1812.08738v4 [math-ph] 11 Sep 2021

arXiv

HIGHER AIRY STRUCTURES, W ALGEBRAS
AND TOPOLOGICAL RECURSION

GAETAN BOROT, VINCENT BOUCHARD, NITIN K. CHIDAMBARAM, THOMAS CREUTZIG,

AND DMITRY NOSHCHENKO
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1. INTRODUCTION

1.1. Motivation

Virasoro constraints are ubiquitous in enumerative geometry. The general statement goes as fol-
lows. Given a particular enumerative geometric context, such as intersection theory on the moduli
spaces of curves, or Gromov—Witten theory of a given target space, an interesting object of study
is the generating series F' for connected descendant invariants and the corresponding generating
series Z = e!” for disconnected invariants. The statement of Virasoro constraints is that Z satisfies
a collection of differential equations of the form HyZ = 0, where the Hys are differential operators
(in the formal coordinates of the generating series F') that form a representation of a subalgebra
of the Virasoro algebra. In this context, the starting point is a given enumerative theory, and the
goal is to show that the generating series Z satisfies Virasoro constraints.

An interesting question is whether the sequence of events can be reversed. Can “Virasoro-
like constraints” be formulated abstractly such that there always exists a unique solution to the
collection of differential equations, in the form of the exponential of a generating series? One may
understand the recent of work of Kontsevich and Soibelman [56] (see also [5]) as providing an
answer to this question, in the form of “quantum Airy structures”.

Let V be a vector space of dimension D (which may be countably infinite) over C. Using the
notation I ={1,..., D}, let (z;);es be linear coordinates on V*, and denote by

Diy 2 ClLh, (21)ier, (hda, Jier ]
the completed algebra of differential operators on V. We introduce a grading on D%*V by assigning:
degz; =deghd,, =1, degh =2.
Then a quantum Airy structure is a collection of differential operators (Hy )ger of the form
Hy = h0y, — Py, (1.1)

where P, € D%*V is homogeneous of degree 2, such that the Hj, generate a graded Lie subalgebra
of ’D%*V. That is, there exists scalars ¢}, such that

[Hk,Hl] =h Z CZ?le. (1.2)
mel

The crucial theorem proved in [56] is that for any quantum Airy structure, there exists a unique
solution Z to the collection of differential constraints HyZ = 0, k € I, of the following form:

ho-t
7 = exp > — > Fynlalza, - za, | - (1.3)
920, n>1 T qeln
2g-2+n>0

It does not say what kind of enumerative invariants the coefficients F, ,,[a] are; this depends on the
choice of quantum Airy structure. But the existence and uniqueness of a solution to the differential
constraints is guaranteed.

There are two key features in the definition of quantum Airy structures that are responsible
for existence and uniqueness of a solution. The first one is the particular form of the differential
operators H;, which implies that the differential constraints H;Z = 0 translate into a recursive
system for the coefficients F, ,[a]. The second is the subalgebra property, which, together with
the form of the operators, ensures the existence of a solution.

While quantum Airy structures may be understood as an abstract construction of Virasoro-
like constraints, they were first introduced in [56] as generalizations of the topological recursion
of Chekhov, Eynard and Orantin [37, B8]. The Chekhov—Eynard—Orantin topological recursion
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appears rather different from quantum Airy structures or Virasoro constraints a priori. It starts
from the geometry of a spectral curve C, and constructs an infinite sequence of meromorphic sym-
metric differentials on C™ through a period computation. But it turns out that for any admissible
spectral curve with simple ramification, the Chekhov—Eynard-Orantin topological recursion can
be recast into a quantum Airy structure. In other words, its recursive structure is equivalent to
the collection of differential constraints of a quantum Airy structure.

Thus, quantum Airy structures provide a clear conceptual framework behind the Chekhov—
Eynard-Orantin topological recursion, and a generalization thereof. In particular, it clarifies the
relations between topological recursion, symplectic geometry and deformation quantization. It
also incorporates earlier observations of Kazarian about the role of symplectic loop spaces and
polarizations in the theory of [38] (see also [54]) and provides a simpler approach to the relation
with the Givental group action and semi-simple cohomological field theories established in [35].

