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ABSTRACT
The proper balancing of information from experiment and theory is a long-standing problem in the analysis of noisy and incomplete data.
Viewed as a Pareto optimization problem, improved agreement with the experimental data comes at the expense of growing inconsistencies
with the theoretical reference model. Here, we propose how to set the exchange rate a priori to properly balance this trade-off. We focus
on gentle ensemble refinement, where the difference between the potential energy surfaces of the reference and refined models is small
on a thermal scale. By relating the variance of this energy difference to the Kullback–Leibler divergence between the respective Boltzmann
distributions, one can encode prior knowledge about energy uncertainties, i.e., force-field errors, in the exchange rate. The energy uncertainty
is defined in the space of observables and depends on their type and number and on the thermodynamic state. We highlight the relation
of gentle refinement to free energy perturbation theory. A balanced encoding of prior knowledge increases the quality and transparency
of ensemble refinement. Our findings extend to non-Boltzmann distributions, where the uncertainty in energy becomes an uncertainty in
information.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0189901

I. INTRODUCTION

In the natural sciences, we frequently encounter the challenge
of analyzing noisy and incomplete experimental data using the-
oretical models. The number of parameters in the models often
exceeds the number of available data points. Image reconstruction
is the textbook example of this class of ill-defined inverse prob-
lems.1 Another important class of problems is ensemble refinement,
as performed in integrative structural biology and hybrid modeling.
Experimentally averaged observables are used to refine an ensem-
ble of biomolecular structural models.2–4 In such cases, we have to
take into account statistical and systematic errors in the model and
in the data and balance the information provided by experiment and
theory. While maximum entropy (MaxEnt) and Bayesian methods
address these challenges, the balancing of information has proven to
be a long-standing and difficult problem.5

The balancing of information from experiment and theory can
be viewed as a Pareto optimization problem (Fig. 1). In a multi-
objective optimization, we seek to minimize both the mean-squared
deviations from the experimental data, χ2, with respect to the statis-
tical weights in the refined model, and the deviation of these weights
from a given reference model, as quantified by the Kullback–Leibler
(KL) divergence6 SKL. In the plane spanned by SKL and χ2, the set of
weights where one is optimal for a fixed value of the other defines a
Pareto front. On this Pareto front, we then seek a particular solution
for which we consider the trade-off between increases in SKL and
decreases in χ2 to be fair. To encode the relative value given to SKL

and χ2, we introduce a parameter θ that sets the so-called marginal
rate of substitution, dχ2/dSKL = −2θ. Minimization of a loss func-
tion χ2/2 + θSKL with respect to the model weights then gives us a
specific set of refined weights on the Pareto front (or L-curve7) with
an optimal trade-off.
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FIG. 1. Bayesian/MaxEnt ensemble refinement as a Pareto optimization prob-
lem. The curve of optimal solutions in the plane spanned by the deviations from
experiment, χ2, and the deviations from theory, SKL, determines the Pareto front
or L-curve (red line). The sub-optimal solutions (orange shaded area) lie above
this curve. We encode our prior knowledge by choosing a value of the so-called
marginal rate of substitution, given by −2θ here. We use this rate to trade off the
two deviations according to our prior experience, dχ2 = −2θ dSKL, which gives a
unique solution (blue disk). At this point, the slope of the Pareto front is exactly the
marginal rate, as indicated by the blue line.

The proper choice of the θ value5 has been tackled by different
workarounds. As a result, various methods to image reconstruction,
ensemble refinement, and related problems can be distinguished
by their choice of a solution parameterized by a multiplicative
parameter θ of the KL divergence: solutions are chosen by the
L-curve analysis;7–10 by using algorithms to determine an elbow
of the L-curve;11,12 so that the resulting error is the most-likely
according to some statistics;1 by putting a prior on θ and inte-
grating it out;13,14 by selecting a perfect fit ignoring errors com-
pletely as in classical MaxEnt methods;15,16 by not including θ as a
parameter at all, which corresponds to setting θ = 1;17 or by cross-
validation.18 While these workarounds are useful in practice, they
generally do not balance information from experiment and the-
ory properly in the sense of using a priori knowledge. As a result,
the solutions obtained tend to be overfitted or underfitted. More-
over, a solution is not always guaranteed to exist for some of these
workarounds.10

Here, we propose how to choose the θ parameter a priori for
gentle ensemble refinement. Often, ensemble refinement is quite
crude such that the optimal ensemble deviates drastically from the
reference ensemble. In gentle refinement, we take care that this is
not case. In this regime, the expected KL divergence S̄KL can be
approximated in terms of the mean-squared error of the potential
energy surface U defining the force field used to create the refer-
ence ensemble, S̄KL ≈ var(βΔU)/2. Here, energies are measured in
units of the thermal energy, β = 1/(kBT), in the equilibrium Boltz-
mann distributions of the reference and refined ensembles, with
kB being the Boltzmann constant and T being the absolute tem-
perature. We propose to use this physically meaningful relation
to encode prior knowledge about the expected force-field error by
setting

θ ≅ 1
S̄KL
≈ 2

var(βΔU) (1)

to fix the Pareto exchange rate at −2θ. The mean-squared energy
error depends on the type and number of observables used for
refinement and on the thermodynamic state.

This article is organized as follows. In Sec. II A, we first intro-
duce ensemble refinement with a focus on the Bayesian inference
of ensembles (BioEn) method.8,9 We relate the KL divergence for
Boltzmann distributions to the mean of the reduced energy differ-
ence in Sec. II B. We derive an approximation for the KL divergence
as half the variance of the reduced energy difference in Subsec-
tion II C. Moreover, the KL divergence is approximately symmetric
with respect to its arguments. In Subsection II D, we show that these
approximations are exact in the Gaussian case. In Subsection II F,
we discuss how to use this information to encode our prior knowl-
edge in the entropic prior used in BioEn and related methods. In
Subsection II G, we describe how to estimate the relevant energy
uncertainty in the space of observables. We present three example
systems in Sec. III. For these examples, we quantify the validity of
the approximation of the KL divergence by the energy variance and
illustrate the benefits and limits of gentle ensemble refinement in
Sec. IV. In Sec. V, we discuss practical aspects of gentle ensemble
refinement. We end with concluding remarks in Sec. VI and the
implication of our results for ill-defined inverse problems in general.

