7.1. Consider a prime 𝑝 and a positive integer 𝑚. For each 𝑗 ∈ [0 . . 𝑚), write 𝜑𝑖 for a function

[0 . . 𝑝)𝑗 → [0 . . 𝑝) and set 𝜑 B (𝜑0 , . . . , 𝜑𝑚−1). We define the function 𝜑 : [0 . . 𝑝)𝑚 → [0 . . 𝑝)𝑚 via10

𝜑(𝑥1 , . . . , 𝑥𝑚) B (𝑥1 + 𝜑0 , 𝑥2 + 𝜑1(𝑥1), 𝑥3 + 𝜑2(𝑥1 , 𝑥2), . . . , 𝑥𝑚 + 𝜑𝑚−1(𝑥1 , . . . , 𝑥𝑚−1)),
where all computations are done modulo 𝑝.

We write 𝑝𝑚 for the set of all functions 𝜑 : [0 . . 𝑝)𝑚 → [0 . . 𝑝)𝑚 that are obtained in this fashion, that is,

𝑝𝑚 B {𝜑 : 𝜑𝑖 ∈ [0 . . 𝑝)𝑗 → [0 . . 𝑝)}.
Lemma 7.2. For each 𝑗 ∈ [0 . . 𝑚), write 𝜑𝑖 for a function [0 . . 𝑝)𝑗 → [0 . . 𝑝) and set 𝜑 B (𝜑0 , . . . , 𝜑𝑚−1).

Then, the function 𝜑 is a bijection on [0 . . 𝑝)𝑚 .

Proof. Consider two different tuples 𝑥 B (𝑥1 , . . . , 𝑥𝑚) and 𝑥′ B (𝑥′1 , . . . , 𝑥′𝑚) and write 𝑖 for the minimal
position with 𝑥𝑖 ≠ 𝑥′𝑖 . We claim that 𝜑(𝑥)𝑖 ≠ 𝜑(𝑥′)𝑖 . To that end, observe that 𝜑𝑖−1 depends only on the
values 𝑥1 = 𝑥′1 , . . . , 𝑥𝑖−1 = 𝑥′𝑖−1. Thus, we have 𝜑𝑖(𝑥1 , . . . , 𝑥𝑖−1) = 𝜑𝑖(𝑥′1 , . . . , 𝑥′𝑖−1). Hence, we have

𝜑(𝑥)𝑖 = 𝑥𝑖 + 𝜑𝑖(𝑥1 , . . . , 𝑥𝑖−1) ≠ 𝑥′𝑖 + 𝜑𝑖(𝑥1 , . . . , 𝑥𝑖−1) = 𝑥′𝑖 + 𝜑𝑖(𝑥′1 , . . . , 𝑥′𝑖−1) = 𝜑(𝑥′)𝑖 .
Hence, 𝜑 is injective, and as a mapping between equal-sized sets thus also bijective.

Recall that [0 . . 𝑝)𝑚 is also the vertex set of 𝐾𝑝𝑚 . Thus, Lemma 7.2 implies 𝜑 ∈ Aut(𝐾𝑝𝑚 ) � 𝔖𝑝𝑚 .

Remark 7.3. Let us discuss and interpret bijections 𝜑 ∈ 𝑝𝑚 . To that end, consider an ordered, complete
𝑝-tree 𝑇𝑝𝑚 of height 𝑚. Label the root with the empty tuple (). Further, for each vertex with label
(𝑣1 , . . . , 𝑣 𝑗), label its 𝑖-th child with (𝑣1 , . . . , 𝑣 𝑗 , 𝑖) (where we number children 0-indexed). Observe that
𝑇𝑝𝑚 has 𝑝𝑚 leaves that correspond to the elements of [0 . . 𝑝)𝑚 . Consult Figure 5a for a visualization of an
example.

Now, 𝜑 acts on 𝑇𝑝𝑚 in the following way. Starting with the root, each level 𝑖 of 𝑇𝑝𝑚 is rotated by
𝜑𝑖(𝑣1 , . . . , 𝑣𝑖) nodes, that is, the 𝑗-th child of a vertex (𝑣1 , . . . , 𝑣𝑖) becomes the ((𝑖+𝜑𝑖(𝑣1 , . . . , 𝑣𝑖)) mod 𝑝)-th
child of (𝑣1 , . . . , 𝑣𝑖). Consult Figure 5b for a visualization of an example.

Next, we show that 𝑝𝑚 forms a group with the function composition as the group operation.

Lemma 7.4. The pair Syl𝑝𝑚 B (𝑝𝑚 , ◦) forms a 𝑝-group.

Proof. We first show that Syl𝑝𝑚 defines a group.

10 We write 𝜑0 for 𝜑0(()) since 𝜑0 is a function that is defined on a single element
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()

𝜑0

(0)

𝜑1(0)

(1)

𝜑1(1)

(2)

𝜑1(2)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)
∶= 1

(a) The tree 𝑇32 from Remark 7.3. Each vertex is label with
a label that is depicted above the corresponding vertex.
Further, we depict below each vertex 𝑣 the function (value)
in 𝜑 that is responsible for rotating the subtree rooted at 𝑣.

()

𝜑0
∶= 2

(2)

𝜑1(2)
∶= 0

(0)

𝜑1(0)
∶= 2

(1)

𝜑1(1)
∶= 1

(2, 0)

(2, 1)

(2, 2)

(0, 2)

(0, 0)

(0, 1)

(1, 1)

(1, 2)

(1, 0)

(b) The image 𝜑𝑇32 , where 𝜑0 B 2 and 𝜑1 B {0 ↦→ 2, 1 ↦→
1, 2 ↦→ 0}. Reading of the labels of the leaves from top
to bottom, we obtain the corresponding permutation of
[0 . . 𝑝)𝑚 .

Figure 5 Definition 7.1 and Remark 7.3 visualized.

Claim 7.5. The composition of elements of 𝑝𝑚 is an element of 𝑝𝑚 .

Proof. Fix 𝜑,𝜓 ∈ 𝑝𝑚 . Expanding the definition yields

𝜓(𝜑(𝑥1 , . . . , 𝑥𝑚)) = (𝑥1 + 𝜑0 + 𝜓0 , 𝑥2 + 𝜑1(𝑥1) + 𝜓1((𝜑0)(𝑥1)), . . . ,
𝑥𝑚 + 𝜑𝑚−1(𝑥1 , . . . , 𝑥𝑚−1) + 𝜓𝑚((𝜑0 , . . . , 𝜑𝑚−1)(𝑥1 , . . . , 𝑥𝑚−1)))

= 𝜆(𝑥1 , . . . , 𝑥𝑚),
where 𝜆0 B 𝜑0 + 𝜓0 and 𝜆 𝑗(𝑥1 , . . . 𝑥 𝑗) B 𝜑 𝑗(𝑥1 , . . . , 𝑥 𝑗) + 𝜓 𝑗((𝜑0 , . . . , 𝜑 𝑗−1)(𝑥1 , . . . , 𝑥 𝑗−1)). Thus, indeed
𝜆 ∈ Syl𝑝𝑚 , which yields the claim.

Claim 7.6. Every element of 𝜑 ∈ 𝑝𝑚 has an inverse 𝜑 −1 ∈ 𝑝𝑚 .

Proof. We define 𝜑 −1 via 𝜑−1
0 B −𝜑0 and

𝜑−1
𝑗 (𝑥1 , . . . , 𝑥 𝑗) B −𝜑 𝑗((𝜑−1

0 , . . . , 𝜑−1
𝑗−1)(𝑥1 , . . . , 𝑥 𝑗−1)) for 𝑗 ∈ [1 . . 𝑚).

An induction on 𝑗 ∈ [0 . . 𝑚) readily yields 𝜑 −1 ◦𝜑 = 𝜑 ◦𝜑 −1 = id; which completes the proof.

By Claims 7.5 and 7.6, Syl𝑝𝑚 is indeed a group.
Finally, we show that Syl𝑝𝑚 is a 𝑝-group. To that end, observe that each 𝑚-tuple (𝜑0 , . . . , 𝜑𝑚−1) with

𝜑 𝑗 : [0 . . 𝑝)𝑗 → [0 . . 𝑝) defines a different group element 𝜑. The number of functions 𝜑 𝑗 from [0 . . 𝑝)𝑗 to
[0 . . 𝑝) is equal to 𝑝𝑝 𝑗 , thus we obtain |Syl𝑝𝑚 | = |𝑝𝑚 | = 𝑝1 · 𝑝𝑝1 · · · · · 𝑝𝑝𝑚−1 ; which completes the proof.

Remark 7.7. Let us briefly discuss how Syl𝑝𝑚 relates to Sylow 𝑝-subgroups that appear in the literature.
Classically, a Sylow 𝑝-subgroup of Γ is a 𝑝-subgroup that is not a proper subgroup of any other 𝑝-subgroup
of Γ. Due to the Sylow Theorems (consult for instance [Rot94, Theorem 4.12]), there is only one Sylow
𝑝-subgroup in 𝔖𝑝𝑚 (up to isomorphism). Usually, the Sylow 𝑝-subgroup is constructed by taking 𝑚
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copies of the cyclic group Z𝑝 and using the wreath product Z𝑝 ≀ · · · ≀ Z𝑝 [Rot94, Theorem 7.27]. Indeed,
one may prove that the group Syl𝑝𝑚 defined via Lemma 7.4 is isomorphic to the Sylow 𝑝-subgroup of
𝔖𝑝𝑚 , that is, we have Syl𝑝𝑚 � Z𝑝 ≀ · · · ≀ Z𝑝 .

Next, we analyze the fixed point structure of FP(Syl𝑝𝑚 , 𝐾𝑝𝑚 ). To that end, we introduce the lexicographic
product of graphs.

Definition 7.8. For graphs 𝐺1 , . . . , 𝐺𝑚 , we define their lexicographic product 𝐺1 ◦ · · · ◦ 𝐺𝑚 via

𝑉(𝐺1 ◦ · · · ◦ 𝐺𝑚) B 𝑉(𝐺1) × · · · ×𝑉(𝐺𝑚) and

𝐸(𝐺1 ◦ · · · ◦ 𝐺𝑚) B {{(𝑢1 , . . . , 𝑢𝑚), (𝑣1 , . . . , 𝑣𝑚)}
: there is an 𝑖 ∈ [𝑚] with 𝑢𝑗 = 𝑣 𝑗 for all 𝑗 < 𝑖 and {𝑢𝑖 , 𝑣𝑖} ∈ 𝐸(𝐺𝑖)}.

As an easy example, observe that we have 𝐺1 ◦ 𝐺2 � 𝐺1
〈
𝐺2 , . . . , 𝐺2

〉
and 𝐺1 ◦ 𝐺2 ◦ 𝐺3 � 𝐺1

〈
𝐺2 ◦

𝐺3 , . . . , 𝐺2 ◦ 𝐺3
〉
.

