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Language prediction 
in monolingual and bilingual 
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Prediction of upcoming words is thought to be crucial for language comprehension. Here, we are 
asking whether bilingualism entails changes to the electrophysiological substrates of prediction. Prior 
findings leave it open whether monolingual and bilingual speakers predict upcoming words to the 
same extent and in the same manner. We address this issue with a naturalistic approach, employing 
an information-theoretic metric, surprisal, to predict and contrast the N400 brain potential in 
monolingual and bilingual speakers. We recruited 18 Iranian Azeri-Persian bilingual speakers and 22 
Persian monolingual speakers. Subjects listened to a story in Persian while their electroencephalogram 
(EEG) was recorded. Bayesian item-level analysis was used. While in monolingual speakers N400 was 
sensitive to information-theoretic properties of both the current and previous words, in bilingual 
speakers N400 reflected the properties of the previous word only. Our findings show evidence for a 
processing delay in bilingual speakers which is consistent with prior research.

Language comprehension is a challenging task because the listener needs to combine representations at differ-
ent levels (sound, word, sentence, and discourse) under time pressure; they also need to continuously check 
their current internal model against the physical–acoustic context. Semantic prediction could be beneficial for 
this process by accelerating decision-making, helping with disambiguation of competing words and reducing 
memory demands1. Semantic prediction is the process of constantly trying to predict the next words as the 
sentence unfolds.

One of the first behavioural studies on prediction was designed by Altmann and Kamide2 using a visual world 
paradigm, although studies on the effect of semantic context on language processing date back to 1960s (see3). 
Participants were presented with sentences such as ‘The boy will eat the cake’ and ‘The boy will move the cake’. 
They looked more often at the image of ‘cake’ in the former sentence than ‘cake’ in the latter sentence. This effect 
was replicated in several studies showing that participants pre-activate the words based on their prior world 
and semantic knowledge.

In the psycholinguistic literature on linguistic prediction, the N400 is a well-documented event-related 
potential (ERP; see4 for a review). The amplitude of the N400 is reduced for expected words when compared to 
less-expected words. In an EEG study, Delong, et al.5 designed sentences where a target word was either highly 
plausible or not plausible based on offline cloze probability norming studies. One example is the sentence ‘The day 
was breezy so the boy went outside to fly’ where ‘a kite’ was judged to have higher plausibility than ‘an airplane’. 
Since ‘a’ and ‘an’ are not semantically different and are both equally easy to integrate, the difference in N400 
amplitude between the two conditions was hypothesized to be an index of prediction. The N400 amplitude had 
a negative correlation with cloze plausibility ratings at both the article and noun levels. Although this study is 
about top-down effects across domains (i.e., a semantic prediction facilitating phonetic–phonological process-
ing), it still shows how N400 could be interpreted in the context of predictive coding.

Prior literature is unclear about how speaking multiple languages can affect semantic prediction. Most stud-
ies have reported that L2 speakers can predict the upcoming words (see6,7 with the differences between L1 and 
L2 speakers being quantitative, not qualitative8. L1 refers to participants’ first language or mother tongue, and 
L2 refers to the second language. For instance, in Chun and Kan’s study9, L2 speakers engaged into predic-
tive processing like L1 listeners, however, L2 speakers’ predictions started later than L1 speakers. In another 
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study Dijkgraaf, et al.10 found similar effects in L1 and L2 of bilingual speakers, but semantic representations 
were weaker and slower in L2 during predictions. The quantitative differences arise due to several factors such 
as linguistic properties of L111, task-specific effects8, lack of cognitive resources in L2 speakers7,9, individual 
differences8,12, difficulty level of the context13,14, competitive nature of bilingual lexical access15,16 and lower L2 
proficiency and exposure11,16,17. The question is no longer whether L2 speakers predict upcoming words, but 
what factors and circumstances influence L2 predictive processing18.

