
ar
X

iv
:2

31
1.

11
67

9v
1

 [
cs

.D
S]

 2
0

N
ov

 2
02

3

Perfect Simulation of Las Vegas Algorithms via Local Computation

Xinyu Fu* Yonggang Jiang† Yitong Yin*

Abstract

The notion of Las Vegas algorithm was introduced by Babai (1979) and may be defined in two ways:

• In Babai’s original definition, a randomized algorithm is called Las Vegas if it has finitely bounded

running time and certifiable random failure.

• Alternatively, in a widely accepted definition today, Las Vegas algorithms mean the zero-error

randomized algorithms with random running time.

The equivalence between the two definitions is straightforward. In particular, by repeatedly running the

algorithm until no failure encountered, one can simulate the correct output of a successful running.

We show that this can also be achieved for distributed local computation. Specifically, we show

that in the LOCAL model, any Las Vegas algorithm that terminates in finite time with locally certifiable

failures, can be converted to a zero-error Las Vegas algorithm, at a polylogarithmic cost in the time

complexity, such that the resulting algorithm perfectly simulates the output of the original algorithm on

the same instance conditioned on that the algorithm successfully returns without failure.

*State Key Laboratory for Novel Software Technology, Nanjing University. Emails: xyfu@smail.nju.edu.cn, yinyt@nju.edu.cn.
†MPI-INF and Saarland University, Germany, yjiang@mpi-inf.mpg.de

i

http://arxiv.org/abs/2311.11679v1

Contents

1 Introduction 1

2 A LOCAL Sampling Lemma and Proof of Main Theorem 3

2.1 Sampling satisfying solution of Lovász local lemma . 3

2.2 Formal statement and proof of the main theorem . 4

3 Algorithm and Outline of Proof 5

3.1 Decay of correlation in LLL . 6

3.2 Las Vegas SLOCAL algorithm . 7

3.3 Algorithm: Initialization and Clustering . 8

3.4 Algorithm: Resampling . 11

3.5 Wrapping up (Proof of Theorem 2.1) . 15

4 Related Work and Discussions 16

5 Analysis of Correlation Decay 17

5.1 Construction of the bad event Aλ . 17

5.2 Correlation decay in the augmented LLL instance . 18

6 Analysis of Initialization and Clustering 25

6.1 Analysis of Initialization (Proof of Lemma 3.5) . 25

6.2 Analysis of Clustering (Proof of Lemma 3.7) . 25

7 Analysis of Resampling 29

7.1 Correctness of RecursiveSampling (Proof of Item 1 in Lemma 3.11) 29

7.2 Efficiency of RecursiveSampling (Proof of Item 2 in Lemma 3.11) 33

7.3 Accuracy of estimation (Proof of Lemma 3.10) . 37

7.4 Analysis of Substituting (Proof of Lemma 3.12) . 40

7.5 Wrapping up the analysis of Resampling (Proof of Lemma 3.13) 42

A Simulation of SLOCAL-LV in LOCAL Model 48

ii

1 Introduction

The Las Vegas algorithm introduced by Babai [Bab79] is a fundamental concept in the theory of computing.

It defines the important complexity class ZPP, which is the class of decision problems solvable by efficient

Las Vegas algorithms. Other than decision problems, Las Vegas algorithms also play key roles in solving

optimization [Kal92, Cla95], searching [MSL92, MT10], or sampling [PW96, GJL19] problems.

Las Vegas algorithms can be defined in two ways. In Babai’s original definition [Bab79], Las Vegas

algorithms are defined as the randomized algorithms whose failures are certifiable:

• A Las Vegas algorithm produces the correct output or reports failure after finitely bounded time.

An alternative definition of Las Vegas algorithm is also used variously, e.g. in [LSZ93, MR95, MU05],

there Las Vegas algorithms are defined as zero-error randomized algorithms:

• A Las Vegas algorithm may have random running time but always produces the correct output.

The equivalence between these two definitions is obvious. By truncation, one can convert a zero-error

Las Vegas algorithm with random running time to a Las Vegas algorithm with bounded running time and

certifiable failure. Conversely, by restarting the algorithm once a failure is reported, one can convert a Las

Vegas algorithm with certifiable failure to a zero-error Las Vegas algorithm. This strategy of retrying with

independent random choice until success, defines a rejection sampling procedure, which perfectly simulates

the random output of the Las Vegas algorithms conditioned on that it successfully returns without failure.

This strategy for perfect simulation of Las Vegas algorithm relies on a global coordination machinery:

all parts of the algorithm need to be informed whether a failure is encountered somewhere. In contrast, we

are interested in how this could be achieved by local computations, in the absence of global coordination.

The LOCAL model. Local computations are formally characterized by the LOCAL model [Lin92, Pel00].

An instance consists of a network G = (V,E), which is an undirected graph, and a vector x = (xv)v∈V of

local inputs. Each node v ∈ V receives xv and n = |V | as its input, and can access to private random bits.

Communications are synchronized and proceed in rounds. In each round, each node may perform arbitrary

local computation based on all information collected so far and send messages of arbitrary sizes to all its

neighbors. This gives a LOCAL algorithm. The time complexity is measured by the number of rounds spent

by the algorithm until all nodes terminate. A LOCAL algorithm is said to be a t(n)-round LOCAL algorithm

on a class of instances, if it always terminates within t(n) rounds on every instance from that class, where n
represents the number of nodes of the instance.

The (Babai’s) Las Vegas algorithm can be defined in the LOCAL mode with locally certifiable failures.

A t(n)-round LOCAL algorithm is called Las Vegas if each node v ∈ V returns a pair (Yv, Fv), where Yv

stands for the local output at v, and Fv ∈ {0, 1} indicates whether the algorithm failed locally at v. The

algorithm successfully returns if none of the node fails. Furthermore, it is guaranteed that
∑

v∈V E[Fv] < 1.

This notion of Las Vegas LOCAL algorithm was formulated in [GHK18].

In this paper, we try to answer the following fundamental question:

Can we faithfully simulate the correct output avoiding all local failures via local computation?

Specifically, we wonder whether a fixed-round Las Vegas LOCAL algorithm with locally certifiable failures,

can be converted into a zero-error Las Vegas LOCAL algorithm that produces the correct output (Yv)v∈V
conditioned on

∑
v∈V Fv = 0, where the distribution of the correct output is faithfully preserved. This asks

for what used to be achieved by the rejection sampling in the absence of global coordination.

1

In this paper, for the first time, we answer this question affirmatively. We prove the following result for

the perfect simulation of Las Vegas algorithms via local computation.

Theorem 1.1 (main theorem, informal). Any t(n)-round Las Vegas LOCAL algorithm can be converted to a

zero-error Las Vegas LOCAL algorithm, which terminates within t(n) · polylog(n) rounds with probability

1−n−O(1), and returns the output of the t(n)-round Las Vegas LOCAL algorithm conditioned on no failure.

In above theorem, the output of the zero-error Las Vegas LOCAL algorithm is identically distributed as

the output of the t(n)-round Las Vegas LOCAL algorithm conditioned on that none of the nodes fails, i.e. the

zero-error algorithm perfectly simulates a successful running of the algorithm that may locally fail.

To see how nontrivial this is, consider a weakened task: to generate an assignment of random bits so

that under this random choice the algorithm terminates without failure. One may think of this as “solving”

the random bits under which the algorithm successfully returns, which is weaker than our goal, where the

generated random bits are further required to follow the correct distribution. However, for local computation,

just solving the feasible random bits without bothering their distribution is already highly nontrivial.

In a seminal work [GHK18], Ghaffari, Harris and Kuhn gave a systematic approach for solving the good

random bits under which a Las Vegas LOCAL algorithm successfully returns. Their derandomization based

approach preserves the support of distribution, hence was more suitable for the distributed graph problems

for constructing feasible solutions on graphs. Specifically, polylog(n)-round reductions were established

between the two types of the Las Vegas LOCAL algorithms for such problems.

In contrast, the perfect simulation guaranteed in Theorem 1.1 preserves the distribution, therefore, the

result can apply to the problems beyond constructing feasible solutions, for example, the sampling problems.

Consider the Gibbs distributions defined on the network G = (V,E). Each node v corresponds to a

variable with finite domain Σ. Let F be a class of constraints, where each f ∈ F is a nonnegative-valued

function f : Σvbl(f) → R≥0 defined on the variables in vbl(f) ⊆ V . This defines a Gibbs distribution µ
over all assignments σ ∈ ΣV by:

µ(σ) ∝
∏

f∈F

f
(
σvbl(f)

)
.

Such Gibbs distribution µ is said to be local, if: (1) for any f ∈ F , the diameter of vbl(f) in graph G
is bounded by a constant; and (2) for any partial assignment σ ∈ ΣΛ specified on Λ ⊆ V , if σ is locally

feasible, i.e. if f(σvbl(f)) > 0 for all f ∈ F with vbl(f) ⊆ Λ, then σ is (globally) feasible, which means

that σ can be extended to a feasible full assignment τ ∈ ΣV such that τΛ = σ and µ(τ) > 0.1

A Gibbs distribution µ is said to have strong spatial mixing with exponential decay if the discrepancy

(measured in total variation distance) between the marginal distributions µσ
v , µ

τ
v at any v ∈ V given the

respective feasible boundary conditions σ, τ ∈ ΣΛ on Λ ⊆ V that differ over an arbitrary ∆ ⊆ Λ, satisfies:

dTV (µσ
v , µ

τ
v) ≤ |V |

O(1) · exp(Ω(distG(v,∆))).

The strong spatial mixing is a key property for sampling algorithms. Its implication to efficient sampling

from general Gibbs distributions is a major open problem. In [FY18, Corollary 5.3], a polylog(n)-round

Las Vegas LOCAL algorithm with bounded local failures was given, for perfect sampling from local Gibbs

distributions that have the strong spatial mixing with exponential decay. By Theorem 1.1, this immediately

implies the following result for perfect simulation of Gibbs distributions via local computation.

Corollary 1.2. For any class of local Gibbs distributions that have the strong spatial mixing with exponential

decay, there is a LOCAL algorithm for perfect sampling from the Gibbs distribution, which terminates within

polylog(n) rounds with probability 1− n−O(1).

1In [FY18], this property of local feasibility implying global feasibility in Gibbs distribution was called “locally admissible”.

2

2 A LOCAL Sampling Lemma and Proof of Main Theorem

The perfect simulation of Las Vegas LOCAL algorithms stated in Theorem 1.1 is achieved by resolving

a more general problem, namely, generating a random sample avoiding all bad events. This problem is

formulated as a natural sampling problem in the variable-framework of the Lovász local lemma.

2.1 Sampling satisfying solution of Lovász local lemma

An instance for the variable-framework Lovász local lemma (LLL) is given by I = ({Xi}i∈U , {Av}v∈V),
where {Xi}i∈U is a set of mutually independent random variables, such that each Xi follows a distribution

νi over a finite domain Σi; and {Av}v∈V is a set of bad events, such that for each v ∈ V , the occurrence

of Av is determined by the evaluation of Xvbl(v) = (Xi)i∈vbl(v), where vbl(v) ⊆ U denotes the subset of

variables on which Av is defined. The LLL instance I defines a dependency graph D = DI = (V,E), such

that each vertex v ∈ V represents a bad event Av and each {u, v} ∈ E iff vbl(v) ∩ vbl(u) 6= ∅.
An LLL instance I is said to be γ-satisfiable, if the probability avoiding all bad events is bounded as:

Pr

(
⋂

v∈V

Av

)
≥ γ. (1)

The Lovász local lemma [EL75] states a sufficient condition on the dependency graph for γ to be positive.

A satisfiable LLL instance I gives rise to a natural probability distribution over satisfying assignments.

Let µ = µI denote the distribution of the random vector X = (Xi)i∈U conditioning on that none of the bad

events {Av}v∈V occur. Formally, denote by Ω = ΩI , {σ ∈
⊗

i∈U Σi | σ avoids Av for all v ∈ V } the

space of all satisfying assignments, and ν = νI ,
∏

i∈U νi the product measure. Then

∀σ ∈ Ω, µ(σ) , Pr(X = σ |X ∈ Ω) =
ν(σ)

ν(Ω)
. (2)

This distribution µ = µI of random satisfying assignment was referred as the LLL distribution in [Har20].

It is a Gibbs distribution defined by hard constraints.

The following defines a computational problem for generating a sample according to the distribution µ.

Sampling Satisfying Solution of Lovász Local Lemma

Input : a γ-satisfiable LLL instance I with dependency graph DI = (V,E);

Output: a random satisfying assignment X∗ = (X∗
i)i∈U distributed as µI .

When the problem is solved in the LOCAL model, the input is presented to the algorithm as follows:

1. The network G of the LOCAL model is just the dependency graph DI .

2. Each node v ∈ V receives as input the values of n = |V | and γ, along with the definition of the bad

event Av, and the distributions νi of the random variables {Xi | i ∈ vbl(v)} on which Av is defined,

so that it can locally draw independent evaluations of the random variables {Xi | i ∈ vbl(v)} or check

the occurrence of Av on such evaluation.

Our main technical result is an efficient LOCAL algorithm for sampling satisfying solution according to

the LLL distribution, for any LLL instance that is not prohibitively scarce to satisfy. We call this result a

“LOCAL sampling lemma” since it uses the local lemma framework to give a LOCAL sampling algorithm.

3

Theorem 2.1 (LOCAL sampling lemma). There is a randomized LOCAL algorithm such that for any LLL

instance I with n bad events, if I is γ-satisfiable, then the algorithm returns a random satisfying assignment

drawn from µI , within Õ
(
log6 n · log4 1

γ

)
rounds in expectation, and within Õ

(
log6 n · log4 1

γ · log
6 1

ǫ

)

rounds with probability at least 1− ǫ for any 0 < ǫ < 1.

In the classical algorithmic Lovász Local Lemma, the main goal is to construct a satisfying assignment.

Here, our goal is more challenging: to generate a random satisfying assignment according to the LLL

distribution µ. This sampling problem has been proved to require polynomially stronger condition than the

conventional algorithmic LLL [BGG+19, GJL19, Har20]. And only recently, polynomial-time centralized

algorithms were discovered for sampling uniform satisfying assignment for general LLL instances [HWY22,

JPV21, FGYZ21, Moi19]. In order for perfectly simulating Las Vegas LOCAL algorithms, we do not impose

any local lemma type of condition on the dependency graph. Instead, we show that the sampling problem

is tractable via local computation, as long as the chance for a random assignment to be satisfying is non-

negligible. To the best of our knowledge, this is the first result of the kind.

As a byproduct, the algorithm in Theorem 2.1 gives a uniform sampler for LCLs in the LOCAL model.

The locally checkable labelings (LCLs) (see [NS95] for formal definitions) are vertex labelings satisfying

local constraints in the network. Suppose that each label is drawn uniformly and independently at random,

and violating the locally checkable constraint at each node v ∈ V defines a bad event Av. Then the LLL

distribution corresponds to the uniform distribution over LCLs, and Theorem 2.1 has the following corollary.

Corollary 2.2. For any locally checkable labeling (LCL) problem, if uniform random labeling can always

generate a correct LCL with probability at least n−polylog(n), then there is a randomized LOCAL algorithm

that outputs a uniform random LCL within polylog(n) rounds with high probability.

2.2 Formal statement and proof of the main theorem

Recall that for LOCAL algorithms, an instance I = (G,x) consists of a network G = (V,E) and a vector

x = (xv)v∈V specifying the local input xv to each node v ∈ V . Let C be a class of instances. A t(n)-round

Las Vegas LOCAL algorithm with success probability γ(n) on instance class C, is a randomized LOCAL

algorithm such that on every instance I = (G,x) ∈ C, where G is a network with n = |V | nodes, at every

node v ∈ V the algorithm terminates within t(n) rounds and outputs a pair (Yv, Fv) where Fv ∈ {0, 1}
indicates whether the algorithm failed locally at v, and the probability that the algorithm succeeds is

Pr (∀v ∈ V : F v = 0) ≥ γ(n).

Denote by (Y I ,F I) = 〈(Yv)v∈V , (Fv)v∈V 〉 the output of the Las Vegas LOCAL algorithm on instance I =
(G,x) with network G = (V,E). The following theorem is a formal restatement of Theorem 1.1, which

gives a zero-erro Las Vegas LOCAL algorithm that perfectly simulates the good output (Y I | F I = 0)
when there is no failure everywhere in the network.

Theorem 2.3 (main theorem, formal). Let t : N → N and γ : N → [0, 1] be two functions. Let A be

a t(n)-round Las Vegas LOCAL algorithm with success probability γ(n) on instance class C. There is a

LOCAL algorithm B such that on every instance I ∈ C of n nodes, for any 0 < ǫ < 1,

• B terminates within t(n) · Õ
(
log6 n · log4 1

γ(n) · log
6 1

ǫ

)
rounds with probability at least 1− ǫ;

• upon termination, B returns an output Y B
I that is identically distributed as (Y A

I | F
A
I = 0), which

stands for the output of A on the same instance I conditioned on that none of the nodes fails.

4

Proof. Let I = (G,x) ∈ C be the instance of the LOCAL algorithm, where G = (V,E) is a network with

n = |V | nodes and the vector x = (xv)v∈V specifies the local inputs. For each v ∈ V , let Xv denote the

local random bits at node v used by algorithm A.

Since A is a t(n)-round Las Vegas LOCAL algorithm, at any v ∈ V , the algorithm A deterministically

maps the inputs xB = (xv)v∈B and the random bits XB = (Xv)v∈B within the t(n)-ball B = Bt(n)(v), to

the local output
(
Y A
v , FA

v

)
, where FA

v ∈ {0, 1} indicates the failure at v. This defines a bad event Av for

every v ∈ V , on the random variables Xu for u ∈ Bt(n)(v), i.e. vbl(v) = Bt(n)(v), by

Av : FA
v (Xvbl(v)) = 1.

Together, this defines an LLL instance I = ({Xv}v∈V , {Av}v∈V), which is γ(n)-satisfiable because the

probability that A has no failure everywhere is at least γ(n).
We simulate the sampling algorithm in Theorem 2.1 (which we call the LLL sampler) on this LLL

instance I . Rather than executing it on the dependency graph DI as in Theorem 2.1, here we simulate the

LLL sampler on the network G = (V,E), where each node v ∈ V holds an independent random variable

Xv and a bad event Av . Note that any 1-round communication in the dependency graph DI can be simulated

by O(t(n))-round communications in this network G = (V,E). Also note that at each v ∈ V , the values of

t(n) and γ(n) can be computed locally by knowing n = |V | and enumerating all network instances I ∈ C

with n nodes. The LLL sampler can thus be simulated with O(t(n))-multiplicative overhead. In the end

it outputs an X
∗ = (X∗

v)v∈V ∼ µI , which is identically distributed as
(
X | FA

I = 0
)
, i.e. the random

bits used in the algorithm A conditioned on no failure. The final output Y ∗ = (Y ∗
v)v∈V is computed by

simulating A within t(n) locality deterministically using X
∗ = (X∗

v)v∈V as random bits.

The LLL sampler in Theorem 2.1 is a Las Vegas algorithm with random terminations. Each node v ∈ V
can continue updating Y ∗

v using the current random bits X∗
B it has collected within its t(n)-local neighbor-

hood B = Bt(n)(v). Once the LLL sampler for generating X
∗ terminates at all nodes, the updating of Y ∗

will stabilize within additional t(n) rounds. And this final Y ∗ is identically distributed as
(
Y

A
I | F

A
I = 0

)
.

This gives us the zero-error Las Vegas LOCAL algorithm B as claimed in Theorem 2.3.

3 Algorithm and Outline of Proof

In this section, we describe the main sampling algorithm and outline the proof of Theorem 2.1, the LOCAL

sampling lemma. The proof consists of the following main parts.

• We define a notion of correlation decay that is useful for sampling. We introduce an “augmentation” of

the LLL instance, which creates correlation decay by introducing a new local bad event. (Section 3.1)

• The zero-error Las Vegas algorithm for sampling, is presented in a sequential local paradigm, called

SLOCAL-LV algorithms, which can be simulated by LOCAL algorithms. (Section 3.2)

• After the first two phases of the sampling algorithm, namely, Initialization and Clustering, a random

assignment Y is generated, and the violated bad events are clustered into balls. (Section 3.3)

• In the last phase of the sampling algorithm, namely Resampling, the random assignment Y is locally

fixed, where the variables involved in the violated bad events are resampled. In the end, the updated

assignment Y is guaranteed to follow the correct LLL distribution. (Section 3.4)

At last, we wrap up the proof of Theorem 2.1 in Section 3.5.

In our proof, the step of the augmentation of LLL to get correlation, and the Resampling phase of the

sampling algorithm, are technically innovative, while the rests are more routine in technique.

5

Graph notation. Let G = (V,E) be an undirected graph. The following notations are used throughout.

• Neighborhoods: NG(v) , {u ∈ V | {u, v} ∈ E} and inclusive neighborhood N+
G (v) , N(v)∪{v}.

• Distances: distG(u, v) represents the shortest path distance between u and v in G, and distG(S, T) ,
minu∈S,v∈T distG(u, v). The diameter of S ⊆ V in G is given by diamG(S) , distG(S, S).

• Balls: BG
r (v) , {u ∈ V | distG(u, v) ≤ r} and BG

r (S) , {u ∈ V | distG(u, S) ≤ r} for S ⊆ V .

• Spheres: SG
[ℓ,r](v) , BG

r (v) \B
G
ℓ−1(v) and SG

[ℓ,r](T) , BG
r (T) \B

G
ℓ−1(T) for T ⊆ V .

In all above notations, we omit the underlying graph G if it is clear in the context.

3.1 Decay of correlation in LLL

Let I = ({Xi}i∈U , {Av}v∈V) be a LLL instance, where each random variable Xi follows the distribution

νi over domain Σi. For Λ ⊆ U , define ΣΛ ,
⊗

i∈ΛΣi and νΛ ,
∏

i∈Λ νi, and write ν = νU and Σ = ΣU .

For nonempty Λ ⊂ U and τ ∈ ΣΛ, define

Ωτ = Ωτ
I , {σ ∈ Σ | σΛ = τ and σ avoids bad events Av for all v ∈ V s.t. vbl(v) 6⊆ Λ} . (3)

For disjoint S, T ⊆ U , for σ ∈ ΣS and τ ∈ ΣT , denote by σ ∧ τ the direct concatenation of σ and τ ,

that is, σ ∧ τ ∈ ΣS∪T satisfying (σ ∧ τ)i = σ(i) for i ∈ S and (σ ∧ τ)i = τ(i) for i ∈ T .

The following defines a notion of correlation decay in the LLL instance.