Remark 7.9. Another name for the lexicographic product is wreath product of graphs [ABD+18, DM09].
The name wreath product emphasizes the close connection between the group theoretical wreath products
of automorphism subgroups 𝐴 ⊆ Aut(𝐺) and 𝐵 ⊆ Aut(𝐻), and the wreath products of 𝐺 and 𝐻. Further,
there is a close connection between the group-theoretical wreath product and the wreath product of
groups when considering fixed points. However, as our proofs do not use the terminology of wreath
product of groups, we chose the more common name lexicographic product.

Let us take a closer look at the lexicographic product of difference graphs.

Lemma 7.10. Write 𝑝 for a prime and 𝑚 for a positive integer. Further, for each 𝑖 ∈ [𝑚], write 𝐴𝑖 ⊆ F+𝑝 for a

subset. Then, 𝐸(𝐶𝐴1
𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 ) is equal to

{{(𝑎1 , . . . 𝑎𝑚), (𝑏1 , . . . 𝑏𝑚)} : ∃𝑖 ∈ [𝑚] : (∀𝑗 < 𝑖 : 𝑎 𝑗 = 𝑏 𝑗) and 𝑎𝑖 − 𝑏𝑖 ∈ 𝐴𝑖 ∪ (−𝐴𝑖)}

Proof. Unfolding the definition of the lexicographic product, we observe that {(𝑎1 , . . . , 𝑎𝑚), (𝑏1 , . . . , 𝑏𝑚)}
is an edge of 𝐶𝐴1

𝑝 ◦ . . . ◦ 𝐶𝐴𝑚𝑝 if we can find a 𝑖 such that 𝑎 𝑗 = 𝑏 𝑗 for 𝑗 < 𝑖 and {𝑎𝑖 , 𝑏𝑖} ∈ 𝐶𝐴𝑖𝑝 . Finally, we
recall that {𝑎𝑖 , 𝑏𝑖} ∈ 𝐶𝐴𝑖𝑝 is equivalent to 𝑎𝑖 − 𝑏𝑖 ∈ 𝐴𝑖 ∪ (−𝐴𝑖).

Next, we use the lexicographic product of difference graphs to understand the fixed points FP(Syl𝑝𝑚 , 𝐾𝑝𝑚 ).

Lemma 7.11. For any prime 𝑝 and any positive integer 𝑚, we have

FP(Syl𝑝𝑚 , 𝐾𝑝𝑚 ) = {𝐶𝐴1
𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 : 𝐴𝑖 ⊆ F+𝑝 }.

Proof. Write 𝐶 B {𝐶𝐴1
𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 : 𝐴𝑖 ⊆ F+𝑝 }.

𝐶 ⊆ FP(Syl𝑝𝑚 , 𝐾𝑝𝑚 ). Fix sets 𝐴𝑖 and the corresponding graph 𝐻 B 𝐶𝐴1
𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 . We prove that 𝐻 is a

fixed point of Syl𝑝𝑚 by verifying that 𝜑(𝐻) = 𝐻 holds for every function 𝜑 ∈ Syl𝑝𝑚 .
To that end, fix a 𝜑 ∈ Syl𝑝𝑚 . Further, fix an edge {(𝑎1 , . . . , 𝑎𝑚), (𝑏1 , . . . , 𝑏𝑚)} ∈ 𝐸(𝐻). We show that

{𝜑(𝑎1 , . . . , 𝑎𝑚), 𝜑(𝑏1 , . . . , 𝑏𝑚)} ∈ 𝐸(𝐻). From Lemma 7.10 we obtain an 𝑖 ∈ [𝑚] such that 𝑎 𝑗 = 𝑏 𝑗 for all
𝑗 < 𝑖 and 𝑎𝑖 − 𝑏𝑖 ∈ 𝐴𝑖 ∪ (−𝐴𝑖). Without loss of generality, we assume that 𝑎𝑖 − 𝑏𝑖 ∈ 𝐴𝑖 (otherwise switch
the roles of 𝑎 and 𝑏). Observe that we need only the values 𝑎1 , . . . , 𝑎 𝑗 to compute the 𝑗-th coordinate of
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𝜑(𝑎) (the same is true for the 𝑗-th coordinate of 𝜑(𝑏)). This implies 𝜑(𝑎)𝑗 = 𝜑(𝑏)𝑗 for all 𝑗 < 𝑖. Further, we
obtain

𝜑(𝑎)𝑖 − 𝜑(𝑏)𝑖 = 𝑎𝑖 + (𝜑0 , . . . , 𝜑𝑖−1)(𝑎1 , . . . , 𝑎𝑖−1) − (𝑏𝑖 + (𝜑0 , . . . , 𝜑𝑖−1)(𝑏1 , . . . , 𝑏𝑖−1))
= 𝑎𝑖 + (𝜑0 , . . . , 𝜑𝑖−1)(𝑎1 , . . . , 𝑎𝑖−1) − (𝑏𝑖 + (𝜑0 , . . . , 𝜑𝑖−1)(𝑎1 , . . . , 𝑎𝑖−1))
= 𝑎𝑖 − 𝑏𝑖 ∈ 𝐴𝑖 ,

which implies that {𝜑(𝑎1 , . . . , 𝑎𝑚), 𝜑(𝑏1 , . . . , 𝑏𝑚)} is an edge in 𝐻. Thus, 𝜑 maps edges of 𝐻 to edges of 𝐻
and is therefore an automorphism.

FP(Syl𝑝𝑚 , 𝐾𝑝𝑚 ) ⊆ 𝐶. We prove the contrapositive, that is, we prove that each graph 𝐻 with vertex set
𝑉(𝐾𝑝𝑚 ) that is not in 𝐶 is also not in FP(Syl𝑝𝑚 , 𝐾𝑝𝑚 ).

To that end, we construct a 𝜑 ∈ Syl𝑝𝑚 with 𝜑(𝐻) ≠ 𝐻. If 𝐻 ∉ 𝐶, then, due to Lemma 7.10, there are an
𝑖 ∈ [𝑚] and an 𝑥 ≠ 0 such that

𝑢 B {(𝑎1 , . . . , 𝑎𝑖−1 , 𝑎𝑖 , 𝑏𝑖+1 , . . . , 𝑏𝑚), (𝑎1 , . . . , 𝑎𝑖−1 , 𝑎𝑖 + 𝑥, 𝑐𝑖+1 , . . . , 𝑐𝑚)} is an edge in 𝐻 but
𝑣 B {(𝑎1 , . . . , 𝑎𝑖−1 , 𝑑𝑖 , 𝛽𝑖+1 , . . . , 𝛽𝑚), (𝑎1 , . . . , 𝑎𝑖−1 , 𝑑𝑖 + 𝑥, 𝛾𝑖+1 , . . . , 𝛾𝑚)} is not an edge in 𝐻.

Next, we consider the group element 𝜑 B (𝜑0 , . . . 𝜑𝑚−1) with

𝜑𝑚−1(𝑥1 , . . . 𝑥𝑚−1) B


𝛽𝑚 − 𝑏𝑚 if (𝑥1 , . . . 𝑥𝑚−1) = (𝑎1 , . . . , 𝑎𝑖 , 𝑏𝑖+1 , . . . , 𝑏𝑚−1)
𝛾𝑚 − 𝑐𝑚 if (𝑥1 , . . . 𝑥𝑚−1) = (𝑎1 , . . . , 𝑎𝑖 + 𝑥, 𝑐𝑖+1 , . . . , 𝑐𝑚−1)

0 otherwise

and 𝜑 𝑗 B id for 𝑗 ≠ 𝑚 − 1. We obtain

𝜑(𝑢) = {(𝑎1 , . . . , 𝑎𝑖 , 𝑏𝑖+1 , . . . , 𝑏𝑚−1 , 𝛽𝑚), (𝑎1 , . . . , 𝑎𝑖 + 𝑥, 𝑐𝑖+1 , . . . , 𝑐𝑚−1 , 𝛾𝑚).
In particular, the last coordinate of the edge 𝜑(𝑢) is equal to the last coordinate of the edge 𝑣. By iterating
this construction, we obtain an 𝜓 ∈ Syl𝑝𝑚 with

𝜓(𝑢) = {(𝑎1 , . . . , 𝑎𝑖 , 𝛽𝑖+1 , . . . , 𝛽𝑚), (𝑎1 , . . . , 𝑎𝑖 + 𝑥, 𝛾𝑖+1 , . . . , 𝛾𝑚)}.
Lastly, we define �̃� B (�̃�0 , . . . , �̃�𝑚−1) with

�̃�𝑖(𝑥1 , . . . 𝑥𝑖−1) B
{
𝑑𝑖 − 𝑎𝑖 if (𝑥1 , . . . 𝑥𝑖−1) = (𝑎1 , . . . , 𝑎𝑖−1)

0 otherwise

and �̃� 𝑗 B id for 𝑗 ≠ 𝑖. Observe that �̃�(𝜓(𝑢)) = 𝑣. Thus there is an element in Syl𝑝𝑚 that maps the edge 𝑢
to the non-edge 𝑣 which shows that 𝐻 is not in FP(Syl𝑝𝑚 , 𝐾𝑝𝑚 ).

Lastly, we compute the level of fixed points in FP(Syl𝑝𝑚 , 𝐾𝑝𝑚 ).

Lemma 7.12. For any prime 𝑝 and any positive integer 𝑚, the level of 𝐶𝐴1
𝑝 ◦ . . . ◦ 𝐶𝐴𝑚𝑝 ∈ FP(Syl𝑝𝑚 , 𝐾𝑝𝑚 ) is

ℓ (𝐶𝐴1
𝑝 ◦ . . . ◦ 𝐶𝐴𝑚𝑝 ) =

𝑚∑
𝑖=1

|𝐴𝑖 |.

Proof. For an 𝑥 ∈ F+𝑝 , consider the fixed point 𝐹 B 𝐶𝐴1
𝑝 ◦ · · · ◦ 𝐶𝐴𝑗𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 , where 𝐴 𝑗 B {𝑥} and

𝐴𝑖 B ∅ otherwise.

Claim 7.13. We have ℓ (𝐹) = 1.
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Proof. Recall from Definition 4.5 that the level of 𝐹 is defined as the size of the orbit factorization of 𝐹. As
𝐹 has edges, the orbit factorization of 𝐹 is not empty. Thus, the level of 𝐹 is at least 1.

Next, suppose that ℓ (𝐹) > 1. Then, the orbit factorization of 𝐹 contains at least two orbits. This implies
that there is a proper sub-point 𝐹′ ⊊ 𝐹 that contains at least one orbit and is therefore not the empty
graph. However, if 𝐹′ is a proper sub-point of 𝐹 then

𝐹′ = 𝐶𝐵1
𝑝 ◦ · · · ◦ 𝐶𝐵𝑗𝑝 ◦ · · · ◦ 𝐶𝐵𝑚𝑝 ,

with ∅ ⊊ 𝐵 𝑗 ⊊ 𝐴 𝑗 = {𝑥} and 𝐵𝑖 ⊆ 𝐴𝑖 = ∅; which is a contradiction. Hence, we have ℓ (𝐹) ≤ 1 which yields
the claim.