Natural generalizations of Virasoro constraints that appear in enumerative geometry are W
constraints. They are known to be satisfied in some contexts, such as intersection theory on
the moduli space of curves with r-spin structures, and certain Fan—Jarvis—Ruan theories. W
constraints are similar in nature to Virasoro constraints. They consist of a collection of differential
constraints H;Z = 0 for a generating series of disconnected invariants, but where the H;s form a
representation of a subalgebra of a W algebra. Recall that VW algebras are non-linear extensions of
the Virasoro algebra, which arise in conformal field theory when the theory contains chiral primary
fields of conformal weight > 2. W algebras always contain the Virasoro algebra as a subalgebra.

In this paper we provide an answer to the question: Can “W-like constraints” be formulated
abstractly such that there always exists a unique solution to the collection of differential equations,
and that this solution has the form of an exponential of a generating series?

The answer takes the form of “higher quantum Airy structures”. We use the same conceptual
framework as for quantum Airy structures, but we relax the two conditions on the differential
operators. We consider differential operators (Hp)rer of the same form as in (LI), but with
Py e D%*V a sum of terms of degree > 2. The subalgebra condition is replaced by the requirement
that the left ’D:’}*V—ideal generated by the Hj, is a graded Lie subalgebra of Dg"*v- Concretely, this
means that (L2)) is replaced by:

[Hi, Hi]=h Y g1y Hp Qg,llepg“*v-
mel
Under these conditions, Kontsevich and Soibelman (in [56]) already proved the existence and
uniqueness of a solution to the collection of differential constraints HipZ = 0 of the same form as
([@3). The goal of this paper is to construct many examples of higher quantum Airy structures
from W algebras and discuss their enumerative meaning.

1.2. Main results

Let us now describe the main results of the paper briefly. First, we construct various types of W
constraints. Second, we show that the Bouchard-Eynard topological recursion of [I7 I8, [19] is
equivalent to a previously constructed class of W constraints. We also proved along the way a
property about the modes of the W(gly,,) algebra at the self-dual level, which was essential to
our construction of W constraints.

1.2.1. Higher quantum Airy structures from VW constraints

Our general recipe to produce higher quantum Airy structures from modules of W algebras goes
as follows. The starting ingredients are a Lie algebra g and an element o of the Weyl group of g.
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We then consider the principal W-algebra of g at the self-dual level k = =h¥ +1 (h" is the dual
Coxeter number of g). This vertex operator algebra is denoted by W(g) and we realize it as a

subalgebra of the Heisenberg vertex operator algebra associated to the Cartan subalgebra § of g.
Then:

(1) We construct a o-twisted module T of the Heisenberg vertex operator algebra.

(2) Upon restriction to the W(g) algebra, we obtain an untwisted module. We realize the
modes of the generators of the W(g) algebra as differential operators acting on the space
of formal series in countably many variables.

(3) We pick a subset of modes generating a left ideal which is a graded Lie subalgebra of the
algebra of modes. These modes fulfill the second (and hardest to check) condition to be a
higher quantum Airy structure.

(4) If possible, we conjugate these modes (dilaton shift) to bring them in the form of a higher
quantum Airy structure.

Remarkably, following this simple recipe we can construct a large variety of higher quantum
Airy structures, including many that have interesting enumerative interpretations. Our general
construction reproduces some of the W constraints that have already appeared in the literature,
but most of the higher quantum Airy structures that we obtain are new.

We also note that our construction relies on certain explicit strong generators of the VW algebras
that are known in the literature. We discuss this in detail in Section B.2.4]

W(gly,1) higher quantum Airy structures: first class. For clarity let  := N + 1. Our first
set of examples starts with g = gl,, and o = (12 --- r) — the Coxeter element of the Weyl group &,.
Theorem [£9] is the main result of this construction, which can be summarized as follows:

Theorem A. Let r>2 and s € {1,...,r+ 1} be such that r =r's — € with e € {1} and v’ integer.
Let

oi:¢—1—f(i;1)J, So={G,k) | ie{l,...,r} and k>0+d1}.