The majority of previous studies have used a very impoverished context to study how predictions occur (see19). 
Studies with a naturalistic task are not many. One challenge is that traditional ERP analysis cannot be applied 
to naturalistic settings. In a naturalistic task, the length of the words is different from each other which makes 
the averaging technique usually used somehow impractical20. Novel approaches to analyzing ERP data such as 
deconvolution-based techniques are now available (see21). Statistical power and effect size are usually altered in 
traditional ERP studies due to limited number of stimuli. Using naturalistic tasks, the problem with number of 
stimuli is less severe and the findings are more generalizable22. Traditionally, human ratings such as cloze prob-
abilities have been used to operationalize prediction. However, recently information metrics such as surprisal 
which are created by language models have been shown to predict N400 more robustly than human ratings23. 
Unlike cloze probabilities which are sensitive to both speakers’ linguistic and non-linguistic (world) knowledge, 
information metrics only reflect linguistic patterns24, therefore minimizing the effects of world knowledge.

In this study, we recruited 40 monolingual and bilingual participants to listen to 30 min of a natural story in 
Persian (Alice in Wonderland). We extracted a complexity metric such as surprisal using a Persian gpt2 language 
model. Surprisal measures the degree of unexpectedness upon reading or hearing a word; high surprisal means 
the word was unexpected25–27. Our purpose is to leverage this metric for assessing whether the N400 differs 
between monolingual and bilingual speakers, thus shedding light on the research question whether lexical-
semantic prediction is similar across these groups. We expect a delay in the effect of surprisal on the N400 in 
bilingual speakers because they are usually slower than monolingual speakers in lexical retrieval. The slower 
retrieval in bilingual speakers is explained in terms of weaker connections between semantic and phonological 
representations of the words28,29 or competition among the words in the mental lexicon30,31.

Results
ERP amplitude is slightly more negative in monolingual speakers than bilingual speakers in the selected chan-
nels. In the monolingual group, posterior predictions suggest a moderate effect for surprisal of the current word; 
higher surprisal equals more negative amplitude (Credible Interval (CI) = − 0.04, 0.02; see Fig. 1b). On the other 
hand, the ERP of the current word observed in bilingual speakers does not reflect properties such as surprisal 
(CI = − 0.03, 0.03; See Fig. 1b). The spill-over effects of surprisal are similar for both monolingual (CI = -0.03, 

Figure 1.   Posterior predictions and effects of Surprisal and Surprisal_PW on average ERP across the two 
groups. Variables are standardized. (a) The area in the middle of each distribution shows the 95% credible 
interval. The vertical line in the middle of shaded area is posterior mean. Group is deviation coded (− 0.5 
and 0.5). (b) Surprisal of the current word has different effects on ERP in both groups. (c) Spill-over effect is 
shown here where surprisal of the previous word predicted the ERP of the current word. Higher surprisal of 
the previous word results in more negative ERP in both groups. The shades are confidence intervals with outer 
probability = 0.89 and inner probability = 0.50. Negative is plotted down.
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0.01) and bilingual speakers (CI = − 0.03,0.02) meaning that processing of the current word is influenced by the 
surprisal of the previous word (See Fig. 1c), although CIs suggest an stronger effect in the monolingual group. 
When it comes to other variables in the model, there is strong evidence for effects of education, frequency of the 
previous word, and neighborhood density (ND) of the previous word (see Fig. 1a). The full results of the model 
are presented in Table 1 (see Fig. 1a for the posterior distributions of the same model).

To do model diagnostics, we first looked at trace plots. Visual inspection of the trace plots revealed that the 
chains converged. This was further confirmed by looking at between-to within-chain variances (R hat). R hat 
values were all 1 showing convergence with no issues (See Table 1). The posterior predictive checking showed 
that the simulated distribution was similar to the observed data.

Discussion and conclusion
In this study, we used an information-theoretic approach to assess whether monolingual and bilingual speakers 
differ in the electrophysiological substrate of semantic prediction. A deep neural network was used to estimate 
word-by-word surprisal from Persian texts. We extracted neural responses for each word which was later used 
in Bayesian mixed effects analysis. While our analysis revealed a difference between monolingual and bilingual 
speakers in the effect of surprisal on the N400, a similar spill-over effect in both groups was observed suggesting 
that the difference between the two groups could be a matter of processing time only.