Next, observe that for all 𝑥 ≠ 𝑦 ∈ F+𝑝 , the conditions

𝑎 𝑗 − 𝑏 𝑗 ∈ {𝑥,−𝑥} 𝑎 𝑗 − 𝑏 𝑗 ∈ {𝑦,−𝑦}

are mutually exclusive. Hence, for a fixed point 𝐹′ B 𝐶∅
𝑝 ◦ · · · ◦ 𝐶∅

𝑝 ◦ 𝐶𝐴 𝑗𝑝 ◦ 𝐶∅
𝑝 ◦ · · · ◦ 𝐶∅

𝑝 with 𝐴 𝑗 ⊆ F+𝑝𝑚 ,
we obtain the following disjoint union

𝐸(𝐹) = {{(𝑎1 , . . . 𝑎𝑚), (𝑏1 , . . . 𝑏𝑚)} : (∀𝑖 < 𝑗 : 𝑎𝑖 = 𝑏𝑖) and 𝑎 𝑗 − 𝑏 𝑗 ∈ 𝐴 𝑗 ∪ (−𝐴 𝑗)}
=

⋃
𝑥∈𝐴𝑗

{{(𝑎1 , . . . 𝑎𝑚), (𝑏1 , . . . 𝑏𝑚)} : ∀𝑖 < 𝑗 : 𝑎𝑖 = 𝑏𝑖) and 𝑎 𝑗 − 𝑏 𝑗 ∈ {𝑥,−𝑥}}

=
⋃
𝑥∈𝐴𝑗

𝐸(𝐶∅
𝑝 ◦ · · · ◦ 𝐶∅

𝑝 ◦ 𝐶{𝑥}
𝑝 ◦ 𝐶∅

𝑝 ◦ · · · ◦ 𝐶∅
𝑝 ).

Hence, we have ℓ (𝐹′) = |𝐴 𝑗 |.
Lastly, for a general fixed point we obtain

𝐸(𝐶𝐴1
𝑝 ◦ · · · ◦ 𝐶𝐴𝑗𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 ) =

⋃
𝑗∈[𝑚]

𝐸(𝐶∅
𝑝 ◦ · · · ◦ 𝐶∅

𝑝 ◦ 𝐶𝐴𝑗𝑝 ◦ 𝐶∅
𝑝 ◦ · · · ◦ 𝐶∅

𝑝 ).

Thus, we have ℓ (𝐶𝐴1
𝑝 ◦ · · · ◦ 𝐶𝐴𝑗𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 ) = ∑𝑚

𝑖=1 |𝐴𝑖 |; which completes the proof.

Let us briefly discuss why the fixed points FP(Syl𝑝𝑚 , 𝐾𝑝𝑚 ) are useful to us. Recall that our goal is the
find nonvanishing fixed points with large treewidth. Achieving this goal is easier if many fixed points
have a large treewidth. Fixed points have a large treewidth if they consist of orbits that have a large
treewidth. Typically, orbits (and graphs in general) have a large treewidth if they have many edges.
Since each orbit has the form Syl𝑝𝑚 · {𝑖 , 𝑗} B {{𝜑(𝑖), 𝜑(𝑗)} : 𝜑 ∈ Syl𝑝𝑚 }, for some edge {𝑖 , 𝑗} ∈ 𝐸(𝐾𝑝𝑚 ), we
observe that larger groups lead to larger orbits. Now, we additionally need that our group is a 𝑝-group.
As the 𝑝-Sylow group Syl𝑝𝑚 is by definition the largest 𝑝 group in 𝔖𝑝𝑚 , the choice of the group Syl𝑝𝑚 is in
some sense optimal.

More concretely, we may compare the number of orbits 𝐸(𝐾𝑝𝑚 )/⟳𝑝𝑚 and the number of orbits
𝐸(𝐾𝑝𝑚 )/Syl𝑝𝑚 . As orbits form a partition of the edge set of 𝐾𝑝𝑚 , having fewer orbits leads to orbits that
have more edges on average. Now, recall that by Lemma 5.2, 𝐸(𝐾𝑝𝑚 )/⟳𝑝𝑚 contains |F+𝑝𝑚 | orbits, which is
equal to (𝑝𝑚 − 1)/2 if 𝑝 is odd. Next, Lemma 7.12 shows that 𝐸(𝐾𝑝𝑚 )/Syl𝑝𝑚 contains 𝑚 · |F+𝑝 | orbits, which
is equal to 𝑚 · (𝑝 − 1)/2 if 𝑝 is odd. This is much smaller than (𝑝𝑚 − 1)/2.
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7.2 Prime Powers Contain Large Bicliques

Next, we prove Theorem 7.18 by analyzing the fixed points FP(Syl𝑝𝑚 , 𝐾𝑝𝑚 ). To that end, one impor-
tant observation is that a fixed point 𝐶𝐴1

𝑝 ◦ . . . ◦ 𝐶𝐴𝑚𝑝 has a large biclique if there is a small position
𝑖 with 𝐴𝑖 ≠ ∅. This implies that there is an edge between all vertices (𝑎1 , . . . , 𝑎𝑖−1 , 𝑎𝑖 , 𝑎𝑖+1 , . . . 𝑎𝑚)
and (𝑎1 , . . . , 𝑎𝑖−1 , 𝑏𝑖 , 𝑏𝑖+1 , . . . , 𝑏𝑚) as long as 𝑎𝑖 − 𝑏𝑖 ∈ 𝐴𝑖 ∪ (−𝐴𝑖). As we are free in our choice of
𝑎𝑖+1 , . . . , 𝑎𝑚 , 𝑏𝑖+1 , . . . , 𝑏𝑚 ∈ [0 . . 𝑝), this leads to a large biclique. Thus, it is useful to keep track of this
value 𝑖.

Definition 7.14. Write 𝐻 B 𝐶𝐴1
𝑝 ◦ . . . ◦ 𝐶𝐴𝑚𝑝 for a fixed point of FP(Syl𝑝𝑚 , 𝐾𝑝𝑚 ). The empty-prefix of 𝐻 is

the smallest index 𝑖 with 𝐴𝑖 ≠ ∅, minus one; we write 𝜀(𝐴1 , . . . , 𝐴𝑚) B 𝑖 − 1.

As discussed earlier, we use the empty-prefix of a fixed point to find large a biclique as a subgraph.

Lemma 7.15. Let 𝑝 denote a prime number and let 𝑚 denote a positive integer. For each 𝑖 ∈ [𝑚], let 𝐴𝑖 ⊆ F+𝑝
denote a subset and set 𝐴 B (𝐴1 , . . . , 𝐴𝑚). Then, 𝐶𝐴1

𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 contains 𝐾𝑝𝑚−1−𝜀(𝐴) ,𝑝𝑚−1−𝜀(𝐴) as a subgraph.

Proof. Set 𝑡 B 𝜀(𝐴) + 1. We have 𝐴𝑡 ≠ ∅. Hence, there are 𝑥 ∈ 𝐴𝑡 and 𝛼, 𝛽 ∈ [0 . . 𝑝) with 𝛼 − 𝛽 = 𝑥.
Now, we obtain that all vertices of the form (𝑎1 , . . . 𝑎𝑡−1 , 𝛼, 𝑏𝑡+1 , . . . , 𝑏𝑚) are connected to the vertices
(𝑎1 , . . . 𝑎𝑡−1 , 𝛽, 𝑐𝑡+1 , . . . , 𝑐𝑚) since they coincide on the first 𝑡 − 1 elements and the 𝑡-th element differs by 𝑥.
In particular, as we can freely choose 𝑏𝑡+1 , . . . , 𝑏𝑚 and 𝑐𝑡+1 , . . . , 𝑐𝑚 , we obtain a complete bipartite subgraph
where one side contains all vertices of the from (𝑎1 , . . . 𝑎𝑡−1 , 𝛼, 𝑏𝑡+1 , . . . , 𝑏𝑚) and the other side contains all
vertices of the from (𝑎1 , . . . 𝑎𝑡−1 , 𝛽, 𝑐𝑡+1 , . . . , 𝑐𝑚). Both sides contain 𝑝𝑚−(𝑡+1)+1 = 𝑝𝑚−𝑡 = 𝑝𝑚−1−𝜀(𝐴) vertices.
Thus, 𝐾𝑝𝑚−1−𝜀(𝐴) ,𝑝𝑚−1−𝜀(𝐴) is a subgraph of 𝐶𝐴1

𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 .

Imagine that our graph property is nontrivial on 𝑝𝑚 for𝑚 ≥ 2. If we find a fixed point𝐻 = 𝐶𝐴1
𝑝 ◦· · ·◦𝐶𝐴𝑚𝑝

with a minimal empty-prefix of 𝜀(𝐴1 , . . . , 𝐴𝑚) = 0, then we know that the treewidth of 𝐻 is at least 𝑝𝑚−1.
Thus, our goal is to find a fixed point 𝐻 with 𝜀(𝐴1 , . . . , 𝐴𝑚) = 0 and Φ̂(𝐻) .𝑝 0.

To this end, we prove that a fixed point with a high empty-prefix is always isomorphic to an edge-
subgraph of a fixed point with a low empty-prefix. This in turn allows us to consider only fixed points
with low empty-prefix. To be more precise, we show that each fixed point 𝐶∅

𝑝 ◦ · · ·𝐶∅
𝑝 ◦ 𝐶𝐴1

𝑝 ◦ · · · ◦ 𝐶𝐴𝑚−𝑗
𝑝

is isomorphic to an edge-subgraph of 𝐶𝐴1
𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 .

For a formal proof, we define the forward revolution.

Definition 7.16. For a prime 𝑝 and a positive integer 𝑚, we define the forward revolution of 𝐾𝑝𝑚 as

−→𝜑 𝑝𝑚 : 𝑉(𝐾𝑝𝑚 ) → 𝑉(𝐾𝑝𝑚 ); (𝑎1 . . . , 𝑎𝑚) ↦→ (𝑎𝑚 , 𝑎1 , . . . , 𝑎𝑚−1).

Using Definition 7.16 allows us to prove the following lemma.

Lemma 7.17. Let 𝑝 denote a prime number and let 𝑚 denote a positive integer. For each 𝑖 ∈ [𝑚], let 𝐴𝑖 ⊆ F+𝑝
denote a subset. Then, for all 𝑗 ∈ [𝑚], the graph 𝐶∅

𝑝 ◦ · · ·𝐶∅
𝑝 ◦ 𝐶𝐴1

𝑝 ◦ · · · ◦ 𝐶𝐴𝑚−𝑗
𝑝 is isomorphic to an edge-subgraph

of 𝐶𝐴1
𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 .

Proof. We only show that 𝐻 B 𝐶∅
𝑝 ◦ 𝐶𝐴1

𝑝 ◦ · · · ◦ 𝐶𝐴𝑚−1
𝑝 is isomorphic to an edge-subgraph of 𝐻 B

𝐶𝐴1
𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 . Iterating then yields the general result.