There exists an (explicit) quantum r-Airy structure on V = @59 C{x;) based on a representation of
the subset of modes (W,g)(Z K)es, of the W(gl,) algebra generators with central charge r in Dk, .
We use Z(, ) to denote its partition function. Its coefficients for 29 —2+n =1 are

r? -1
24

Fosll,la,13] = er'lilals 01, 1154155, Fia[l] = 015

The case s = 7+ 1 (for all 7) was studied by Bakalov and Milanov [9, 10, 61]. Z, ,.1) is a
generating series for intersection numbers on the moduli space of curves with r-spin structure,
as explained in Section Other choices of s however are new. As explained in the proof of
Theorem 9 the condition that s be coprime with r arises for the dilaton shift to yield differential
operators of the right form for a higher quantum Airy structure. The condition that » = +1 mod s
is necessary and sufficient for the left ideal generated by the subset of modes to be a graded Lie
subalgebra (see Theorem [I). We will come back to this statement, and state the precise result in
Section

The enumerative meaning of the cases corresponding to these general values of s is particularly
intriguing. The partition function Z, ;) corresponds to the Brézin-Gross—Witten tau function
of the KdV hierarchy [21I] [52]. Further, Norbury constructed in [63] a cohomology class on the
moduli space of curves such that the partition function Z, ;) generates its descendant invariants.
It is then natural to ask whether similar results exist for r > 2, and for the various allowed
values of s. It would be interesting to find an enumerative interpretation for all Z(, ;) since they
are the building blocks for the Givental-like decomposition proved in Theorem [G] below for the
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Bouchard-Eynard topological recursion. For instance, we can ask: does Z(, 1) coincide with the
r-Brézin—Gross—Witten tau function? And if it does, what is the analog of the Norbury class such
that Z(, 1y becomes the generating series of its descendant invariants? In Section [6.2] we explore
these questions in greater detail.

Propositions 13| and E.14] provide straightforward generalizations of the above construction,
by allowing direct sums and conjugations of the quantum Airy structures of Theorem[Al This easy
observation will be necessary to compare the W constraints with the Bouchard-Eynard topological
recursion.

W(gly,1) higher quantum Airy structures: second class. For our second important class
of examples, we keep g = gl,., with » = N + 1, but replace the Coxeter element of the Weyl group by
an arbitrary automorphism o. Although part of our construction is general, we only complete the
program in the case o = (1--- r —1). Theorem [L.17 realizes these modules as higher quantum Airy
structures with half-integer powers of A (which we call “crosscapped”) and can be summarized as
follows.

Theorem B. Let r>3 and se{l,...,r} dividing r. Let

, i—1 N ,
al:i—l—[@], So={Gi,k) | ie{l,...,r} and k>0 +5,1+di,}.
r—
There exists an (explicit) 1-parameter family of crosscapped quantum r-Airy structures on V =

@Bps0 (C(:vllj) ® (C(xf,) based on a representation of the subset of modes (Wli)(i,k)égs of the W(gl,.)

algebra generators with central charge r into D%l*/‘z,.

In Section[G.3] we speculate that the enumerative geometry interpretation of these quantum Airy
structures lies in the open intersection theory developed by Pandharipande, Solomon and Tessler
[64, [70]. Indeed, for (r,s) = (3,3) we can identify them with the W(sl3) constraints derived by
Alexandrov in [3] for the partition function of the open intersection theory on the moduli space of
bordered Riemann surfaces. For higher 7, do we recover the tau function of the extended (r —1)-
KdV hierarchy constructed by Bertola and Yang [I1]? Can it be understood in terms of the open
(r —1)-spin intersection theory of [24]?

It would be interesting to classify the automorphisms o that can lead to higher quantum Airy
structures and the corresponding structures themselves, as we did when o is a r or (r — 1)-cycle.