II. THEORY
A. Background

The BioEn posterior9 for a sampled ensemble with N confor-
mations and normalized reference weights w(0) = (w(0)1 , . . . ,w(0)N )
is given by

p(w∣ data)∝ p(w∣w(0))p(data∣w), (2)

where w = (w1, . . . ,wN) is the vector of the normalized weights we
want to find by refinement. The so-called entropic prior19 is given by

p(w∣w(0))∝ e−θSKL(w∥w(0)), (3)

where θ is the confidence parameter and SKL(w∥w(0)) is the KL
divergence or relative entropy,

SKL(w∥w(0)) =
N

∑
α=1

wα ln
wα

w
(0)
α

. (4)

θ encodes how much we trust our original ensemble. For indepen-
dent Gaussian errors, for example, the likelihood of the measured
data is given by

p( data∣w)∝ e−
χ2
(w)
2 , (5)

where

χ2(w) =
M

∑
i=1
(⟨yi⟩ − Yi

σi
)

2

. (6)

Here, ⟨yi⟩ = ∑N
α=1 wαyα

i are the averages of the calculated observables
yα

i for conformation α with indices i = 1, . . . , M for the measured
averages Y i with associated errors σi, both theoretical and exper-
imental. The theoretical errors primarily reflect uncertainties in
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calculating the observables y(x) for given conformations x using
simplified models of the experiment. By contrast, we account for
errors in the weights in the entropic prior, Eq. (3), through the con-
fidence parameter θ. Note that the structural ensembles do not have
to come from molecular simulations20–22 and that the data do not
necessarily have to be from experiment.

To find the optimal solutions, we maximize the BioEn posterior
or, equivalently, minimize the negative log-posterior given by

L = θSKL(w∥w(0)) +
χ2(w)

2
, (7)

which is the loss function mentioned in the Introduction. This for-
mulation has been originally developed for the EROS method8 based
on a method for image reconstruction.1 Since then, it has entered
into the BME method,23 for example. Note that any method that is
equivalent to refinement by replica simulations24,25 is also equivalent
to the EROS/BioEn method with a properly chosen coupling con-
stant and in the limit of an infinite number of replicas.9 As discussed
in Ref. 9, the dependence on the number of replicas can be removed
with a subsequent BioEn refinement.

We next explain how we calculate and approximate the KL
divergence for Boltzmann distributions. In the following, we focus
on the continuous distributions q(x) and p(x) underlying the
reference weights w(0) and optimal weights w, respectively.

B. Kullback–Leibler divergence for Boltzmann
distributions

For continuous probability densities p(x) and q(x), the KL
divergence6 is defined as

SKL(p∥q) = ∫ dx p(x) ln
p(x)
q(x) = ⟨ln

p(x)
q(x)⟩p

. (8)

In the refinement of an isothermal ensemble, x represents
3N-dimensional conformations, q(x) is the reference distribution
underlying simulations, and p(x) is the refined distribution. The
angular brackets with subscript “p” indicate the expectation value
with respect to p(x).

For the sake of generality, we point out here that the KL
divergence in Eq. (8) is the expectation of the information difference,

Δh(x) = ln
p(x)
q(x) = ln

m(x)
q(x) − ln

m(x)
p(x) (9)

with respect to p(x). Jayne’s measure26 m(x) guarantees the invari-
ance of information under variable transformation. Although it
cancels in the expression above, m(x) is needed to define a
proper difference between the information of the two ensem-
bles. As we shall see below, this difference becomes a difference
in energies for Boltzmann distributions, as has been established
previously.8–10,16,17,27

Let us assume that probability distributions are given by Boltz-
mann distributions. For a potential energy surface Uq(x) defining
the reference ensemble, we then have

q(x) = e−βUq(x)

Qq
, (10)

where the normalization constant Qq is the partition function,

Qq = ∫ dx e−βUq(x) ≡ e−βFq (11)

with Fq = −kBT ln Qq being the free energy. We analogously define
p(x), Qp, and Fp for the potential energy surface Up(x) of the refined
ensemble. In an isothermal ensemble at inverse temperature β
= 1/(kBT), the energy of conformation x is given by Uq(x) = Eq(x),
where Eq(x) is its potential energy. In an isobaric–isothermal
ensemble, Uq(x) = Eq(x) + pVq(x), where p is the pressure and
V(x) is the box volume for conformation x.

To evaluate the KL divergence, Eq. (8), for Boltzmann distribu-
tions, we use that

p(x)
q(x) = e−βΔU(x)Qq

Qp
, (12)

where ΔU(x) ≡ Up(x) −Uq(x) is the energy difference. Using that
the free-energy difference is given by ΔF ≡ Fp − Fq, we obtain

ln
p(x)
q(x) = −Δu(x), (13)

where we introduced the reduced energy difference,

Δu(x) = βΔU(x) − βΔF, (14)

between the force fields of the two Boltzmann distributions p(x) and
q(x). Importantly, these energy differences are uniquely determined
because additive constants in the energies cancel in the Boltzmann
distributions due to normalization.

Consequently, for Boltzmann distributions, the KL divergence
can be written as an average of the reduced energy difference,

SKL(p∥q) = −⟨Δu⟩p. (15)

The reduced energy differences tell us how we have to change the
energies of the reference Boltzmann distribution q(x) to sample the
optimal ensemble according to Eq. (13), i.e.,

p(x) = q(x) e−Δu(x), (16)

as a physical interpretation of the information differences intro-
duced in Eq. (9).

To estimate the reference and refined weights, and thus the
reduced energy differences, we do not need to calculate any parti-
tion functions. On the contrary, we actually numerically estimate
the free-energy difference and thus the log-ratio of partition func-
tions. For two different force fields, we can estimate the free-energy
difference from the KL divergence using Eqs. (14) and (15),

ΔF = ⟨ΔU⟩ + kBT SKL(p∥q). (17)

This expression is akin to the definitions of the Helmholtz free
energy for the isothermal ensemble and to the Gibbs free energy for
the isothermal–isobaric ensemble, where kBSKL(p∥q) corresponds to
the negative entropy. We obtain another familiar looking equation
if we perform the average in the q-ensemble,

ΔF = ⟨ΔU⟩q − kBT SKL(q∥p). (18)
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For finite ensembles, we estimate the KL divergence, Eq. (8),
numerically using Eq. (4). In Appendix A, we show how to prop-
erly interpret the discrete reference weights w(0)α and refined weights
wα for ensembles sampled from arbitrary distributions. Thus, all
results derived here for continuous distributions also apply to dis-
crete ensembles. We next use that the KL divergence is given by the
mean reduced energy differences and relate it to the variance in the
regime of gentle ensemble refinement.