We show that 𝐻 is an edge-subgraph of −→𝜑 𝑝𝑚 (𝐻) by showing that {𝑎, 𝑏} ∈ 𝐸(𝐻) implies {𝑎, 𝑏} ∈
𝐸(−→𝜑 𝑝𝑚 (𝐻)). This proves the claim as −→𝜑 𝑝𝑚 is a bijective function and hence, −→𝜑 𝑝𝑚 (𝐻) is isomorphic to 𝐻.
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For all {𝑎, 𝑏} ∈ 𝐸(𝐻), we obtain that there is an 𝑖 ∈ {2, . . . , 𝑚} with 𝑎 𝑗 = 𝑏 𝑗 for all 𝑗 < 𝑖 and
𝑎𝑖 − 𝑏𝑖 ∈ 𝐴𝑖−1 ∪ (−𝐴𝑖−1). Without loss of generality, we assume that 𝑎𝑖 − 𝑏𝑖 ∈ 𝐴𝑖−1 (otherwise we switch
the roles of 𝑎 and 𝑏).

Next, we show that {�̃� , �̃�} ∈ 𝐸(𝐻), where �̃� = (𝑎2 , . . . , 𝑎𝑚 , 𝑎1) and �̃� = (𝑏2 , . . . , 𝑏𝑚 , 𝑏1). Observe that for
𝑠 B 𝑖 − 1 ∈ [𝑚], we obtain �̃� 𝑗 = 𝑎 𝑗+1 = 𝑏 𝑗+1 = �̃� 𝑗 for all 𝑗 + 1 < 𝑖 which is equivalent to 𝑗 < 𝑠. Further, we
obtain �̃�𝑠 − �̃�𝑠 ≡ 𝑎𝑖−𝑏𝑖 ∈ 𝐴𝑠 which proves that {�̃� , �̃�} ∈ 𝐸(𝐻). This implies {−→𝜑 𝑝𝑚 (̃𝑎),−→𝜑 𝑝𝑚 (�̃�)} ∈ 𝐸(−→𝜑 𝑝𝑚 (𝐻)).
Finally, we observe that −→𝜑 𝑝𝑚 (̃𝑎) = 𝑎 and −→𝜑 𝑝𝑚 (�̃�) = 𝑏 which shows that {𝑎, 𝑏} is an edge of −→𝜑 𝑝𝑚 (𝐻). This
completes the proof.

We are now ready to prove Theorem 7.18.

Theorem 7.18. Let Φ denote an edge-monotone graph property that is nontrivial on a prime power 𝑝𝑚 , then

there is a nonvanishing fixed point of Syl𝑝𝑚 in 𝐾𝑝𝑚 that contains 𝐾𝑝𝑚−1 ,𝑝𝑚−1 as a subgraph.

Proof. Our goal is to show that there is a fixed point 𝐻 with the following properties

𝐻 = 𝐶𝐴1
𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 for 𝐴𝑖 ⊆ F+𝑝 ,

Φ(𝐻) = 0,
𝜀(𝐴1 , . . . , 𝐴𝑚) = 0, and
Φ(�̃�) = 1 for all proper sub-points �̃� of 𝐻.

As Φ is nontrivial on 𝑝𝑚 , we have Φ(𝐾𝑝𝑚 ) = 0 and Φ(IS𝑝𝑚 ) = Φ(𝐶∅
𝑝 ◦ · · · ◦ 𝐶∅

𝑝 ) = 1. Now, let 𝑖 denote
the smallest value such that there is a fixed point 𝐻 of level 𝑖 that does not satisfy Φ, but all fixed points of
level smaller than 𝑖 satisfy Φ. As Φ(IS𝑝𝑚 ) = 1, we have 𝑖 > 0.

Claim 7.19. There is a fixed point 𝐻 of level 𝑖 with Φ(𝐻) = 0 and whose empty-prefix is zero.

Proof. Toward an indirect proof, assume that all fixed points𝐶𝐴1
𝑝 ◦· · ·◦𝐶𝐴𝑚𝑝 of level 𝑖with 𝜀(𝐴1 , . . . , 𝐴𝑚) = 0

satisfy Φ. We show that now, all fixed points of level 𝑖 satisfy Φ, which is a contradiction to our choice of 𝑖.
To that end, fix an 𝐹 B 𝐶𝐴1

𝑝 ◦ . . . ◦ 𝐶𝐴𝑚𝑝 . If 𝜀(𝐴1 , . . . , 𝐴𝑚) = 0, then Φ(𝐹) = 1 due to our assumption.
Otherwise, 𝜀(𝐴1 , . . . , 𝐴𝑚) > 0, which means that 𝐹 has the form 𝐹 = 𝐶∅

𝑝 ◦ · · · ◦ 𝐶∅
𝑝 ◦ 𝐶𝐴1

𝑝 ◦ . . . ◦ 𝐶𝐴𝑚−𝑗
𝑝 and

is thus, by Lemma 7.17, isomorphic to an edge-subgraph of

𝐹′ B 𝐶𝐴1
𝑝 ◦ · · · ◦ 𝐹𝐴𝑚−𝑗

𝑝 ◦ 𝐶∅
𝑝 ◦ · · · ◦ 𝐶∅

𝑝 .

By Lemma 7.12, the level of 𝐹 is equal to the level of 𝐹′. Thus by assumption, 𝐹′ satisfies Φ and hence 𝐹
also satisfies Φ as Φ is edge-monotone.

By Claim 7.19, we may assume that there is a fixed point 𝐻 B 𝐶𝐴1
𝑝 ◦ · · · ◦ 𝐶𝐴𝑚𝑝 of level 𝑖 with

𝜀(𝐴1 , . . . , 𝐴𝑚) = 0 that does not satisfy Φ. Now, as the empty-prefix of 𝐻 is zero, Lemma 7.15 yields that
𝐻 contains 𝐾𝑝𝑚−1 ,𝑝𝑚−1 as a subgraph. Finally, we apply Lemma 4.8 to show that Φ̂(𝐻) does not vanish;
which completes the proof.
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7.3 Quantitative Lower Bounds

Next, we prove Main Theorem 2. Observe that Main Theorem 2 differs from Theorem 5.16 since the
constant 𝛼 of Theorem 5.16 does not depend on a specific prime.

Main Theorem 2. For each prime 𝑝, there is a constant 𝛾𝑝 > 0 such that for each integer 𝑚 with 𝑝𝑚 ≥ 3 and

each edge-monotone graph property Φ that is nontrivial on 𝑝𝑚 , no algorithm (that reads the whole input) computes

for every graph 𝐺 the number #IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛾𝑝𝑝𝑚 ), unless ETH fails.

Proof. First, we show that assuming ETH, there are a constant 𝛾′
𝑝 > 0 and a constant 𝑁𝑝 such that for

all fixed 𝑘 = 𝑝𝑚 ≥ 𝑁𝑝 and each edge-monotone graph property Φ that is nontrivial on 𝑘, no algorithm
computes for each graph 𝐺 the number #IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛾𝑝 𝑘).

We intend to use Theorem C.2, which shows that nonvanishing graphs with large bicliques are
sufficient to prove the result. Write 𝛽 > 0 and 𝑁′ for the constants from Theorem C.2. We define
ℎ(𝑘) B 𝑘/𝑝 and 𝛾′

𝑝 B 𝛽/𝑝 and 𝑁𝑝 B 𝑁′ · 𝑝.
Consider a 𝑘 = 𝑝𝑚 ≥ 𝑁𝑝 . Clearly, ℎ(𝑘) ≥ 𝑁′. Further, write Φ for an edge-monotone graph property

that is nontrivial on 𝑘. Theorem 7.18 yields a graph 𝐹 with 𝑘 vertices, Φ̂(𝐹) ≠ 0, and that contains 𝐾ℎ(𝑘),ℎ(𝑘)
as a subgraph. Now, if for every graph 𝐺, we could compute the number #IndSub((Φ, 𝑘) → ★) in time
𝑂(|𝑉(𝐺)|𝛾𝑝 𝑘) = 𝑂(|𝑉(𝐺)|𝛽ℎ(𝑘)), then Theorem C.2 would show that ETH fails.

To obtain our lower bound also for 𝑘 < 𝑁𝑝 , we set 𝛾𝑝 B min(𝛾′
𝑝 , 1/(𝑁𝑝 + 1)). Observe that for

𝑘 = 𝑝𝑚 < 𝑁𝑝 , we obtain
𝑂(|𝑉(𝐺)|𝛾𝑝 𝑘) = 𝑜(|𝑉(𝐺)|).

Now, such a running time is unconditionally unachievable for any algorithm that reads the whole input.
This completes the proof.

Finally, we extend Main Theorem 2 from prime powers to products of 𝑐 prime powers (times a
constant 𝑑). However, this comes at the cost of a weaker lower bound in the exponent.

Theorem 7.20. Let 𝑝1 , . . . , 𝑝𝑐 denote primes and let 𝑑 denote a positive integer. Then, there is a constant 𝛾 > 0
(that depends on 𝑝1 , . . . , 𝑝𝑐 and 𝑑) such that for all fixed 𝑘 = 𝑑 · 𝑝𝑚1

1 · · · 𝑝𝑚𝑐
𝑐 ≥ 3 and all edge-monotone graph

properties Φ that are nontrivial on 𝑘, no algorithm (that reads the whole input) computes for every graph 𝐺 the

number #IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛾 𝑐√𝑘), unless ETH fails.

Proof. First, we show that assuming ETH, there are a constant 𝛾′ > 0 and a constant 𝑁 such that for all
fixed 𝑘 = 𝑑 · 𝑝𝑚1

1 · · · · · 𝑝𝑚𝑐
𝑐 ≥ 𝑁 and each edge-monotone graph property Φ that is nontrivial on 𝑘, no

algorithm computes for each graph 𝐺 the number #IndSub((Φ, 𝑘) → 𝐺) in time |𝑉(𝐺)|𝛾 𝑐√𝑘 .
To that end, we set ℎ(𝑘) B ⌈ 𝑐

√
𝑘/𝑑⌉. Observe that from Lemma 6.16, we obtain 𝑞(𝑘) ≥ ℎ(𝑘) for all 𝑘

with 𝑘 = 𝑑 · 𝑝𝑚1
1 · · · · · 𝑝𝑚𝑐

𝑐 . As 𝑞(𝑘) is a positive integer, we may safely round up 𝑐
√
𝑘/𝑑. Further, write 𝑐 > 0

for the constant of Lemma 6.16 (3).
Next, write 𝛾0 > 0 and 𝑁′ for the universal constants from Theorem C.2. Further, for each prime

number 𝑝𝑖 we use Main Theorem 2 to obtain a constant 𝛾𝑖 . Now, set 𝛾′ B min(𝛾0 , . . . , 𝛾𝑝)/(2 𝑐
√
𝑑) and

𝑁 B max(𝑑 · 𝑁′𝑐 , 4𝑐/(𝑑𝛾𝑐), exp(𝑑/𝑐) + 1).
Fix a 𝑘 = 𝑑 · 𝑝𝑚1

1 · · · · · 𝑝𝑚𝑐
𝑐 ≥ 𝑁 and an edge-monotone graph property Φ that is nontrivial on 𝑘. Now,

Φ is either scattered or concentrated on 𝑘; we provide a proof for both cases.
First, we consider the case that Φ is scattered on 𝑘. Define 𝑚 = 𝑞(𝑘). Let 𝐻𝑚 be the graph defined

in Definition 6.21 such that (Φ − 𝐻) B {𝐺 : 𝐺 ⊎ 𝐻 ∈ Φ} is edge-monotone and nontrivial on 𝑞(𝑘). Now,
we use Lemma 6.16 to obtain 𝑞(𝑘) ≥ 𝑐 log(𝑘) > 𝑐 log(exp(𝑑/𝑐)) = 𝑑, which implies 𝑞(𝑘) = 𝑝�̂�𝑖

𝑖 for some
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𝑖 ∈ [𝑐] and �̂�𝑖 ≥ 𝑚𝑖 . Further, we obtain 𝑞(𝑘) ≥ 𝑐
√
𝑘/𝑑 ≥ 𝑁′ due to Lemma 6.16. Similarly to the proof of

Main Theorem 1, assuming ETH, Main Theorem 2 shows that there is no algorithm that for each graph 𝐺
computes the number #IndSub(((Φ − 𝐻), 𝑞(𝑘)) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛾𝑖 𝑞(𝑘)).