W(so02n) higher quantum Airy structures. Another class of examples is obtained by choosing
the Lie algebra g = s0o and the Coxeter element o of the Weyl group, which has order r = 2(N-1).
The resulting higher quantum Airy structures are presented in Theorem 2T summarized here:

Theorem C. Let N >3, that isr=2(N-1)>4, and s=1 orr+1. Let
o =0,1(i 1), Se={(i,k) | i€{2,4,....2N-2}U{N} and k>0'}.
There exists an (explicit) quantum r-Airy structure on V = @50 C{z2ps1) ® C(T2p11) based on a

representation of the subset of modes (W,i)(i Kyeg, of the W(soan) algebra generators with central
charge N in D%*V.

Here, for any r we get two higher quantum Airy structures (where s =1 and s = r + 1), corre-
sponding to the well-known subalgebra of modes of Proposition 313 and B:T4l For now, we do not
have a construction for more general values of s for 502y, as in Theorem [Alfor gly,; (equivalently,
the analog of Theorem [H] for so2y). The enumerative meaning of these higher quantum Airy
structures is discussed in Section [6.4] in terms of Fan—Jarvis—Ruan theory [40].

Exceptional higher quantum Airy structures. We construct two higher quantum Airy struc-
tures starting with the exceptional Lie algebras g = ey with N € {6,7,8} and using the Coxeter
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element (of order denoted by r) as the automorphism o. Our main result here is Theorem .25]
which we summarize as follows.

Theorem D. Let D = {d1,...,dn} the set of Dynkin exponents of en (see Section [{4). Let
se{l,r+1} and denote

0 ifs=r+1

Se:={(i,k) | ie{l,...,N} and k>2"} ai:{di_l Facl

There exists a quantum r-Airy structure on V = @pepiony C{2,) based on a representation of the
subset of modes (W,i)(i k)es. of the W(en) algebra generators with central charge N into D%*V.

This Airy structure is as (un)explicit as the generators of the W(ey ) algebra, see Theorem 22
For s =7+ 1 it is not new: its partition function coincides with the Fan—Jarvis—-Ruan invariants of
E-type (see Section[6.4)) and it was already known that it is uniquely determined by W constraints,
see Section [6.4] for references. We have a new case s = 1 whose enumerative geometry interpretation
is currently unknown. For simple but non simply-laced Lie algebras, according to a private com-
munication of Di Yang, W constraints cannot be brought to the form (II]) and therefore cannot
yield higher quantum Airy structures.

1.2.2. Higher quantum Airy structures from topological recursion

The Chekhov—Eynard-Orantin topological recursion [37, [38] associates, to the data of a spec-
tral curve S = (C,z,y,wo,2) satisfying certain conditions, a sequence of meromorphic differentials
(wg,n)2g-24n>0 that generate enumerative invariants. It was shown in [56] [] that for a given S
with simple ramification, the topological recursion is equivalent to a quantum Airy structure that
has countable dimension and whose Lie algebra is isomorphic to a direct sum of subalgebras of
the Virasoro algebra. The Fj s for 2g —2 +n > 0 encode the coefficients of decomposition of the
meromorphic n-differentials w, ,s of [38] on a suitable basis of meromorphic 1-forms. The choice
of polarization in the construction of the quantum Airy structure is determined by wp 2, which is
part of the data of the spectral curve. This dictionary was established in detail in [56, [B], but
we should also mention the earlier work of Kostov and Orantin where some of these elements of
comparison already appeared [57].

The original formulation of the Chekhov—Eynard—Orantin topological recursion requires the
branched cover z : C — C to have simple ramification points only, i.e. da has simple zeroes. This
restriction on the order of the ramification points was lifted in [I7, I8, [19]. For arbitrary spectral
curves, the combinatorial structure of the topological recursion becomes a little more involved; it
is now known in the literature as the Bouchard-Eynard topological recursion.

In Section Bl we extend the dictionary between topological recursion and Airy structures to
arbitrary spectral curves without any restriction on the order of ramifications. Our main results
(Theorems 530 and Theorem [5.32] in the text) can be summarized as follows.

For each ramification point p,, denote r, the order of ramification at p,, and introduce a local
coordinate ¢ such that z(2) — z(pa) = Cj—(z)
=) near the ramification points

y(z)= Y Foa[ 4 ]C(z) " Z = Pa,

>0

. Let us consider the series expansion (denoted with

and introduce
Sq = min{l >0 | Fo,l[?z] +#0 and 7, + l}.