Definition 3.1 (ǫ-correlated sets). A pair of disjoint S, T ⊂ U with S ∪ T 6= U , is said to be ǫ-correlated,

if one of S, T is empty, or for any σ1, σ2 ∈ ΣS and τ1, τ2 ∈ ΣT ,

ν
(
Ωσ1∧τ1

)
· ν
(
Ωσ2∧τ2

)
≤ (1 + ǫ) · ν

(
Ωσ1∧τ2

)
· ν
(
Ωσ2∧τ1

)
.

To see that this indeed defines a decay of correlation, note that it is equivalent to the following property:

For X drawn according to the product distribution ν that avoids all bad events Av satisfying vbl(v) 6⊆ S∪T ,

Pr (XS = σ1 ∧XT = τ1) · Pr (XS = σ2 ∧XT = τ2)

≤(1 + ǫ) · Pr (XS = σ1 ∧XT = τ2) · Pr (XS = σ2 ∧XT = τ1) .

Recall that we want to bound the correlation between XS and XT in a random satisfying assignment X

distributed as µ = µI , which is drawn according to the product distribution ν that avoids all bad events Av.

Here, Definition 3.1 is slightly different by ignoring the bad events Av defined on the variables within S∪T .

The decay of correlation is crucial for sampling from joint distributions. However, such property is not

taken for granted for all γ-satisfiable LLL instances. A key idea is then to properly “augment” the LLL

instance by introducing new bad events to enforce desirable correlation decay. This must be done carefully

because this would inevitably bias the LLL distribution, which needs to be taken care of later.

The following is a key lemma which guarantees that in a LLL instance, if a local neighborhood S is

separated from a far enough region T by a well-satisfiable boundary, then S and T can be made enough

ǫ-correlated by introducing a new bad event which is locally defined and can scarcely occur.

Given a LLL instance I = ({Xi}i∈U , {Av}v∈V), for any Λ ⊆ V , we denote

vbl(Λ) ,
⋃

v∈Λ

vbl(v) and I(Λ) ,
(
{Xi}i∈vbl(Λ), {Av}v∈Λ

)
,

where I(Λ) is the LLL sub-instance induced by the bad events {Av}v∈Λ.

6

Lemma 3.1 (LLL augmentation). There is a universal constant C0 > 0 such that the followings hold for

any ǫ, γ ∈ (0, 1), δ ∈
(
0, γ2

)
, and for all ℓ ≥ ℓ0(ǫ, γ, δ), where

ℓ0(ǫ, γ, δ) ,

⌈
C0 · log

2

ǫ
· log

2

γ
· log

1

δ
· log

(
2 log

2

ǫ
· log

2

γ
· log

1

δ

)⌉
. (4)

Let I = ({Xi}i∈U , {Av}v∈V) be a LLL instance whose dependency graph is DI . For any nonempty Λ ⊆ V ,

if the sub-instance I(Bℓ(Λ)\Λ) is γ-satisfiable, then there exists a new bad event Aλ with λ 6∈ V such that:

1. Aλ is an event defined on the random variables in vbl(λ) = vbl(Bℓ(Λ)) \ vbl(Λ), and the construction

of Aλ depends only on the specifications of Λ, {Av}v∈Bℓ+1(Λ), {Xi}i∈vbl(Bℓ+1(Λ)) and (ǫ, γ, δ);

2. Aλ occurs with probability at most δ on independent random variables {Xi}i∈U , i.e. ν(Aλ) ≤ δ;

3. the variable sets S = vbl(Λ) and T = U \vbl(Bℓ(Λ)) are ǫ-correlated in the augmented LLL instance

Î = ({Xi}i∈U , {Av}v∈V ∪ {Aλ}) .

All balls B·(·) and spheres S[·,·](·) in above are defined in the dependency graph DI of the LLL instance I .

Notation for the new bad event. For ǫ, γ ∈ (0, 1), δ ∈
(
0, γ2

)
, and ℓ = ℓ0(ǫ, γ, δ), for Λ ⊆ V satisfying

that I(Bℓ(Λ) \Λ) is γ-satisfiable, we use AI
λ(Λ,ǫ,γ,δ) to denote the bad event Aλ constructed in Lemma 3.1.

Lemma 3.1 is a novel and critical part of our approach. Its proof is technical, and is exposed in Section 5.

3.2 Las Vegas SLOCAL algorithm

Our main sampling algorithm is described in a sequential local (SLOCAL) paradigm. The SLOCAL model

introduced by Ghaffari, Kuhn, and Maus [GKM17] captures the local computations where symmetry break-

ing is not concerned. We extend this notion to the algorithms with random locality of computation.

SLOCAL-LV algorithms An N -scan SLOCAL-LV algorithm runs on a network G = (V,E) with a subset

A ⊆ V of active nodes. Each node v ∈ V maintains a local memory state Mv, which initially stores v’s local

input, random bits, unique ID and also a list of neighbors’ IDs, and a bit that indicates whether v ∈ A. An

arbitrary static total order is assumed on nodes in V , such that the relative order between any pair u, v ∈ V
can be deduced from the contents of Mu and Mv .

The algorithm operates in N ≥ 1 scans. Within each scan, the active nodes in A are processed one after

another in the ordering. Upon each node v ∈ A being processed, for ℓ = 0, 1, 2, . . ., the node v tries to grow

an ℓ-ball Bℓ(v) and update the memory states Mu for all u ∈ Bℓ(v) based on the information observed

so far by v, until some stopping condition has been met by the information within the current ball Bℓ(v).
Finally, each v ∈ V outputs a value based on its memory state Mv.

Compared to the standard (Monte Carlo) SLOCAL algorithm, whose locality is upper bounded by a fixed

value, in SLOCAL-LV algorithm, the local neighborhoods are randomly constructed in a sequential and local

fashion. The next theorem gives a simulation of SLOCAL-LV algorithms in the LOCAL model.

Proposition 3.2 (simulation of SLOCAL-LV in LOCAL). Let A be an N -scan SLOCAL-LV algorithm that

assumes an arbitrary ordering of nodes. Then there is a randomized LOCAL algorithm B, such that starting

from the same initial memory states M = (Mv)v∈V , the algorithm B terminates and returns the same

output as A within O
(
|A| ·maxv∈A,j∈[N] ℓv,j

)
rounds, where A is the set of active nodes and ℓv,j is the

radius of the ball accessed by the active node v in the jth scan of algorithm A, both fully determined by M .

7

Compared to the simulation of SLOCALMonte Carlo algorithm in the LOCALmodel proved in [GKM17],

which relies on the network decomposition to parallelize the SLOCAL procedure, Proposition 3.2 provides

a rather straightforward simulation which does not parallelize the local computations. An advantage of such

easy simulation is that it does not require a worst-case complexity upper bound for all scan orders of nodes.

And this translation from SLOCAL-LV to LOCAL algorithm makes it more convenient to describe LOCAL

algorithms where there are multiple randomly growing local neighborhoods interfering each other.

A formal proof of Proposition 3.2 is given in Appendix A for completeness.

3.3 Algorithm: Initialization and Clustering

Now we can describe the sampling algorithm in Theorem 2.1. The input instance is a γ-satisfiable LLL

instance I = ({Xi}i∈U , {Av}v∈V) with n = |V | bad events. The network G = DI is its dependency graph.

Our goal is to output a random satisfying assignment X∗ = (X∗
i)i∈U drawn from the LLL distribution µI .

The algorithm consists of three phase: initialization, clustering, and resampling. The first phase is

described in the LOCAL model.

• Initialization: produces a random assignment Y = (Yi)i∈U and a random set R ⊆ V , satisfying

certain desirable property, within fixed Õ(log3 n) rounds on the LOCAL model.

Then this random (Y ,R) is passed to to a 2-scan SLOCAL-LV algorithm that runs on the same network,

where the two scans corresponds to the two phases of the algorithm, respectively.

• Clustering: cluster the bad event that are not avoided by Y in to balls that are reasonably far apart.

• Resampling: properly fix the assignments on the balls to obtain the correct X∗ ∼ µI .

Due to Proposition 3.2, the 2-scan SLOCAL-LV algorithm can be transformed to a LOCAL algorithm, which

altogether with the initialization phase, give us the LOCAL algorithm claimed in Theorem 2.1.

Initialization. The goal of this phase is to generate a random assignment Y = (Yi)i∈U and a random node

set R ⊆ V satisfying the following condition.

Condition 3.3. The followings hold for Y = (Yi)i∈U and R ⊆ V :

1. Y follows the product distribution ν.

2. For any v ∈ V , if Av occurs on Y , then there is u ∈R such that dist(u, v) ≤ d · log n · log log log n,

for some large enough universal constant d to be specified later.

3. For any 0 < ǫ < 1, we have |R| = O
(
log n · log log n · log 1

γ · log
1
ǫ

)
with probability at least 1− ǫ.

Intuitively, Condition 3.3 guarantees that the random vector Y = (Yi)i∈U is generated according to the

product distribution ν, and R ⊆ V is a small set of “centers”, such that all bad events made occur by Y are

not far from some center. In the LOCAL model, this can be achieved rather straightforwardly with the help

of network decomposition, which is a major building block for distributed algorithms.

Definition 3.2 (network decomposition). A weak (c, d)-network decomposition of G = (V,E) is a pair

(S, C), where S = {S1, S2, . . .} is a partition of V into vertex subsets, each with diameter at most d; and

C : S → [c] is a proper coloring of S such that C(S1) 6= C(S2) for any S1, S2 ∈ S with distG(S1, S2) = 1.

8

We adopt the recent bound for deterministic network decomposition from [GGH+23].

Lemma 3.4 ([GGH+23]). There is a deterministic LOCAL algorithm that, on any network G with n nodes,

computes a weak (O(log n), O(log n · log log log n))-network decomposition of G in Õ(log3 n) rounds.

Note that each node v ∈ V corresponds to a bad event Av defined on the variables in vbl(v), and one

variable may appear in the vbl(v) for multiple v’s. Alternatively, one can assign each variable to a unique

node through the following partition:

∀v ∈ V, Uv , {i ∈ vbl(v) | v has the smallest ID among all v′ ∈ V with i ∈ vbl(v′)}.

It is obvious that {Uv | v ∈ V } is a partition of U , assuming that U = vbl(V) is the set of variables ever

appearing in any bad events. Also, each node v ∈ V can compute Uv within one round.

The algorithm for producing the desirable (Y ,R) is as follows. At first, each node v ∈ V locally

draws Yi ∼ νi independently for all i ∈ Uv. This gives the random assignment Y = (Yi)i∈U that follows

the product distributions ν. Next, R ⊆ V is constructed in three steps. First, each node v ∈ V checks

if Av is avoided by Y , which costs one round since vbl(v) ⊆
⋃

w∈N+(v) Uw. Second, construct a weak

(c · log n, d · log n · log log log n)-network decomposition (S, C) for some suitable constant c, d ∈ N, which

according to Lemma 3.4, can be achieved within Õ(log3 n) rounds. At last, within each cluster S ∈ S , each

node v ∈ S checks whether the union bad event AS ,
⋃

v∈S Av is avoided by Y , and marks v in R iff AS

occurs and v has the smallest ID within the cluster S. This guarantees that for any bad event Av that occurs

on Y , the node v ∈ V must be d · log n · log log log n-close to a node in R, and the construction of such R

takes Õ(log n) rounds given the network decomposition (S, C) , because the diameter of each cluster S ∈ S
is at most d · log n · log log log n. Altogether, we have the following.

Lemma 3.5. The initialization phase outputs (Y ,R) satisfying Condition 3.3 within Õ(log3 n) rounds.

It only remains to verify that |R| = O
(
log n · log log n · log 1

γ · log
1
ǫ

)
with probability at least 1 − ǫ,

which follows from the Chernoff bound. A formal proof is included in Section 6.1 for completeness.

Clustering. The random assignment Y and node set R ⊆ V constructed in the initialization phase, is

passed to a SLOCAL-LV algorithm, which runs on the same network G = DI and takes R as the set of

active nodes. The SLOCAL-LV algorithm runs in two scans, where the first scan is the Clustering phase.

Each node v ∈ V maintains a local memory Mv, which initially stores its UID id(v), the private random

bits, the part of the random assignment (Yi)i∈Uv and the indicator of whether v ∈ R. The total order

assumed on V is a natural one: u < v iff id(u) < id(v) for any u, v ∈ V .

The SLOCAL-LV algorithm scans the active nodes v ∈ R in order, and computes two parameters

pv ∈ V ∪ {⊥} and rv ∈ N ∪ {⊥} for each v ∈R, which defines a collection of balls in the network G:

B , {Brv(pv) | v ∈R ∧ pv 6=⊥ ∧rv 6=⊥} . (5)

The goal is to construct a collection B of far-apart and reasonably small balls, which together with the

random assignment Y , satisfy some desirable property which we will formulate soon.

Definition 3.3 (marginal distribution). For Λ ⊆ U , a τ ∈ ΣΛ is said to be a feasible boundary condition

if Ωτ 6= ∅, where Ωτ is defined in (3). Given Λ ⊂ U and feasible boundary condition τ ∈ ΣΛ, for any

nonempty S ⊆ U \ Λ, the marginal distribution on S induced by µ = µI conditioned on τ , denoted by

µτ
S = µτ

I,S , is defined as:

∀σ ∈ ΣS, µτ
S(σ) , Pr

X∼ν
(XS = σ |X ∈ Ωτ).

9

The following notion of clustered conditional Gibbs property, is inspired by the “conditional Gibbs”

property introduced in [FVY21, FGY22]. Here we refine the definition to adapt to a structure of clustering.

Definition 3.4 (clustered conditional Gibbs). Let ǫ, γ ∈ (0, 1), δ ∈
(
0, γ2

)
, and ℓ = ℓ0(ǫ, γ, δ), where

ℓ0(ǫ, γ, δ) is defined in (4). Let I = ({Xi}i∈U , {Av}v∈V) be a LLL instance. A random pair (Y ,B), where

Y = (Yi)i∈U is an assignment and B ⊆ 2V is a collection of node sets, is said to satisfy the clustered

conditional Gibbs property on instance I with parameter (ǫ, γ, δ), if for any B ⊆ 2V with Pr(B = B) > 0:

1. the sub-instance I (Bℓ(Λ) \ Λ) is γ-satisfiable for every Λ ∈ B;

2. for S ,
⋃

Λ∈B vbl(Λ), T , U \
⋃

Λ∈B vbl(Bℓ(Λ)), for any σ ∈ ΣS with Pr (B = B ∧ YS = σ) > 0,

conditioned on that B = B ∧ YS = σ, the assignment YT follows the marginal distribution µσ
Î,T

, i.e.

∀τ ∈ ΣT , Pr(YT = τ | B = B ∧ YS = σ) = µσ
Î,T

(τ),

where Î stands for the LLL instance defined by Î =
(
{Xi}i∈U , {Av}v∈V ∪

{
AI

λ(Λ,ǫ,γ,δ) | Λ ∈ B
})

and recall that AI
λ(Λ,ǫ,γ,δ) represents the bad event constructed in Lemma 3.1.

All above balls B·(·) are defined in the dependency graph DI of the LLL instance I .

Let 0 < ζ0 < 1 be a sufficient small constant. We define the choice of parameter

(ǫ0, γ0, δ0) ,

(
1

2n
,
γ

8
,
ζ0 · γ

24n3

)
(6)

and let ℓ = ℓ0(ǫ0, γ0, δ0). Our goal is to construct B so that (Y ,B) satisfies the following condition.

Condition 3.6. The random assignment Y = (Yi)i∈U and random collection of node sets B ⊆ 2V , satisfy

1. distG(B1,B2) ≥ 2(ℓ+ 2) for any distinct B1,B2 ∈ B;

2. (Y ,B) satisfies the clustered conditional Gibbs property on instance I with parameter (ǫ0, γ0, δ0).

The following is the SLOCAL-LV algorithm for constructing such B ⊆ 2V . Each node v ∈R maintains

a variable bv ∈ V ∪ {⊥} in its local memory Mv, which is initialized to ⊥. The SLOCAL-LV algorithm

sequentially processes each active node v ∈R in order. The pesudocode is given in Algorithm 1.

Algorithm 1: The SLOCAL-LV algorithm for Clustering at node v ∈R

1 set pv ← v and rv ← 1 + d · log n · log log log n;

2 while true do

3 if there exist u ∈R \ {v} and w ∈ B2(ℓ+2)+rv (pv) such that bw = u then

4 let c ∈ V be the node with the smallest id(c) satisfying

dist(pv, c) ≤ ru + ℓ+ 2 and dist(pu, c) ≤ rv + ℓ+ 2;

// Such c ∈ V must exist since dist(pu, pv) ≤ ru + rv + 2(ℓ+ 2).

5 set pv ← c and rv ← ru + rv + 2 · (ℓ+ 2);
6 ∀w ∈ Bru(pu): set bw ←⊥;

7 set pu ←⊥ and ru ←⊥;

8 else if Y makes the bad event AI
λ(Brv (pv),ǫ0,γ0,δ0)

occur then

9 update the radius of the ball responsible for node v to rv ← rv + ℓ;

10 else

11 ∀u ∈ Brv(pv): set bu ← v;

12 return;

10

After all active nodes v ∈R have been processed, the 1st scan of the SLOCAL-LV algorithm terminates,

and the collection B of balls are constructed as in (5) from the centers pv and radius rv computed for v ∈R.

Formally, the followings are guaranteed for the clustering B and the random assignment Y .

Lemma 3.7. Assume Condition 3.3. The followings hold after Algorithm 1 is sequentially executed on all

node v ∈R in the ascending order of id(v), which computes the values of pv ∈ V ∪{⊥} and rv ∈ N∪{⊥}
for each v ∈R and thereby constructs B , {Brv(pv) | v ∈R ∧ pv 6=⊥ ∧rv 6=⊥}.

1. For any distinct u, v ∈ R, if pu, pv, ru, rv 6∈ {⊥} then Bru(pu) ∩ Brv(pv) = ∅, which guarantees

that each ball B = Brv(pv) ∈ B is uniquely identified by some node v ∈R with pv, rv 6∈ {⊥}.

2. (Y ,B) satisfies Condition 3.6.

3. For any 0 < η < 1, with probability at least 1− η, the sum of radii of all balls in B is bounded as

D ,
∑

v∈R
pv 6=⊥,rv 6=⊥

rv = Õ

(
|R| · log2 n · log2

1

γ
· log

1

η

)
.

Lemma 3.7 is formally proved in Section 6.2.

The following corollary follows easily from Lemma 3.7, since D is monotonically increasing during the

scan, and upper bounds the radii of the local neighborhoods of the SLOCAL-LV algorithm.

Corollary 3.8. For any 0 < η < 1, with probability at least 1−η, Algorithm 1 returns at every node v ∈R

within radius Õ
(
|R| · log2 n · log2 1

γ · log
1
η

)
.

3.4 Algorithm: Resampling

The second scan of the SLOCAL-LV algorithm corresponds to the Resampling phase. The algorithm scans

the active nodes v ∈ R sequentially in the ascending order of their ID’s, and properly fix the random

assignment Y generated in the Initialization phase, over the balls in B constructed in the Clustering phase,

to finally obtain the random satisfying assignment X∗ distributed correctly as the LLL distribution µI .

Ideal case (one ball to fix). First, we consider an ideal case for the Resampling phase. Suppose after the

Clustering phase, there is only one node v ∈ R with pv 6=⊥ and rv 6=⊥, which means B contains only

one ball Λ = Brv(pv). Our goal is to locally fix the assignment Y around Λ to make it follow the correct

distribution µI . How to resolve with this ideal one-ball case is the technical crux of this phase.

Recall the choice of parameters (ǫ0, γ0, δ0) in (6). It can be routinely verified that the LLL instance

I , the random assignment Y , the ball Λ = Brv(pv) ∈ B of bad events, together with the parameter

(ǫ, γ, δ, α) = (ǫ0, γ0, δ0, γ0) satisfy the following condition.

Condition 3.9. Given the LLL instance I = ({Xi}i∈U , {Av}v∈V), the random assignment Y = (Yi)i∈U ,

and the subset Λ ⊆ V of bad events, along with the parameter (ǫ, γ, δ, α) satisfy that

• 0 < ǫ ≤ 1
2 , 0 < α ≤ γ < 1 and 0 < δ < ζ0 · α;

• the LLL instance I is α-satisfiable and the sub-instance I(V \ Λ) is γ-satisfiable;

• (Y , {Λ}) satisfies the clustered conditional Gibbs property on instance I with parameter (ǫ, γ, δ).

11

Our goal is to locally modify the random assignment Y to follow the correct distribution µI , as long as

Condition 3.9 is satisfied initially. To achieve this, we recall the new bad event Aλ constructed in Lemma 3.1,

and also consider its complementary event Aλ̄:

Aλ , AI
λ(Λ,ǫ,γ,δ), where λ 6∈ V, and Aλ̄ , Aλ, where λ̄ 6∈ V. (7)

And define the following two augmented LLL instances:

Î =
(
{Xi}i∈U , {Av}v∈V ∪{λ}

)
and Î ′ =

(
{Xi}i∈U , {Av}v∈V ∪{λ̄}

)
. (8)

There is an idealized sampling procedure: with probability P = PrX∼µI
[X avoids Aλ], update Y to follow

the distribution µÎ ; otherwise, update Y to follow the distribution µÎ′ . Altogether, this generates a random

assignment Y ∼ µI . A challenge is that P is hard to compute, which can be remedied by an estimation

within a small interval [L,R]. This is stated by the following lemma, which is proved in Section 7.3.

Lemma 3.10. Let I = ({Xi}i∈U , {Av}v∈V) be a LLL instance. Let 0 < ǫ < 1
2 , k ∈ N+, 0 < α1 ≤ α2 < 1

and ℓ = ℓ0(ǫ
k, α2, α1 · ǫ

k). For any nonempty Λ ⊆ V and an arbitrary event Aλ defined on the random

variables in vbl(Λ), assuming that I is α1-satisfiable and I(V \ Λ) is α2-satisfiable, there is a P̂ ∈ (0, 1)
determined only by Λ, Aλ, and I(Bℓ+1(Λ)), such that

Pr
X∼µI

[X avoids Aλ] ∈
[
P̂ − 2ǫk, P̂ + 2ǫk

]
.

The ball B·(·) on above is defined in the dependency graph DI .

To apply the aforementioned strategy, we draw a uniform random ρ ∈ [0, 1) beforehand. If ρ ∈ [0, L),
we enter the zone for generating Y ∼ µÎ ; if ρ ∈ [R, 1), we enter the zone for generating Y ∼ µÎ′ ;

and otherwise ρ ∈ [L,R), we enter the “zone of indecision”, in which case we increase the radius ℓ in

Lemma 3.10 to get a more accurate estimation of P . Similar idea was used in [AJ22, HWY22].