Now, assume that for each graph 𝐺, we could compute #IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛾′ 𝑐√𝑘).
Then, using Lemma 6.12 to compute #IndSub(((Φ − 𝐻), 𝑞(𝑘)) → 𝐺) in time

𝑂(2𝑘−𝑞(𝑘)(|𝑉(𝐺)| + 𝑘 − 𝑞(𝑘))2 · (|𝑉(𝐺)| + 𝑘 − 𝑞(𝑘))𝛾′ 𝑐√𝑘) = 𝑂(|𝑉(𝐺)|2 · |𝑉(𝐺)|𝛾′ 𝑐√𝑘)
∗⊆ 𝑂(|𝑉(𝐺)|𝛾𝑖 𝑐

√
𝑘/𝑑) ⊆ 𝑂(|𝑉(𝐺)|𝛾𝑖 𝑞(𝑘))

would show that ETH fails. The last step is justified by 𝑐
√
𝑘/𝑑 ≤ 𝑞(𝑘). The step (∗) is justified by

2 + 𝛾
𝑐
√
𝑘 ≤ 2 + 𝛾𝑖

2 𝑐
√
𝑑

𝑐
√
𝑘 ≤ 𝛾𝑖

𝑐
√
𝑑

𝑐
√
𝑘 = 𝛾𝑖

𝑐
√
𝑘/𝑑.

The second inequality is equivalent to 4𝑐/(𝑑𝛾𝑐𝑖 ) ≤ 𝑘, which is true since 𝑁 ≤ 𝑘.
Next, we consider the case that Φ is concentrated on 𝑘. Then by definition there is a 𝑘-vertex

graph 𝐻 with a nonvanishing alternating enumerator that contains 𝐾𝑞(𝑘),𝑞(𝑘) as a subgraph. Now, since
𝑘 ≥ 𝑑 · 𝑁′𝑐 and since ℎ is monotonically increasing, we obtain ℎ(𝑘) ≥ ℎ(𝑑 · 𝑁′𝑐) ≥ 𝑁′. Further, we have
𝑞(𝑘) ≥ ℎ(𝑘) ≥ 𝑐

√
𝑘/𝑑, thus Theorem C.2 yields that there is no algorithm that computes for each graph

𝐺 the number #IndSub((Φ, 𝑘) → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛾0
𝑐
√
𝑘/𝑑) ⊇ 𝑂(|𝑉(𝐺)|𝛾′ 𝑐√𝑘), where this is justified by

𝛾′ ≤ 𝛾0/ 𝑐
√
𝑑.

To obtain our lower bound also for 𝑘 < 𝑁 , we set 𝛾 B min(𝛾′, 1/(𝑁 + 1)). Now, for 𝑘 < 𝑁 we obtain

𝑂(|𝑉(𝐺)|𝛾 𝑐√𝑘) = 𝑜(|𝑉(𝐺)|).
Now, such a running time is unconditionally unachievable for any algorithm that reads the whole input.
This completes the proof.
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A Graph Properties and the Alternating Enumerator

As described in the Technical Overview, using a 𝑝-subgroup of the automorphism group, we can simplify
the computation of the alternating enumerator (modulo 𝑝).

Lemma A.1 ([DRSW22]). Let 𝐻 denote a graph and let Γ ⊆ Aut(𝐻) denote a 𝑝-group, then

ˆΦ(𝐻) ≡𝑝
∑

𝐴∈FP(Γ,𝐻)
Φ(𝐴)(−1)#𝐸(𝐴).

Proof. We follow the proof of [DRSW22, Lemma 1].
First, we rewrite the definition of the alternating enumerator to use edge-subgraphs of 𝐻 instead of

subsets of the edges of 𝐻. To that end, we readily see that for each edge-subgraph 𝐴 ∈ ℰ(𝐻), we can find
a subset 𝑆 ⊆ 𝐸(𝐺) with 𝐴 = 𝐻{𝑆} and vice versa. Hence, we obtain

Φ̂(𝐻) =
∑

𝑆⊆𝐸(𝐻)
Φ(𝐻{𝑆})(−1)#𝐸(𝑆) =

∑
𝐴∈ℰ(𝐻)

Φ(𝐴)(−1)#𝐸(𝐴).

Now, recall that Γ acts on ℰ(𝐺) and consider the orbits of this group action · : Γ × ℰ(𝐺) → ℰ(𝐺). We
choose a representative for each orbit, which means that each orbit has the form Γ𝐴0 B {𝑔𝐴0 : 𝑔 ∈ Γ} for
an edge-subgraph 𝐴0 ∈ ℰ(𝐺). We write 𝒜 to denote the set of all representatives.

The orbits of · partition the set ℰ(𝐺), which allows us the rewrite the alternating enumerator as

Φ̂(𝐻) =
∑

𝐴∈ℰ(𝐻)
Φ(𝐴)(−1)#𝐸(𝐴) =

∑
𝐴0∈𝒜

∑
𝐴∈Γ𝐴0

Φ(𝐴)(−1)#𝐸(𝐴).

Now, fix an 𝐴 ∈ Γ𝐴0. By construction, there is a graph automorphism 𝑔 with 𝑔(𝐴) = 𝐴0. Thus, we have
Φ(𝐴) = Φ(𝐴0) and #𝐸(𝐴) = #𝐸(𝐴0) and hence

Φ̂(𝐻) =
∑
𝐴0∈𝒜

∑
𝐴∈Γ𝐴0

Φ(𝐴0)(−1)#𝐸(𝐴0) =
∑
𝐴0∈𝒜

(#Γ𝐴0)Φ(𝐴0)(−1)#𝐸(𝐴0).

Now, we use the Orbit Stabilizer Theorem to see that the size #Γ𝐴0 of any orbit of · is a divider of the
group order of Γ. As Γ is a 𝑝-group, its order is equal to 𝑝𝑘 for some 𝑘 ∈ N. Hence, #Γ𝐴0 mod 𝑝 is either
equal to 0 (if #Γ𝐴0 > 1); or equal to 1 (if #Γ𝐴0 = 1). Finally, observe that #Γ𝐴0 = 1 if and only if 𝐴0 is a
fixed point of Γ. This in turn means that only the fixed points remain when computing Φ̂(𝐻) mod 𝑝.
Hence, we obtain the claimed equation

Φ̂(𝐻) ≡𝑝
∑

𝐴∈FP(Γ,𝐻)
Φ(𝐴)(−1)#𝐸(𝐴).

Using Lemma 3.1, we obtain a useful strengthening of Lemma A.1.

Corollary A.2. For a graph 𝐺, a 𝑝-group Γ ⊆ Aut(𝐺), and a fixed point 𝐻 ∈ FP(Γ, 𝐺), we have

ˆΦ(𝐻) ≡𝑝
∑

𝐴∈FP(Γ,𝐺)
𝐸(𝐴)⊆𝐸(𝐻)

Φ(𝐴)(−1)#𝐸(𝐴).

Proof. We use Lemma 3.1(2), and in particular the characterization of FP𝐻 in terms of FP𝐺. Now,
Lemma A.1 yields the claim.
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A.1 Lower Bounds for Counting Induced Subgraphs via the Alternating
Enumerator

In this section, we prove Lemma A.8; which was implicitly proved in [DRSW22] (for the #W[1]-hardness).
As advertised, we augment Lemma A.8 with a slightly stronger quantitative lower bound by lifting a
similar result for #Hom(ℋ) due to [CCMdM21].

Lemma A.8 ([DRSW22, CCMdM21]). Let Φ denote a nontrivial graph property.

If there is a sequence of graphs with unbounded treewidth where each graph has an alternating enumerator that

is nonvanishing for Φ, then #IndSub(Φ) is #W[1]-hard.

Assuming ETH, there is a universal constant 𝛼IndSub > 0 (that is independent of Φ) such that for any

positive integer 𝑘 for which there is a graph 𝐻𝑘 with 𝑘 vertices,
ˆΦ(𝐻𝑘) ≠ 0, and tw(𝐻𝑘) ≥ 2, no algo-

rithm (that reads the whole input) computes for every graph 𝐺 the number #IndSub((Φ, 𝑘) → 𝐺) in time

𝑂(|𝑉(𝐺)|𝛼IndSub tw(𝐻𝑘 )/log tw(𝐻𝑘 )).
To that end, we need to work with colored versions of #Hom(ℋ) and #IndSub(Φ), which we define

next. Informally, in a colored problem, the vertices of the input graph 𝐺 are partitioned into classes
and we have to select exactly one vertex from each class. In the colored version of the homomorphism
problem, we are given two graphs 𝐺 and 𝐻, with a coloring 𝑐 : 𝑉(𝐺) → 𝑉(𝐻) (that is, a partitioning
𝑉(𝐺) into |𝑉(𝐻)| classes). A color-prescribed homomorphism ℎ from 𝐻 to 𝐺 is a homomorphism from
𝐻 to 𝐺 such that 𝑐(ℎ(𝑣)) = 𝑣 for all 𝑣 ∈ 𝑉(𝐻). Observe that if 𝑢 and 𝑣 are not adjacent in 𝐻, then the
existence of the edges in 𝐺 between 𝑐−1(𝑢) and 𝑐−1(𝑣) does not play any role whatsoever in the problem.
Hence we might as well assume that there are no such edges in 𝐺 at all, which formally means that 𝑐 is a
homomorphism from 𝐺 to 𝐻. Therefore, we assume that 𝑐 is indeed such a homomorphism, or in other
words, 𝐺 is 𝐻-colored via 𝑐.