C. KL divergence approximations
In the following, we rewrite averages of exponential func-

tions as cumulant expansions, which lead to simple expressions for
Gaussian distributions.28,29 We calculate the mean energy change
determining the KL divergence, Eq. (15), introducing the refined
distribution function p(Δu) of the energy differences,

p(Δu) = ∫ dx p(x) δ[Δu − Δu(x)], (19)

where δ[⋅] is the Dirac delta function. Analogously, we define q(Δu)
for the reference distribution. Equation (16) becomes

q(Δu) = p(Δu)eΔu. (20)

We integrate both sides of this equation over Δu and use that q(Δu)
is normalized such that

∫ dΔu p(Δu)eΔu = ⟨eΔu⟩
p
= 1. (21)

Introducing the cumulant generating function,

G(t) = ln ⟨etΔu⟩
p
=
∞
∑
n=1

κn
tn

n!
, (22)

we have ln ⟨eΔu⟩
p
= G(1) = 0. κn is the nth cumulant of the

p-ensemble. By solving G(1) = 0 for κ1, we obtain

⟨Δu⟩p = −
varp(Δu)

2
−
∞
∑
n=3

κn

n!
. (23)

We have used that the first two cumulants are the mean κ1 = ⟨Δu⟩p
= μ and the variance κ2 = varp(Δu) = σ2.

Consequently, the KL divergence, Eq. (15), is given by a sum of
the higher-order cumulants. The leading term is half the variance.
For small errors in the energy, ∣Δu∣≪ 1, the cumulants of order
n = 3 and higher can be ignored,

κ1 ≈ −
κ2

2
, (24)

allowing us to approximate the KL divergence in Eq. (15) by

SKL(p∥q) = −⟨Δu⟩ ≈ var(Δu)
2

. (25)

We have dropped the subscript “p” for average and variance. That
is, these quantities without a subscript always refer to the refined
ensemble p(x).

The KL divergence is equally approximated by the variance
of the configurational energy difference βΔU. The free-energy dif-
ference ΔF cancels in the variance, Eq. (14), such that var(Δu)
= var(βΔU) and

SKL(p∥q) ≈
var(βΔU)

2
. (26)

We next show that for small errors ∣Δu∣ in the force field,
where higher cumulants can be ignored, the KL divergence is
approximately symmetric with respect to its arguments, SKL(p∥q) ≈
SKL(q∥p), where

SKL(q∥p) = ⟨Δu⟩q. (27)

We can express the average of Δu in the q-ensemble, using the
cumulant expansion as before. Using that p(Δu) is normalized, we
obtain ln ⟨e−Δu⟩

q
= H(−1) = 0, where we introduced the cumulant

generating function for the q-ensemble,

H(t) = ln ⟨etΔu⟩
q
=
∞
∑
n=1

λn
tn

n!
. (28)

Evaluating H(−1) = 0, we obtain

⟨Δu⟩q =
varq(Δu)

2
+
∞
∑
n=3
(−1)n λn

n!
, (29)

where we used that ∫dΔu q(Δu)e−Δu = ⟨e−Δu⟩
q
= 1, Eq. (20). λn is the

nth cumulant of the q-ensemble. For ∣Δu∣≪ 1,

λ1 ≈
λ2

2
(30)

such that

SKL(q∥p) ≈
varq(βΔU)

2
. (31)

The cumulants of the p-ensemble can be expressed by the
cumulants of the q-ensemble and the other way round.28 From
Eq. (20) follows that G(t) = H(t − 1). Inserting the corresponding
cumulant expansions on both sides of this equation and collecting
equal powers of t by applying the binomial theorem to (t − 1)n, we
obtain

κk =
∞
∑
n=0

(−1)nλn+k

n!
. (32)

Analogously, we obtain from H(t) = G(t + 1) that

λk =
∞
∑
n=0

κn+k

n!
. (33)

From Eq. (32) and for ∣Δu∣≪ 1, we obtain κ1 = λ1 − λ2 ≈ −λ1,
where we have used λ2 ≈ 2λ1, Eq. (30). We find that the two
definitions of the KL divergence are approximately equivalent,

SKL(p∥q) = −⟨Δu⟩p ≈ ⟨Δu⟩q = SKL(q∥p). (34)

We obtain the same result using Eqs. (24) and (33).
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D. Exact results for Gaussian energy distributions
If the refined distribution p(Δu) of the energy error is Gaus-

sian, then the above approximations are exact.28,29 This case not only
serves as a reference, but is also of practical interest, as we shall see
below for one of the examples, Ala5.

For Gaussian distributions, all cumulants beyond the variance
are zero. Equation (23) becomes

μ = −σ2

2
. (35)

This constraint on the Gaussian distribution derives from Eq. (20)
for normalized distributions p(Δu) and q(Δu).

In this Gaussian case, the approximation of the KL divergence
by the variance half, Eqs. (25) and (26), is exact, i.e.,

S(p∥q) = −μ = σ2

2
. (36)

In the Gaussian case, the KL divergence is exactly symmet-
ric with respect to its arguments, i.e., SKL(p∥q) = SKL(q∥p).30 Using
Eq. (20), we can rewrite

SKL(q∥p) = ⟨Δu⟩q = ∫ dΔu q(Δu)Δu (37)

as

SKL(q∥p) = ∫ dΔu p(Δu)eΔuΔu

= (μ + σ2)eμ+ σ2

2 = −μ = SKL(p∥q), (38)

where we used Eq. (35).

E. Relation to free energy perturbation theory
We can now use the different expressions for the KL diver-

gence to approximate the free-energy difference ΔF as in free energy
perturbation theory.31 Inserting Eq. (26) into Eq. (17), we obtain

ΔF ≈ ⟨ΔU⟩ + β
var(ΔU)

2
. (39)

Usually, ΔF is calculated in the q-ensemble, Eq. (18),

ΔF ≈ ⟨ΔU⟩q − β
varq(ΔU)

2
. (40)

These approximations become exact for Gaussian distributions
of the potential energy difference ΔU,30 where SKL(p∥q) = SKL(q∥p)
= var(βΔU)/2 = varq(βΔU)/2.