To locally update Y to get Y ∼ µÎ , we use the approach of Bayes filter in [FGY22]. Let S = vbl(Λ)

and T = U \ vbl(Bℓ0(ǫ,γ,δ)(Λ)). By Condition 3.9, YT ∼ µYS

Î ,T
. The Bayes filter F = F(Y , S, T) satisfies

Pr[F succeeds] ∝
µÎ,T (YT)

µYS

Î,T
(YT)

=
ν
(
ΩYT

Î

)
· ν
(
ΩYS

Î

)

ν
(
ΩÎ

)
· ν
(
ΩYS∧YT

Î

) ∝
ν
(
ΩYT

Î

)

ν
(
ΩYS∧YT

Î

) , f(YT), (9)

where ∝ are taken over all YT ∈ ΣT with ν(ΩYS∧YT

Î
) > 0. The function f(YT) , ν(ΩYT

Î
)/ν(ΩYS∧YT

Î
) is

defined for all such YT . Note that Pr[F succeeds] = f(YT)
max f , and this probability can be computed locally

from Bℓ0(ǫ,γ,δ)+1(Λ). If F succeeds, we resamples YU\T ∼ µYT

Î,U\T
. This gives Y ∼ µÎ by the Bayes law.

Furthermore, the Bayes filter F succeeds with large chance due to the correlation decay in Î .

For all other branches (F failed or generate Y ∼ µÎ′), we recursively apply the sampling algorithm on

properly grown balls in the respective instances Î or Î ′ to satisfy the invariant Condition 3.9. This recursive

procedure RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α) is described in Algorithm 2, where the argument Y is

passed-by-pointer, so that it can be updated in the recursion, while all other arguments are passed-by-value.

The correctness and efficiency of Algorithm 2 are stated by the following lemma, proved in Section 7.

Lemma 3.11. Assume that Condition 3.9 is satisfied by the input of RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α).

1. After RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α) returns, Y follows the distribution µI .

2. For any 0 < η < 1, with probability 1−η, RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α) accesses I(Br(Λ))

and updates Yvbl(Br(Λ)), where r = ℓ0(ǫ, γ, δ) + Õ
(
log 1

γ · log
4 1
η + log 1

γ · log
2 1
η · log

1
α

)
.

12

Algorithm 2: RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α)

Input: LLL instance I = ({Xi}i∈U , {Av}v∈V), subset Λ ⊆ V , parameter (ǫ, γ, δ, α);
Data : assignment Y = (Yi)i∈U stored globally that can be updated by the algorithm;

// Throughout the algorithm, Aλ, Aλ̄, Î , Î
′ are defined as in (7) and (8).

1 initialize i← 1, and define ℓ0 , ℓ0(ǫ, γ, δ);
2 draw ρ ∈ [0, 1) uniformly at random;

3 while true do

4 ℓi ← ℓ0
(
ζ i0, γ, α · ζ

i
0

)
;

5 compute the smallest interval [L,R] containing P , PrX∼µI
[X avoids Aλ] based on Λ, Aλ,

I (Bℓ0+ℓi+1(Λ)), assuming that I is α-satisfiable and I (V \Bℓ0+ℓi+1(Λ)) is γ-satisfiable;

// By Lemma 3.10, such interval [L,R] exists and satisfies R− L ≤ 4ζi0.

6 if ρ < L then

// Enters the zone [0, L) ⊆ [0, P) for generating Y ∼ µ
Î
.

7 define T , U \ vbl(Bℓ0(Λ));

8 with probability
f(YT)
max f , where f is defined as in (9), do

9 update Y by redrawing YU\T ∼ µYT

Î ,U\T
;

//
f(YT)
max f

and µYT

Î,U\T
can be evaluated locally within Bℓ+1(Λ).

10 else

11 initialize r ← ℓ0 + 1;

12 while Y does not avoid the bad event AÎ
λ(Br(Λ),1/2, γ, ζ0α/2)

do

13 grow the ball: r ← r + ℓ0

(
1
2 , γ,

ζ0α
2

)
;

14 RecursiveSampling
(
Y ; Î , Br(Λ) ∪ {λ},

1
2 , γ,

ζ0α
2 , α2

)
;

15 return;

16 else if ρ ≥ R then

// Enters the zone [R, 1) ⊆ [P, 1) for generating Y ∼ µ
Î′.

17 initialize s← ℓ0 + 1;

18 while Y does not avoid the bad event AÎ′

λ(Bs(Λ),1/2, γ, ζ0α(1−R)/2) do

19 grow the ball: s← s+ ℓ0

(
1
2 , γ,

ζ0α(1−R)
2

)
;

20 RecursiveSampling
(
Y ; Î ′, Bs(Λ) ∪

{
λ
}
, 12 , γ,

ζ0α(1−R)
2 , α(1 −R)

)
;

21 return;

22 else

// Enters the zone [L,R) of indecision.

23 enter the next iteration (and refine the estimation of P): i← i+ 1;

13

Resampling (general case). Finally, we deal with the general case for the Resampling phase. In this case,

there may be multiple nodes v ∈R with pv 6=⊥ and rv 6=⊥. Our goal is still to locally fix the assignments

Y to correctly follow the LLL distribution µI , only there may be multiple balls Λ ∈ B to fix.

To maintain the invariant Condition 3.9 while sequentially and locally running the RecursiveSampling

procedure, we introduce the following abstraction called the Substituting trick, which is formally described

by the following technical lemma, whose proof is in Section 7.4.

Lemma 3.12. Let ǫ, γ ∈ (0, 1), α ∈ (0, γ], δ ∈
(
0, γ2

)
, and ℓ = ℓ0(ǫ, γ, δ) which is defined as in (4). Let

I = ({Xi}i∈U , {Av}v∈V) be a LLL instance. For any nonempty set Λ ⊆ V of bad events, any σ ∈ Σvbl(Λ),

if I is α-satisfiable and I(Bℓ(Λ)\Λ) is γ-satisfiable, then we can construct a new random variable Xβ (with

domain Σβ and distribution νβ) with β /∈ U and a new bad event Aκ with κ /∈ V satisfying the followings:

1. The constructions of Xβ and Aκ depend only on the specifications of Λ, σ, (ǫ, γ, δ) and I(Bℓ+1(Λ)).
The event Aκ is defined on the random variables in vbl(κ) = vbl(Bℓ+1(Λ)) \ vbl(Bℓ(Λ)) ∪ {β}.

2. Let T = U \ vbl(Bℓ(Λ)). For any W ⊆ T , any ω ∈ ΣW and ω ∈ ΣW , where W = T \W , we have

µω∧σ
Î,W

(ω) = µω
Iσ,W

(ω),

where Î stands for the LLL instance defined by Î =
(
{Xi}i∈U , {Av}v∈V ∪

{
AI

λ(Λ,ǫ,γ,δ)

})
, where

AI
λ(Λ,ǫ,γ,δ) represents the bad event constructed in Lemma 3.1, and Iσ stands for the LLL instance

defined by Iσ =
(
{Xi}i∈(U\vbl(Bℓ(Λ)))∪{β}, {Av}v∈(V \Bℓ+1(Λ))∪{κ}

)
.

3. The LLL instance Iσ is (1− ǫ) · (α− δ)-satisfiable.

All balls B·(·) in above are defined in the dependency graph DI of the original LLL instance I .

With this abstraction, the SLOCAL-LV algorithm for the Resampling phase can be described as follow.

For exposition, we write V = {v1, v2, ..., vn}, where the nodes are sorted in ascending order according to

their IDs. The SLOCAL-LV algorithm scans the nodes in R in this order. Suppose that a node v = vk with

pv, rv 6∈ {⊥} is being processed, while the local algorithm is oblivious to its rank k. We are going to define

the substituted instance I ′ and Y
′ on which the RecursiveSampling procedure is actually applied.

First, define

Nk , {j | vj ∈R ∧ j > i ∧ pvj 6=⊥ ∧rvj 6=⊥}.

For j ∈ Nk, let Xβj
and Aλj

denote the respective random variable and bad event constructed in Lemma 3.12

under parameter Λj , Brvj
(pvj), Yvbl(Λj), (ǫ0, γ0, δ0), I(Bℓ(ǫ0,γ0,δ0)+1(Λj)). Define

U ′ , U \
⋃

j∈Nk

vbl(Bℓ0(ǫ0,γ0,δ0)(Λj)) and V ′ , V \
⋃

j∈Nk

Bℓ0(ǫ0,γ0,δ0)+1(Λj).

Then the substituted instance I ′ is defined as follows:

I ′ ,
(
{Xi}i∈U ′ ∪ {Xβj

}j∈Nk
, {Av}v∈V ′ ∪ {Aλj

}j∈Nk

)
. (10)

Let Y be the current assignment right before the SLOCAL-LV algorithm starts at v = vk. For each j ∈ Ni,

let Yβj
be drawn independently from the marginal distribution µ

Yvbl(λj)\{βj}

I′,βj
. This is well-defined because

Yvbl(λj)\{βj} ⊆ U ′. Then the substituted assignment Y ′ is the concatenation of YU ′ and (Yβj
)j∈Nk

, i.e.

Y
′ , YU ′ ∧ (Yβj

)j∈Nk
. (11)

14

The SLOCAL-LV algorithm at v just calls RecursiveSampling(Y ′; I ′, Brv (pv), ǫ0, γ0, δ0, γ0). Observe

that although the definitions of I ′ and Y
′ involve the global rank k of the node v, the actual constructions of

I ′ and Y
′ can be implicit during the recursion of RecursiveSampling, so that the substituted parts of I and

Y are locally constructed when being accessed. This can be realized by local computation on the original

I and Y , after extending the radius of the local algorithm by an additional 2(D + |R| · ℓ0(ǫ0, γ0, δ0) + 1).
This implementation is formally explained in Section 7.

Algorithm 3: The SLOCAL-LV algorithm for Resampling at node v ∈R

1 RecursiveSampling(Y ′; I ′, Brv (pv), ǫ0, γ0, δ0, γ0);
// The I ′ and Y

′
respectively defined in (10), (11) are implicitly given,

where the substituted parts are realized at the time being accessed.

2 update YU ′ ← Y ′
U ′ ;

// Only the updated variables need to be copied.

The following lemma states the correctness and efficiency of this algorithm, and is proved in Section 7.5.

Lemma 3.13. The followings hold after Algorithm 3 is sequentially executed on all node v ∈R, assuming

that the input Y and pv, rv for v ∈R satisfy the properties asserted by Lemma 3.7.

1. Y follows the distribution µI .

2. For any 0 < η < 1, with probability 1− η, Algorithm 3 returns at every node v ∈R within radius

Õ

(
|R| · log2 n · log2

1

γ
· log

1

η

)
+ Õ

(
log4 n · log2

1

γ
· log4

1

η

)
.

3.5 Wrapping up (Proof of Theorem 2.1)

First, we prove the correctness of sampling, i.e. the output random assignment Y follows the distribution µI .

By Lemma 3.5, the Initialization phase outputs (Y ,R) that satisfies Condition 3.3. Then, they are passed

to a 2-scan SLOCAL algorithm on the set R of active nodes. Since (Y ,R) satisfies Condition 3.3, by

Lemma 3.7, after the 1st scan, the assignment Y , along with the values of pv ∈ V ∪{⊥} and rv ∈ N∪{⊥}
for v ∈ R computed in this scan, satisfy the the condition of Lemma 3.13. Then by Lemma 3.13, after

the 2nd scan, the SLOCAL-LV algorithm terminates and computes a random assignment Y ∼ µI . By

Proposition 3.2, the SLOCAL-LV algorithm is faithfully simulated by a LOCAL algorithm.

Then, we bound the round complexity of the algorithm. By Lemma 3.5, the Initialization phase takes

fixed Õ(log3 n) rounds in the LOCAL model. By Proposition 3.2, the round complexity of the LOCAL

algorithm that simulates a SLOCAL-LV algorithm is the product of the number of active nodes and the

maximum radius of the SLOCAL algorithm. For i ∈ {1, 2}, let Ri be the random variable that repre-

sents the maximum radius of the i-th scan of the SLOCAL-LV algorithm. Let ǫ ∈ (0, 1) be arbitrary. By

Lemma 3.5, we have |R| = Õ
(
log n · log 1

γ · log
1
ǫ

)
with probability at least 1 − ǫ

3 ; by Corollary 3.8, we

have R1 = Õ
(
|R| · log2 n · log2 1

γ · log
1
ǫ

)
with probability at least 1 − ǫ

3 ; and by Lemma 3.13, we have

R2 = Õ
(
|R| · log4 n · log2 1

γ · log
4 1

ǫ

)
with probability at least 1 − ǫ

3 . Altogether, by union bound, with

probability at least 1− ǫ, the round complexity of the LOCAL algorithm is bounded by

|R| ·max(R1, R2) = Õ

(
log6 n · log4

1

γ
· log6

1

ǫ

)
.

15

4 Related Work and Discussions

The perfect simulation of Las Vegas algorithms is a fundamental problem. In the celebrated work of Luby,

Sinclaire and Zuckerman [LSZ93], an optimal strategy was given for speeding up Las Vegas algorithms.

Their approach was based on stochastic resetting, which requires global coordination and works for the Las

Vegas algorithms with deterministic outputs, or the interruptible random outputs.

The distribution of satisfying solutions of the Lovász local lemma (LLL) has drawn much attention,

e.g. in [GJL19, Har20]. Its perfect simulation was studied in [GJL19, HWY22, HSW21, FGW+23], where

several key approaches for perfect sampling were applied, including: partial rejection sampling (PRS)

[GJL19], “lazy depth-first” method of Anand and Jerrum (a.k.a. the AJ algorithm) [AJ22], coupling from

the past (CFTP) [PW96], and coupling towards the past (CTTP) [FGW+23].

In the LOCAL model, Ghaffari, Harris and Kuhn [GHK18] showed that for distributed graph problems,

where the goal is to construct feasible graph configurations, the fixed-round Las Vegas algorithms and the

zero-error Las Vegas algorithms are equivalent up to polylogarithmic rounds. Their approach was based on

a derandomization by conditional expectations, and hence was especially suitable for the tasks where the

support of the output distribution, instead of the output distribution itself, is concerned, such as the searching

problems for constructing feasible solutions.

The LOCAL algorithms and Gibbs distributions are intrinsically related. For example, the distributions

of the random bits on which a fixed-round Las Vegas LOCAL algorithm successfully returns are Gibbs

distributions, where the certifiers of local failures are the local constraints defining the Gibbs distribution.

In [FY18], Feng and Yin gave a LOCAL sampler with local failures for the Gibbs distributions with strong

spatial mixing by parallelizing the JVV sampler [JVV86] using the network decomposition [LS93].

Discussion of the current result. In this paper, we show that for local computation, the successful output

of any fixed-round Las Vegas computation, where failures are reported locally, can be perfectly simulated

with polylogarithmic overheads.

As by-products, this gives perfect simulations, via efficient (polylogarithmic-round) local computation,

for several fundamental classes of high-dimensional joint distributions, including:

• random satisfying solutions of Lovász local lemma with non-negligible satisfiability;

• uniform locally checkable labelings (LCLs) with non-negligible feasibility;

• Gibbs distributions satisfying the strong spatial mixing with exponential decay.

We develop a novel approach for augmenting Lovász local lemma (LLL) instances by introducing

locally-defined new bad events, to create the desirable decay of correlation. We also give a recursive local

sampling procedure, which utilizes the correlation decay to accelerate the sampling process, and meanwhile

still keeps the sampling result correct, without being biased by the change to the LLL instance.

At first glance, it almost looks like we are creating mixing conditions out of nothing. In particular, the

approach seems to bypass the local-lemma-type conditions for sampling (e.g. the one assumed in [HWY22]).

But indeed, our augmentation of LLL instances relies on that the LLL instances are fairly satisfiable (or at

least the separator between the regions that we want to de-correlate should be enough satisfiable). Sampling

in such instances might already be tractable in conventional computation models, e.g. in polynomial-time

Turing machine, but the problem remains highly nontrivial for local computation.

This new approach for perfect simulation works especially well in the models where the locality is the

sole concern. A fundamental question is how this could be extended to the models where the computation

and/or communication costs are also concerned, e.g. CONGEST model or PRAM model.

16

5 Analysis of Correlation Decay

In this section, we prove Lemma 3.1, which augments the LLL instance to create correlation decay.

Let I = ({Xi}i∈U , {Av}v∈V) be a LLL instance with dependency graph DI . Let Λ ⊆ V be a nonempty

subset of bad events. For integer r ≥ 0, define the following “rings” of variables:

RI
r(Λ) ,

{
vbl(Λ) if r = 0;

vbl
(
BDI

r (Λ)
)
\ vbl

(
BDI

r−1(Λ)
)

if r > 0;

and RI
[i,j](Λ) ,

⋃

i≤r≤j

RI
r(Λ).

We further define the corresponding subsets of bad events:

V I
[i,j](Λ) ,

{
v ∈ V | vbl(v) ∩RI

[i,j](Λ) 6= ∅
}
,

V I
(i,j)(Λ) ,

{
v ∈ V | vbl(v) ⊆ RI

[i,j](Λ)
}
.

Let X be drawn from the product distribution ν. For 0 ≤ i < j, for σ ∈ ΣRI
i (Λ)

and τ ∈ ΣRI
j (Λ)

, define the

probability that X avoids all the bad events who ever use the variables sandwiched between the two rings

RI
i (Λ) and RI

j (Λ), given the boundary condition σ and τ , as:

P I
Λ (i, σ; j, τ) , Pr

X∼ν

(
X avoids all bad events Av s.t. v ∈ V I

[i+1,j−1](Λ) | XRI
i (Λ)

= σ ∧XRI
j (Λ)

= τ
)
.

We further define the average P I
Λ (i, σ; j, τ) over τ :

P I
Λ (i, σ; j, ∗) , E

τ∼νvbl(λj)

[
P J
Λ (i, σ; j, τ)

]

= Pr
X∼ν

(
X avoids all bad events Av s.t. v ∈ V I

[i+1,j−1](Λ) | XRI
i
(Λ) = σ

)
,

and P I
Λ (i, ∗; j, τ) is symmetrically defined.

5.1 Construction of the bad event Aλ

Let ǫ, γ ∈ (0, 1), δ ∈
(
0, γ2

)
, and ℓ ≥ ℓ0(ǫ, γ, δ). Let Λ ⊆ V and suppose that the sub-instance I(Bℓ(Λ)\Λ)

is γ-satisfiable. The new bad event Aλ claimed in Lemma 3.1 is constructed as follows.

For 0 ≤ i ≤ ℓ+ 1, initialize Aλi
to be the trivial event defined on the variables in vbl(λi) , RI

i (Λ) that

never occurs. Let J , ({Xi}i∈U , {Av}v∈V ∪ {Aλi
}0≤i≤ℓ+1) denote the LLL instance further including

the bad events {Aλi
}0≤i≤ℓ+1. Next, the definitions of the bad events in {Aλi

}1≤i≤ℓ are updated iteratively,

which modify the definitions of the bad events Aλi
on the same sets vbl(λi) = RI

i (Λ) of variables. It is easy

to see that throughout the process vbl(λi) = RI
i (Λ) = RJ

i (Λ). The procedure for updating {Aλi
}1≤i≤ℓ is

described in Algorithm 4, with the parameter D , 1
ε0

log ℓ
δ , where ε0 is a constant to be fixed later.

After the procedure reaches a fixed point and stops, the solution {Aλi
}1≤i≤ℓ is used to construct the bad

event Aλ. Let vbl(λ) , vbl

(
BDI

ℓ (Λ)
)
\ vbl(Λ). Note that vbl(λi), . . . , vbl(λℓ) form a partition of vbl(λ).

Then Aλ is defined as: for every σ ∈ Σvbl(λ), event Aλ occurs on σ iff σ avoids all the bad events Av with

v ∈ V I
(1,ℓ)(Λ) and does not avoids Aλi

for some 1 ≤ i ≤ ℓ. The construction is described in in Algorithm 4.

17

Algorithm 4: Construction of the bad event Aλ.

1 for 0 ≤ i ≤ ℓ+ 1 do

2 initialize Aλi
← the trivial event defined on the variables in vbl(λi) , RI

i (Λ) that never occurs;

3 define J , ({Xi}i∈U , {Av}v∈V ∪ {Aλi
}0≤i≤ℓ+1) and D , 1

ε0
log ℓ

δ ;

4 repeat

5 if there exist 1 ≤ i < i+D < j ≤ ℓ and σ ∈ Σvbl(λi) s.t.

σ avoids Aλi
, and P J

Λ (i, σ; j, ∗) < δ
2ℓ then

6 update the definition of Aλi
so that Aλi

occurs on σ (and remains the same otherwise);

7 if there exist 1 ≤ i < i+D < j ≤ ℓ and τ ∈ Σvbl(λj) s.t.

τ avoids Aλj
, and P J

Λ (i, ∗; j, τ) < δ
2ℓ then

8 update the definition of Aλj
so that Aλj

occurs on τ (and remains the same otherwise);

9 until nothing has changed to {Aλi
}1≤i≤ℓ;

10 let Aλ be the event defined on the variables in vbl(λ) , vbl(λ1) ⊎ vbl(λ2) ⊎ · · · ⊎ vbl(λℓ) such that

Aλ =

⋂

v∈V I
(1,ℓ)

(Λ)

Av

 ∩

 ⋃

1≤i≤ℓ

Aλi

 ;

5.2 Correlation decay in the augmented LLL instance

Lemma 5.1. Aλ occurs with probability at most δ.

Proof. For k ≥ 0, let J (k) denote the LLL instance J after k iterations of the repeat loop in Algorithm 4.

Let
{
A

(k)
λi

}
1≤i≤ℓ

denote the {Aλi
}1≤i≤ℓ after k iterations. Further suppose that in the k-th iteration, the

bad event Aλik
is picked to update and is made occur on the τ (k) ∈ Σvbl(λik

).

For X drawn from the product distribution ν, the probability of Aλ can be calculated as:

Pr
X∼ν

(Aλ) = Pr
X∼ν

⋂

v∈V I
(1,ℓ)

(Λ)

Av

 ∩

 ⋃

1≤i≤ℓ

Aλi

= Pr
X∼ν

⋂

v∈V I
(1,ℓ)

(Λ)

Av

 ∩

(
∃k ≥ 1 : XRJ

ik
(Λ) = τ (k)

)

=
∑

k≥1

Pr
X∼ν

⋂

v∈V I
(1,ℓ)

(Λ)

Av

 ∩

(
∀1 ≤ j < k : XRJ

ij
(Λ) 6= τ (j)

)
∩
(
XRJ

ik
(Λ) = τ (k)

)

=
∑

k≥1

Pr
X∼ν

⋂

v∈V I
(1,ℓ)

(Λ)

Av

 ∩

⋂

1≤i≤ℓ

A
(k−1)
λi

 ∩

(
XRJ

ik
(Λ) = τ (k)

)

18

Due to the definition of J (k), we have

⋂

v∈V I
(1,ℓ)

(Λ)

Av

 ∩

⋂

1≤i≤ℓ

A
(k−1)
λi

 =

⋂

v∈V J(k−1)

(1,ℓ)
(Λ)

Av.