We write cp-Hom(𝐻 → 𝐺) for the set of all color-prescribed homomorphism from 𝐻 to a graph 𝐺
that is 𝐻-colored via 𝑐. For a recursively enumerable class of graphs ℋ , in the problem #cp-Hom(ℋ)
we are given a graph 𝐻 ∈ ℋ and a graph 𝐺 that is 𝐻-colored via 𝑐, the task is to compute the value
#cp-Hom(𝐻 → 𝐺). We parameterize #cp-Hom(ℋ) by 𝜅(𝐻, 𝐺) B |𝑉(𝐻)|.

In the colored variant of #IndSub(Φ), the vertices of the input graph 𝐺 are partitioned into 𝑘 classes
and we are counting the number of 𝑘-vertex induced subgraphs satisfying Φ that contains exactly one
vertex from each class. However, we need to define the problem in a way that allows a closer connection
to #cp-Hom(ℋ). For a recursively enumerable class of graphs ℋ , the input of #cp-IndSub(Φ,ℋ) consists
of a graph 𝐺, a graph 𝐻 ∈ ℋ , and a 𝐻-coloring 𝑐 of 𝐺. The task is to compute the number of |𝑉(𝐻)|-
vertex induced subgraphs of 𝐺 that satisfies Φ and has exactly one vertex with each of the |𝑉(𝐻)|
colors. We denote this number by #cp-IndSub((Φ, 𝐻) → 𝐺). We parameterize #cp-IndSub(Φ,ℋ) by
𝜅(𝐻, 𝐺) B |𝑉(𝐻)|.

Write Φ for a property and let ℋ contain every graph with nonvanishing alternating enumerator. The
proof of Lemma A.8 use the hardness of #Hom(ℋ) to obtain hardness for #IndSub(Φ). It relies on the
following chain of reductions of [DRSW22].

#Hom(ℋ)
[DRSW22, Lemma 4]

≤fpt
T #cp-Hom(ℋ) (4)

[DRSW22, Lemmas 7 and 8]

≤fpt
T #cp-IndSub(Φ,ℋ)

[DRSW22, Lemma 10]

≤fpt
T #IndSub(Φ);



54 Counting Small Induced Subgraphs with Edge-monotone Properties

The first reduction is very simple (essentially, making |𝑉(𝐻)| copies of the vertex set of 𝐺) and the
last reduction is a standard application of the Inclusion-Exclusion principle. Thus, let us focus on the
reduction #cp-Hom(ℋ) ≤fpt

T #cp-IndSub(Φ) and the corresponding key lemma from [DRSW22].

Lemma A.3 ([DRSW22, Lemma 8]). Let 𝐻 denote a graph, let Φ denote a graph property, and let 𝐺 denote

an 𝐻-colored graph. Then, we have

#cp-IndSub((Φ, 𝐻) → 𝐺) =
∑

𝑆⊆𝐸(𝐻)
Φ(𝐻{𝑆})

∑
𝐽⊆𝐸(𝐻)\𝑆

(−1)#𝐽 · #cp-Hom(𝐻{𝑆 ∪ 𝐽} → 𝐺).

Further, the absolute values of
ˆΦ(𝐻) and of the coefficient of #cp-Hom(𝐻 → 𝐺) are equal.

In particular, the second part of Lemma A.3 yields that a term #cp-Hom(𝐻 → 𝐺) appears in the sum
if and only if Φ̂(𝐻) ≠ 0, which is part of our assumption in Lemma A.8.

Observe that Lemma A.3 in itself does not suffice to obtain the claimed reduction #cp-Hom(ℋ) ≤fpt
T

#cp-IndSub(Φ): the oracle for #cp-IndSub(Φ) computes only a sum in which #cp-Hom(𝐻 → 𝐺) occurs as
some term—we still need to extract the value #cp-Hom(𝐻 → 𝐺) out of the result of the oracle. Fortunately
for us, [DRSW22, Lemma 7] does exactly that by showing a generalization of the Complexity Monotonicity

of [CDM17]. The other reductions of (4) can be used without modifications. In total, we obtain the
#W[1]-hardness part of Lemma A.8.

Next, we turn to ETH-based lower bounds. We start from the binary constraint satisfaction problem
(CSP).

Definition A.4. A (binary) CSP instance is a triple (𝑉, 𝐷, 𝐶) where

𝑉 is a set of variables

𝐷 is a domain of values,

𝐶 is a set of constraints. Each constraint is a triple (𝑢, 𝑣, 𝑅) where (𝑢, 𝑣) ∈ 𝑉2
, and 𝑅 ⊆ 𝐷2

.

A solution to (𝑉, 𝐷, 𝐶) is a function 𝑓 : 𝑉 → 𝐷 such that for all constraints (𝑢, 𝑣, 𝑅), the pair ( 𝑓 (𝑢), 𝑓 (𝑣))
is in 𝑅. The primal graph of a CSP insurance (𝑉, 𝐷, 𝐶) is a graph 𝐻 with vertex set 𝑉 such that 𝑢, 𝑣 ∈ 𝑉(𝐻) are

adjacent if and only if there is a constraint in 𝐶 of the form (𝑢, 𝑣, 𝑅).
In particular, we use the following result of Cohen-Addad, Colin de Verdière, Marx, and de Mesmay,

which we can easily modify for our purposes.

Theorem A.5 ([CCMdM21, Theorem 2.7]). Assuming ETH, there is a universal constant 𝛼CSP > 0 such

that for any fixed graph 𝐻 with tw(𝐻) ≥ 2, there is no algorithm that decides the binary CSP instances whose

primal graph is 𝐻 in time 𝑂(|𝐷 |𝛼CSP ·tw(𝐻)/log tw(𝐻)).
Corollary A.6. Assuming ETH, there is a universal constant 𝛼Hom > 0 such that for any fixed graph 𝐻 with

tw(𝐻) ≥ 2, there is no algorithm that computes #Hom(𝐻 → ★) on input 𝐺 in time 𝑂(|𝑉(𝐺)|𝛼Hom ·tw(𝐻)/log tw(𝐻)).
Proof. We model the decision problem Hom({𝐻}) as a CSP. For a given graph 𝐺, we define the CSP
instance 𝐼 = (𝑉(𝐻), 𝑉(𝐺), 𝐶) with 𝐶 B {(𝑢, 𝑣, 𝐸(𝐺)) : {𝑢, 𝑣} ∈ 𝐸(𝐻)}. Each solution ℎ : 𝑉(𝐻) → 𝑉(𝐺) to
𝐼 is also a homomorphism from 𝐻 to 𝐺 and each homomorphism from 𝐻 to 𝐺 is also a solution to 𝐼
(observe that whenever the sole relation in 𝐼 is the edge relation, the definition of a solution to 𝐼 coincides
with the definition of a graph homomorphism). Thus, Hom(𝐻 → 𝐺) is non-empty if and only if 𝐼 has a
solution.

As Hom({𝐻}) can be solved via its counting version #Hom({𝐻}), we obtain that #Hom(𝐻 → 𝐺) cannot
be computed in time 𝑂(|𝑉(𝐺)|𝛼CSP ·tw(𝐻)/log tw(𝐻)). Choosing 𝛼Hom B 𝛼CSP yields the claim.
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Next, we again use the reductions of (4). In particular, we observe that said reductions preserve
the exponent in the running time (up to some constant additive term). It is useful to have a separate
(sub-)claim for a reduction that starts from color-prescribed homomorphisms.

Lemma A.7. Let Φ denote a graph property and let 𝐻 denote a graph such that
ˆΦ(𝐻) ≠ 0.

Any algorithm that computes for each graph 𝐺′
the number #IndSub((Φ, |𝑉(𝐻)|) → 𝐺′) in time 𝑂(|𝑉(𝐺′)|𝛽)

implies

an algorithm that for each graph 𝐺 computes the number #cp-Hom(𝐻 → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛽+2).
an algorithm that for each graph 𝐺 computes the number #Hom(𝐻 → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛽+3).

Proof. Write 𝑘 B |𝑉(𝐻)| and observe that for our purposes, 𝑘 is a constant. We first construct an
algorithm that solves #cp-Hom({𝐻}) using an oracle for #IndSub((Φ, 𝑘) → ★). To that end, suppose that
we are given a graph 𝐺 that is 𝐻-colored via 𝑐. We wish to compute the number #Hom(𝐻 → 𝐺).
(1) First, we use the reduction from #cp-Hom(ℋ) to #cp-IndSub(Φ) [DRSW22, Lemmas 7 and 8] to

compute for the graph 𝐺 the number #cp-Hom(𝐻 → 𝐺) in time 𝑂( 𝑓 (𝑘) · |𝑉(𝐺)|) using an oracle for
#cp-IndSub((Φ, 𝐻) → ★) for a computable function 𝑓 . In said reduction, each graph 𝐺′ that is used
inside an oracle call satisfies |𝑉(𝐺′)| ≤ 𝑓 (𝑘) · |𝑉(𝐺)|.

(2) Next, we use the reduction from #cp-IndSub(Φ) to #IndSub(Φ) [DRSW22, Lemma 10] to compute
for each 𝐺′ the number #cp-IndSub((Φ, 𝐻) → 𝐺′) in time 𝑂(𝑔(𝑘) · |𝑉(𝐺′)|) using an oracle for
#IndSub((Φ, |𝑉(𝐻)|) → ★) for a computable function 𝑔. In said reduction, each graph 𝐺′′ that is used
in oracle calls satisfy |𝑉(𝐺′′)| ≤ |𝑉(𝐺′)|.

(3) Lastly, we compute for each 𝐺′′ the number #IndSub((Φ, |𝑉(𝐻)|) → 𝐺′′) in time 𝑂(|𝑉(𝐺′′)|𝛽) using
the algorithm which we assumed to exist.

We combine the above steps to obtain an algorithm that computes #cp-Hom(𝐻 → 𝐺) in time

𝑂
(
𝑓 (𝑘) · |𝑉(𝐺)|︸         ︷︷         ︸

(1)

· 𝑔(𝑘) · ( 𝑓 (𝑘) · |𝑉(𝐺)|)︸                    ︷︷                    ︸
(2)

· ( 𝑓 (𝑘) · |𝑉(𝐺)|)𝛽︸             ︷︷             ︸
(3)

)
,

which can be rewritten into 𝑂(|𝑉(𝐺)|2 · |𝑉(𝐺)|𝛽), as 𝑘 = |𝑉(𝐻)| is a constant.
Next, we construct an algorithm that solves #Hom({𝐻}) using an oracle for #IndSub((Φ, 𝑘) → ★). To

that end, suppose that we are given a graph 𝐺. We wish to compute the number #Hom(𝐻 → 𝐺).
First, we use the reduction from #Hom(ℋ) to #cp-Hom(ℋ) [DRSW22, Lemma 4] to compute the value

#Hom(𝐻 → 𝐺) in time 𝑂(ℎ(𝑘) · |𝑉(𝐺)|) using an oracle for #cp-Hom(𝐻 → ★) for a computable function
ℎ. In said reduction, each graph 𝐺′ that is used in oracle calls satisfy |𝑉(𝐺′)| ≤ ℎ(𝑘) · |𝑉(𝐺)|.