F. Encoding prior knowledge in ensemble refinement
The relation of the KL divergence to the reduced energy differ-

ences allows us to relate the more abstract information difference
expectation of Eq. (8) to the more physical quantity of the vari-
ance of the reduced energy difference, Eq. (26). We use the latter to
choose the confidence parameter θ, which defines the rate at which

the entropic prior exp(−θSKL) in Eq. (3) decreases with increasing
KL divergence.

The choice of the prior as an exponential function of the KL
divergence can be motivated with the maximum entropy princi-
ple.15 If we only know the expectation value of the KL divergence,
S̄KL, then the maximum entropy distribution of the KL divergence is
proportional to exp (−SKL/S̄KL). In this case,

θ = 1
S̄KL

. (41)

In gentle ensemble refinement, we demand that SKL ≲ 1,
SKL(p∥q) ≈ SKL(q∥p), and SKL ≈ var(βΔU)/2 according to Eq. (26).
For a given force-field error, we then expect S̄KL ≈ var(βΔU)/2.
According to Eq. (41), we set θ ≅ 2/var(βΔU) a priori as in Eq. (1).
Beyond gentle ensemble refinement, where the expectation of the KL
divergence is no longer determined by var(βΔU), we have to set S̄KL
directly to encode our prior knowledge.

The choice of θ in the prior can be validated by checking its
consistency with the optimal value of the KL divergence a posteriori.
If we evaluate the prior for given θ and the corresponding optimal
SKL value, then we expect a reasonably high value of the prior. That
is, θSKL is of the order of one after refinement. If it is much larger,
then the information from the experiment dominates the ensemble.
We might have underestimated the quality of our ensemble or the
size of the errors in the data. If it is much smaller, then the reference
distribution dominates the ensemble. We might have overestimated
the quality of our reference ensemble or the size of the errors in the
data.

G. How to determine the energy uncertainty
In gentle ensemble refinement, we have to choose the energy

uncertainty var(βΔU) a priori to properly set the confidence para-
meter θ according to Eq. (1). To do so, we go from conformation
space to the space of observables. As introduced in the Appendix
of Ref. 9, the probability density of the reference ensemble in the
observable space is given by

q(y) = ∫ dx q(x)
M

∏
i=1

δ[yi(x) − yi], (42)

where yi is the ith component of the observable vector y. The proba-
bility density of the refined ensemble p(y) in the observable space is
defined analogously.

Refining in the space of observables is equivalent to refining
in the space of conformations. By design, the average observables
entering the likelihood are equal in both spaces. As we show in
Appendix C, also the KL divergence in the conformation space
is equal to the KL divergence in the observable space for optimal
solutions.

The observable space is a coarse-grained representation of
the conformation space.32 We introduce a coarse-grained energy
potential energy Vq(y) using

q(y) = e−βVq(y)

Qq
, (43)

J. Chem. Phys. 160, 114111 (2024); doi: 10.1063/5.0189901 160, 114111-5

© Author(s) 2024

 25 M
arch 2024 08:38:35

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

which gives

βVq(y) = − ln q(y) − ln Qq. (44)

Analogously, we introduce the coarse-grained energy Vp(y) in
the p-ensemble. Note that Qq and Qp and thus ΔF are the same
as introduced above in the conformation space. The coarse-grained
reduced energy difference becomes

Δv(y) = − ln
p(y)
q(y) = βVp(y) − βVq(y) − βΔF. (45)

The reduced energy uncertainty in the observable space is a
free-energy difference. Expressing q(x) in Eq. (42) by Eq. (16), we
obtain, for the free-energy difference in Eq. (45),

Δv(y) = ln ∫dx p(x) eΔu(x)∏M
i=1 δ[yi(x) − yi]

∫dxp(x)∏M
i=1 δ[yi(x) − yi]

= ln ⟨eΔu(x)⟩p∣y = − ln ⟨e−Δu(x)⟩q∣y. (46)

The subscripts p∣y and q∣y of the angular brackets indicate the
sub-ensembles of the p- and q-ensembles with fixed values of y. Con-
sequently, Δv(y) corresponds to the free-energy difference between
the constrained p-ensemble and the constrained q-ensemble for a
given value of y.

For the optimal weights obtained by BioEn, the energy uncer-
tainties calculated in the space of conformations x and observ-
ables y are equal, ⟨Δu⟩p = ⟨Δv⟩p(y) (see Appendix C) and varp(Δu)
≈ varp(y) (Δv) in gentle ensemble refinement. The underlying rea-
son is that in the BioEn optimal solution, the factor scaling the
relative weight of conformation x depends only on y(x), not on x
directly. Conformations with the same value of y are thus treated
equally.

The uncertainty in the free-energy difference Δv(y) depends
on the type and number of observables. For different types of observ-
ables probing different aspects of molecular conformations, we will
have different expectations about the energy error. For a poly-
mer, the expected energy uncertainties for sub-ensembles with a
fixed end-to-end distance will be different than for sub-ensembles
with fixed carbon–hydrogen bond lengths. The sub-ensembles for
these two observables are quite different and so is the energy
uncertainty.

If we combine independent observables and refine against
all of them at once, then the uncertainty will be larger than for
each individual observable. If the observables are uncorrelated, then
the probability distribution of the observable vector q(y) factor-
izes into probability distributions for individual components, q(y)
=∏M

i=1 q(yi). The same is true for p(y). The total KL divergence then
becomes a sum over the KL divergences for individual components
of the observable vector,

SKL(p(y)∥q(y)) =
M

∑
i=1

SKL(p(yi)∥q(yi)). (47)

In this case, we add up the energy variances for the individual
components,

SKL(p(y)∥q(y)) ≈
1
2

M

∑
i=1

varp(yi)(Δv), (48)

to define θ. The energy uncertainty thus depends both on the
type and number of observables and on the thermodynamic state.

The sensitivity of the distribution p(y∣c) of the observables to
a particular force-field parameter c determines its impact on the
respective energy uncertainty, an issue examined in detail in the
Bayesian inference of force fields (BioFF).33 p(y∣c) is defined anal-
ogously to Eq. (42) with p(x) now parameterized by c, i.e., p(x∣c)
∝ exp[−βU(x∣c)] through the potential energy U(x∣c). The refer-
ence ensemble is defined by c = c0. To the lowest order, the KL
divergence SKL(c) grows quadratically with small changes δc = c − c0
in the force-field parameter c,

SKL(c) ≈
δc2

2 ∫ dy p(y∣c0)(
∂ ln p(y∣c)

∂c
)

2

c=c0

= δc2

2
⟨(∂ ln p(y∣c)

∂c
)

2

⟩
c=c0

(49)

with a proportionality coefficient that is given by the expectation
value of the squared mean force with respect to the parameter c.
This relation follows from the definition of SKL and the normaliza-
tion condition of p(y∣c). Note that errors in the force field might not
only be due to inaccurate parameters but also due to their simplified
functional forms.