And in Algorithm 4, for each iteration k ≥ 1, there exists a 1 ≤ jk ≤ ℓ with |ik − jk| > D such that

• if ik < jk, then P J(k−1)

Λ

(
ik, τ

(k); jk, ∗
)
= PrX∼ν

(⋂
v∈V J(k−1)

[ik+1,jk−1]
(Λ)

Av

∣∣∣∣ XRJ
ik
(Λ) = τ (k)

)
< δ

2ℓ ;

• if ik > jk, then P J(k−1)

Λ

(
jk, ∗; ik, τ

(k)
)
= PrX∼ν

(⋂
v∈V J(k−1)

[jk+1,ik−1]
(Λ)

Av

∣∣∣∣ XRJ
ik
(Λ) = τ (k)

)
< δ

2ℓ .

Thus, we have

Pr
X∼ν

(Aλ) =
∑

k≥1

Pr
X∼ν

⋂

v∈V J(k−1)

(1,ℓ)
(Λ)

Av

 ∩

(
XRJ

ik
(Λ) = τ (k)

)

=
∑

k≥1

Pr
X∼ν

⋂

v∈V J(k−1)

(1,ℓ)
(Λ)

Av

∣∣∣∣∣∣∣∣
XRJ

ik
(Λ) = τ (k)

 · νRJ

ik
(Λ)(τ

(k))

≤
∑

k≥1

Pr
X∼ν

⋂

v∈V J(k−1)

[min(ik,jk)+1,max(ik,jk)−1]
(Λ)

Av

∣∣∣∣∣∣∣∣
XRJ

ik
(Λ) = τ (k)

 · νRJ

ik
(Λ)(τ

(k))

≤
∑

k≥1

δ

2ℓ
· νRJ

ik
(Λ)(τ

(k))

≤
δ

2ℓ

∑

1≤i≤ℓ

∑

σ∈Σ
RJ
i
(Λ)

νRJ
i (Λ)

(σ)

≤δ,

where the second to the last inequality is due to the fact that for every 1 ≤ i ≤ ℓ and every σ ∈ ΣRJ
i (Λ)

, the

bad event Aλi
is updated to occur on σ at most once.

Let J∗ denote the LLL instance J after Algorithm 4. Let Î , ({Xi}i∈U , {Av}v∈V ∪ {Aλ}). The

followings can be verified for the S and T defined in the statement of Lemma 3.1:

S = vbl(Λ) = RJ∗

0 (Λ) = RÎ
0(Λ),

T = U \ vbl
(
BDI

ℓ (Λ)
)
= U \

⋃

0≤i≤ℓ

RJ∗

i (Λ) = U \
⋃

0≤i≤ℓ

RÎ
i (Λ).

Furthermore, it can be verified that for any σ ∈ ΣS and τ ∈ ΣT , we have ν(Ωσ∧τ
J∗) = ν(Ωσ∧τ

Î
). This means:

to guarantee that S and T are ǫ-correlated in Î , it is sufficient to prove that they are ǫ-correlated in J∗. The

rest of this section is devoted to proving that S and T are ǫ-correlated in J∗.

19

Next, we will state a series of technical lemmas (Lemmas 5.2 to 5.4), which we use to prove Lemma 3.1.

From now on in this section, we omit J∗ and Λ in the notations and write:

P (i, σ; j, τ) , P J∗

Λ (i, σ; j, τ) , Rr , RJ∗

r (Λ), V(i,j) , V J∗

(i,j)(Λ) and V[i,j] , V J∗

[i,j](Λ).

When we say ǫ-correlated, it always means the ǫ-correlated in J∗. Furthermore, we use V ∗ to denote the set

of the bad events in the LLL instance J∗, that is, V ∗ , V ∪ {λi | 0 ≤ i ≤ ℓ+ 1}.

Definition 5.1. For 0 ≤ i < j ≤ ℓ+1, the density matrix of Ri and Rj is defined as M , (Mσ,τ)σ∈ΣRi
,τ∈ΣRj

,

where Mσ,τ = P (i, σ; j, τ). The variable sets Ri and Rj are said to be partial ǫ-correlated if for any

σ1, σ2 ∈ Ri that avoid bad event Aλi
and any τ1, τ2 ∈ Rj that avoid bad event Aλj

, it holds that

Mσ1,τ1 ·Mσ2,τ2 ≤ (1 + ǫ)Mσ1,τ2 ·Mσ2,τ1 .

Definition 5.2. For i ≥ 0, the Ri is called a good ring, if
⋃

v∈V[i,i]
Av occurs with probability at most ε0.

Lemma 5.2. For any 0 ≤ i′ ≤ i < j ≤ j′ ≤ ℓ+ 1, any ǫ > 0, if Ri and Rj are partial ǫ-correlated, then

Ri′ and Rj′ are partial ǫ-correlated.

Lemma 5.3. For any 1 ≤ i ≤ ℓ − 3D, if Ri, Ri+1, . . . , Ri+3D are good rings, then Ri and Ri+3D are

partial 1
ε0

-correlated.

Lemma 5.4. For any 1 < i < i +D < j ≤ ℓ− 2D, any ǫ > 0, if Ri and Rj are partial ǫ-correlated and

Ri, Ri+1, . . . , Rj+2D are good rings, then Ri and Rj+2D are partial (1− ε0)ǫ-correlated .

We further remark that Lemmas 5.3 and 5.4 hold in particular for the J∗ produced by Algorithm 4,

whereas Lemma 5.2 holds generally.

Proof of Lemma 3.1. By Lemma 5.1, we have Aλ occurs with probability at most δ. Recall that δ < γ
2 .

Thus, the instances J∗ and instance Î are γ
2 -satisfiable. With respect to the product distribution ν, for any

1 ≤ i < j ≤ ℓ satisfying j − i > 1, the events
⋃

v∈V[i,i]
Av and

⋃
v∈V[j,j]

Av are mutually independent.

Thus, there are at most 4 · log1−ǫo
γ
2 non-good rings among R1, R2, ..., Rℓ.

According to Lemma 5.3 and Lemma 5.4, if there are 3D + 2D · log1−ε0(ε0ǫ) consecutive good rings

then the first and the last good rings must be partial ǫ-correlated. If

ℓ > 2 ·
(
4 · log1−ǫo

γ

2

)
· (3D + 2D · log1−ε0(ε0ǫ)), (12)

then there must exist a sequence of good rings Ri, Ri+1, . . . , Rj such that 1 ≤ i ≤ j ≤ ℓ and j − i ≥
3D + 2D · log1−ε0(ε0ǫ). Recall that D = 1

ε0
log ℓ

δ . There is a sufficiently large constant C0, such that all

ℓ ≥ ℓ0(ǫ, γ, δ) =
⌈
C0 · log

2
ǫ · log

2
γ · log

1
δ · log

(
2 log 2

ǫ log
2
γ log 1

δ

)⌉
satisfies (12).

By Lemma 5.2, R0 and Rℓ+1 are partial ǫ-correlated. Recall that Aλ0 never occurs on any σ ∈ ΣR0 , and

Aλℓ+1
never occurs on any τ ∈ ΣRℓ+1

. For any σ ∈ ΣS and τ ∈ ΣT , we have

ν(Ωσ∧τ) = P
(
0, σ; ℓ + 1, τRℓ+1

)
· νS(σ) · νT (τ).

Thus, for any σ1, σ2 ∈ ΣS , τ1, τ2 ∈ ΣT , we have

ν(Ωσ1∧τ1) · ν(Ωσ2∧τ2)

=P
(
0, σ1; ℓ+ 1, (τ1)Rℓ+1

)
· νS(σ1) · νT (τ1) · P

(
0, σ2; ℓ+ 1, (τ2)Rℓ+1

)
· νS(σ2) · νT (τ2)

≤(1 + ǫ) · P
(
0, σ1; ℓ+ 1, (τ2)Rℓ+1

)
· νS(σ1) · νT (τ2) · P

(
0, σ2; ℓ+ 1, (τ1)Rℓ+1

)
· νS(σ2) · νT (τ1)

=(1 + ǫ) · ν(Ωσ1∧τ2) · ν(Ωσ2∧τ1)

Thus, S and T are ǫ-correlated in J∗, which means that they are ǫ-correlated in the instance Î .

20

Inspired by the definitions of P (i, σ; j, ∗) and P (i, ∗; j, τ), we extend these definitions to any sub-

classes Ci ⊆ ΣRi
and Cj ⊆ ΣRj

of assignments on the rings Ri and Rj as:

P (i, Ci; j, τ) ,
∑

σ∈Ci

νRi
(σ) · P (i, σ; j, τ) ,

P (i, σ; j, Cj) ,
∑

τ∈Cj

νRj
(τ) · P (i, σ; j, τ) .

Definition 5.3. Let 1 ≤ i < j ≤ ℓ. For any τ ∈ ΣRj
, we say that Ri is well-distributed based on (j, τ), if τ

avoids Aλj
and for any C ⊆ ΣRi

satisfying νRi
(C) > 1

4 , we have
P (i,C;j,τ)
P (i,∗;j,τ) >

νRi
(C)

2 .

And symmetrically, for any σ ∈ ΣRi
we say that Rj is well-distributed based on (i, σ) if σ avoids Aλi

and for any C ⊆ ΣRj
satisfying νRj

(C) > 1
4 , we have

P (i,σ;j,C)
P (i,σ;j,∗) >

νRj
(C)

2 .

The following lemma states the good properties for being well-distributed and holds generally.

Lemma 5.5. Let 1 < i < j ≤ ℓ. For any τ ∈ ΣRj
, if Ri is well-distributed based on (j, τ) and Ri is a good

ring, then the followings hold:

1. Ri−1 is well-distributed based on (j, τ);

2. for any σ ∈ ΣRi−1: P (i− 1, σ; j, τ) ≤ 3νRi−1(σ) · P (i− 1, ∗; j, τ);

3. νRi
(S) ≥ 3

4 for S =
{
π ∈ ΣRi

∣∣∣ P (i,π;j,τ)
P (i,∗;j,τ) ≥

1
8

}
.

And the symmetric holds for the good ring Rj that is well-distributed based on (i, σ) for any σ ∈ ΣRi
:

1. Rj+1 is well-distributed based on (i, σ);

2. for any τ ∈ ΣRj+1: P (i, σ; j + 1, τ) ≤ 3νRj+1(τ) · P (i, σ; j + 1, ∗);

3. νRj
(S) ≥ 3

4 for S =
{
π ∈ ΣRj

∣∣∣ P (i,σ;j,π)
P (i,σ;j,∗) ≥

1
8

}
.

Proof. We prove these properties one by one.

1. Note that for any v ∈ V[i,i] \ V[i+1,i+1], we have vbl(v) ⊆ Ri−1 ∪Ri. For any σ ∈ ΣRi−1 , define

Kσ ,
{
ρ ∈ ΣRi

| σ ∧ ρ avoids all bad events Av for v ∈ V[i,i] \ V[i+1,i+1]

}
.

For any C ⊆ ΣRi−1 with νRi−1(C) > 1
4 , we define C ′ , {σ ∈ C | νRi

(Kσ) > 1− 1
9}. Then, for any

σ′ ∈ C \ C ′, and X drawn from product distribution ν, we have

Pr
(
X avoids all bad events Av for v ∈ V[i,i] \ V[i+1,i+1] | XRi−1 = σ′

)
≤

8

9
.

Since Ri is a good ring,
⋃

v∈V[i,i]\V[i+1,i+1]
Av occurs with probability at most ε0. We have νRi−1(C \

C ′) ≤ 9ε0, which means νRi−1(C
′) ≥ νRi−1(C)− 9ε0. Since Ri is well-distributed based on (j, τ),

for any σ ∈ ΣRi−1 with νRi
(Kσ) ≥

8
9 , we have

P (i,Kσ; j, τ) =
P (i,Kσ ; j, τ)

P (i, ∗; j, τ)
· P (i, ∗; j, τ) >

νRi
(Kσ)

2
· P (i, ∗; j, τ) ≥

4

9
· P (i, ∗; j, τ) .

21

Thus, for any C ⊆ ΣRi−1 with νRi−1(C) > 1
4 , we have

P (i− 1, C; j, τ) ≥
∑

σ∈C′

νRi−1(σ)P (i,Kσ ; j, τ) >
4

9

(
νRi−1(S)− 9ε0

)
P (i, ∗; j, τ) .

Note that P
(
i− 1,ΣRi−1 \ C; j, τ

)
≤ (1−νRi−1(C))·P (i,ΣRi

; j, τ) = (1−νRi−1(C))·P (i, ∗; j, τ),
hence

P (i− 1, C; j, τ)

P
(
i− 1,ΣRi−1 \ C; j, τ

) >
4

9
·
νRi−1(C)− 9ε0

1− νRi−1(C)
≥

νRi−1(C)/2

1− νRi−1(C)/2
.

The last inequality holds for νRi−1(C) ≥ 1
4 and sufficiently small ε0. Thus, we obtain that

P (i− 1, C; j, τ)

P (i− 1, ∗; j, τ)
=

P (i− 1, C; j, τ)

P
(
i− 1,ΣRi−1 \ C; j, τ

)
+ P (i− 1, C; j, τ)

>
νRi−1(C)

2
.

2. We define C ′′ , {σ ∈ ΣRi−1 | νRi
(Kσ) ≥ 1 − 1

4}. By the same argument as before, we have

νRi−1(C
′′) ≥ 1− 4ε0 and

P (i− 1, ∗; j, τ) ≥ P
(
i− 1, C ′′; j, τ

)
≥

3

8
(1− 4ε0) · P (i, ∗; j, τ) .

Since P (i− 1, σ; j, τ) ≤ νRi−1(σ) ·P (i, ∗; j, τ) for any σ ∈ ΣRi−1 . For sufficient small ε0, we have

P (i− 1, σ; j, τ) ≤ 3νRi−1(σ) · P (i− 1, ∗; j, τ) .

3. Sort ΣRi
= {σ1, σ2, ..., σ|ΣRi

|} in the non-decreasing order according to the value of P (i, σ; j, τ).

Let k ∈ N be the smallest number such that
∑

l≤k νRi
(σl) >

1
4 . Then, we have

P (i,σk;j,τ)
P (i,∗;j,τ) = 1

νRi
(σk)
·

P (i,{σk};j,τ)
P (i,∗;j,τ) ≥ 1

8 , because otherwise
P (i,{σ1,...,σk};j,τ)

P (i,∗;j,τ) <
∑

l≤k
1
8νRi

(σl) ≤
1
8 , contradicting that Ri

is well-distributed based on (j, τ). Therefore, we have {σk, σk+1, ..., σ|ΣRi
|} ⊆ S and

νRi
(S) ≥ νRi

({σk, σk+1, ..., σ|ΣRi
|}) ≥

3

4
.

The symmetric case that Rj is well-distributed based on (i, σ) follows by symmetry.

The next lemma guarantees the existence of well-distributed ring in the J∗ produced by Algorithm 4.

Lemma 5.6. In the J∗ produced by Algorithm 4, for 1 ≤ i, j ≤ ℓ with |i− j| > D, if Rk is a good ring for

all min(i, j) ≤ k ≤ max(i, j), then Ri is well-distributed based on (j, τ) for every τ ∈ ΣRj
avoiding Aλj

.

Proof. We prove for the case that i < j. The case with i > j follows by symmetry.

By contradiction, assume that there is some τ ∈ ΣRj
avoiding Aλj

such that Ri is not well-distributed

based on (j, τ). By Lemma 5.5, Rk is not well-distributed based on (j, τ) for all i ≤ k < j. Thus, for

all such k, there exists a C ⊆ ΣRk
such that νRk

(C) > 1
4 and

P (k,C;j,τ))
P (k,∗;j,τ) ≤

νRk
(C)

2 . When k = j − 1,

we have P (k, ∗; j, τ) = 1. For i ≤ k < j − 1, it can be verified by the law of total probability that

P (k,ΣRk
\ C; j, τ) ≤ (1− νRk

(C)) · P (k + 1, ∗; j, τ), hence

P (k, ∗; j, τ) =
P (k,ΣRk

\ C; j, τ)

1− P (k,C;j,τ)
P (k,∗;j,τ)

≤
(1− νRk

(C)) · P (k + 1, ∗; j, τ)

1− νRk
(C)/2

≤
6

7
· P (k + 1, ∗; j, τ) ,

which implies that P (i, ∗; j, τ) ≤
(
6
7

)D
. Thus, we have P (i, ∗; j, τ) < δ

2ℓ for sufficiently small constant

ε0, contradicting the termination condition of the repeat loop in Algorithm 4.

22

Now we are ready to prove the technical Lemmas 5.2, 5.3, and 5.4. For convenience, we define functions

φv for all v ∈ V as follow. For any partial assignment σ where the variables in vbl(v) are assigned, define:

φv(σ) =

{
1 if σ avoids Av,

0 otherwise.

Proof of Lemma 5.2. Denote by M the density matrix of Ri and Rj , and by M ′ that of Rj and Rj′ . Then

the matrix M ′′ = M ·W ·M ′ is the density matrix of Ri and Rj′ , where W , (Wσ,τ)σ∈ΣRj
,τ∈ΣRj

is the

diagonal weight matrix such that Wσ,σ = νRj
(σ) ·

(∏
v∈V(j,j)

φv(σ)
)

for any σ ∈ ΣRj
.

For σ1, σ2 ∈ ΣRi
avoiding Aλi

and τ1, τ2 ∈ ΣRj′
avoiding Aλj′

, consider the following two cases:

• Case I: M ′′
σ1,τ1 ·M

′′
σ2,τ2 = 0. Then, M ′′

σ1,τ1 ·M
′′
σ2,τ2 ≤ (1 + ǫ) ·M ′′

σ1,τ2 ·M
′′
σ2,τ1 is immediate.

• Case II: M ′′
σ1,τ1 ·M

′′
σ2,τ2 6= 0. Let Sj , {ρ ∈ ΣRj

| ρ avoids bad event Aλj
}. Then, we have

M ′′
σ1,τ1 ·M

′′
σ2,τ2 =

∑

ρ1,ρ2∈ΣRj

(Mσ1,ρ1Mσ2,ρ2)Wρ1,ρ1Wρ2,ρ2M
′
ρ1,τ1M

′
ρ2,τ2

=
∑

ρ1,ρ2∈Sj

Mσ1,ρ1Mσ2,ρ2Wρ1,ρ1Wρ2,ρ2M
′
ρ1,τ1M

′
ρ2,τ2 ,

and

M ′′
σ1,τ2 ·M

′′
σ2,τ1 =

∑

ρ1,ρ2∈Sj

(Mσ1,ρ2Mσ2,ρ1)Wρ1,ρ1Wρ2,ρ2M
′
ρ1,τ1M

′
ρ2,τ2 .

Recall that Ri and Rj are partial ǫ-correlated . According to Definition 5.1, for any σ1, σ2 ∈ ΣRi

avoiding Aλi
and ρ1, ρ2 ∈ ΣRj

avoiding Aλj
, we have Mσ1,ρ1 ·Mσ2,ρ2 ≤ (1 + ǫ) ·Mσ1,ρ2 ·Mσ2,ρ1 .

Then, we have M ′′
σ1,τ2 ·M

′′
σ2,τ1 6= 0 and

M ′′
σ1,τ1 ·M

′′
σ2,τ2

M ′′
σ1,τ2 ·M

′′
σ2,τ1

=

∑
ρ1,ρ2∈Sj

(Mσ1,ρ1Mσ2,ρ2)Wρ1,ρ1Wρ2,ρ2M
′
ρ1,τ1M

′
ρ2,τ2∑

ρ1,ρ2∈Sj
(Mσ2,ρ1Mσ1,ρ2)Wρ1,ρ1Wρ2,ρ2M

′
ρ1,τ1M

′
ρ2,τ2

≤ 1 + ǫ.

This proves that Ri and Rj′ are partial ǫ-correlated. By symmetric argument, it also follows that Ri′ and Rj

are partial ǫ-correlated. Now treating i and j′ as our new “i” and “j”, applying the old result with Ri′ and Rj

on this new instance, gives us that the partial ǫ-correlation between Ri′ and Rj′ in the original instance.

Proof of Lemma 5.3. Let j , i+ 3D and k , ⌊ i+j
2 ⌋. By Lemma 5.6, Rk−1, Rk, Rk+1 are well-distributed

based on both (i, σ) and (j, τ) for any σ ∈ ΣRi
avoiding Aλi

and any τ ∈ ΣRj
avoiding Aλj

. Let M be the

density matrix of Ri and Rj . According to Lemma 5.5, for any σ ∈ ΣRi
avoiding Aλi

and any τ ∈ ΣRj

avoiding Aλj
, we have

Mσ,τ =
∑

ρ∈ΣRk

νRk
(ρ) ·

∏

v∈V(k,k)

φv(ρ) · P (i, σ; k, ρ) · P (k, ρ; j, τ)

>

(
1

2
− ε0

)
·

(
1

8

)2

· P (i, σ; k, ∗) · P (k, ∗; j, τ) ;

and Mσ,τ =
∑

ρ∈ΣRk

νRk
(ρ) ·

∏

v∈V(k,k)

φv(ρ) · P (i, σ; k, ρ) · P (k, ρ; j, τ)

≤ 32 · P (i, σ; k, ∗) · P (k, ∗; j, τ) .

23

Therefore, for any σ1, σ2 ∈ ΣRi
avoiding Aλi

and τ1, τ2 ∈ ΣRj
avoiding Aλj

, we have

Mσ1,τ1 ·Mσ2,τ2

Mσ2,τ1 ·Mσ1,τ2

≤
34

((
1
2 − ε0

)
·
(
1
8

)2)2 ≤ 1 +
1

ε0
,

for sufficiently small constant ε0.

Proof of Lemma 5.4. Let j′ , j +2D. We reuse the definitions of the M , M ′, W , M ′′, and Sj in the proof

of Lemma 5.2.

For σ1, σ2 ∈ ΣRi
avoiding Aλi

and τ1, τ2 ∈ ΣRj′
avoiding Aλj′

, we consider following two cases:

• Case I: M ′′
σ1,τ1 ·M

′′
σ2,τ2 = 0. Then, M ′′

σ1,τ1 ·M
′′
σ2,τ2 ≤ (1 + ǫ) ·M ′′

σ1,τ2 ·M
′′
σ2,τ1 is immediate.

• Case II: M ′′
σ1,τ1 ·M

′′
σ2,τ2 6= 0. Then, by the same argument as in the proof of Lemma 5.2, we have

M ′′
σ1,τ2 ·M

′′
σ2,τ1 6= 0. Define S(σ1,σ2) , {(ρ1, ρ2) ∈ Sj × Sj | Mσ1,ρ1Mσ2,ρ2 ≤ Mσ1,ρ2Mσ2,ρ1}.