Next, our algorithm from the first part of the proof allows us to compute each value #cp-Hom(𝐻 → 𝐺′)
in time𝑂((ℎ(𝑘)|𝑉(𝐺′)|)𝛽+2) using a oracle for #IndSub((Φ, |𝑉(𝐻)|) → ★). Hence, we obtain a total running
time of 𝑂(ℎ(𝑘) · |𝑉(𝐺)| · (ℎ(𝑘) · |𝑉(𝐺)|)𝛽+2) which can be rewritten into 𝑂(|𝑉(𝐺)|3 · |𝑉(𝐺)|𝛽) as 𝑘 is a
constant.

Putting everything together, we obtain Lemma A.8.

Lemma A.8 ([DRSW22, CCMdM21]). Let Φ denote a nontrivial graph property.

If there is a sequence of graphs with unbounded treewidth where each graph has an alternating enumerator that

is nonvanishing for Φ, then #IndSub(Φ) is #W[1]-hard.

Assuming ETH, there is a universal constant 𝛼IndSub > 0 (that is independent of Φ) such that for any

positive integer 𝑘 for which there is a graph 𝐻𝑘 with 𝑘 vertices,
ˆΦ(𝐻𝑘) ≠ 0, and tw(𝐻𝑘) ≥ 2, no algo-

rithm (that reads the whole input) computes for every graph 𝐺 the number #IndSub((Φ, 𝑘) → 𝐺) in time

𝑂(|𝑉(𝐺)|𝛼IndSub tw(𝐻𝑘 )/log tw(𝐻𝑘 )).
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Proof. We write ℋ for the set {𝐻 ∈ 𝒢 : Φ̂(𝐻) ≠ 0}. The set ℋ is recursively enumerable since the set
of all graphs is recursively enumerable and Φ is computable. This in turn implies that the alternating
enumerator is computable.

Observe that the treewidth of the elements of ℋ is unbounded by the assumption of the lemma. This
means that #Hom(ℋ) is #W[1]-hard when parameterized by the pattern size |𝑉(𝐻)|. Finally, we use
the parameterized reductions (4) from #Hom(ℋ) to #IndSub(Φ), which proves that #IndSub(Φ) is also
#W[1]-hard.

Next, we turn to the ETH-based lower bounds. Set 𝛼′
IndSub B 𝛼Hom/2, 𝑁 B max(2, (6/𝛼Hom)2). Let

𝑘 denote a fixed integer such that there is a nonvanishing 𝑘-vertex graph 𝐻𝑘 with tw(𝐻𝑘) ≥ 𝑁 . We
show that any algorithm A that computes for every graph 𝐺 the value #IndSub((Φ, 𝑘) → 𝐺) in time
𝑂(|𝑉(𝐺)|𝛼′

IndSub tw(𝐻𝑘 )/log tw(𝐻𝑘 )) implies that we can compute for any graph 𝐺 the value #Hom(𝐻𝑘 → 𝐺) in
time 𝑂(|𝑉(𝐺)|𝛼Hom tw(𝐻𝑘 )/log tw(𝐻𝑘 )) (which would violate ETH due to Corollary A.6).

To that end, first observe that by Lemma A.7, the algorithm A yields an algorithm B to compute for
every graph 𝐺 the value #Hom(𝐻𝑘 → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛼′

IndSub tw(𝐻𝑘 )/log tw(𝐻𝑘 )+3).
Claim A.9. For tw(𝐻𝑘) ≥ max(2, (6/𝛼Hom)2), we have

𝛼′
IndSub

tw(𝐻)/log tw(𝐻𝑘) + 3 ≤ 𝛼Hom tw(𝐻𝑘)/log tw(𝐻𝑘).
Proof. For tw(𝐻𝑘) > 1, we have tw(𝐻𝑘)/log tw(𝐻𝑘) >

√
tw(𝐻𝑘). Hence, for tw(𝐻𝑘) ≥ (6/𝛼Hom)2, we have

tw(𝐻)/log tw(𝐻𝑘) ≥ 6/𝛼Hom = 3/(𝛼Hom − 𝛼Hom/2) = 3/(𝛼Hom − 𝛼′
IndSub).

Now, rearranging yields the claim.

From Claim A.9, we conclude that B computes #Hom(𝐻𝑘 → 𝐺) in time 𝑂(|𝑉(𝐺)|𝛼Hom tw(𝐻𝑘 )/log tw(𝐻𝑘 )).
From Corollary A.6 (and assuming tw(𝐻𝑘) ≥ 2), we conclude that the algorithm B violates ETH.

Define 𝛼IndSub B min(𝛼′
IndSub , 1/𝑁). For 2 ≤ tw(𝐻𝑘) < 𝑁 , we obtain an algorithm that computes

#IndSub((Φ, |𝑉(𝐻𝑘)|) → 𝐺) in time |𝑉(𝐺)|𝛼IndSub tw(𝐻𝑘 )/log tw(𝐻𝑘 ) = 𝑜(|𝑉(𝐺)|). Now, such a running time
is unconditionally unachievable for any algorithm that reads the whole input. This completes the
proof.

B ETH-based Lower Bounds for 𝑘-Clique

We discuss the following useful result on finding 𝑘 cliques.

Theorem B.1 (Theorem 14.21 in [CFK+15]). Assuming ETH, there is no 𝑓 (𝑘)|𝑉(𝐺)|𝑜(𝑘)-time algorithm for

Clique or Independent Set for any computable function 𝑓 .

Next, we modify Theorem B.1. The decision problem 𝑘-Clique gets as input a graph 𝐺 and checks if
𝐺 contains a 𝑘-clique as a subgraph.

Lemma B.2 (Modification of 14.21 in [CFK+15]). Assuming ETH, there is a constant 𝛼 > 0 such that for

𝑘 ≥ 3, no algorithm (that reads the whole input) solves 𝑘-Clique on graph 𝐺 in time 𝑂(|𝑉(𝐺)|𝛼𝑘).
Proof. Write 𝑛 B |𝑉(𝐺)| for the number of vertices of the input graph 𝐺. Assuming ETH, there is a 𝛿 > 0
such that no algorithm solves 3-SAT in time 𝑂(2𝛿𝑣), where 𝑣 is the number of variables. We show that a
similar statement also holds for the 3-Coloring problem.

Claim B.3. Assuming ETH, there is a 𝛿′ > 0 such that no algorithm solves 3-Coloring in time 𝑂(2𝛿′𝑛), where

𝑛 is the number of vertices.
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Proof. For a 3-SAT formula 𝜙 with 𝑣 variables and 𝑚 clauses, the standard reduction [GJS76, Theorem
2.1] from 3-SAT to 3-Coloring constructs a graph with 3 + 2𝑣 + 6𝑚 vertices that contains a 3-coloring if
and only if 𝜙 is satisfiable. An algorithm that solves 3-Coloring in time 𝑂(2𝛽𝑛) could be used to solve
3-SAT in time 𝑂(26𝛽(𝑣+𝑚)). The Sparsification Lemma [CFK+15, Theorem 14.4] yields the existence of a
𝛿′ > 0 such that there is no algorithm that solves 3-Coloring in time 𝑂(2𝛿′𝑛).
Next, we show that we can solve 3-Coloring by using an algorithm for 𝑘-Clique that runs in 𝑂(𝑛𝛼𝑘).

Claim B.4. If we can solve 𝑘-Clique in time 𝑂(𝑛𝛼𝑘), then we can solve 3-Coloring in time 𝑂(3𝛼𝑛 + 𝑛2 · 32𝑛/𝑘).
Proof. First, we split the 𝑛 vertices of 𝐺 into 𝑘 blocks 𝑉1 , . . . , 𝑉𝑘 of size at most ⌈𝑛/𝑘⌉ each. Next, we
construct a graph 𝐻 in the following way. For each proper 3-coloring of a block 𝑉𝑖 , we create a vertex that
represents this coloring and add said vertex to 𝐻. The number of vertices in 𝐻 is at most

|𝑉(𝐻)| ≤ 𝑘 · 3⌈𝑛/𝑘⌉ ≤ 𝑘 · 3𝑛/𝑘+1.

Write 𝑢 for a vertex in 𝐻 that represents a coloring of 𝐺[𝑉𝑖] and write 𝑣 for a vertex in 𝐻 that represents a
coloring of𝐺[𝑉𝑗]. We add an edge between 𝑢 and 𝑣 if and only if 𝑖 ≠ 𝑗 and the coloring of 𝑢 and 𝑣 is a proper
3-coloring of𝐺[𝑉𝑖∪𝑉𝑗]. Observe that we can construct this graph in time𝑂((𝑘 ·3𝑛/𝑘+1)2 ·𝑛2) = 𝑂(𝑛2 ·32𝑛/𝑘).

It is easy to verify that 𝐻 contains a 𝑘-clique if and only if there is a proper 3-coloring of 𝐺. Thus, we
can use our 𝑂(𝑛𝛼𝑘) time algorithm for 𝑘-Clique to solve 3-Coloring in time 𝑂((𝑘 · 3𝑛/𝑘+1)𝛼𝑘 + 𝑛2 · 32𝑛/𝑘) =
𝑂(3𝛼𝑛 + 𝑛2 · 32𝑛/𝑘).
Set 𝛼 B min(log3(2)𝛿′, 𝛼/3). If there is a 𝑘 > 2/𝛼 such that we can solve 𝑘-Clique in time 𝑂(𝑛𝛼𝑘), then
we can use Claim B.4 to solve 3-Coloring in time 𝑂(3𝛼𝑛 + 𝑛2 · 32𝑛/𝑘) ⊆ 𝑂(2𝛿′𝑛). According to Claim B.3,
this is only possible if ETH fails. Otherwise, 𝛼𝑘 < 1, and there is no sublinear algorithm that reads the
whole input and solves 𝑘-Clique in sublinear time.

C Tight Lower Bounds for Counting Induced Subgraphs

In this section, we show how to obtain tight lower bounds under ETH for #IndSub((Φ, 𝑘) → ★) by
modifying a reduction from [DRSW22]. We start from the non-parameterized decision problem 𝑘-Clique
and solve it with an oracle for #IndSub((Φ, 𝑘) → ★). Observe that 𝑘-Clique cannot be solved in time
𝑂(𝑛𝛼𝑘) for a fixed 𝛼 > 0 unless ETH fails (see Lemma B.2), which yields a lower bound for computing
#IndSub((Φ, 𝑘) → ★). The reduction is similar to the reduction shown in Appendix A with the difference
that we start from 𝑘-Clique instead of Hom({𝐻}). The main idea is that we can solve 𝑘-Clique using an
oracle for #cp-Hom(𝐹 → ★) as long as 𝐹 contains 𝐾𝑘,𝑘 as a subgraph.