In summary, we have to estimate the energy uncertainty in the
observable space to determine θ according to Eq. (1). We can use
this θ-value to directly refine in the conformation space. If we refine
in the observable space instead, then we use the optimal general-
ized forces as derived in Ref. 9 to obtain the refined ensemble in the
conformation space.

III. METHODS
We explore the concept of gentle ensemble refinement and the

proposed encoding of prior knowledge using three example systems
of increasing complexity. We refine a continuous version of the dis-
crete double-well model presented in Ref. 10 and a simple polymer
model based on the von Mises probability distribution presented in
Ref. 33 using synthetic data. We also refine fully atomistic simula-
tions of the pentapeptide Ala5 in explicit solvent10 using data from
nuclear magnetic resonance (NMR) experiments.34

As a simple model system, we define the reference ensemble in
terms of a continuous double-well potential given by

Uq(x) = a(x2 − x0
2)2, (50)

where x is a scalar and also serves as an observable, i.e., y(x) = x.
This energy function is symmetric with respect to x = 0. It has two
minima at±x0 with values Uq(±x0) = 0. These minima are separated
by a barrier at x = 0 of a height given by ax0

4. The corresponding
Boltzmann distribution is given by

q(x) = e−Uq(x)

Qq
(51)

with the normalization constant (partition function) given by

Qq =
π
2

x0 e−c[I− 1
4
(c) + I 1

4
(c)], (52)
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where c = ax0
4/2 and In(c) is the modified Bessel function of the first

kind of order n. Note that ⟨x⟩q = 0 due to symmetry.
In the following, we use x0 = 1 and a = 3 for the reference dis-

tribution q(x) such that the barrier height is ax0
4 = 3 (Fig. 2). The

experimentally measured expectation value of the observables x is
set to Y = 0.8. The error is σ = 0.2. We use rejection sampling to
generate an ensemble of N = 10 000 independent random points
distributed according to q(x) for ensemble refinement.

For concreteness, we also work out a specific case. The ref-
erence potential Uq(x) deviates from the assumed true poten-
tial by the addition of a linear term, Up(x) = Uq(x) − b x, with
Uq(x) = 3(x2 − 1)2 as above. A slope of b = 1.217 165 was cho-
sen so that ⟨x⟩p = 0.8 = Y exactly. The corresponding force-
field error is varp(Δu) ≈ 0.51. For this error, we expect a
value of θ = 2/varp(Δu) ≈ 4 to give a balanced fit, as will be
tested.

As a more realistic example, we refine a two-dimensional poly-
mer model33 using synthetic one-dimensional data (Fig. 3). The
Boltzmann distribution is given by a product of von Mises distri-
butions acting on the angle differences between neighboring bonds.
In this phantom-chain model, the beads do not interact. We set the
mean values of the angle differences to zero. All bonds have length
one, and we apply the same stiffness parameter κ = 10. We randomly
generate conformations of polymers with 100 beads. We sample
N = 10 000 independent conformations. As an observable, we use
the end-to-end distance. We set Y = 75 for the experimental value
and an error of σ = 5.

As an example for an actual application, we refine the pre-
viously published simulation data10 of Ala5 with the experimental
data in the form of NMR J-couplings.34 The J-coupling calculation
of Ref. 10 applied the Karplus equation35 using the so-called DFT2

FIG. 2. Ensemble refinement of the double-well system using synthetic data.
The black solid vertical line indicates the experimentally measured observable of
Y = 0.8. The gray shaded area indicates Y ± σ with σ = 0.2. The reference prob-
ability distribution function of the observable for parameters a = 3 and x0 = 1 is
shown as a black dotted line. The histogram of N = 10 000 samples drawn from
the reference distribution, Eq. (51), is shown as a gray solid line. The histograms
of x obtained with BioEn optimal weights for different θ values are shown in color.
For all distribution functions, we show the average values of the observables as
dashed vertical lines in the corresponding color. The calculated average values
approach the experimental value for decreasing θ.

FIG. 3. Ensemble refinement of the polymer model using synthetic data. The
black solid vertical line indicates the experimentally measured observable of
Y = 75. The gray shaded area indicates Y ± σ with σ = 5. The histogram of
N = 10 000 samples drawn from the Boltzmann distribution is shown as a gray
solid line. The histograms of the end-to-end distance obtained with BioEn optimal
weights for different θ values are shown in color. For all distribution functions, we
show the average values of the observables as dashed vertical lines in the corre-
sponding color. The calculated average values approach the experimental value
for decreasing θ.

parameters from Ref. 36. We use N = 50 000 conformations as in the
original publication.

To find optimal solutions for the weights given a value
of θ, we use the forces method10 as implemented in the
open-source BioEn software available at https://github.com/bio-
phys/BioEn. An open-source Julia37 implementation using the pack-
age Optim.jl38 can be downloaded from https://github.com/bio-
phys/BioEn.jl free of charge. To generate synthetic data, we use
https://github.com/bio-phys/RefinementModels.jl for the double-
well model and https://github.com/bio-phys/BioFF for the von
Mises polymer model. We use uniform reference weights for all
systems.

We illustrate the effects of refinement on the weights using
cumulative ranked weights.10 For the three systems, we compare the
numerical results of the cumulative ranked weights to the analytical
results for Gaussian energy distributions (see Appendix B).