Then, for any ρ1, ρ2 ∈ Sj , it holds that (ρ1, ρ2) ∈ Sσ1,σ2 or (ρ2, ρ1) ∈ Sσ1,σ2 . We define

P1 ,
∑

ρ1,ρ2∈Sσ1,σ2

(Mσ1,ρ1Mσ2,ρ2)Wρ1,ρ1Wρ2,ρ2M
′
ρ1,τ1M

′
ρ2,τ2 ,

P2 ,
∑

ρ1,ρ2 /∈Sσ1,σ2

(Mσ1,ρ1Mσ2,ρ2)Wρ1,ρ1Wρ2,ρ2M
′
ρ1,τ1M

′
ρ2,τ2 ,

Q1 ,
∑

ρ1,ρ2∈Sσ1,σ2

(Mσ1,ρ2Mσ2,ρ1)Wρ1,ρ1Wρ2,ρ2M
′
ρ1,τ1M

′
ρ2,τ2 ,

Q2 ,
∑

ρ1,ρ2 /∈Sσ1,σ2

(Mσ1,ρ2Mσ2,ρ1)Wρ1,ρ1Wρ2,ρ2M
′
ρ1,τ1M

′
ρ2,τ2 .

According to Lemma 5.6 and Lemma 5.5, Rj−1, Rj , Rj+1 are well-distributed based on (i, σ1),
(i, σ2),(j

′, τ1) and (j′, τ2), and it holds that

Q1 +Q2 ≤ 34 · P (i, σ1; j, ∗) · P (i, σ2; j, ∗) · P
(
j, ∗; j′, τ1

)
· P
(
j, ∗; j′, τ2

)
,

Q1 ≥
1

2
·

(
1

2
− ε0

)2(1

8

)4

· P (i, σ1; j, ∗) · P (i, σ2; j, ∗) · P
(
j, ∗; j′, τ1

)
· P
(
j, ∗; j′, τ2

)
.

Then, we can bound

M ′′
σ1,τ1 ·M

′′
σ2,τ2

M ′′
σ1,τ2 ·M

′′
σ2,τ1

=

∑
ρ1,ρ2∈Sj

(Mσ1,ρ1Mσ2,ρ2)Wρ1,ρ1Wρ2,ρ2M
′
ρ1,τ1M

′
ρ2,τ2∑

ρ1,ρ2∈Sj
(Mσ2,ρ1Mσ1,ρ2)Wρ1,ρ1Wρ2,ρ2M

′
ρ1,τ1M

′
ρ2,τ2

=
P1 + P2

Q1 +Q2
≤

Q1 + (1 + ǫ) ·Q2

Q1 +Q2
≤ 1 + ǫ ·

(
1−

Q1

Q1 +Q2

)

≤ 1 + ǫ ·

(
1−

1

2
·

(
1

2
− ε0

)2(1

8

)4

· 3−4

)
≤ 1 + (1− ε0) · ǫ,

for sufficiently small constant ε0.

Altogether, this proves that Ri and Rj′ are partial (1− ε0) · ǫ correlated.

24

6 Analysis of Initialization and Clustering

In this section, we first prove the correctness and efficiency of the Initialization phase (Lemma 3.5), and

then we prove the correctness and efficiency of the Clustering phase (Lemma 3.7).

6.1 Analysis of Initialization (Proof of Lemma 3.5)

It is sufficient to show that for any ǫ ∈ (0, 1), the event |R| = O
(
log n · log log n · log 1

γ · log
1
ǫ

)
holds

with probability at least 1− ǫ. This can be proved by the Chernoff bound.

For each S ∈ S , let YS ∈ {0, 1} be the random variable that indicates whether AS occurs on Y . Then

|R| =
∑

S∈S YS =
∑c logn

k=1

(∑
S∈S,C(S)=k YS

)
. For 1 ≤ k ≤ c · log n, let nk = |{S ∈ S|C(S) = k}|,

which is the number of clusters with color k. Then, for each 1 ≤ k ≤ c · log n, we have

E

 ∑

S∈S,C(S)=k

YS

 =

∑

S∈S,C(S)=k

(1− Pr[YS = 0]) ≤ nk − nk ·

 ∏

S∈S,C(S)=k

Pr[YS = 0]

1
nk

.

Since C is a proper coloring of S , {YS}S∈S,C(S)=k are mutually independent random variables. Recall that

the distributed LLL instance I is γ-satisfiable. We have
∏

S∈S,C(S)=k Pr[YS = 0] ≥ γ, which implies

E

 ∑

S∈S,C(S)=k

YS

 ≤ nk ·

(
1− γ

1
nk

)
= nk ·

(
1− e

− 1
nk

ln 1
γ

)
= O

(
log

1

γ

)
.

Suppose that c1 is a sufficiently large constant. By Chernoff bound, for any 0 < ǫ < 1, we have

Pr

 ∑

S∈S,C(S)=k

YS ≥ c1 · (log log n) · log
1

γ
· log

1

ǫ

 ≤ ǫ

c log n
.

By the union bound, we have

Pr

[
∑

S∈S

YS ≥ (c log n) · c1 · (log log n) · log
1

γ
· log

1

ǫ

]
≤

ǫ

c log n
· c log n = ǫ.

Thus, for any 0 < ǫ < 1, we have |R| = O
(
log n · log log n · log 1

γ · log
1
ǫ

)
with probability at least 1− ǫ.

6.2 Analysis of Clustering (Proof of Lemma 3.7)

Balls are uniquely identified and far-apart. According to the definition of B, if for any distinct u, v ∈R

with rv, pv, ru, pu /∈ {⊥} we have distG(Brv (pv), Bru(pu)) ≥ 2(ℓ+ 2), then the followings hold:

1. for any distinct u, v ∈R, if pu, pv, ru, rv 6∈ {⊥} then Bru(pu) ∩Brv(pv) = ∅.

2. distG(B1,B2) ≥ 2(ℓ+ 2) for any distinct B1,B2 ∈ B.

25

It then remains to show that we indeed have distG(Brv(pv), Bru(pu)) ≥ 2(ℓ+2) for any distinct u, v ∈
R with rv, pv, ru, pu /∈ {⊥}. We prove this by induction. Suppose that the sequence {v1, v2, ..., v|R|} is

obtained by sorting R in ascending order of IDs. Algorithm 1 is applied on the nodes in R in this order.

For the induction basis: initially all v ∈R set pv and rv to ⊥, which satisfies the hypothesis trivially.

Now, suppose the induction hypothesis holds before the execution of Algorithm 1 on node vi for some

1 ≤ i ≤ n. After Algorithm 1 terminates on vi, it holds that, it holds that distG(Brvi
(pvi), Brvj

(pvj)) ≥

2(ℓ + 2) for any 1 ≤ j ≤ i, if pvj , rvj /∈ {⊥}. Otherwise, the while loop in Algorithm 1 would not

terminate. According to Algorithm 1, for 1 ≤ j < i, the only possible modification can be made to

pvj and rvj during the execution of the algorithm at node vi is to set them to ⊥. Thus, by the induction

hypothesis, it still holds that for any distinct 1 ≤ j, k < i such that pvj , rv,j , pv,k, rvk /∈ {⊥}, we have

distG(Brvj
(pvj), Brvk

(pvk)) ≥ 2(ℓ+2). And for j > i, it holds that pvj = rvj =⊥. Altogether, it holds that

after Algorithm 1 terminates on node vi, for any distinct 1 ≤ j, k ≤ |R| such that pvj , rv,j , pv,k, rvk /∈ {⊥},
we have distG(Brvj

(pvj), Brvk
(pvk)) ≥ 2(ℓ+ 2).

Thus, after Algorithm 1 has been sequentially executed on all node v ∈ R, for any distinct u, v ∈ R

with rv, pv, ru, pu /∈ {⊥}, it holds that distG(Brv (pv), Bru(pu)) ≥ 2(ℓ+ 2).

Clustered Conditional Gibbs Property. Then, we prove that (Y ,B) satisfies the clustered conditional

Gibbs property (as defined in Definition 3.4) on instance I with parameter (ǫ0, γ0, δ0).
For any B ⊆ 2V , define

S(B) ,
⋃

Λ∈B

vbl(Λ), T (B) , U \
⋃

Λ∈B

vbl(Bℓ(Λ)),

Φ(B) ,

{
Av | v ∈ V \

⋃

Λ∈B

Λ

}
, Φ′(B) , {AI

λ(Λ,ǫ0,γ0,δ0)
| Λ ∈ B}.

For any B ⊆ 2V and σ ∈ ΣS(B) with Pr[B = B ∧ YS(B) = σ] > 0, we define following three events:

A1(B, σ) : YS(B) = σ,

A2(B, σ) : B = B,

A3(B, σ) : Y avoids all bad events in Φ(B) ∪ Φ′(B).

For any B ⊆ 2V and σ ∈ ΣS(B) with Pr[B = B ∧ YS(B) = σ] > 0, we will prove the equivalence

between A1(B, σ) ∧A2(B, σ) and A1(B, σ) ∧ A3(B, σ).
First, we show A1(B, σ) ∧A2(B, σ) =⇒ A1(B, σ) ∧A3(B, σ). Suppose that A1(B, σ) and A2(B, σ)

happen together. If a bad events in Φ(B) occurs on Y , according to Condition 3.3, it must be included in

at least one ball, centered on a node in R with radius 2d · log n log log n + 1. And Algorithm 1 will only

combine balls into bigger balls. Thus, it must hold that v ∈ Λ for some Λ ∈ B, a contradiction. If a bad

events in Φ′(B) occurs on Y , then according to Algorithm 1, the algorithm will not terminate with B = B,

a contradiction. Therefore, we have the occurrence of A3(B, σ).
Next, we show A1(B, σ) ∧ A3(B, σ) =⇒ A1(B, σ) ∧ A2(B, σ). This is proved by induction. Define

Z , {Z ∈ Σ | ZS(B) = σ and Z avoids all bad events in Φ(B) ∪ Φ′(B) }.

Since Pr[B = B ∧ YS(B) = σ] > 0, there exists at least one assignment Z ∈ Z such that B is output by

Algorithm 1 after running on Z . Next, we will prove that for any Ẑ ∈ Z , Algorithm 1 will output the same

B after running on Z ′, which implies A1(B, σ) ∧ A3(B, σ) =⇒ A2(B, σ).

26

Consdier a fixed Ẑ ∈ Z . Define

D , {v ∈ V | Av occurs on Z} and D̂ , {v ∈ V | Av occurs on D̂}.

Recall that Z avoids all the bad events in Φ(B). Thus, for any v ∈ D, it holds that v ∈
⋃

Λ∈B Λ, which

means vbl(v) ⊆ S(B). The same argument also holds for Ẑ, which gives vbl(v) ⊆ S(B). Assuming

A1(B, σ) ∧ A2(B, σ), it holds that ZS(B) = ẐS(B) = σ. Thus, we have D = D̂.

A random set R ⊆ V is computed in the Initialization phase from the random assignment Y gen-

erated according to the product distribution ν. Denote by R, R̂ ⊆ V the respective R sets computed in

Initialization phase from Z, Ẑ . It can be verified that R = R̂ since D = D̂.

Let the nodes in R = R̂ be sorted in the ascending order of IDs as {v1, v2, ..., v|R|}. Let 1 ≤ i ≤ |R|.
Suppose that Algorithm 1 is executed at node vi ∈ R on the assignment Y = Z . Denote by Ni the total

number of iterations of the while loop, and for 0 ≤ j ≤ Ni and 1 ≤ k ≤ |R|, let p
(i,j)
vk and r

(i,j)
vk respectively

denote the pvk and rvk computed right after the j-th iteration. Let N̂i, p̂
(i,j)
vk and r̂

(i,j)
vk be similarly defined for

1 ≤ i ≤ |R̂| = |R| and 0 ≤ j ≤ N̂i when Algorithm 1 is executed at node vi ∈ R̂ = R on the assignment

Y = Ẑ. By convention, let N0 = N̂0 = 0 and p
(0,0)
vi = r

(0,0)
vi = p̂

(0,0)
vi = r̂

(0,0)
vi =⊥.

Next, we prove by induction that, for any 0 ≤ i ≤ |R| = |R̂|, it holds that Ni = N̂i, and furthermore,

for any 0 ≤ j ≤ Ni = N̂i, any 1 ≤ k ≤ |R| = |R̂| it always holds that p
(i,j)
vk = p̂

(i,j)
vk and r

(i,j)
vk = r̂

(i,j)
vk .

The induction basis holds trivially as N0 = N̂0 = 0 and p
(0,0)
vi = r

(0,0)
vi = p̂

(0,0)
vi = r̂

(0,0)
vi =⊥.

Suppose p
(i,j)
vk = p̂

(i,j)
vk and r

(i,j)
vk = r̂

(i,j)
vk for some 0 ≤ i ≤ |R|, 0 ≤ j ≤ Ni, 1 ≤ k ≤ |R|, and further

suppose Ni = N̂i if j = Ni. Then, we prove that the same holds for the next iteration. If j = Ni, by the

same initialization in Algorithm 1, we have p
(i+1,0)
vk = p̂

(i+1,0)
vk and r

(i+1,0)
vk = r̂

(i+1,0)
vk for 1 ≤ k ≤ |R|. If

j < Ni, consider the following three cases for the j-th iteration in Algorithm 1 at node vi:

• Case 1: the If condition in Line 3 is satisfied. In this case, there exists vi′ ∈ R = R̂ with i′ 6= i

such that dist(B
r
(i,j)
vi

(p
(i,j)
vi), B

r̂
(i,j)
v
i′

(p̂
(i,j)
vi′)) ≤ (2ℓ + 2). By I.H.: p

(i,j)
vk = p̂

(i,j)
vk and r

(i,j)
vk = r̂

(i,j)
vk for

1 ≤ k ≤ |R|. Then the same If condition must be satisfied by the same vi′ when Y = Ẑ. Thus,

p
(i,j+1)
vk = p̂

(i,j+1)
vk and r

(i,j+1)
vk = r̂

(i,j+1)
vk for 1 ≤ k ≤ |R|.

• Case 2: the If condition in Line 8 is satisfied. In this case, the new bad event Aλ defined on variables

outside the ball B
r
(i,j)
vi

(p
(i,j)
vi) occurs on Z and the radius grows as r

(i,j+1)
vi = r

(i,j)
vi + ℓ0(ǫ0, γ0, δ0).

Since on Y = Z , B is eventually output, Aλ must be defined over S(B). Hence the same If condition

must be satisfied when Y = Ẑ . We have p
(i,j+1)
vk = p̂

(i,j+1)
vk and r

(i,j+1)
vk = r̂

(i,j+1)
vk for 1 ≤ k ≤ |R|.

• Case 3: otherwise. In this case, it can be verified that the above two If conditions are not satisfied

on Y = Ẑ either. It is obvious to see this for the If condition in Line 3, since p
(i,j)
vk = p̂

(i,j)
vk and

r
(i,j)
vk = r̂

(i,j)
vk for 1 ≤ k ≤ |R| by I.H.. For the If condition in Line 8, we consider the two subcases:

(a) if B
r
(i,j)
vi

(p
(i,j)
vi) ∈ B, by the occurrence of A3(B, σ) , the condition will not be triggered on Ẑ;

(b) if B
r
(i,j)
vi

(p
(i,j)
vi) /∈ B, in Algorithm 1, the bad event Aλ must be defined on S(B). Thus, the

condition will not be triggered on Ẑ. Thus, we have p
(i,j+1)
vk = p̂

(i,j+1)
vk and r

(i,j+1)
vk = r̂

(i,j+1)
vk for

1 ≤ k ≤ |R|, and further have Ni = N̂i.

Thus, p
(|R|,N|R|)
vk = p̂

(|R|,N|R|)
vk and r

(|R|,N|R|)
vk = r̂

(|R|,N|R|)
vk for 1 ≤ k ≤ |R|. Since B is output by

Algorithm 1 after running on Z , this shows that B is also output by Algorithm 1 after running on Ẑ.

27

This proves the equivalence between A1(B, σ) ∧ A2(B, σ) and A1(B, σ) ∧ A3(B, σ). Now we are

ready to prove the clustered conditional Gibbs property of (Y ,B). For any B ⊆ 2V and σ ∈ ΣS(B) with

Pr[B = B ∧ YS(B) = σ] > 0, and any τ ∈ ΣT (B),

Pr[YT (B) = τ | B = B ∧ YS(B) = σ] = Pr[YT (B) = τ | A1(B, σ) ∧ A2(B, σ)]

= Pr[YT (B) = τ | A1(B, σ) ∧ A3(B, σ)].

Due to Condition 3.3, Y follows the product distribution ν. Thus, the above conditional probability is

precisely µσ
Î,T (B)

(τ) = Pr[YT (B) = τ | A1(B, σ) ∧ A3(B, σ)], where

Î =
(
{Xi}i∈U , {Av}v∈V ∪ Φ′(B)

)
=
(
{Xi}i∈U , {Av}v∈V ∪ {A

I
λ(Λ,ǫ0,γ0,δ0)

| Λ ∈ B}
)
.

Thus, after Algorithm 1 has been sequentially executed on all nodes v ∈R, it holds that (Y ,B) satisfies

the clustered conditional Gibbs property on instance I with parameter (ǫ0, γ0, δ0).

Balls are reasonably small. During the execution of Algorithm 1 on some node v ∈ R, the value of

D ,
∑

v∈R:pv 6=⊥,rv 6=⊥ rv may be increased in the following cases:

• Case 1: at initialization. For a node v ∈ V , it increases D by 1 + d · log n · log log log n while

initializes its radius rv from⊥ to 1+d·log n·log log log n. In the Clustering phase, when Algorithm 1

is sequentially applied to all v ∈R, such initialization can happen at most |R| times. Thus, the total

contribution to D of this case is bounded by |R| · (1 + d · log n · log log log n) = Õ(|R| · log n).

• Case 2: when the If condition in Line 3 is triggered. In Algorithm 1, once the if condition in

Line 3 is triggered, D will increase by 2ℓ + 1, and meanwhile, at least one node u ∈ R with pu 6=⊥
will becomes pu =⊥. Thus, in the Clustering phase this condition can be triggered at most |R| times.

The total contribution to D of this case is bounded by |R| · (2ℓ+ 1) = Õ(|R| · log2 n log2 1
γ).

• Case 3: when the If condition in Line 8 is triggered. For v ∈ V , and 1 ≤ r ≤ n, define the event

Fv,r : AI
λ(Br(v),ǫ0,γ0,δ0)

occurs on Y .

We define F , {Fv,r | v ∈ V, 1 ≤ r ≤ n}. For any v ∈ V and 1 ≤ r ≤ n, according to

Lemma 3.1, the probability of Fv,r is at most 1
n3 . And it can be observed that the if condition in

Line 8 is triggered k times for some k ≥ 1, only if at least k events in F happen. Moreover, these

k events must be mutually independent. This is because once the if condition is triggered and the

constructed augmenting event occurs, the involved random variable will be included in a ball and will

not be used by any other constructed augmenting event who triggers if condition next time.

Thus, it is sufficient to bound the probability that there exists a subset of k mutually independent

events in F such that all of them happen together, which is

∑

F⊆F ,|F |=k,
the events in F
are independent

∏

f∈F

Pr[f happens] ≤
∑

F⊆F ,|F |=k,
the events in F
are independent

∏

f∈F

1

n3
≤ n2k ·

1

n3k
=

1

nk
.

For any 0 < η < 1, the probability that the if condition in Line 8 is triggered at least k = logn
1
η times

is at most n−k ≤ η. Note that each time the if condition is triggered, the value of D will increase by ℓ.
Thus, with probability 1−η, the contribution D of this case is bounded by Õ(|R|·log2 n·log2 1

γ ·log
1
η).

Overall, for any 0 < η < 1, we have D = Õ(|R| · log2 n · log2 1
γ · log

1
η) with probability 1− η.

28

7 Analysis of Resampling

In this section, we analyze the Resampling phase of the algorithm. The correctness and efficiency of the

RecursiveSampling procedure (Items 1 and 2 in Lemma 3.11) are respectively proved in Sections 7.1 and 7.2.

The accuracy of the estimation (Lemma 3.10) in the augmented instance is proved in Section 7.3. The

correctness of substituting (Lemma 3.12) is proved in Section 7.4. Finally, the analysis of the Resampling

phase (Lemma 3.11) is wrapped up in Section 7.5.

7.1 Correctness of RecursiveSampling (Proof of Item 1 in Lemma 3.11)

First, we prove Item 1 of Lemma 3.11, which guarantees the correctness of Algorithm 2.

Assume that Condition 3.9 is satisfied by the input of RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α). Our goal is

to show that Y ∼ µI when the procedure returns. This is proved by a structural induction. For the induction

basis Λ = V , Line 9 is executed with probability 1 and the resampled Y follows the distribution µI .

For the general case, assume that all recursive calls made within RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α)
return with the correct sampling results as long as Condition 3.9 is satisfied by the input arguments to these

recursive calls. We then prove Y ∼ µI when RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α) returns.

In Algorithm 2, a ρ ∈ [0, 1) is drawn uniformly at random beforehand. Then an estimation [L,R] of the

probability P = PrX∼µI
[X avoids Aλ] is dynamically improved based on local information, to determine

whether ρ < P (in which case Line 6 is satisfied, and the algorithm enters the zone for generating Y ∼ µÎ)

or ρ ≥ P (in which case Line 16 is satisfied, and the algorithm enters the zone for generating Y ∼ µÎ′).

This inspires us to define the following events:

F1 : Line 6 is satisfied, and the algorithm enters the zone for generating Y ∼ µÎ

F1 : Line 16 is satisfied, and the algorithm enters the zone for generating Y ∼ µÎ′ .

Once the algorithm enters one of these two zones, it will not leave the zone until the algorithm returns.

Thus, the above two events are mutually exclusive. Furthermore, at least one of them must occur eventually.

Indeed, for P , PrX∼µI
[X avoids Aλ], we have the following claim.

Claim 7.1. Pr[F1] = P and Pr[F1] = 1− P .

Proof. Let ℓ0 = ℓ0(ǫ0, γ0, δ0). By Lemma 3.1, Aλ is defined on the random variables in vbl(Bℓ0(Λ)). For

i ≥ 1, let ℓi , ℓ0
(
ζ i0, α1, α2 · ζ

i
0

)
. For i ≥ 1, let

Ji , {J = ({Xi}i∈UJ
, {Av}v∈VJ

) | J is α-satisfiable

and J
(
VJ \B

DJ

ℓ0+ℓi
(Λ)
)

is γ-satisfiable

and J
(
BDJ

ℓ0+ℓi+1(Λ)
)
= I

(
BDI

ℓ0+ℓi+1(Λ)
)}

.