The statement of Theorem [5.32] can be summarized as follows:
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Theorem E. The Bouchard-Eynard topological recursion is well defined (i.e. produces symmetric
wg.n) if and only if ro = £1 mod s, for all o (the = could depend on o). When this condition is
not satisfied, the lack of symmetry is apparent in wo 3.

Definition F. We say that the spectral curve is admissible when ro = £1 mod s, for all ramifica-
tion points pq .

Now let us consider the series expansion

= 50‘1’0‘2 0417042 l1-1 Ia-1 .
w0,2(21722)—((<(21) () 11,122:>0 oy C(21)" 7 ((22) )dC(zl)@’dC(zz) Zj = Pay 5

and introduce for [ > 0 the meromorphic 1-forms on C
¢(z")

d§*(2) = Res ([: wo,2(", Z)) ()L

Theorem B30 relates the Bouchard-Eynard topological recursion to higher quantum Airy struc-
tures, as summarized below:

’

Theorem G. For any admissible spectral curve, the wg , computed by the Bouchard-Eynard topo-
logical recursion can be decomposed as finite sums

n
wg,n(zlv---vzn): Z an[al ?:]@dggj(zj)v
Qe 7=1
Y NG
and the generating series
hg_l ay o« ~ a
7 = exXp Z —' Z F ,n|: Iy - l: ] Hl‘lj]
g20, n>1 T a1, o j=1
2g-2+n>0 l1,-5ln>0
is the partition function of a higher quantum Airy structure based on an (explicit) representation
of a subset of modes of the @, W(gl,_) algebra generators as differential operators.

More precisely, Z satisfies a Givental-like decomposition:

F, +0, a2
Z=exp| 3 Foal &)+ ds Dup + h » Ousia” 0,01 0,02 | TT Zera oy (2 )150) » (1.4)
a,l l 2 aq,0 lll l1 ) o
11,12>0

where the Z,. ¢)s are the partition functions of the quantum Airy structures described in Theorem[4].

The formula ([4]) is a Givental-like decomposition for the Bouchard-Eynard topological recur-
sion. If 7, = 2, Theorem [G] was obtained in [36] for s, =3 and in [27] when s, can take any of the
admissible values 1 or 3.

Let us comment on our approach as we do not construct the higher quantum Airy structures di-
rectly from the topological recursion as in [5]. Rather, we start with the notion of “higher abstract
loop equations” of Definition 2T which generalizes the one of [13] [16] to arbitrary ramifications.
We prove in Appendix [C] that if a solution to the higher abstract loop equations exists, then it
is uniquely given by the Bouchard-Eynard topological recursion. Thus, it is just as good to take
the higher abstract loop equations as starting point. But there is a fundamental reason why we
start with the loop equations instead of the topological recursion. It is not too difficult to con-
struct differential operators that produce a recursive structure equivalent to the Bouchard—Eynard
topological recursion; but proving the graded Lie subalgebra condition required for existence of
a common solution of these differential operators (i.e. the symmetry of the Fj ,) appears quite
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difficult. While if we start with loop equations, we observe that the resulting differential oper-
ators can be identified directly with those coming from modules over W(gl,.) algebras; therefore
we can use Theorems [H and [[l to prove the graded Lie subalgebra condition. In other words, the
loop equations make the algebraic structure of the corresponding higher quantum Airy structure
explicit, at the expense of obscuring the recursive structure of the original system of equations.

The identification with higher quantum Airy structures constructed from W(gl,.) algebras has
a number of interesting consequences. We are not aware of a direct proof that the Bouchard-
Eynard topological recursion produces symmetric differentials for arbitrary spectral curves. An
indirect argument exists for spectral curves that appear as limits of family of curves with simple
ramification [I8], but it is not clear which spectral curves precisely satisfy this condition. A
consequence of our identification between loop equations and higher quantum Airy structures is
that for any admissible spectral curves, a solution to the loop equations exist. It must then be
given uniquely by the Bouchard—Eynard topological recursion. It then follows that for all admissible
spectral curves the Bouchard-Eynard topological recursion produces symmetric differentials (the
announced Theorem [E] which is Theorem in the text).