Lemma C.1 (Modification of [DRSW22, Lemma 11]). There is an algorithm that given a positive integer

ℓ > 1, a graph 𝐹 (that contains 𝐾ℓ ,ℓ as a subgraph), and a graph 𝐺; computes a 𝐹-colored graph 𝐺′
with

2ℓ |𝑉(𝐺)| + (|𝑉(𝐹)| − 2ℓ ) vertices. Further, the number of cliques of size ℓ in 𝐺 equals #cp-Hom(𝐹 → 𝐺′). The

running time of the algorithm is 𝑂(|𝑉(𝐹)| |𝑉(𝐹)|+2 + |𝑉(𝐹)|2 |𝑉(𝐺)|2)
Proof. Write ℓ̃ for |𝑉(𝐹)| − 2ℓ . For the proof, we modify the construction of [DRSW22, Lemma 11]. First,
observe that we can locate the vertices of the subgraph 𝐾ℓ ,ℓ in 𝐹 by looping over all vertex sets 𝐴 and 𝐵 of
size ℓ and checking if the induced graph has the complete bipartite graph 𝐾ℓ ,ℓ as a subgraph. This can be
done in 𝑂(|𝑉(𝐹)|2 · |𝑉(𝐹)|2ℓ ) ⊆ 𝑂(|𝑉(𝐹)| |𝑉(𝐹)|+2) by using a brute force implementation.

Next, we relabel the vertices of the graph 𝐹 by splitting them up into a left side, a right side and the
remaining vertices. Formally, we use 𝑉(𝐹) = {𝑎𝑖 , 𝑏𝑖 : 𝑖 ∈ [ℓ ]} ∪ {𝑥𝑖 : 𝑖 ∈ [ℓ̃ ]}, and ensure that the induced
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subgraph of {𝑎𝑖 , 𝑏𝑖 : 𝑖 ∈ [ℓ ]} contains 𝐾ℓ ,ℓ , where {𝑎𝑖 : 𝑖 ∈ [ℓ ]} is the left side and {𝑏𝑖 : 𝑖 ∈ [ℓ ]} is the right
side of the complete bipartite graph.11

Now, let 𝐺 denote a graph with vertex set {𝑣𝑖 : 𝑖 ∈ [𝑛]}. We construct the graph 𝐺′ on the vertex set
{𝑢𝑖 , 𝑗 , 𝑤𝑖 , 𝑗 , 𝑦𝑘 : 𝑖 ∈ [ℓ ], 𝑗 ∈ [𝑛], 𝑘 ∈ [ℓ̃ ]} with the 𝐹-coloring given by 𝑐(𝑢𝑖 , 𝑗) = 𝑎𝑖 , 𝑐(𝑤𝑖 , 𝑗) = 𝑏𝑖 and 𝑐(𝑦𝑘) = 𝑥𝑘 .
For each 𝑘, we add an edge between 𝑦𝑘 and all other vertices in 𝐺′. Additionally, we add an edge between
𝑢𝑖 , 𝑗 and 𝑤𝑖′ , 𝑗′ if and only if

either (𝑖 , 𝑗) = (𝑖′, 𝑗′),
or 𝑖 < 𝑖′, 𝑗 < 𝑗′ and the vertices 𝑣 𝑗 and 𝑣 𝑗′ are adjacent,
or 𝑖 > 𝑖′, 𝑗 > 𝑗′ and the vertices 𝑣 𝑗 and 𝑣 𝑗′ are adjacent.

Further, we add the edges {𝑢𝑖 , 𝑗 , 𝑢𝑖′ , 𝑗′} and {𝑤𝑖 , 𝑗 , 𝑤𝑖′ , 𝑗′} to 𝐺′.
Let 𝐶 = (𝑣 𝑗1 , . . . , 𝑣 𝑗ℓ ) denote an ordered tuple (that is 𝑗𝑘 < 𝑗𝑘′ for 𝑘 < 𝑘′) such that {𝑣 𝑗1 , . . . , 𝑣 𝑗ℓ } is a

ℓ -clique in 𝐺. We construct the homomorphism ℎ𝐶 : 𝑉(𝐹) → 𝑉(𝐺′) with ℎ𝐶(𝑎𝑖) = 𝑢𝑖 , 𝑗𝑖 , ℎ𝐶(𝑏𝑖) = 𝑣𝑖 , 𝑗𝑖 and
ℎ𝐶(𝑥𝑘) = 𝑦𝑘 . Observe that this defines a color-prescribed homomorphism ℎ𝐶 ∈ cp-Hom(𝐹 → 𝐺′).

Next, consider an ℎ′ ∈ cp-Hom(𝐹 → 𝐺′). Then, ℎ′(𝑥𝑘) = 𝑦𝑘 since 𝑦𝑘 is the only vertex in 𝐺′ with
𝑐(𝑦𝑘) = 𝑥𝑘 . Further, we obtain ℎ′(𝑎𝑖) = 𝑢𝑖 ,𝛼𝑖 and ℎ′(𝑏 𝑗) = 𝑤 𝑗 ,𝛽 𝑗 . Observe that for all 𝑖 ∈ [ℓ ] the edge {𝑎𝑖 , 𝑏𝑖}
is in 𝐹. Thus {ℎ′(𝑎𝑖), ℎ′(𝑏𝑖)} = {𝑢𝑖 ,𝛼𝑖 , 𝑤𝑖 ,𝛽𝑖 } is an edge in 𝐺′ which is only possible if 𝛼𝑖 = 𝛽𝑖 .

Next, we define the tuple 𝐶 B (𝑣𝛼1 , . . . , 𝑣𝛼ℓ ). For all 𝑖 < 𝑖′, we know that the edge {𝑎𝑖 , 𝑏𝑖′} is in 𝐹,
hence the edge {𝑢𝑖 ,𝛼𝑖 , 𝑤𝑖′ ,𝛽𝑖′ } is also in 𝐺′ which implies that 𝛼𝑖 < 𝛽𝑖′ = 𝛼𝑖′ . Observe that this also implies
that there is an edge between 𝑣𝛼𝑖 and 𝑣𝛼𝑖′ . So, the indices of the tuple 𝐶 are ordered and {𝑣𝛼1 , . . . , 𝑣𝛼ℓ }
is a ℓ -clique in 𝐺. Also, observe ℎ′ = ℎ𝐶 , where ℎ𝐶 is the color-prescribed homomorphism from above.
Thus each ordered ℓ -cliques 𝐶 yields a color-prescribed homomorphism ℎ𝐶 and each color-prescribed
homomorphism ℎ′ yields an ordered ℓ -clique 𝐶. This shows an one-to-one correspondence between
color-prescribed homomorphisms in cp-Hom(𝐹 → 𝐺′) and ℓ -cliques in 𝐺.

This means that we can solve the decision problem 𝑘-Clique for a graph 𝐺 and a parameter 𝑘 by
computing #cp-Hom(𝐹 → ★). Further, if we assume that 𝐹 is non-vanishing then we can use the reduction
shown in Lemma A.7 to compute #cp-Hom(𝐹 → ★) using #IndSub((Φ, |𝑉(𝐹)|) → ★). Thus we can use
#IndSub((Φ, |𝑉(𝐹)|) → ★) to solve 𝑘-Clique.

Theorem C.2 (Modification of [DRSW22]). There is a global constant 𝛽 > 0 and a positive integer 𝑁 such

that for all graph properties Φ, functions ℎ, numbers 𝑘 with

ℎ(𝑘) ≥ 𝑁

there is a graph 𝐹 with 𝑘 vertices and
ˆΦ(𝐹) ≠ 0,

and 𝐹 contains 𝐾ℎ(𝑘),ℎ(𝑘) as a subgraph

there is no algorithm (that reads the whole input) that for every 𝐺 computes #IndSub((Φ, 𝑘) → 𝐺) in time

𝑂(|𝑉(𝐺)|𝛽ℎ(𝑘)) unless ETH fails.

Proof. We show how to use #IndSub((Φ, 𝑘) → ★) to solve ℎ(𝑘)-Clique.

Claim C.3. For a fixed 𝑘 such that there is a graph 𝐹 with 𝑘 vertices,
ˆΦ(𝐹) ≠ 0, and 𝐹 contains 𝐾ℎ(𝑘),ℎ(𝑘)

as a subgraph; if there is an algorithm that computes for each graph 𝐺′
the value #IndSub((Φ, 𝑘) → 𝐺′) in time

𝑂(|𝑉(𝐺′)|𝛾), then ℎ(𝑘)-Clique can be computed for each graph 𝐺 in time 𝑂(|𝑉(𝐺)|𝛾+2).

11 Note that they may be edges of the form 𝑎𝑖 to 𝑎 𝑗 or form 𝑏𝑖 to 𝑏 𝑗 .
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Proof. We construct an algorithm that solves ℎ(𝑘)-Clique using an oracle for #IndSub((Φ, 𝑗) → ★). Since
𝑘 and 𝐹 are fixed, we can assume that our algorithm knows these elements. Fix a graph 𝐺. Then we use
the algorithm from Lemma C.1 to construct a graph 𝐺′ such that 𝐺 contains an ℎ(𝑘)-clique if and only if
#cp-Hom(𝐹 → 𝐺′) is not zero. The running time of this construction is in 𝑂(|𝑉(𝐺)|2) since |𝑉(𝐹)| = 𝑘 is
constant. Further, we obtain |𝑉(𝐺′)| ≤ 2ℎ(𝑘)|𝑉(𝐺)| + 𝑘 = 𝑂(|𝑉(𝐺)|).

If we can compute #IndSub((Φ, 𝑘) → |𝑉(𝐺′)|) in time 𝑂(|𝑉(𝐺′)|𝛾), then we can use Lemma A.7 to
compute #cp-Hom(𝐹 → 𝐺′) in time 𝑂((2ℎ(𝑘)|𝑉(𝐺)| + 𝑘)𝛾+2). Thus, we can solve ℎ(𝑘)-Clique in time
𝑂(|𝑉(𝐺)|2 + (2ℎ(𝑘)|𝑉(𝐺)| + 𝑘)𝛾+2) which is in 𝑂(|𝑉(𝐺)|𝛾+2) since 𝑘 is fixed.

According to Lemma B.2, there is a constant 𝛼 > 0 such that no algorithm solves ℎ(𝑘)-Clique in time
𝑂(|𝑉(𝐺)|𝛼ℎ(𝑘)) for a fixed ℎ(𝑘) ≥ 3 unless ETH fails. Set 𝛽 B 𝛼/2 and 𝑁 B max(3, 4/𝛼). If there are a 𝑘
with ℎ(𝑘) ≥ 𝑁 ≥ 3, a graph 𝐹 with 𝑘 vertices such that Φ̂(𝐹) ≠ 0, and 𝐹 contains 𝐾ℎ(𝑘),ℎ(𝑘) as a subgraph,
and an algorithm that solves #IndSub((Φ, 𝑘) → 𝐺′) in time 𝑂(|𝑉(𝐺′)|𝛽ℎ(𝑘)), then we can use Claim C.3 to
solve ℎ(𝑘)-Clique in time 𝑂(|𝑉(𝐺)|𝛽ℎ(𝑘)+2). Observe that 𝛽ℎ(𝑘) + 2 ≤ 𝛼ℎ(𝑘) for ℎ(𝑘) ≥ 4/𝛼. Thus, we can
use solve ℎ(𝑘)-Clique in time 𝑂(𝑛𝛼ℎ(𝑘)). Hence, ETH fails.
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