For i ≥ 1, let

Li , inf
J∈Ji

Pr
X∼µJ

[X avoids Aλ̄] and Ri , sup
J∈Ji

Pr
X∼µJ

[X avoids Aλ̄].

Since I ∈ Ji for all i ≥ 1, it always holds that P ∈ [Li, Ri]. In particular, P = Li = Ri when L1 = Ri.

And by Lemma 3.10, we have Ri − Li ≤ 4ζ i0 for all i ≥ 1.

29

Let imax denote the smallest integer i ≥ 1 with Bℓ0+ℓi(Λ) = V . Let jmax denote the smallest integer

i ≥ 1 with Li = Ri. Observe that jmax ≤ imax. Then, the while loop stops within at most jmax iterations.

Moreover, for 1 ≤ i ≤ jmax, the values of Li and Ri are computed in Line 5 in the i-th iteration.

The probability of F1 is then calculated. By convention, assume L0 = 0 and R0 = 1. It holds that

Pr[F1] =
∑

1≤i≤imax

Pr

[(
ρ < max

0≤j≤i
Lj

)
∧

(
max
0≤j<i

Lj ≤ ρ < min
0≤j<i

Rj

)]

=
∑

1≤i≤imax

max0≤j≤i Lj −max0≤j<i Lj

min0≤j<iRj −max0≤j<i Lj
·

(
min
0≤j<i

Rj − max
0≤j<i

Lj

)

=
∑

1≤i≤imax

(
max
0≤j≤i

Lj − max
0≤j<i

Lj

)
= max

0≤i≤imax

Li = P.

As for the probability of F1, it holds that

Pr[F1] =
∑

1≤i≤imax

Pr

[(
ρ ≥ min

0≤j≤i
Rj

)
∧

(
max
0≤j<i

Lj ≤ ρ < min
0≤j<i

Rj

)]

=
∑

1≤i≤imax

min0≤j<iRj −min0≤j≤iRj

min0≤j<iRj −max0≤j<i Lj
·

(
min
0≤j<i

Rj − max
0≤j<i

Lj

)

=
∑

1≤i≤imax

(
min
0≤j<i

Rj − min
0≤j≤i

Rj

)
= 1− min

0≤i≤imax

Ri = 1− P.

The following claim guarantees the soundness of Line 8 in Algorithm 2.

Claim 7.2. With probability 1, max f > 0 and ν
(
ΩYS∧YT

Î

)
> 0, where f is defined in (9).

Proof. Let S = vbl(Λ) and T = U \ vbl(Bℓ0(ǫ,γ,δ)(Λ)). We show that for any σ1 ∈ ΣS and τ1 ∈ ΣT

with Pr[YS = σ1 ∧ YT = τ1] > 0, it always holds that ν
(
Ωσ1∧σ2

Î

)
> 0, and furthermore, it holds that

max f > 0 conditioned on YS = σ1, which will prove the claim. Fix any σ1 ∈ ΣS and τ1 ∈ ΣT with

Pr[YS = σ1 ∧ YT = τ1] > 0. Since the input to RecursiveSampling satisfies Condition 3.9, it holds that

(Y , {Λ}) satisfies the clustered conditional Gibbs property on instance I with parameter (ǫ, γ, δ), which

means µσ1

Î ,T
(τ1) > 0, and hence ν

(
Ωσ1∧τ1
Î

)
> 0, for the LLL instance Î defined as in (8).

For ν
(
ΩÎ

)
≥ α− δ > 0, there exist σ2 ∈ ΣS and τ2 ∈ ΣT such that ν

(
Ωτ2
Î

)
> 0 and ν

(
Ωσ2∧τ2
Î

)
> 0.

According to Lemma 3.1, we have that S and T are ǫ-correlated in instance Î , i.e.:

ν
(
Ωσ1∧τ1
Î

)
· ν
(
Ωσ2∧τ2
Î

)
≤ (1 + ǫ) · ν

(
Ωσ1∧τ2
Î

)
· ν
(
Ωσ2∧τ1
Î

)
.

Thus, it holds that ν
(
Ωσ1∧τ2
Î

)
> 0 and max f ≥ f(τ2) = ν

(
Ωτ2
Î

)
/ν
(
Ωσ∧τ2
Î

)
> 0.

Claim 7.3. Conditioned on F1, when RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α) returns, Y follows µÎ .

Proof. By Claim 7.2, the Bayes filter constructed in Line 8 is well-defined. Let F2 denote the event that the

Bayes filter defined in Line 8 succeeds. Depending on whether F2 happens, we proceed in two cases.

30

First, assume that F2 does not happen. In this case, we only need to verify that the input of the recursive

call RecursiveSampling
(
Y ; Î , Br(Λ) ∪ {λ},

1
2 , γ,

ζ0α
2 , α2

)
in Line 14 satisfies Condition 3.9. For any fixed

x ∈ N+ with Pr[F1 ∧ ¬F2 ∧ r = x] > 0, conditioned on F1 ∧ ¬F2 ∧ r = x, the properties asserted in

Condition 3.9 are verified one by one on the input to this recursive call as follow.

1. By our assumption, the original input (Y ; I,Λ, ǫ, γ, δ, α) satisfies Condition 3.9, which means 0 <

ǫ ≤ 1
2 , 0 < α ≤ γ < 1 and 0 < δ < ζ0 · α. The same can be easily verified for

(
1
2 , γ,

ζ0α
2 , α2

)
.

2. Since (Y ; I,Λ, ǫ, γ, δ, α) satisfies Condition 3.9, the LLL instance I(V \ Λ) is γ-satisfiable. For

x > ℓ0(ǫ, γ, δ), we have Î((V ∪ {λ}) \ (Bx(Λ) ∪ {λ})) = I(V \ Bx(Λ)), which must also be γ-

satisfiable since V \ Bx(Λ) ⊆ V \ Λ. Furthermore, it holds that ν(ΩÎ) ≥ α − δ ≥ (1 − ζ0)α. By

choosing ζ0 > 0 to be a sufficient small constant, the LLL instance Î is at least α
2 -satisfiable.

3. Let Ŝ = vbl(Bx(Λ)) and T̂ = U \vbl(B
x+ℓ0

(
1
2
,γ,

ζ0α
2

)(Λ)). Let Aκ and Îκ, where κ 6∈ V , respectively

denote the bad event and the augmented LLL instance constructed in Lemma 3.1, where

Aκ , AÎ

λ(Bx(Λ),
1
2
,γ,

ζ0α
2

)
, and Îκ , ({Xi}i∈U , {Av}v∈V ∪ {Aλ} ∪ {Aκ}).

Let A denote the event that Y avoids the bad event Aκ. For any σ ∈ ΣŜ with Pr[F1 ∧ ¬F2 ∧ r =
x ∧ YŜ = σ] > 0, since YŜ = σ already ensures r1 ≥ x, we have

F1 ∧ ¬F2 ∧ r = x ∧ YŜ = σ ⇐⇒ F1 ∧ ¬F2 ∧ A ∧ YŜ = σ.

Moreover, given A and YŜ = σ, the event ¬F2 is conditionally independent of YT̂ . Recall that

(Y , {Λ}) satisfies the clustered conditional Gibbs property on instance I with parameter (ǫ, γ, δ).
Thus, conditioned on F1 ∧ ¬F2 ∧ r = x ∧ YŜ = σ, it holds that YT̂ follows the distribution µσ

Î1,T̂
.

Thus, (Y , {Bx(Λ) ∪ {λ}}) is clustered conditional Gibbs on instance Î with parameter
(
1
2 , γ,

ζ0α
2

)
.

Altogether, conditioned onF1∧¬F2∧r = x, the input to the recursive call in Line 14 satisfies Condition 3.9.

By the induction hypothesis, right after the recursive call in Line 14 returns, Y follows the distribution µÎ .

Since this holds for all possible x ∈ N+, we have that the output Y ∼ µÎ conditioned on F1 and ¬F2.

The remaining case is that F2 happens. Let S = vbl(Λ) and T = U \vbl(Bℓ0(ǫ,γ,δ)(Λ)). Fix any σ ∈ ΣS

with Pr[F1 ∧ F2 ∧ YS = σ] > 0. We prove that, conditioned on F1 ∧ F2 ∧ YS = σ, the Y follows the

distribution µÎ after Line 9 being executed. In the following analysis, let Y = (Yi)i∈U denote the original

input random assignment and let Y ′ = (Y ′
i)i∈U denote the Y after Line 9 being executed.

Recall that S and T are ǫ-correlated in instance Î . For any π ∈ Σ with ν(ΩπT∧σ

Î
) = 0, it holds that

µÎ ,T (πT) = 0. Thus, for any π ∈ Σ with µÎ ,T (πT) > 0, it holds that ν(ΩπT∧σ

Î
) > 0. For any π ∈ Σ with

µÎ(π) > 0, conditioned on F1 and YS = σ, it holds that

Pr[Y ′ = π ∧ F2] = Pr[Y ′
T = πT] · Pr[Y

′
U\T = πU\T | Y

′
T = πT] · Pr[F2 | Y

′ = π]

= µσ
Î,T

(πT) · µ
πT

Î ,U\T
(πU\T) ·

ν
(
ΩπT

Î

)

ν
(
Ωσ∧πT

Î

) · 1

max f
= µÎ(π) ·

ν
(
ΩÎ

)

ν
(
Ωσ
Î

) · 1

max f
.

31

Then, conditioned on F1 and YS = σ, it holds that

Pr[F2] =
∑

π∈Σ

Pr[Y ′ = π ∧ F2] =
∑

π∈Σ

µÎ(π) ·
ν
(
ΩÎ

)

ν
(
Ωσ
Î

) · 1

max f
=

ν
(
ΩÎ

)

ν
(
Ωσ
Î

) · 1

max f
.

Thus, conditioned on F1 ∧ F2 ∧ YS = σ, the output Y
′ follows µÎ . By the law of total probability,

conditioned on F1 and F2, after RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α) returns, Y follows µÎ .

Claim 7.4. Conditioned on F1, when RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α) returns, Y follows µÎ′ .

Proof. In this case, we only need verify that the input
(
Y ; Î ′, Bs(Λ) ∪

{
λ
}
, 12 , γ,

ζ0α(1−R̂)
2 , α(1 −R)

)
of

the recursive call to RecursiveSampling in Line 20 satisfies Condition 3.9. For any fixed x ∈ N+ with

Pr(F1 ∧ s = x) > 0, conditioned on F1 and s = x, the properties asserted in Condition 3.9 are verified one

by one on the input to this recursive call as follow.

1. By our assumption, the original input (Y ; I,Λ, ǫ, γ, δ, α) satisfies Condition 3.9, which means 0 <

ǫ ≤ 1
2 , 0 < α ≤ γ < 1 and 0 < δ < ζ0 · α. The same can be verified on

(
1
2 , γ,

ζ0α(1−R̂)
2 , α(1 −R)

)
.

2. Since (Y ; I,Λ, ǫ, γ, δ, α) satisfies Condition 3.9, the LLL instance I(V \ Λ) is γ-satisfiable. For

x > ℓ0(ǫ, γ, δ), we have Î ′((V ∪ {λ̄}) \ (Bx(Λ) ∪ {λ̄})) = I(V \ Bx(Λ)), which must also be γ-

satisfiable since V \Bx(Λ) ⊆ V \Λ. Furthermore, it holds that ν(ΩÎ′) ≥ ν(ΩI)·(1−P) ≥ α·(1−R).

3. Let Ŝ = vbl(Bx(Λ)) and T̂ = U \vbl(B
x+ℓ0

(
1
2
,γ,

ζ0α
2

)(Λ)). Let Aκ and Îκ, where κ 6∈ V , respectively

denote the bad event and the augmented LLL instance constructed in Lemma 3.1, where

Aκ , AÎ′

λ(Bx(Λ),
1
2
,γ,

ζ0α(1−R)
2

)
, and Î ′1 , ({Xi}i∈U , {Av}v∈V ∪ {Aλ̄} ∪ {Aκ}}.

Let A denote the event that Y avoids the bad event Aκ. For any σ ∈ ΣŜ with Pr[F1 ∧ s = x ∧ YŜ =
σ] > 0, since YŜ = σ already ensures s ≥ x, we have

F1 ∧ s = x ∧ YŜ = σ ⇐⇒ ¬F1 ∧ A ∧ YŜ = σ.

Recall that by our assumption, (Y , {Λ}) satisfies the clustered conditional Gibbs property on instance

I with parameter (ǫ, γ, δ). Thus, conditioned on F1 ∧ s = x ∧ YŜ = σ, it holds that YT̂ follows the

distribution µσ
Î′1,T̂

, i.e. (Y , {Bx(Λ) ∪ {λ}}) satisfies the clustered conditional Gibbs property on

instance Î ′ with parameter
(
1
2 , γ,

ζ0α(1−R)
2

)
.

Altogether, conditioned on F1 and r = x, the input to the recursive call in Line 20 satisfies Condition 3.9.

By the induction hypothesis, right after the recursive call in Line 20 returns, Y follows the distribution µÎ .

Since this holds for all possible x ∈ N+, by the law of total probability, we have that the output Y ∼ µÎ′

conditioned on F1.

Now we are ready to finalize the proof of the correctness of RecursiveSampling. Denote by Y
∗ the

random assignment Y when RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α) returns. By Claim 7.1 and Claim 7.3,

for any π ∈ ΣV avoiding Aλ, it holds that

Pr[Y ∗ = π] = Pr[Y ∗ = π | F1] · Pr[F1] + Pr[Y ∗ = π | F1] · Pr[F1]

= µÎ(π) · P = µI(π).

32

On the other hand, by Claim 7.1 and Claim 7.4, for any π ∈ ΣV not avoiding Aλ, it holds that

Pr[Y ∗ = π] = Pr[Y ∗ = π | F1] · Pr[F1] + Pr[Y ∗ = π | F1] · Pr[F1]

= µÎ′(π) · (1 − P) = µI(π).

This proves that Y ∼ µI when RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α) returns, assuming Condition 3.9

satisfied initially by the input, which finishes the inductive proof of the correctness of RecursiveSampling.

7.2 Efficiency of RecursiveSampling (Proof of Item 2 in Lemma 3.11)

We now prove Item 2 of Lemma 3.11, which bounds the efficiency of Algorithm 2.

Assume that Condition 3.9 is satisfied by the input of RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α). To upper

bound the complexity of the recursive algorithm, we construct a potential P ≥ 0, which is computed during

the execution of RecursiveSampling according to the following rules which are added into Algorithm 2:

• P is initialized to 0, and the current value of P is returned whenever the algorithm returns;

• when the recursive call in Line 14 returns with some value P1, the value of P is increased by P1;

• when the recursive call in Line 20 returns with some value P2, the current value of P is increased by

P2 + ⌈log
1

1−R⌉+ 1, where R is the current estimation upper bound calculated in Line 5;

• whenever Line 23 is executed, the value of P is increased by 1.

This procedure for computing the potential P is explicitly described in Algorithm 5. Note that other than

the part for computing the value of P, Algorithm 5 is exactly the same as Algorithm 2. Therefore, we refer

to them both by the same name RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α).
Next, we prove Claim 7.5 and Claim 7.6, where Claim 7.5 says that the potential P computed as above

can be used to bound the radius r of RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α) stated in Item 2 of Lemma 3.11,

and Claim 7.6 gives an upper bound on the potential P.

Claim 7.5. Suppose that Condition 3.9 is satisfied by the input of RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α),
who accesses I(Br(Λ)), updates Yvbl(Br(Λ)), and returns a P ≥ 0. It holds that

r ≤ ℓ0(ǫ, γ, δ) +O

(
P ·

(
P + log

1

α

)
· log

1

γ
· log

(
P log

1

γ
log

1

α

))
.

Proof. Let c > 1 be a sufficient large constant. For P ∈ N, γ ∈ (0, 1), α ∈ (0, 1), define

g(P, γ, α) = c · P ·

(
P + log

1

α

)
· log

1

γ
· log

(
P log

1

γ
log

1

α

)
.

Claim 7.5 is proved by showing that r ≤ ℓ0(ǫ, γ, δ)+g(P, γ, α). This is proved by a structural induction.

Suppose that the input is the LLL instance I = ({Xi}i∈U , {Av}v∈V), the random assignment Y = (Yi)i∈U ,

and the subset Λ ⊆ V of bad events, along with the parameter (ǫ, γ, δ, α) satisfying Condition 3.9.

First, for the induction basis, when Λ = V , the induction hypothesis holds as r = 0 and P = 0.

33

Algorithm 5: RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α) that computes P during execution

Input : LLL instance I = ({Xi}i∈U , {Av}v∈V), subset Λ ⊆ V , parameter (ǫ, γ, δ, α);
Data : assignment Y = (Yi)i∈U stored globally that can be updated by the algorithm;

Output: integer P ≥ 0;

// An integer P ≥ 0 is computed and returned (which are highlighted);

otherwise, the algorithm is the same as Algorithm 2.

1 initialize P ← 0, i← 1, and define ℓ0 , ℓ0(ǫ, γ, δ);
// The value of P is initialized to 0.

2 draw ρ ∈ [0, 1) uniformly at random;

3 while true do

4 ℓi ← ℓ0
(
ζ i0, γ, α · ζ

i
0

)
;

5 compute the smallest interval [L,R] containing P , PrX∼µI
[X avoids Aλ] based on Λ, Aλ,

I (Bℓ0+ℓi+1(Λ)), assuming that I is α-satisfiable and I (V \Bℓ0+ℓi+1(Λ)) is γ-satisfiable;

6 if ρ < L then

7 define T , U \ vbl(Bℓ0(Λ));

8 with probability
f(YT)
max f , where f is defined as in (9), do

9 update Y by redrawing YU\T ∼ µYT

Î ,U\T
;

10 else

11 initialize r ← ℓ0 + 1;

12 while Y does not avoid the bad event AÎ
λ(Br(Λ),1/2, γ, ζ0α/2)

do

13 grow the ball: r ← r + ℓ0

(
1
2 , γ,

ζ0α
2

)
and P ← P + 1;

// The value of P is increased by 1.

14 P ← P +RecursiveSampling
(
Y ; Î , Br(Λ) ∪ {λ},

1
2 , γ,

ζ0α
2 , α2

)
;

// The value of P is increased by the amount returned by the

recursive call.

15 return P;

16 else if ρ ≥ R then

17 initialize s← ℓ0 + 1;

18 while Y does not avoid the bad event AÎ′

λ(Bs(Λ),1/2, γ, ζ0α(1−R)/2) do

19 grow the ball: s← s+ ℓ0

(
1
2 , γ,

ζ0α(1−R)
2

)
and P ← P + 1;

// The value of P is increased by 1.

20 P ← P+⌈log 1
1−R⌉+RecursiveSampling

(
Y ; Î ′, Bs(Λ) ∪

{
λ
}
, 12 , γ,

ζ0α(1−R)
2 , α(1 −R)

)
;

// The value of P is increased by the amount returned by the

recursive call.

21 return P;

22 else

23 enter the next iteration (and refine the estimation of P): i← i+ 1 and P ← P + 1;

// The value of P is increased by 1.

34

Now, consider the general case. Define

ℓ , ℓ0(ǫ, γ, δ) = O

(
log

1

ǫ
log

1

γ
log

1

δ
log

(
log

1

ǫ
log

1

γ
log

1

α

))
,

ℓ1 , ℓ0

(
1

2
, γ,

ζ0α

2

)
= O

(
log

1

γ
log

1

α
log

(
log

1

γ
log

1

α

))
,

ℓ2 , ℓ0

(
1

2
, γ,

ζ0α(1−R)

2

)
= O

(
log

1

γ
log

1

α(1 −R)
log

(
log

1

γ
log

1

α(1−R)

))
,

ℓ3 , ℓ0
(
ζK0 , γ, α · ζK0

)
= O

(
K log

1

γ

(
log

1

α
+K

)
log

(
K log

1

γ

(
log

1

α
+K

)))
,

where K stands for the number of times that Line 23 is executed.

The induction then proceeds in the following three cases:

• Case 1: Line 14 is executed. Let K1 denote the number of times that Line 13 is executed. Let P1
denote the value returned by the recursive call in Line 14. In this case, we have P = K + P1 +K1.

By the induction hypothesis, it holds that

r ≤ ℓ+ (K1 + 1) · ℓ1 + g

(
P1, γ,

ζ0α

2

)
+ ℓ3.

• Case 2: Line 20 is executed. Let K2 denote the number of times that Line 19 is executed. Let P2
denote the value returned by the recursive call in Line 20. In this case we have P = K + P2 +K2 +
⌈log 1

1−R⌉. By the induction hypothesis, it holds that

r ≤ ℓ+ (K2 + 1) · ℓ2 + g

(
P2, γ,

ζ0α(1 −R)

2

)
+ ℓ3.

• Case 3: otherwise. In this case, we have P = K . It holds that

r ≤ ℓ+ ℓ3 + 1.

By choosing c to be a large enough constant, one can verify that r ≤ ℓ0 + g(P, γ, α) in all cases.

Claim 7.6. Suppose that Condition 3.9 is satisfied by the input of RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α),

who returns a P ≥ 0. For any η ∈ (0, 1), with probability at least 1− η, it holds that P = O
(
log2 1

η

)
.

Proof. We prove that, for some constant d1, it holds that Pr[P > d1 · log
2 1
η] < η for any η ∈ (0, 1).

This is proved by induction. Suppose that the input is the LLL instance I = ({Xi}i∈U , {Av}v∈V), the

random assignment Y = (Yi)i∈U , and the subset Λ ⊆ V of bad events, along with the parameter (ǫ, γ, δ, α)
satisfying Condition 3.9.

For the induction basis, when Λ = V , the induction hypothesis holds trivially since P = 0.

For the general case. by induction hypothesis, all recursive calls return the correctly bounded values of

P’s as long as Condition 3.9 is satisfied by the input. We prove that RecursiveSampling(Y ; I,Λ, ǫ, γ, δ, α)
returns a correctly bounded P.

Let K denote the number of times that Line 23 is executed. Let K1 denote the number of times that

Line 13 is executed. Let K2 denote the number of times that Line 19 is executed. If Line 14 is executed, let

35

P1 denote the value returned by the recursive call in Line 14. If Line 20 is executed, let P2 denote the value

returned by the recursive call in Line 20.

For η ∈ (0, 1), let k , 10 log 1
η+d2 for sufficient large constant d2. One can verify that ifP > d1·log

2 1
η ,

then necessarily at least one of the following events must have happened.

• Event E1: K > k. The probability that Line 23 is executed more that k times is R− L, where R and

L respectively take values of these variables in the k-th iteration of the while loop. By Lemma 3.10,

we have R− L ≤ 4ζk0 . By choosing ζ0 to be a small enough constant, we have

Pr(E1) = Pr(K > k) ≤ 4ζk0 ≤ 0.01η.