IV. RESULTS
We first establish the range of validity for gentle ensemble

refinement for the three example systems. The range of validity of
the approximation of the KL divergence by the energy uncertainty,
Eq. (26), depends on the system under consideration (Fig. 4). We
find good agreement for decreasing θ values down to (θ, SKL) ≈
(10, 0.17) for the double-well system; to (θ, SKL) ≈ (10, 0.26) for
the polymer model; and to (θ, SKL) ≈ (1, 1.43) for Ala5. In gen-
tle ensemble refinement, the two definitions of the KL divergence
are approximately equivalent, SKL(p∥q) ≈ SKL(q∥p) [Eq. (34) and
Fig. 4]. The relative residuals of SKL(q∥p) and of the approximation
by half the energy variance with respect to SKL(p∥q) are of similar
shape and magnitude but opposite sign (Fig. 4, bottom panels). For
all three systems, we have SKL ≲ 1 for θ ≳ 10, which overall delimits
the regime of gentle refinement.
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FIG. 4. Comparison of the KL divergence SKL(p∥q), Eq. (15), used in BioEn
(black solid line) to its approximation given by half the variance of the reduced
energy change βΔU (red dashed line), Eq. (26), and to its alternative definition
SKL(q∥p) (cyan dotted-dashed line), Eq. (27). We show the results for the double-
well system (top), the polymer model (middle), and Ala5 (bottom). The bottom
panels show the relative difference of −varp(Δu) (red dashed line) and SKL(q∥p)
(cyan dotted-dashed line) with respect to SKL(p∥q) = −⟨Δu⟩p. The approxima-
tions roughly start deviating from the values given by the exact expression at
(θ, SKL) ≈ (10, 0.17) for the double-well system, (θ, SKL) ≈ (10, 0.26) for the
polymer model, and (θ, SKL) ≈ (1, 1.43) for Ala5. For smaller θ values, we leave
the regime of gentle refinement. The vertical lines indicate θ = 100 (blue), 10
(orange), and 1 (green).

Having established the limits of validity for gentle ensemble
refinement, we now show that already gentle refinement substan-
tially improves the agreement between simulation and experiment.
This improvement is illustrated by the L-curves defining Pareto
fronts for Bayesian ensemble refinement (Fig. 5). The L-curve con-
sists of optimal χ2 values divided by the number of data points M
plotted against the optimal KL divergence values SKL for different θ
values. The three chosen θ values (100, 10, and 1) cover the elbow

FIG. 5. L-curve plots of the optimal χ2/M vs the optimal KL divergence SKL for
the double-well system (top), the polymer model (middle), and Ala5 (bottom). M is
the number of data points. Annotated disks indicate the optimal values for θ = 100
(blue), 10 (orange), and 1 (green).

regions of the respective L-curves. Note that these elbow regions
are not sharply defined. For gentle refinement at θ = 10, χ2 has
drastically decreased, while SKL remains relatively small.

Overfitting and underfitting are illustrated by the double-well
system (see Fig. 2). We have underfitting for θ = 100 as the calculated
average is multiple standard deviations away from the experimen-
tal value. We have overfitting for θ = 1 as the calculated average
agrees nearly perfectly with the experimental average despite the
error. The character of the distribution of the observable can change
quite substantially even when the optimal entropy values appear rel-
atively small, as we discuss in more detail below. For the optimal
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FIG. 6. Histograms (solid lines) of the energy changes Δuα for θ = 100 (blue), 10 (orange), and 1 (green) for the double-well system (left), the polymer model (center), and
Ala5 (right). Gaussian distributions of the same mean and variance are shown as dashed lines in matching colors.

FIG. 7. Cumulative optimal weights sorted in descending order as a function of their rank for the double-well system (left), the polymer model (center), and Ala5 (right) for
different values of the confidence parameter θ = 100 (blue), 10 (orange), and 1 (green). The black lines indicate the results for the reference distribution. The dashed lines
show analytical results, Eq. (B5), for a Gaussian distribution of Δu parameterized by the mean μ = ⟨Δu⟩ and variance σ2 = var(βΔU). The gray vertical line indicates half
the ensemble size for reference.

ensembles, the statistical weights of the left state [with observable
values y(x) = x < 0] are given by 42%, 23%, and 12% for (θ, SKL)
= (100, 0.01), (10, 0.17), and (1, 0.36), respectively, compared to
50% for the reference state.

For the concrete example of a linear perturbation (Sec. III), we
obtain a balanced solution for θ ≈ 4, estimated using Eq. (1), between
underfitting and overfitting. In particular, the calculated mean after
refinement of ⟨x⟩ ≈ 0.66 matches the target Y = 0.8 ± 0.2 within the
error. θSKL ≈ 1.05 is close to one, as expected. In this sense, the θ
estimate from Eq. (1) is, indeed, consistent.

The approximation of the KL divergence by the variance,
Eq. (26), holds for arbitrarily shaped distribution functions of the
reduced energy differences Δu (Fig. 6). The distribution functions
are bimodal for the double-well system, monomodal for the poly-
mer model, and well approximated by Gaussian distributions for
Ala5. The approximation of the KL divergence by the variance
works especially well for the latter, as it is exact for a Gaussian Δu
distribution.

Refined weights with small entropy values can already be quite
different from the reference weights (Fig. 7). To illustrate this point,
we focus on results for θ = 10 located in the elbow region of the
L-curve (see Fig. 5) and at the border of the regime of gentle refine-
ment. We show the cumulative ranked weights in Fig. 7. For θ = 10,
the SKL values are small and range from 0.17 for the double-well
system, over 0.26 for the polymer model, to 0.37 for Ala5. In these
three cases, the cumulative weights show that the top half of the

conformations already have a cumulative probability of 80%, which
is quite a substantial change. The relative weight of top ranked
conformations further increases with increasing KL divergence.

In Fig. 7, we compare the numerical results of the ranked-
weight distributions to the analytical results obtained by assuming
Gaussian distributions of Δu, parameterized by ⟨Δu⟩ and var(Δu)
calculated from the weights (see Appendix B). For the largest value
of θ and thus the smallest values of SKL, the agreement is excel-
lent. However, for smaller values of θ, the agreement deteriorates
somewhat. For the double-well system, the analytical approximation
captures the trends qualitatively but fails quantitatively because the
underlying distribution of Δu is clearly non-Gaussian. For the poly-
mer model, the distribution of Δu is skewed, but unimodal for all θ
values considered (see Fig. 6), resulting in near-quantitative agree-
ment of the Gaussian-based approximations and the actual weight
distributions after refinement. For the most realistic case presented
here, Ala5, the Δu distribution is well approximated by a Gaussian.
Consequently, the approximations of the weight distributions are
quite accurate, even for the smallest value of θ = 1 with SKL ≈ 1.43.