Our findings are consistent with those studies which have shown the difference between monolingual and 
bilingual speakers is only ‘quantitative’. These studies show that bilingual speakers engage in predictive processing, 
but there is usually a delay observed in the effect9,32,33. This delay in bilingual speakers could be explained in terms 
of a retrieval or ‘processing deficit’34. The source of this deficit could be either at the correspondence between 
semantic and phonological representations of words35 or interference caused by competition among the words 
in the lexicon30,31. The mechanism underlying this deficit could be different depending on each explanation, but 
the outcome which is a delay in lexical retrieval and thus semantic prediction will be the same no matter which 
mechanism is in charge.

In addition to the retrieval deficit account, we think our findings could be interpreted based on a prediction 
error account as well. Based on this account, bilingual speakers should demonstrate stronger effects for surprisal 
(as an index of prediction error) in comparison with monolingual speakers. In several studies, bilingual speakers 
show improved performance in domain-general conflict resolution and attentional control (see36,37). However, 
in our study this reported domain-general advantage in bilingual speakers did not modify our findings. Future 
research is needed to study how attentional control could affect resolving prediction errors in bilingual speakers.

The spill-over effect is consistent with some previous studies. Smith and Levy38 showed that the surprisal of 
a word affected both that word and the words immediately following it (see39). This effect interacted with the 
type of the task. When it came to eye-tracking, the surprisal effect was immediately shown on the same word 
and the next word. However, when it came to self-paced reading, the effect was not so immediate. It started on 
the next word and was there through the third word. In the bilingual speakers of our study, it was the surprisal 
of the previous word which affected N400 of the current word.

Table 1.   Results of the Bayesian analysis. Subjects: 38, Items: 4150, number of observations: 157,455. Group is 
deviation coded. ESS (Effective Sample Size).

Predictors Estimate 95% CI R hat Bulk ESS Tail ESS

Intercept − 0.02 − 0.03, − 0.00 1.00 67,427 27,829

Group − 0.01 − 0.04, 0.03 1.00 57,334 28,612

Surprisal_GPT2 − 0.00 − 0.02, 0.02 1.00 45,364 31,349

Surprisal_GPT2_PW − 0.01 − 0.02, 0.01 1.00 59,320 29,574

Education − 0.01 − 0.03, 0.00 1.00 58,574 31,344

Frequency 0.00 − 0.02, 0.02 1.00 64,687 28,427

Frequency_PW − 0.02 − 0.03, 0.00 1.00 67,064 28,250

ND 0.00 − 0.02, 0.02 1.00 70,128 30,027

ND_PW − 0.02 − 0.03, 0.00 1.00 65,601 27,850

Exposure to Persian − 0.00 − 0.02, 0.01 1.00 59,732 31,370

Group: Surprisal_GPT2 − 0.01 − 0.05, 0.03 1.00 42,495 29,089

Group:Surprisal_GPT2_PW − 0.00 − 0.03, 0.03 1.00 54,271 30,130

Random effects

Item (Intercept) 0.13 0.011, 0.15 1.00 17,138 25,077

Group 0.25 0.21, 0.30 1.00 16,694 22,955

Cor (Group, Intercept) 0.92 0.79, 0.99 1.00 7756 14,341

Subject (Intercept) 0.01 0.00, 0.02 1.00 22,721 20,810

Surprisal_GPT2 0.04 0.02, 0.06 1.00 14,202 18,901

Surprisal_GPT2_PW 0.03 0.00, 0.05 1.00 8589 9612
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Some studies show that for prediction effects to be evident in L2 processing, speakers should be given more 
time (See40). Predictive effects were absent particularly when the prediction context was challenging such as 
when the speed of delivery was high or the gap between the words was too short13,14. We used a naturalistic 
task in our study which used a normal pace of delivery. The gap between the words was not manipulated. The 
naturalistic property of our task could explain the spill-over effect in the bilingual group. It seems that bilingual 
speakers show a delay to the properties of words such as surprisal. Future studies could be done on naturalistic 
tasks with a lower rate of delivery.