• Event E2: Line 14 is executed and K1 ≥ k. We have Pr(E2) ≤ Pr (∀A ∈ Φ : A occurs on Y),
where

Φ ,

{
AÎ

λ(Br(Λ),
1
2
, 1
2
,γ,

ζ0α

2
)

∣∣∣∣ r = ℓ0(ǫ, γ, δ) + 1 + i · ℓ0

(
1

2
, γ,

ζ0α

2

)
, for 0 ≤ i < k

}
.

Let Xβ and Aκ denote the respective random variable and bad event constructed in Lemma 3.12 under

parameter Λ, Yvbl(Λ), (ǫ, γ, δ), I(Bℓ(ǫ,γ,δ)+1(Λ)). Define

U ′ , U \ vbl(Bℓ0(ǫ,γ,δ)(Λ)),

V ′ , V \Bℓ0(ǫ,γ,δ)+1(Λ),

I ′ , ({Xi}i∈U ′ ∪ {Xβ}, {Av}v∈V ′ ∪ {Aκ}) .

(13)

Let Yβ be drawn independent according to the marginal distribution µ
Yvbl(κ)\{β}

I′,β . This is well-defined

because Yvbl(κ)\{β} ⊆ U ′. Then, define assignment Y ′ as

Y
′ , YU ′ ∧ Yβ. (14)

Since (Y ,Λ) satisfies the clustered conditional Gibbs property on I with parameter (ǫ, γ, δ), we have

YU ′ ∼ µ
Yvbl(Λ)

Î ,U ′
, where Î is defined as in (8). By Lemma 3.12, we have YU ′ ∼ µI′,U ′ , which means

Y
′ ∼ µI′ , i.e. for any A ∈ Φ, we have that A occurs on Y if and only if A occurs on Y

′. Thus,

Pr(E2) ≤ Pr (∀A ∈ Φ : A occurs on Y) = Pr
(
∀A ∈ Φ : A occurs on Y

′
)

≤
(ζ0α)

k

(1− ǫ)(α− δ)
≤ 4ζk0 ≤ 0.01η,

by choosing ζ0 to be sufficiently small constant.

• Event E3: Line 14 is executed and P1 ≥ d1 log
2 1
1.1η . We first bound the probability that Line 14 is

executed. Recall that S and T are ǫ-correlated in instance Î , where Î is defined as in (8). According

to Definition 3.1, it holds with probability 1 that

f(YT)

fmax
≥

1

1 + ǫ
≥

1

2
.

Thus, the probability that Line 14 is executed is at most 1
2 . By the induction hypothesis, we have

Pr(P1 > d1 · log
2 1
1.1η | Line 14 is executed) < 1.1η. Overall, we have

Pr(E3) ≤
1

2
· 1.1η ≤ 0.55η.

36

• Event E4: Line 20 is executed and K2 ≥ k. The probability of E4 can be bounded similarly as E2.

Let I ′, Y ′ be defined as in (13) and (14) respectively. Let Î ′ defined as in (8). Define

Φ′ ,

{
AÎ′

λ(Br(Λ),
1
2
,γ,

ζ0α(1−R)

2
)

∣∣∣∣ r = ℓ0(ǫ, γ, δ) + 1 + i · ℓ0

(
1

2
, γ,

ζ0α(1−R)

2

)
, for 0 ≤ i < k

}

For any A ∈ Φ′, we have that A occurs on Y if and only if A occurs on Y
′, and

Pr(E4) ≤ Pr
(
∀A ∈ Φ′ : A occurs on Y

)
= Pr

(
∀A ∈ Φ′ : A occurs on Y

′
)

≤
(ζ0α)

k

(1− ǫ)(α− δ)
≤ 4ζk0 ≤ 0.01η.

• Event E5: Line 20 is executed and log 1
1−R ≥ k. The probability that Line 20 is executed given R,

is precisely 1−R. Thus, we have

Pr(E5) = Pr

(
Line 20 is executed

∣∣∣∣ log
1

1−R
≥ k

)
· Pr

(
log

1

1−R
≥ k

)
≤ 2−k ≤ 0.01ǫ.

• Event E6: Line 20 is executed and P2 > d1 log
2 1
1.1η . The probability that Line 20 is executed is

bounded by 1 − R. Recall that 1 − R is the lower bound of P , PrX∼µI
(X does not avoids Aλ).

Assuming Condition 3.9, this probability P is at most δ
α ≤ ζ0. By the induction hypothesis, we have

Pr(P2 > d1 · log
2 1
1.1η) < 1.1η. And by choosing ζ0 to be sufficiently small constant, we have

Pr(E6) ≤ ζ0 · 1.1η ≤ 0.01η.

By the union bound applied on all above cases, we have

Pr

(
P > d1 · log

2 1

η

)
< η,

for any η ∈ (0, 1). This proves Claim 7.6.

Combine Claim 7.5 and Claim 7.6. For any 0 < η < 1, with probability at least 1 − η, the following

upper bound holds for the radius r of Algorithm 2, assuming that its input satisfies Condition 3.9:

r ≤ ℓ0(ǫ, γ, δ) +O

((
log

1

γ
· log4

1

η
+ log

1

γ
· log2

1

η
· log

1

α

)
· log

(
log

1

η
· log

1

γ
· log

1

α

))
.

This proves Item 2 in Lemma 3.11.

7.3 Accuracy of estimation (Proof of Lemma 3.10)

We prove Lemma 3.10, which guarantees the accuracy of the estimation of the probability

P , Pr
X∼µI

[X avoids Aλ]

from the local information.

We first prove the following technical lemma, which follows directly from Definition 3.1.

37

Lemma 7.7. Let I = ({Xi}i∈U , {Av}v∈V) be a LLL instance. For any ǫ > 0, any disjoint S, T ⊂ U with

S ∪ T 6= U , any real functions:

p1, p2 : ΣS → R≥0, q1, q2 : ΣT → R≥0,

if S and T are ǫ-correlated in I , it holds that

∑

σ∈ΣS ,τ∈ΣT

p1(σ) · q1(τ) · ν
(
Ωσ∧τ
I

)
·

∑

σ∈ΣS ,τ∈ΣT

p2(σ) · q2(τ) · ν
(
Ωσ∧τ
I

)

≤ (1 + ǫ)·
∑

σ∈ΣS ,τ∈ΣT

p1(σ) · q2(τ) · ν
(
Ωσ∧τ
I

)
·

∑

σ∈ΣS ,τ∈ΣT

p2(σ) · q1(τ) · ν
(
Ωσ∧τ
I

)
.

Proof. The lemma follows by verifying:

∑

σ∈ΣS ,τ∈ΣT

p1(σ) · q1(τ) · ν
(
Ωσ∧τ
I

)
·

∑

σ∈ΣS ,τ∈ΣT

p2(σ) · q2(τ) · ν
(
Ωσ∧τ
I

)

=
∑

σ1,σ2∈ΣS ,τ1,τ2∈ΣT

p1(σ1) · q1(τ1) · p2(σ2) · q2(τ2) · ν
(
Ωσ1∧τ1
I

)
· ν
(
Ωσ2∧τ2
I

)

≤
∑

σ1,σ2∈ΣS ,τ1,τ2∈ΣT

p1(σ1) · q1(τ1) · p2(σ2) · q2(τ2) · (1 + ǫ) · ν
(
Ωσ1∧τ2
I

)
· ν
(
Ωσ2∧τ1
I

)

≤(1 + ǫ) ·
∑

σ∈ΣS ,τ∈ΣT

p1(σ) · q2(τ) · ν
(
Ωσ∧τ
I

)
·

∑

σ∈ΣS ,τ∈ΣT

p2(σ) · q1(τ) · ν
(
Ωσ∧τ
I

)
.

Now we can prove Lemma 3.10.

Proof of Lemma 3.10. For any σ ∈ Σvbl(Λ), define

φ(σ) ,

{
1 σ avoids the bad event Aλ,

0 σ does not avoid the bad event Aλ.

For any v ∈ V , vbl(v) ⊆W ⊆ V , σ ∈ ΣW , define

φv(σ) ,

{
1 σ avoids the bad event Av,

0 σ does not avoid the bad event Av .

Let S = vbl(Λ) and T = U \ vbl(Bℓ(Λ)). For any σ ∈ ΣS , define

p1(σ) ,
∏

vbl(v)⊆S

φv(σ), p2(σ) , p1(σ) · φ(σ).

For any τ ∈ ΣT , define

q1(τ) ,
∏

vbl(v)⊆T

φv(τ), q2(τ) , 1.

We considered a new bad event Aw constructed by Lemma 3.1 and a augmented LLL instance Iw:

Aw , AI
λ(Λ,ǫk,α2,α1·ǫk)

, where w 6∈ V, and Iw = ({Xi}i∈U , {Av}v∈V ∪{w}).

38

According to Lemma 3.1, we have S and T are ǫk-correlated in LLL instance Iw. By Lemma 7.7, we have

∑

σ∈ΣS ,τ∈ΣT

p1(σ) · q1(τ) · ν
(
Ωσ∧τ
Iw

)
·

∑

σ∈ΣS ,τ∈ΣT

p2(σ) · q2(τ) · ν
(
Ωσ∧τ
Iw

)

≤ (1 + ǫk)·
∑

σ∈ΣS ,τ∈ΣT

p1(σ) · q2(τ) · ν
(
Ωσ∧τ
Iw

)
·

∑

σ∈ΣS ,τ∈ΣT

p2(σ) · q1(τ) · ν
(
Ωσ∧τ
Iw

)
.

(15)

Let

P , Pr
X∼µI

[X avoids Aλ], and Pw , Pr
X∼µIw

[X avoids Aλ].

It holds that

Pw =

∑
σ∈ΣS ,τ∈ΣT

p2(σ) · q1(τ) · ν
(
Ωσ∧τ
Iw

)
∑

σ∈ΣS ,τ∈ΣT
p1(σ) · q1(τ) · ν

(
Ωσ∧τ
Iw

) .

Then, define

P̂ ,

∑
σ∈ΣS ,τ∈ΣT

p2(σ) · q2(τ) · ν
(
Ωσ∧τ
Iw

)
∑

σ∈ΣS ,τ∈ΣT
p1(σ) · q2(τ) · ν

(
Ωσ∧τ
Iw

) .

The above Pw and P̂ are well-defined, since their denominators are non-zero, i.e.

∑

σ∈ΣS ,τ∈ΣT

p1(σ) · q2(τ) · ν
(
Ωσ∧τ
Iw

)
≥

∑

σ∈ΣS ,τ∈ΣT

p1(σ) · q1(τ) · ν
(
Ωσ∧τ
Iw

)

= ν(ΩIw) ≥ α2 − α1 · ǫ
k > 0.

Obviously, the value of P̂ can be determined by Λ, Aλ and I(Bℓ+1(Λ)). By Equation (15) and simply swap

the definition of q1 with q2, we directly have

P̂ ≤
(
1 + ǫk

)
· Pw ≤

(
1 + ǫk

)2
· P̂ . (16)

Now we try to estimate the difference between P and Pw. First, we have

P =

∑
σ∈ΣS

p2(σ) · ν(Ω
σ
I)

ν (ΩI)
≤

∑
σ∈ΣS

p2(σ) · (ν(Ω
σ
Iw
) + ν(Aw) · νS(σ))

ν(ΩI)

≤

∑
σ∈ΣS

p2(σ) · ν(Ω
σ
Iw
)

ν(ΩIw)
+

∑
σ∈ΣS

p2(σ) · ν(Aw) · νS(σ)

ν(ΩI)
≤ Pw +

α1 · ǫ
k

α1
= Pw + ǫk.

(17)

On the other hand, we have

P =

∑
σ∈ΣS

p2(σ) · ν(Ω
σ
I)

ν(ΩI)
≥

∑
σ∈ΣS

p2(σ) · ν(Ω
σ
Iw
)

ν(ΩIw)
·
ν(ΩIw)

ν(ΩI)

≥

∑
σ∈ΣS

p2(σ) · ν(Ω
σ
Iw
)

ν(ΩIw)
·
ν(ΩI)− ν(Aw)

ν(ΩI)
≥ Pw ·

(
1−

α1 · ǫ
k

α1

)
= Pw · (1− ǫk).

(18)

By combining (16) (17) (18), we have

P̂ − 2ǫk ≤ P ≤ P̂ + 2ǫk.

39

7.4 Analysis of Substituting (Proof of Lemma 3.12)

We prove Lemma 3.12, which guarantees the soundness of the substituting trick. We first construct the new

random variable Xβ and bad event Aκ, and then prove the identity stated in Lemma 3.12.

The construction of Xβ . We construct a new random variable Xβ follows a distribution νβ over a domain

Σβ . Here is the construction of Σβ and νβ .

• The domain Σβ . Let R = vbl(Bℓ+1(Λ)) \ vbl(Bℓ(Λ)). We set Σβ = ΣR.

• The distribution νβ . Let S = vbl(Λ) and T = U \ vbl(Bℓ(Λ)). Let ω ∈ ΣT\R be an arbitrary

configuration. For any π ∈ Σβ , define

P (π) ,
ν
(
Ωω∧π∧σ
Î

)

νT (ω ∧ π) · νS(σ)
.

Note that P (π) does not depend on ω. Order all the configurations π ∈ Σβ increasingly by P (π) as

π1, π2, ..., π|Σβ |. Then, for 1 ≤ i ≤ |Σβ |, we set

νβ(πi) =

P (π1)

P
(
π|Σβ |

) i = 1,

P (πi)−P (πi−1)

P
(
π|Σβ |

) 1 < i ≤ |Σβ|.

The construction of Aκ. We construct the new bad event Aκ as follow. The event Aκ is defined on the

variables in vbl(κ) , R ∪ {β} such that for any τ ∈ Σvbl(κ),

Aκ occurs if and only if P (τR) < P (τβ).

Proof of Lemma 3.12. We prove the claimed properties one by one.

To prove Item 1 in Lemma 3.12, it is easy to verify that the constructions of Xβ and Aκ depend only on

the specifications of Λ, σ, (ǫ, γ, δ) and I(Bℓ+1(Λ)).
Next, we prove Item 2 in Lemma 3.12. Fix any W ⊆ T and its complement W = T \W . Define the

following set of assignments:

Σ′
W

, {w ∈ ΣW | ω ∧ ω avoids all the bad events Av such that vbl(v) ⊆ T and vbl(v) * W}.

Let Uσ , (U \ vbl(Bℓ(Λ))) ∪ {β}. For any ω ∈ ΣW and ω ∈ ΣW , it holds that

µω∧σ
Î,W

(ω) =

ν
(
Ωσ∧ω∧ω

Î

)

ν
(
Ωσ∧ω

Î

) if ν
(
Ωσ∧ω
Î

)
> 0 and ω ∈ Σ′

W
,

0 otherwise.

and

µω
Iσ,W

(ω) =

νUσ(Ωω∧ω
Iσ

)
νUσ(Ωω

Iσ
)

if νUσ

(
Ωω
Iσ

)
> 0 and ω ∈ Σ′

W
,

0 otherwise.

We consider following cases:

40

• Case 1: ω /∈ Σ′
W

. In this case, it holds that µω∧σ
Î,W

(ω) = µω
Iσ,W

(ω) = 0.

• Case 2: ω ∈ Σ′
W

and ν
(
Ωσ∧ω
Î

)
= 0. In this case, we have

νUσ

(
Ωω
Iσ

)
=
∑

ω∈Σ′
W

νUσ

(
Ωω∧ω
Iσ

)
=
∑

ω∈Σ′
W

ν
(
Ωσ∧ω∧ω
Î

)
= ν

(
Ωσ∧ω
Î

)
= 0.

Therefore, it holds that µω∧σ
Î,W

(ω) = µω
Iσ,W

(ω) = 0.

• Case 3: ω ∈ Σ′
W

and ν
(
Ωω
Iσ

)
> 0. In this case, it holds that

µω∧σ
Î,W

(ω) =
ν
(
Ωσ∧ω∧ω
Î

)

ν
(
Ωσ∧ω
Î

) =
ν
(
Ωσ∧ω∧ω
Î

)

∑
ω∈Σ′

W

ν
(
Ωσ∧ω∧ω
Î

)

and

µω
Iσ,W

(ω) =
νUσ

(
Ωω∧ω
Iσ

)

νUσ

(
Ωω
Iσ

) =
νUσ

(
Ωω∧ω
Iσ

)
∑

ω∈Σ′
W

νUσ

(
Ωω∧ω
Iσ

) =
νT (ω ∧ ω) · νβ((ω ∧ ω)R)∑

ω∈Σ′
W

νT (ω ∧ ω) · νβ((ω ∧ ω)R)

=
νT (ω ∧ ω) · P ((ω ∧ ω)R)∑

ω∈Σ′
W

νT (ω ∧ ω) · P ((ω ∧ ω)R)
=

ν
(
Ωσ∧ω∧ω
Î

)

∑
ω∈Σ′

W

ν
(
Ωσ∧ω∧ω
Î

)

Thus, we have µω∧σ
Î,W

(ω) = µω
Iσ,W

(ω).

Combing three cases,we prove that

∀ω ∈ ΣW , ω ∈ ΣW : µω∧σ
Î,W

(ω) = µω
Iσ,W

(ω).

At last, we prove Item 3 in Lemma 3.12. As before, for any v ∈ V , ω ∈ ΣW , where vbl(v) ⊆ W ⊆ V ,

let φv(ω) indicate whether ω avoids Av. Let S = vbl(Λ) and T = U \ vbl(Bℓ(Λ)). For any x ∈ ΣS , define

p1(x) ,
∏

vbl(v)⊆S

φv(x) and p2(x) ,

{
1

νS(x)
x = σ,

0 x 6= σ.

For any y ∈ ΣT , define

q1(y) ,
∏

vbl(v)⊆T

φv(y) and q2(y) ,

{
1

νT (y) yR = π|Σβ |,

0 yR 6= π|Σβ |.

It holds that

νUσ(ΩIσ) =
∑

τ∈ΣT

νT (τ) · q1(τ) ·
P (τR)

P (π|Σβ |)
=

∑
σ∈ΣS ,τ∈ΣT

p2(x) · q1(y) · ν(Ω
σ∧τ
Î

)
∑

σ∈ΣS ,τ∈ΣT
p2(x) · q2(y) · ν(Ωσ∧τ

Î
)
.

and

ν(ΩÎ) ≤
νU(ΩÎ)∑

σ∈ΣS ,τ∈ΣT
p1(x) · q2(y) · ν(Ωσ∧τ

Î
)
=

∑
σ∈ΣS ,τ∈ΣT

p1(x) · q1(y) · ν(Ω
σ∧τ
Î

)
∑

σ∈ΣS ,τ∈ΣT
p1(x) · q2(y) · ν(Ωσ∧τ

Î
)
.

By Lemma 7.7, we have νU (ΩÎ) ≤ (1 + ǫ) · νUσ(ΩIσ), which implies νUσ(ΩIσ) ≥ (1 − ǫ) · νU (ΩÎ).
Recall that the original LLL instance I is α-satisfiable and the additional bad event occurs with probability

no more that δ. Therefore, the LLL instance Iσ is at least (1− ǫ)(α− δ)-satisfiable.

41

7.5 Wrapping up the analysis of Resampling (Proof of Lemma 3.13)

At last, we wrap up the analysis of the Resampling phase, and prove Lemma 3.13.

Proof of Item 1 of Lemma 3.13. Denote by v1, v2, ..., vn the sequence of nodes obtained by sorting V in

ascending order according to IDs. For 1 ≤ k ≤ n, denote by Bk the ball associated to node vk, i.e.

Bk ,

{
Brvk

(pvk) if vk ∈R and pvk , rvk 6∈ {⊥},

∅ otherwise.

Fix arbitrary B1, B2, ..., Bn ⊆ V and assignments σ1 ∈ Σvbl(B1), σ2 ∈ Σvbl(B2), ..., σn ∈ Σvbl(Bn) satisfying

Pr

[(
n∧

k=1

Bk = Bk

)
∧

(
n∧

k=1

Yvbl(Bk) = σk

)]
> 0.

Assume that the input Y and pv, rv for v ∈R satisfy the properties guaranteed by Lemma 3.7. Our goal is

to show that conditioned on Bk = Bk and Yvbl(Bk) = σk for all 1 ≤ k ≤ n, right after Algorithm 3 being

sequentially executed on all nodes in R, the output assignment Y follows the distribution µI .

For 0 ≤ k ≤ n, let Y (k) denote the random assignment Y right after Algorithm 3 terminates on all the

active nodes vj with j ≤ k. For 0 ≤ k ≤ n, define

Nk , {j | k < j ≤ n ∧Bj 6= ∅}.

In the rest of the proof, we show that (Y (k), {Bi}i∈Nk
) satisfies the clustered conditional Gibbs property on

I with parameter (ǫ0, γ0, δ0) for any 0 ≤ k ≤ n. In particular, this guarantees that (Y (n), ∅) satisfies the

clustered conditional Gibbs property, which implies that the final output Y (n) follows the distribution µI .

For k ∈ N0, let Aλk
, AI

λ(Bk ,ǫ0,γ0,δ0)
. For 0 ≤ k ≤ n, define

U
(k)

, U \
⋃

j∈Nk

vbl(Bℓ0(ǫ0,γ0,δ0)(Bj)), and I
(k)

,
(
{Xi}i∈U , {Av}v∈V ∪ {Aλj

}j∈Nk

)
.

The goal is to prove that Y
(k)

U
(k) follows the distribution µ

∧
j∈Nk

σj

I
(k)

,U
(k) for every 0 ≤ k ≤ n.

We prove this by induction on k. As guaranteed by Lemma 3.7, (Y (0), {Bi}i∈N0) satisfies the clustered

conditional Gibbs property on I with parameter (ǫ0, γ0, δ0). This becomes the basis of the induction.

Then, we consider the general case. By induction hypothesis, assume that (Y (k−1), {Bi}i∈Nk−1
) satisfy

the clustered conditional Gibbs property on I with parameter (ǫ0, γ0, δ0) for all 1 ≤ k ≤ n. This implies

Y
(k−1)

U
(k−1) ∼ µ

∧
j∈Nk−1

σj

I
(k−1)

,U
(k−1) for all 1 ≤ k ≤ n. (19)

If Bk = ∅, then (Y (k), {Bi}i∈Nk
) = (Y (k−1), {Bi}i∈Nk−1

) and the induction follows directly. If Bk 6= ∅,
then vk must be an active node in R on which Algorithm 3 is executed. We first verify that the input to

Line 1 of Algorithm 3 executed on vk, denoted by (Y ′; I ′, Bk, ǫ0, γ0, δ0, γ0), satisfies Condition 3.9.

For j ∈ N0, let Xβj
and Aκj

denote the respective random variable and bad event constructed in

Lemma 3.12 under parameter Bj , σj , (ǫ0, γ0, δ0), I(Bℓ(ǫ0,γ0,δ0)+1(Bj)).