V. DISCUSSION
When refining sufficiently gently, the KL divergence is well

approximated by the expected energy uncertainty, Eq. (26). We can
quantify and visualize the extent of the resulting weight changes by
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SKL and a plot of the cumulative ranked weights, respectively. KL
divergences SKL ≪ 1 and a narrow gap between the respective cumu-
lative ranked weights indicate a good overlap between the reference
and refined ensembles.

A poor overlap, as indicated by large weight changes, can be
improved by enhanced sampling methods that enrich the sample
before refinement to better match the experimental observables, e.g.,
by using replica simulations.24,25 We then reweight the sampled
ensemble using MBAR or binless WHAM to produce a reference
ensemble for subsequent BioEn ensemble refinement, as we have
proposed in Ref. 9. By doing so, we can remove any biases, e.g.,
due to a finite number of replicas. One can also directly bias the
degrees of freedom determining the values of the observables, e.g.,
by using empirical force-field refinement, as described, for example,
in Ref. 33. Also in this case, we can generate a reference ensemble by
reweighting the sampled ensembles for subsequent BioEn ensemble
refinement.

Even for gentle refinement, the changes to the reference weights
can be noticeable. For θ = 10, we found the top 50% of the conforma-
tions to carry ∼80% of the weight in our three examples, consistent
with the Gaussian approximation (Fig. 7). Despite the small entropy
values of SKL ≈ 0.2 to 0.4, these changes to the weights are suffi-
cient to substantially reduce the deviations from experiment (see the
L-curves in Fig. 5).

We suggest using our prior knowledge about the force-field
accuracy in the space of observables to set the confidence parameter
as θ ≅ 2/var(βΔU), Eq. (1). One can justifiably deviate from this
proposal to set θ according to available prior knowledge. For exam-
ple, if larger values of the variance are less probable than implied
by the exponential form of the prior with θ ≅ 2/var(βΔU), then
one should increase θ accordingly. In any case, knowledge on the
expected variance var(βΔU) can be applied to set and interpret the
scaling parameter θ. Conversely, a particular choice of θ by other
reasoning is also an expression of the expected errors in state popu-
lations of the reference ensemble. Whereas functions other than an
exponential function could be used to define the prior, the simple
relation to the force-field error would most likely be lost.

We build up experience about the force-field uncertainties
quite naturally. Experienced researchers performing simulations will
often be able to state expectations about the energy uncertainties of
their favorite force fields for a class of observables. However, the
mean-squared force-field error can also be learned from repeated
ensemble refinements against different experimental data across a
variety of systems.

VI. CONCLUDING REMARKS
The results presented here can be generalized to non-

Boltzmann distributions and are thus valid for the general class of
Bayesian/MaxEnt approaches for ill-defined inverse problems. In
such cases, we take advantage of the fact that the energy enter-
ing Boltzmann’s distribution corresponds to Shannon’s informa-
tion content h(x) = −ln p(x) for arbitrary probability distributions
p(x).39 Consequently, the difference in energy corresponds to a
difference in information, Δh(x) = ln[p(x)/q(x)], Eq. (9). Like in
gentle ensemble refinement, the KL divergence can be approximated
by the variance of this information difference, i.e., SKL ≈ var(Δh)/2,

if these differences are small. In general, we express our confidence
in the “natural unit of information” or “nat,” which is numerically
equal to kBT for Boltzmann distributions.

Gentle ensemble refinement is a powerful tool for molecular
simulations and modeling. Empirical force fields rely on approxi-
mations in their functional form to trade off efficiency and accuracy.
Therefore, not all errors in the force field can be resolved just by
re-parameterization. In addition, ensembles generated from other
methods than molecular simulations suffer from approximations
and benefit from ensemble refinement.20–22 The inaccuracies intro-
duced by such approximations can be alleviated using gentle ensem-
ble refinement to integrate system-specific information, most often
in the form of experimental data.
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APPENDIX A: KULLBACK–LEIBLER DIVERGENCE
FOR FINITE ENSEMBLES

For the sake of completeness, we show here how we estimate
the KL divergence, defined in Eq. (8) and Eq. (15) for Boltz-
mann distributions, from finite ensembles. Consequently, the results
presented in the main text for continuous probability densities
also apply to finite ensembles. As we show below, the discrete
weights wα and w

(0)
α generally correspond to the ratios of prob-

ability densities. In the following, we use pα = wα and qα = w(0)α
to reduce visual clutter and emphasize the general validity of our
results.

In general, we can calculate the information difference expecta-
tion in Eq. (8) from an arbitrary normalized probability distribution
q̃(x) by reweighting,

SKL(p∥q) = ⟨ln
p(x)
q(x)⟩p

= ⟨p(x)
q̃(x) ln

p(x)
q(x)⟩q̃

. (A1)
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On the right-hand side, we form the expectation with respect to
q̃(x). Equivalently, we obtain

SKL(p∥q) = ⟨
p(x)
q̃(x) ln(p(x)q̃(x)

q̃(x)q(x))⟩q̃
(A2)

by inserting 1 = q̃(x)/q̃(x) into the logarithm of Eq. (A1). We
use this expression to estimate the KL divergence from finite samples
and properly interpret discrete weights.

Using Eq. (A2), we can numerically estimate SKL(p∥q) from a
sample of conformations xα sampled from q̃(x), i.e., xα ∼ q̃(x), as

SKL(p∥q) ≈
1
N

N

∑
α=1

p(xα)
q̃(xα)

ln
p(x)q̃(x)
q̃(x)q(x) . (A3)

Exploiting that the probability distributions p(x) and q(x) only
show up as ratios with q̃(x), we can introduce normalized weights or
probabilities Wα for the finite sample as

Wα =
W(xα)
q̃(xα)

⎡⎢⎢⎢⎢⎣

N

∑
γ=1

W(xγ)
q̃(xγ)

⎤⎥⎥⎥⎥⎦

−1

(A4)

such that ∑N
α=1 Wα = 1 for the finite ensemble. For the reference

ensemble, W(xα) = q(xα) with discrete weights Wα = qα. For the
refined ensemble, W(xα) = p(xα) with discrete weights Wα = pα.
Importantly, W(xα) and q̃(xα) do not have to be normalized to
calculate these weights.