We know that bilingual experience has been shown to affect predictive processing (see11,16,17). In our study, 
the bilingual speakers were balanced speakers with a high degree of exposure to their L2 comparable to L1 of 
monolingual speakers. Indeed, the bilingual participants reported more exposure to their L2 than L1. This was 
because Azerbaijani, their L1, is mainly spoken in north-western regions of Iran. The participants of this study 
were recruited from Tehran where the daily language is Persian. We, therefore, don’t think the bilingual experi-
ence could explain our findings. Moreover, since we did not control the language-specific properties for Azeri 
and Persian in this study, we think our results generalize to this pair only or a typologically similar pair.

The finding that frequency and orthographic neighbourhood density of the current word did not have any 
effects on N400 amplitude is not consistent with previous studies. Several studies have shown that both frequency 
and neighbourhood density could modulate the N400 amplitude: the lower the frequency and the higher the 
neighbourhood density of the word is, the larger the N400 amplitude will be41,42. One explanation for this find-
ing could be that the effects of frequency and neighbourhood density are diminished when surprisal is in the 
model (see43,44). Shain45 showed that frequency and predictability had effects on reading times in isolation, but 
the effect of frequency disappeared once predictability and frequency were both in the same model. However, if 
this explanation was true, we should have observed the same effect in the frequency and neighbourhood density 
of the previous word. Future studies could create low frequency and high frequency lists of stimuli (same with 
neighbourhood density) and look at the interaction between frequency and surprisal. Our design did not allow 
us to do so because we used a naturalistic task and we did not want to dichotomize a continuous variable.

Most previous studies used information-theoretic metrics with monolingual speakers (See46). Our study 
showed that one such metric such as surprisal could predict N400 in bilingual speakers as well. Although 
information-theoretic metrics have been shown to link cognitive theories with neural signals47, our study only 
showed a statistical relationship. Further studies need to be conducted explaining why this relationship exists25. 
The metrics used in this study were only extracted from GPT2 language model since other big language models 
such as LlaMA, Falcon, BARD, GPT 3.5, BLOOM, and BERT were not available in Persian. This is another limi-
tation. At the moment, our findings need to be interpreted with caution.

In this study, we did not control cognitive functions such as working memory, processing speed, and inhibi-
tion. Huettig and Janse12 showed that individual differences in working memory and processing speed could 
predict anticipatory processing. This is more important in bilingual speakers because several studies reveal that 
these speakers have trouble allocating enough resources for the prediction of words7,8,48. Future studies could 
investigate whether bilingual speakers with high working memory capacity and processing speed predict words 
similarly to those who have lower levels of working memory capacity and processing speed.

Methods
Participants
We recruited 18 Iranian Azeri-Persian bilingual speakers (Female = 9, age mean = 27.22, L1 exposure = 35.27%, 
L2 exposure = 58.88%, L2 AOA = 5.83, education mean = 18.55 years) and 22 Persian monolingual speakers 
(Female = 11, age mean = 26.09, L1 exposure = 87.72%, L2 exposure = 16.68%, education mean = 16.27 years). 
Data from two bilingual participants was discarded due to high levels of noise. Participants’ language history was 
documented using the Language Experience and Proficiency Questionnaire (LEAP-Q)49. Most of our participants 
were university students. Bilingual speakers were recruited from the city of Tehran where Persian is spoken as the 
medium of communication among people which is why bilingual participants reported more exposure to their 
L2 than L1. All speakers in this study rated their proficiency in Persian or/and Turkish to be at least 7 out of 10. 
The L2 exposure in monolingual speakers refers to the exposure to English. In Iran, students learn English from 
secondary school which is mainly limited to vocabulary and grammar. The monolingual speakers reported their 
proficiency in English less than 4 out of 10. All participants reported they were right-handed50. They had no his-
tory of neurological diseases. Informed consent was obtained from all participants before the experiment started. 
Ethical approval was obtained from the Ethics Committee at Iran University of Medical Sciences (IR.IUMS.
REC.1397.414). This study was performed in accordance with the Declaration of Helsinki and all other regula-
tions set by the Ethics Committee. This study was conducted at the National Brain Mapping Lab, Tehran, Iran.