What is particularly intriguing though is the cases that fail. The admissibility in Definition [F]
is a constraint on the local behavior of w1 = ydx. While the condition that s is coprime with 7
is easy to understand from the geometry of spectral curves (it says that C is locally irreducible at
its ramification points), the condition that » = +1 mod s is rather unexpected and its geometric
meaning is mysterious for us. Nonetheless, when it is not satisfied, we show in Proposition [B.2]
that the Bouchard—Eynard topological recursion does not in fact produce symmetric differentials.
The simplest such case is (r,s) = (7,5). Consequently, we can deduce that the left ideal generated
by the appropriate set of modes of the W(gl,.) algebra cannot be a graded Lie subalgebra of the
algebra of modes, and that the collection of differential operators is not a higher quantum Airy
structure.

For r = 3, Safnuk, in [69], recast the W constraints of [3] for open intersection theory into a
period computation, which turns out to be an unusual modification of the topological recursion on
the spectral curve = y?/2. It would be interesting — but beyond the scope of this article — to
generalise Safnuk’s result and obtain the F, ,, of Theorem [B] by a period computation. The same
question could be asked if quantum Airy structures are found for other automorphisms o € &,..
It amounts to asking what is the appropriate modification of the topological recursion to treat
reducible spectral curves, and whether there will be new conditions of admissibility (like the one
we found in Theorem [E]). This level of generality may enlighten the geometric meaning of those
admissibility constraints.

1.2.3. Results on W algebras

As a side result of our construction, we prove a certain curious property of the algebra of modes of
the W(gl,.) algebra at the self dual level. Let W', ... W" be the strong generators of W(gl,) with
conformal weights 1,...,7, A be the suitably completed algebra of modes of W(gl,.), and F,.A be
the filtration on A induced by Li’s filtration on W(gl,.) (see Section B3]). Propositions 313 3.14]
and Theorem can be combined into the following result.

Theorem H. Let r>2 and Ay > -+ > A\, > 1 such that ¥¥_ X\;=r. Forie{l,...,r} denote

)\(i)::min{m>0 | il/\jzi}, Sy={Ci,k) | ie{l,....r} and k>i-A(i)}.
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The left A-ideal generated by the modes W} indexed by (i, k) € Sy is a graded Lie subalgebra of A,

i.e. there exists gE:?if; (kasin) € A such that
. . i i i3,k i
v(llakl)a(lbk@) €S>\7 [Wkiawkg] = Z géif,kf;,(ig,kg)wkz Efil+i2*2-/4'
(i3,k3)eSx
The case A = (1,...,1), which corresponds to k > 0, gives a well-known Lie subalgebra. It

is the one generated by the modes annihilating the vacuum vector. The other cases however
seem new. Some of these Lie subalgebras are used to prove Theorem [A] thanks to an arithmetic
correspondence established in Proposition [B:1lin Appendix [Bl which is summarized here:

Proposition I. For any s € {1,...,r+ 1} such that r = r's + 1" with " € {1,s -1}, we have the
equality Sy = Ss between the set of modes appearing in Theorem [Al and Theorem[H for the choice
M=z Aw=r +1, Ay == Ag = 7

If r # £1 mod s, there exists a unique sequence (\;); such that Sy = S, but it is not weakly
decreasing and the left A-ideal generated by the modes (le)(z k)es, does not form a subalgebra of
A.

The proof of Theorem [H] relies on the construction of a highest weight module whose highest
weight vector is annihilated by the modes indexed by S). The existence of such a highest weight
module is perhaps unexpected; it relies heavily on our realization of the W(gl,.) algebra as a
subalgebra of the Heisenberg vertex operator algebra and on certain embeddings of gl,, & - @
gl, into gl.. It would be worth investigating this construction further, and see whether it can
be generalized to W algebra of other types. In particular, this would yield generalizations of
Theorem [Cl Note that it is important in the proof for gl that ();); be a weakly decreasing
sequence and this is confirmed by the counterexamples mentioned in the last claim in Theorem [I

1.3. Outline

We start in Section 2] by defining higher quantum Airy structures. We first propose in Section
211 a basis-independent definition, starting from the point of view of quantization of classical
higher Airy structures, as in [56]. In Section we revisit higher quantum Airy structures using
bases. We calculate the explicit recursive system satisfied by the coefficients F, ,,. We also prove
a reduction statement to get rid of linear differential operators in higher quantum Airy structures.
We introduce crosscapped Airy structures in Section 2.3 which are related to generating functions
in open intersection theory.