For normalized probability distributions p(x) and q(x), the
normalization term in the square bracket above is equal to N,

Wα =
1
N

W(xα)
q̃(xα)

, (A5)

because xα ∼ q̃(x) and

1
N

⎡⎢⎢⎢⎢⎣

N

∑
γ=1

W(xγ)
q̃(xγ)

⎤⎥⎥⎥⎥⎦
≈ ⟨W(x)

q̃(x) ⟩q̃

= ∫ dx W(x) = 1. (A6)

Using Eq. (A5) for the corresponding probability ratios in
Eq. (A3), we obtain for the numerical estimate of the KL divergence,

SKL(p∥q) ≈
N

∑
α=1

pα ln
pα

qα
= −

N

∑
α=1

pαΔuα. (A7)

Importantly, we can calculate the discrete weights pα and
qα using Eq. (A4) without the need for calculating partition
functions. If we sample from the reference distribution, q̃(x)
= q(x), then qα = 1/N and pα = exp (−Δuα)/∑N

γ=1 exp (−Δuγ). If
we sample from the refined distribution, q̃(x) = p(x), then qα
= exp (Δuα)/∑N

γ=1 exp (Δuγ) and pα = 1/N.
In BioEn ensemble refinement, we calculate the probabilities

qα for the reference ensembles as 1/N for unbiased simulations
in agreement with Eq. (A4). We obtain reference weights from
biased simulations by reweighting, e.g., using MBAR40,41 or (binless)
WHAM.42–45 We obtain the optimal probabilities pα by maximiz-
ing the posterior, Eq. (2), or equivalently by minimizing the negative
log-likelihood, Eq. (7).

APPENDIX B: CUMULATIVE RANKED WEIGHTS

We derive an analytical expression for the cumulative ranked
weights for a Gaussian distribution of the energy change Δu.
With mean μ = ⟨Δu⟩ and variance σ2 = var(Δu), the weights w
are distributed according to a log-normal distribution for uniform
reference weights,

f (w∣μ̃, σ2) = 1√
2πσ2w

exp [−(ln w − μ̃)2

2σ2 ], (B1)

where μ̃ = −μ − ln N. Then, the cumulative distribution of the
weights is

F(w∣μ̃, σ2) = 1
2
[1 + erf( ln w − μ̃√

2σ
)], (B2)

where erf(⋅) is the error function. We define the cumulative average
of weights w as

c(w) = ∫
w

0
w′ f (w′∣μ̃, σ2)dw′. (B3)

We normalize this function by the average weight c(∞) such that

c(w)
c(∞) =

1
2
[1 − erf( μ̃ + σ2 − ln 2√

2σ
)]. (B4)

The cumulative value of the weights, sorted in descending order,
as a function of the rank now corresponds to 1 − F(w∣μ̃, σ2) as a
function of 1 − c(w)/c(∞). Introducing r = 1 − c(w)/c(∞), with
0 ≤ r ≤ 1, we can rewrite 1 − F(w∣μ̃, σ2) as a function of r. We obtain
the cumulative ranked weights function,

crw(r) = 1
2
[1 − erf(erf−1(1 − 2r) − σ√

2
)], (B5)

where erf −1(⋅) is the inverse error function. To compare this expres-
sion with the cumulative weights of a finite ensemble of size N with
a discrete rank, we plot crw(n/N) as a function of the continuous
variable n with 0 ≤ n ≤ N − 1.

Note that if the approximation of the KL divergence in terms
of the variance alone holds, then Eq. (B5) is parameterized by the
KL divergence, σ/

√
2 ≈
√

SKL. For example, the weight fraction of
the top-half of the weights is crw(1/2) ≈ 1

2 [1 + erf(
√

SKL)]. These
approximations are exact in the Gaussian case.

APPENDIX C: EQUIVALENCE OF KULLBACK–LEIBLER
DIVERGENCE IN THE SPACE OF CONFORMATIONS
AND OBSERVABLES

As we have shown in Ref. 9, the BioEn refinement can be per-
formed equivalently in the space of conformations x and observables
y. Here, we show that the KL divergences calculated in the respective
spaces have identical numerical values.

Following the Appendix in Ref. 9, let q(y) and p(y) be the
distributions in the space of observables according to Eq. (42). As
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shown in the lead-up to Eq. (A5) of Ref. 9, these distributions can be
written in terms of a vector z of constants zi as

p(x) =
q(x) exp (∑M

i=1 yi(x) zi)
∫dx′ q(x′) exp (∑M

i=1 yi(x′) zi)
, (C1)

p(y) =
q(y) exp (∑M

i=1 yi zi)
∫dy′ q(y′) exp (∑M

i=1 y′i zi)
, (C2)

where we use dy′ =∏M
i=1 dy′i . Importantly, the coefficients zi are the

same in both conformation and observable space.9
The KL divergence in the observable space y is, by definition,

S(y)
KL = ∫ dy p(y) ln

p(y)
q(y)

= ∫ dy p(y)
M

∑
i=1

yizi − ln∫ dyq(y)e
M
∑
i=1

yizi
.

We now rewrite the KL divergence in the space of conformations x
in terms of observables y by inserting Dirac delta functions,

S(x)KL = ∫ dx p(x) ln
p(x)
q(x)

= ∫ dx p(x)
M

∑
i=1

yi(x)zi − ln∫ dx p(x)e∑
M
i=1 yi(x)zi

= ∫ dy∫ dx p(x)
M

∏
i=1

δ[yi(x) − yi]
M

∑
i=1

yi(x)zi

− ln∫ dy∫ dx p(x)
M

∏
i=1

δ[yi(x) − yi]e∑
M
i=1 yi(x)zi

= ∫ dy p(y)
M

∑
i=1

yizi − ln∫ dyq(y)e∑
M
i=1 yizi. (C3)

We find that the KL divergences in the x and y spaces are
identical,

S(x)KL = S(y)KL ≡ SKL. (C4)

We can thus estimate SKL in either space.

REFERENCES
1S. Gull and G. Daniell, Nature 272, 686 (1978).
2M. Nilges, M. Habeck, and W. Rieping, C. R. Chim. 11, 356 (2008).
3A. B. Ward, A. Sali, and I. A. Wilson, Science 339, 913 (2013).
4S. Bottaro and K. Lindorff-Larsen, Science 361, 355 (2018).
5E. T. Jaynes, in Maximum Entropy and Bayesian Methods in Applied Statistics,
edited by J. H. Justice (Cambridge University Press, 1986), pp. 27–58
6S. Kullback and R. A. Leibler, Ann. Math. Statist. 22, 79 (1951).
7P. C. Hansen and D. P. O’Leary, SIAM J. Sci. Comput. 14, 1487 (1993).
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