Procedure
Participants listened to 6 chapters (about 30 min) of Alice in Wonderland in Persian while they were looking 
at a fixation cross. Before they started listening to the story, we checked the audio level for each participant and 
made sure they could hear clearly. Before the main experiment, we played the 6 chapters to a different group of 
people to check the speed with which the story was played. The group reported that the speed was at the normal 
level and easily comprehensible. To make sure the participants were listening to the story, we presented 5 com-
prehension check questions (yes/no) at the end of each chapter of the story. Answering the questions was not 
timed. The average response accuracy was 74%.

The EEG equipment used in this study was a 64 channel g.tec machine. The sampling rate was 512 Hz. The 
software used to present the stimuli was Psychtoolbox.
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EEG data analysis
EEG pre-processing was carried out using EEGLAB51, Fieldtrip52, as well as customized MATLAB codes (The 
MathWorks, Inc., Natick, US). We modified the Harvard Automated Preprocessing Pipeline53 (HAPPE) to per-
form EEG preprocessing automatically.

Data from all channels was re-referenced to an average (i.e., A2 and A1 re-reference). By evaluating the 
normed joint probability of the average log power from 1 to 500 Hz, we discovered the noisy channels and 
removed those that exceeded a 3 SD threshold from the mean. Electrical line noise at 50 Hz was removed using 
ZapLine of the NoiseTools toolbox54. The signal was also passed through a high-pass finite impulse response 
filter with a cutoff frequency of 0.1 Hz before we conducted ICA. To remove artifacts such as eye and muscle 
artifacts, high-amplitude artifacts (e.g., blinks), and signal discontinuities (e.g., electrodes losing contact with 
the scalp), a wavelet-enhanced ICA55 (W_ICA) was used. Following W_ICA, the Multiple Artifact Rejection 
Algorithm (MARA), a machine learning algorithm that evaluates the ICA-derived components, was used to 
perform automated component rejection56. The data for bad channels was interpolated with spherical splines for 
each segment. At the end of the pre-processing stage, data was down-sampled to 250 Hz, filtered with a 30 Hz 
Butterworth low-pass filter, and demeaned (See Fig. 2 for mean ERP).

After the preprocessing step, the pipeline suggested in the Unfold toolbox21 was used. First, the model of 
interest was specified, and the design matrix was generated. All onsets of the target words from the story were 
defined as events in the continuous EEG data. We defined an interval (− 250 ms to 800 ms) around each target 
word using an only-intercept model (ERP ~ 1) in line with regression-based ERP (rERP) approaches57. The time 
basis function used was the stick-function approach which is the default option in Unfold. We replaced the 
intervals containing EEG artifacts with zero because removing these intervals could influence model estima-
tion in continuous data57. In the next stage, the regression model was solved using LSMR58 which is an iterative 
algorithm for sparse least-squares problems. At the final stage, we extracted betas for all words for the interval 
of interest (300 to 500) which are used later for item level analysis.

For baseline correction, we used the approach recommended by Alday59. Unlike the traditional approach 
of baseline correction, in this approach baseline is not treated the same for each participant and item meaning 
each participant and item can have a unique baseline. This is important in naturalistic data because there is no 
baseline in the traditional sense before each word; words come after one another without any interval. In our 
study, we extracted the baseline for each item (− 100–0 ms) and then subtracted from our time window of analysis 
(300–500 ms) (see60). Applying baseline correction after the deconvolution is till acceptable21,60,61.

Language models
Surprisal, known as a complexity metric, and human based plausibility ratings have been used frequently to study 
predictive processing (see62). One concern with cloze probabilities is, however, that they are usually averaged 

Figure 2.   Mean ERP for 6 channels of interest for both groups after low pass filtering and demeaning. Zero on 
the x axis is aligned to the onset of the target word. No baseline correction was applied here.
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across items, therefore cannot capture the trial-specific variance26. Surprisal measures the degree of unexpect-
edness upon reading or hearing a word; high surprisal means the word was clearly unexpected. Surprisal is 
a backward-looking measure25. Surprisal could, therefore, be used to study how prediction errors could be 
resolved26,27. Metrics estimated by language models such as GPT-3 have been argued to predict N400 much 
better then human judgements63.