42

For 0 ≤ s ≤ t ≤ n, define

U (s,t) , U \
⋃

i∈Ns\Nt

vbl(Bℓ0(ǫ0,γ0,δ0)(Bi)),

V (s,t) , V \
⋃

i∈Ns\Nt

Bℓ0(ǫ0,γ0,δ0)+1(Bi),

I(s,t) ,
(
{Xi}i∈U (s,t) ∪ {Xβi

}i∈Ns\Nt
, {Av}v∈V (s,t) ∪ {Aκi

}i∈Ns\Nt

)
.

Observe that I(s,s) = I for all 0 ≤ s ≤ n. Observe that, for 0 ≤ s < t ≤ n, if Bt = ∅, then I(s,t) = I(s,t−1).

And if Bt 6= ∅, then I(s,t) is obtained from I(s,t−1) by substituting the ball Bℓ0(ǫ0,γ0,δ0)+1(Bt) with Aλt
and

substituting vbl(Bℓ0(ǫ0,γ0,δ0)(Bt)) with Xβt
. According to Lemma 3.7, for any distinct i, j ∈ N0, the

distance between Bi and Bj is at least 2(ℓ0(ǫ0, γ0, δ0) + 2). One can verify that I(k,n) = I ′.
For k ≤ j ≤ n, define

Y
(k,j) , Y

(k−1)

U (k,j) ∧ (Y ′
βj
)j∈Nk\Nj

.

One can verify that Y (k,n) = Y
′.

Then, we verify that the input of RecursiveSampling(Y ′; I ′, Bk, ǫ0, γ0, δ0, γ0) satisfies Condition 3.9.

The first property can be verified easily. For the second property, according to Lemma 3.12, it holds that

ν(ΩI(k,j)) ≥ (1− ǫ0)(ν(ΩI(k,j−1))− δ0) for all k < j ≤ n. Note that the LLL instance I(k,k) is the original

LLL instance I , which is γ-satisfiable. Thus, it holds that

ν(ΩI(k,n)) ≥ (1− ǫ0)
n · ν(ΩI(k,k))− n · δ0

≥

(
1−

1

2n

)n

ν(ΩI(k,k))− n ·
ζ0 · γ

24n3
≥

γ

8
≥ γ0,

which means that I(k,n)(V \ Bk) is also γ0-satisfiable. It remains to verify the third property, which states

that the (Y (k,n), {Bk}) satisfies the clustered conditional Gibbs property on instance I(k,n) with parameter

(ǫ0, γ0, δ0). This is proved by the following claim.

Claim 7.8. For k ≤ j ≤ n, it holds that (Y (k,j), {Bk}∪{Bi}i∈Nj
) satisfies the clustered conditional Gibbs

property on I(k,j) with parameter (ǫ0, γ0, δ0).

Proof. For k ≤ j ≤ n, define

Û (k,j) , U (k−1,n) ∪ {βi}i∈Nk\Nj
,

Î(k,j) ,
(
{Xi}i∈U (k,j) ∪ {Xβi

}i∈Nk\Nj
, {Av}v∈V (k,j) ∪ {Aκi

}i∈Nk\Nj
∪ {Aλi

}i∈{k}∪Nj

)
.

The goal is to prove that Y
(k,j)

Û (k,j)
follows the distribution µ

σk∧
∧

i∈Nj
σi

Î(k,j),Û (k,j)
for k ≤ j ≤ n.

This is proved by induction on j. For the induction basis, assuming j = k, in this case we have

(Y (k,k), {Bk} ∪ {Bi}i∈Nk
) = (Y (k−1), {Bi}i∈Nk−1

) and I(k,k) = I . By (19), we have

Y
(k,k)

U
(k−1) ∼ µ

∧
i∈Nk−1

σi

I
(k−1)

,U (k−1)
.

Observe that U (k−1,n) = Û (k,k),
(∧

i∈Nk−1
σi

)
=
(
σk ∧

∧
i∈Nk

σi

)
and I

(k−1)
= Î(k,k). It holds that

Y
(k,k)

Û (k,k)
∼ µ

σk∧
∧

j∈Nk
σj

Î(k,k),Û (k,k)
.

43

Next, consider the general case. By induction hypothesis, for j − 1 for k < j ≤ n, the clustered condi-

tional Gibbs property is satisfied by (Y (k,j−1), {Bk}∪ {Bi}i∈Nj−1) on I(k,j−1) with parameter (ǫ0, γ0, δ0),
which means

Y
(k,j−1)

Û (k,j−1)
∼ µ

σk∧
∧

i∈Nj−1
σi

Î(k,j−1),Û (k,j−1)
. (20)

Depending on whether Bj = ∅, there are two cases. First, if Bj is ∅, then (Y (k,j), {Bk} ∪ {Bi}i∈Nj
) =

(Y (k,j−1), {Bk} ∪ {Bi}i∈Nj−1) and I(k,j) = I(k,j−1). By (20), it holds that

Y
(k,j)

Û (k,j)
∼ µ

σk∧
∧

i∈Nj
σi

Î(k,j),Û (k,j)
.

Next, assume Bj 6= ∅. By Lemma 3.12, for any τ ∈ ΣÛ (k,j−1) ,

µ
σk∧

∧
i∈Nj−1

σi

Î(k,j−1),Û (k,j−1)
(τ) = µ

σk∧
∧

i∈Nj
σi

Î(k,j),Û (k,j−1)
(τ).

Note that Y
(k,j−1)

Û (k,j−1)
= Y

(k,j)

Û (k,j−1)
. By (20), we have

Y
(k,j)

Û (k,j−1)
∼ µ

σk∧
∧

i∈Nj
σi

Î(k,j),Û (k,j−1)
.

Recall that each Y
(k,j)
βj

is drawn independent from the distribution µ
Y

(k−1)
vbl(κj)\{βj}

I(k,n),βj
. By Lemma 3.7, for any

distinct i, j ∈ N0, the distance between Bi and Bj is at least 2(ℓ0(ǫ0, γ0, δ0) + 2). Thus, we have

Y
(k−1)
vbl(κj)\{βj}

= Y
(k,j)
vbl(κj)\{βj}

and for any c ∈ Σβj
,

µ
Y

(k−1)
vbl(κj)\{βj}

I(k,n),βj
(c) = µ

Y
(k,j)
vbl(κj)\{βj}

Î(k,j),βj
(c).

It then holds that for any τ ∈ ΣÛ (k,j) ,

Pr
(
Y

(k,j)

Û (k,j)
= τ

)
= µ

σk∧
∧

i∈Nj
σi

Î(k,j),Û (k,j−1)
(τÛ (k,j−1)) · µ

τvbl(κj)\{βj}

Î(k,j),βj
(τβj

)

= µ
σk∧

∧
i∈Nj

σi

Î(k,j),Û (k,j)
(τ).

This proves that (Y (k,j), {Bk} ∪ {Bi}i∈Nj
) satisfies the clustered conditional Gibbs property on instance

I(k,j) with parameter (ǫ0, δ0, γ0).

By Claim 7.8, we have that (Y (k,n), {Bk}) satisfies the clustered conditional Gibbs property on I(k,n)

with parameter (ǫ0, γ0, δ0). Thus, upon the execution of Algorithm 3 on vk, the input to Line 1 satisfies

Condition 3.9. By Lemma 3.11, after the execution of Line 1 of Algorithm 3, Y (k,n) follows the distribution

µI(k,n) . Thus, it holds that Y
(k,n)

U (k,n) is identical to Y
(k)

U (k,n) and follows the distribution µI(k,n),U (k,n) .

For k ≤ j ≤ n, define

I
(k,j)

,

(
{Xi}i∈U (k,j) ∪ {Xβi

}i∈Nk\Nj
, {Av}v∈V (k,j) ∪ {Aλi

}i∈Nk\Nj
∪ {Aκi

}i∈Nj

)
.

44

By Lemma 3.12, for any π ∈ ΣU (k,n) , it holds that

µI(k,n),U (k,n)(π) = µ

∧
i∈Nn−1

σi

Ī(k,n−1),U (k,n)(π) = µ

∧
i∈Nn−2

σi

Ī(k,n−2),U (k,n)(π) = ... = µ

∧
i∈Nk

σi

Ī(k,k),U (k,n)(π).

Thus, it holds that

Y
(k)

U (k,n) ∼ µ

∧
i∈Nk

σi

Ī(k,k),U (k,n)(π).

Recall that U (k,n) = U
(k)

and I
(k,k)

= I
(k)

. It holds that Y
(k)

U
(k) follows the distribution µ

∧
j∈Nk

σj

I
(k)

,U
(k) . Thus,

after executing Line 2 of Algorithm 3, we have that (Y (k), {Bi}i∈Nk
) satisfies the clustered conditional

Gibbs property on instance I with parameter (ǫ0, γ0, δ0). This completes the induction.

Therefore, (Y (n), ∅) satisfies the clustered conditional Gibbs property on instance I with parameter

(ǫ0, γ0, δ0). As argued before, this guarantees that After Algorithm 3 being sequentially executed on all

node v ∈R, the final output assignment Y = Y
(n) follows the distribution µI .

Proof of Item 2 of Lemma 3.13. Fix any 0 < η < 1, the follows hold.

• According to Item 2 of Lemma 3.11, with probability 1 − η
2 , at every node v ∈ R, the call to the

RecursiveSampling procedure in Algorithm 3 returns within radius

r1 = rv + ℓ0(ǫ0, γ0, δ0) + Õ

(
log4 n ·

(
log

1

γ
· log4

1

η
+ log2

1

γ
· log2

1

η

))

from the center pv in the LLL instance I ′. And I ′(Br1(pv)) can be locally constructed within

I(Br2(v)), where

r2 = r1 +O(D + |R| · ℓ0(ǫ0, γ0, δ0)).

• According to Item 3 of Lemma 3.7, with probability 1− η
2 , we have D = Õ(|R| · log2 n log2 1

γ log 1
η),

which implies rv = Õ(|R| · log2 n log2 1
γ log

1
η).

Overall, with probability at least 1− η, Algorithm 3 returns at every node v ∈R with radius bounded by

Õ

(
|R| · log2 n · log2

1

γ
· log

1

η

)
+ Õ

(
log4 n · log2

1

γ
· log4

1

η

)
.

References

[AJ22] Konrad Anand and Mark Jerrum. Perfect sampling in infinite spin systems via strong spatial

mixing. SIAM Journal on Computing, 51(4):1280–1295, 2022.

[Bab79] László Babai. Monte-carlo algorithms in graph isomorphism testing. Université tde Montréal

Technical Report, DMS, (79-10), 1979.

[BGG+19] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Daniel Stefankovic.

Approximation via correlation decay when strong spatial mixing fails. SIAM Journal on Com-

puting, 48(2):279–349, 2019.

[Cla95] Kenneth L Clarkson. Las vegas algorithms for linear and integer programming when the di-

mension is small. Journal of the ACM (JACM), 42(2):488–499, 1995.

45

[EL75] Paul Erdos and László Lovász. Problems and results on 3-chromatic hypergraphs and some

related questions. Infinite and finite sets, 10(2):609–627, 1975.

[FGW+23] Weiming Feng, Heng Guo, Chunyang Wang, Jiaheng Wang, and Yitong Yin. Towards de-

randomising markov chain monte carlo. In IEEE 2023 Annual Symposium on Foundations of

Computer Science (FOCS), 2023.

[FGY22] Weiming Feng, Heng Guo, and Yitong Yin. Perfect sampling from spatial mixing. Random

Structures & Algorithms, 61(4):678–709, 2022.

[FGYZ21] Weiming Feng, Heng Guo, Yitong Yin, and Chihao Zhang. Fast sampling and counting k-sat

solutions in the local lemma regime. Journal of the ACM (JACM), 68(6):1–42, 2021.

[FVY21] Weiming Feng, Nisheeth K Vishnoi, and Yitong Yin. Dynamic sampling from graphical mod-

els. SIAM Journal on Computing, 50(2):350–381, 2021.

[FY18] Weiming Feng and Yitong Yin. On local distributed sampling and counting. In Proceedings of

the 2018 ACM Symposium on Principles of Distributed Computing (PODC), pages 189–198,

2018.

[GGH+23] Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler, Saeed Ilchi, and Václav Rozhoň. Im-

proved distributed network decomposition, hitting sets, and spanners, via derandomization. In

Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

2532–2566. SIAM, 2023.

[GHK18] Mohsen Ghaffari, David G Harris, and Fabian Kuhn. On derandomizing local distributed algo-

rithms. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),

pages 662–673. IEEE, 2018.

[GJL19] Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the Lovász local

lemma. Journal of the ACM (JACM), 66(3):18:1–18:31, 2019.

[GKM17] Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed

graph problems. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of

Computing (STOC), pages 784–797. ACM, 2017.

[Har20] David G Harris. New bounds for the moser-tardos distribution. Random Structures & Algo-

rithms, 57(1):97–131, 2020.

[HSW21] Kun He, Xiaoming Sun, and Kewen Wu. Perfect sampling for (atomic) lov\’asz local lemma.

arXiv preprint arXiv:2107.03932, 2021.

[HWY22] Kun He, Chunyang Wang, and Yitong Yin. Sampling lovász local lemma for general constraint

satisfaction solutions in near-linear time. In 2022 IEEE 63rd Annual Symposium on Foundations

of Computer Science (FOCS), pages 147–158. IEEE, 2022.

[JPV21] Vishesh Jain, Huy Tuan Pham, and Thuy Duong Vuong. Towards the sampling lovász local

lemma. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS),

pages 173–183. IEEE, 2021.

46

[JVV86] Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial

structures from a uniform distribution. Theoret. Comput. Sci., 43:169–188, 1986.

[Kal92] Gil Kalai. A subexponential randomized simplex algorithm. In Proceedings of the twenty-fourth

annual ACM Symposium on Theory of Computing (STOC), pages 475–482, 1992.

[Lin92] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing

(SICOMP), 21(1):193–201, 1992.

[LS93] Nathan Linial and Michael Saks. Low diameter graph decompositions. Combinatorica,

13(4):441–454, 1993.

[LSZ93] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of las vegas algo-

rithms. Information Processing Letters, 47(4):173–180, 1993.

[Moi19] Ankur Moitra. Approximate counting, the lovász local lemma, and inference in graphical mod-

els. Journal of the ACM (JACM), 66(2):1–25, 2019.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge university

press, 1995.

[MSL92] D Mitchell, B Selman, and H Leveque. A new method for solving hard satisfiability problems.

In Proceedings of the tenth national conference on artificial intelligence (AAAI-92), pages 440–

446, 1992.

[MT10] Robin A Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma.

Journal of the ACM (JACM), 57(2):11, 2010.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms

and Probabilistic Analysis. Cambridge University Press, 2005.

[NS95] Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal on Computing

(SICOMP), 24(6):1259–1277, 1995.

[Pel00] David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.

[PW96] James G. Propp and David B. Wilson. Exact sampling with coupled Markov chains and appli-

cations to statistical mechanics. Random Structures Algorithms, 9(1-2):223–252, 1996.

47

A Simulation of SLOCAL-LV in LOCAL Model

We prove Proposition 3.2. The LOCAL algorithm for simulating the SLOCAL-LV algorithm is described in

Algorithm 6. Recall that whether a node v ∈ V is an active node (which means that v ∈ A) is indicated

in the local memory Mv. For each active node v ∈ A, Algorithm 6 is executed on v, with the initial Mv

presented to the LOCAL algorithm as v’s input. Also recall that we define Gt to be the t-th power graph

with an edge between any pair of u, v where distG(u, v) ≤ t.

Algorithm 6: The LOCAL algorithm for simulating SLOCAL-LV at active node v ∈ A

1 initialize Av ← ∅;
2 for i = 1 to ⌈log n⌉ do

3 in the induced subgraph G(2i+1)[A], find the maximal connected component containing v,

denoted by A′;

4 simulate the SLOCAL-LV algorithm with set A′ of active nodes, where the simulation fails if

the maximum radius accessed by the SLOCAL-LV algorithm exceeds 2i;
5 if the simulation does not fail then

6 let Av ← A′ and update the output states according to the simulation of v;

7 break;

8 if there exists u ∈ A with Au ⊆ Av then

9 cancel all the updates to output made by u;

// In this case, we say that u is canceled by v.

10 if there exists u ∈ A with Av ⊆ Au then

11 cancel all the updates to output made by v;

// In this case, we say that v is canceled by u.

It is easy to see that Algorithm 6 terminates, and when it terminates, a set Av ⊆ A is constructed for

each v ∈ A. The following lemma follows from the property of G(2i+1).

Lemma A.1. For distinct u, v ∈ A, one of the followings must be true:

1. Au ∩Av = ∅.

2. Au ⊆ Av.

3. Av ⊆ Au.

Proof. Assume Au is a maximum connected component of Gtu and Av is a maximum connected component

of Gtv , for some integers tu and tv. Suppose tu ≤ tv. If Au ∩ Av 6= ∅, then in Gtv , Au and Av must be in

the same connected components, since every edge in Gtu is also an edge in Gtv . Thus, Au ⊆ Av. Similarly,

if tu ≥ tv, then Av ⊆ Au.

The following lemma is because of the condition of canceling a vertex.

Lemma A.2. For any v ∈ A, there exists u ∈ A such that v ∈ Au and u is not canceled.

Proof. Consider the last time v appears in some Au. If v is not in any Au in the end, u must be canceled by

some other vertex u′, in which case we have Au ⊆ Au′ , and hence v ∈ Au′ , a contradiction.

48

For any v ∈ A, note that the simulation must succeed if i = ⌈log n⌉. Thus, there exists an i for v
such that the simulation in the i-th iteration does not fail. Denote such i as Iv. Suppose that this successful

simulation has the radius ℓ′v,j for v ∈ A′ in the j-th scan. Define Tv = ∪v∈A′,j∈[N]Bℓ′v,j
(v), i.e., the set of

all vertices whose outputs are supposed to be updated by v. The following lemmas guarantee the correctness

of the simulation.

Lemma A.3. If u, v ∈ A and both u, v are not canceled, then Tu ∩ Tv = ∅.

Proof. According to Lemma A.1, we have Au ∩Av = ∅. If Tu ∩ Tv 6= ∅, there must exist u′ ∈ Au, v
′ ∈ Av

such that Bx(u
′) ∩By(v

′) 6= ∅, where x, y are the radii accessed by u′ and v′ and satisfy x ≤ 2Iu , y ≤ 2Iv .

w.o.l.g, we assume Iu ≤ Iv. Then we have distG(u
′, v′) ≤ x+ y ≤ 2Iv+1. That is to say, u′ and v′ has an

edge in G(2Iv+1), which causes a contradiction since Av is a maximum connected components.

Lemma A.4 (correctness of simulation). For any u ∈ A, if u is not canceled, then Algorithm 6 at u produces

the same outputs for the nodes in Au as in the SLOCAL-LV algorithm.

Proof. We will prove by induction on k that, the first k vertices accessed by the SLOCAL-LV algorithm is

simulated exactly the same in our LOCAL algorithm by some u ∈ A. For k = 1, According to Lemma A.2,

there exists Au containing the first vertex accessed in the SLOCAL-LV algorithm, which is simulated cor-

rectly by u. Assume that the first k vertices are simulated correctly. For the k+1-th vertex accessed, suppose

it is vertex v in the j-th phase. By Lemma A.2, there exists Au containing the k+1-th vertex accessed in the

SLOCAL-LV algorithm, and it will only access Bℓv,j(v) ∈ Tu, which only contains the information updated

by the vertices in Au according to Lemma A.3. Thus, the simulation is correct.

The following lemma bounds the round complexity of Algorithm 6. Recall that ℓv,j is the radius of the

ball accessed by the SLOCAL-LV algorithm at node v ∈ A in the j-th phase.

Lemma A.5. For any v ∈ A, we have Iv ≤ ⌈log maxv∈A,j∈[N] ℓv,j⌉.

Proof. Consider the ⌈log maxv∈A,j∈[N] ℓv,j⌉-th iteration for vertex v. We claim that for any u ∈ A\Av , and

k ∈ [N], we have Bℓu,k∩
(
∪v∈A′,j∈[N]Bℓv,j(v)

)
= ∅. Otherwise, u has distance at most 2·maxv∈A,j∈[N] ℓv,j

to a vertex in Av, contradicting the fact that Av is a maximal connected components of Gx for x ≥ 2 ·
maxv∈A,j∈[N] ℓv,j . By the same argument as in the proof of Lemma A.4, the simulation on Av will produce

the same output as in the SLOCAL-LV algorithm, in which case the simulation must not fail.

Now we are ready to prove Proposition 3.2.

Proof of Proposition 3.2. The correctness of Algorithm 6 follows from Lemmas A.2 and A.4.

Then we bound the complexity of Algorithm 6. Let M = maxv∈A,j∈[N] ℓv,j . For a vertex v ∈ A, to run

the i-th loop, v need to find the maximal connected component in G2i+1[A], and grow a ball of radius at

most 2i from each vertex in the connected component. According to Lemma A.5, we have 2i + 1 = O(M)
since i < Iv. The maximal connected components in GO(M)[A] has diameter at most O(|A| ·M) in G.

Thus, u only needs to collect the information in Bℓ(u) for some ℓ = O(|A| ·M). The only problem is that

u do not know ℓ initially. This can be solved by guessing ℓ by scanning ℓ′ = 2i for i = 1, 2, . . ., collecting

information in Bℓ′(u) and determining whether stops.

49

	Introduction
	A LOCAL Sampling Lemma and Proof of Main Theorem
	Sampling satisfying solution of Lovász local lemma
	Formal statement and proof of the main theorem

	Algorithm and Outline of Proof
	Decay of correlation in LLL
	Las Vegas SLOCAL algorithm
	Algorithm: Initialization and Clustering
	Algorithm: Resampling
	Wrapping up (Proof of thm: sample-gibbs)

	Related Work and Discussions
	Analysis of Correlation Decay
	Construction of the bad event A
	Correlation decay in the augmented LLL instance

	Analysis of Initialization and Clustering
	Analysis of Initialization (Proof of lem:initialization-stage)
	Analysis of Clustering (Proof of lem:clustering-correctness)

	Analysis of Resampling
	Correctness of RecursiveSampling (Proof of lem:item:recursive-sample-correctness in lem:recursive-sample-correctness-complexity)
	Efficiency of RecursiveSampling (Proof of lem:item:recursive-sample-complexity in lem:recursive-sample-correctness-complexity)
	Accuracy of estimation (Proof of lem:estimate-augmenting)
	Analysis of Substituting (Proof of lem:substituting)
	Wrapping up the analysis of Resampling (Proof of lem:resample-correctness-complexity)

	Simulation of SLOCAL-LV in LOCAL Model