A GPT model which was pre-trained on Persian language, called bolbolzaban/gpt2-persian (https://​www.​
bolbo​lzaban.​com), is used for our goal. The context size of this language model was reduced from 1024 (in the 
original model in English) to 256 to make the training of the model affordable. In this model, all English words 
and numbers were replaced with special tokens and only standard Persian alphabet was used as part of input 
text. This model included about 328 million parameters. In this study, we focused only on surprisal. Since Persian 
GPT-3 has not been released as open source, we use GPT-2 language model in this research study.

Hale64 first introduced the surprisal theory. The surprisal theory of incremental language processing charac-
terizes the lexical predictability of a token wt in terms of a surprisal value which is the negative logarithm of the 
conditional probability of a token given its preceding context, -LogP (wt|wt-1, …, w0). The higher the surprisal 
values the smaller conditional probabilities; i.e., tokens that are less predictable are more surprising to the lan-
guage user and are harder to process as a result65. In this paper, the conditional probability of a given token is 
obtained from the GPT-2 model, and then the negative value of its logarithm is considered as surprisal.

In addition to surprisal, we included the frequency of each word and neighborhood density (ND) in the 
analysis following the recommendation by Sassenhagen66. Word frequency and ND have been shown to be cor-
related with neural activity (see4). Neighborhood density refers to the number of phonologically similar words 
in the lexicon and is often calculated by determining the number of words that are created by adding, deleting, 
or substituting a single character in a given word67. For example, the word “sit” has 36 neighbors including 
“spit”, “it”, and “hit”. Words with a high number of neighbors are said to reside in dense neighborhoods, whereas 
those with few neighbors reside in sparse neighborhoods. In this study, a dataset extracted from a Persian news 
website called Bartarinha was used to find the ND of each word. To calculate the frequency of each word, we 
used Hamshahri2 corpus68. This is one of the biggest corpora available in Persian consisting of several types of 
genres and documents.

Bayesian analysis
We used Bayesian linear mixed effects modelling to analyze the data. The package brms was used69. We used four 
chains, four cores, 10,000 iterations, 1000 of which were warm-ups. Since N400 has a centroparietal distribution, 
the dependent variable was the average scalp potential over six channels Cz, C3, C4, Pz, P3, and P470 within a time 
window of 300–500 ms. All continuous predictor variables were centered (mean = 0, SD = 1). Group (monolingual 
and bilingual) was deviation coded (− 0.5 and 0.5) at first.

Fixed effects included group (bilingual vs. monolingual), exposure to Persian language, and the following 
properties of the current word (CW) and the immediate previous word (PW) such as surprisal, frequency, and 
neighborhood density (ND). The interaction between group and surprisal of the CW and PW was included in 
the model. For the random effects structure, we included words and participants as random intercepts. Group 
was used as a by-word random slope and surprisal of the CW and PW was used as by-participant random slopes. 
There were no correlation parameters for the by-participant random slopes to avoid any convergence problems. 
The following is the structure of the full model:

We then fitted two separate models with each level of group (monolingual or bilingual) as the reference level 
in the model. We dummy coded the group variable to see what the effects of the other predictor variables are 
within each group of participants in this study. To do model diagnostics, we used the between-to within-chain 
variances (R hat) and did a visual inspection of the chains. R hat values should be 1 or close to show that chains 
converged. We also used posterior predictive (PP) checks to see if the data fitted the model properly or not71,72.

We used regularizing or weakly informative priors. The advantage of using weakly informative priors is that 
they produce stable inferences73. We use posterior probability, mean estimates and Bayesian credible intervals 
(CI) to report the results. We used the following priors in brms based on Nicenboim, et al.73.

Data availability
The datasets generated during and analysed during the current study are available in the OSF repository with 
https://​doi.​org/​10.​17605/​OSF.​IO/​JHPX8.
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