In Section [ we first introduce the background on vertex operators algebras (Section Bl and
W(g) algebras (Section B.2)) that will be needed for the construction of our first type of higher
quantum Airy structures. We construct in Section B3] a number of left ideals for the algebra of
modes that are graded Lie subalgebras (see Propositions B.I3] B.I4] and Theorem B.16). We then
review the concept of twisted modules for vertex operators algebras in Section 3.4 in preparation
for the next section.

Our construction of higher quantum Airy structures as modules of W(g) algebras is proposed
in Section @l The first class of W(gl,.) higher quantum Airy structures, with the automorphism o
given by the Coxeter element of the Weyl group, is explored in Section LIl The second class of
W(gl,.) higher quantum Airy structures for arbitrary automorphisms o is studied in Section
We introduce the W(s02,) higher quantum Airy structures in Section 3] and the (e, ) higher
quantum Airy structures in Section [£.41

Section [{] is devoted to the reconstruction of the higher quantum Airy structures associated to
the Bouchard-Eynard topological recursion on arbitrary admissible spectral curves. We study the
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geometry of local spectral curves in Section 5.1l and describe the relation with the standard notion
of (global) spectral curves. We introduce the Bouchard-Eynard topological recursion and higher
abstract loop equations in Section 5.2l We then prove that the higher abstract loop equations for
local spectral curves with one component are equivalent to W(gl,.) higher quantum Airy structures
in Section The general result for local spectral curves with several components is obtained in

Section [£.4]

Finally, Section [0 reviews the known and conjectural enumerative geometric interpretations of
the higher quantum Airy structures that we construct; we also attempt to summarize the rich
history of existing results in this area. We discuss the (closed) r-spin intersection theory (Section
[61), higher analogs of the Brézin—Gross—Witten theory (Section [6.2]), open r-spin intersection
theory (Section [6.3), and Fan—Jarvis—Ruan theories (Section [6.4]).

We conclude with three appendices. In Appendix [A] we prove, by elementary means, various
properties of certain sums over roots of unity that play an important role in our construction of
the W(gl,) quantum Airy structures. In Appendix [Bl we show that the graded Lie subalgebra
property is only satisfied for values of (r,s) such that » = +1 mod s. When r = £1 mod s, we show
that we get a subalgebra of the intermediate type described in Theorem [ and when r # +1 mod s,
we prove that there is no symmetric solution to the system of differential equations, and hence the
left ideal generated by the set of modes cannot be a graded Lie subalgebra. The proof consists of
an explicit computation and check of (lack of) symmetry for Fy 3 by elementary — but still lengthy
— arithmetics. We also compute explicitly Fi ; in Appendix[B.3 Lastly, in Appendix [C] we prove
that if a solution to the higher abstract loop equations that respects the polarization exists, then
it is uniquely constructed by the Bouchard-Eynard topological recursion.

Recent work

Since the submission of this manuscript in January 2019, several works based on the present one
have appeared in the literature, which we now briefly summarize. There are two direct follow-
ups to this article, [I5] and [20], which obtain an almost complete classification of admissible
twists and dilaton shifts for Airy structures based on W(gly,;) (generalizing Section L2.2). The
computation of Fy ,, for these Airy structures is recast in [I5] as a period computation (generalizing
Section [l), thus giving a definition of spectral curve topological recursion for singular (reducible)
spectral curves with certain admissibility conditions. This answers the question posed at the end
of Section In a different direction, [12] investigated Whittaker vectors for W algebras of
type ADE in the context of higher Airy structures. In particular, [I2] applied this to show that
Gaiotto vectors in A = 2 four-dimensional gauge theory (and thus, the Nekrasov instanton partition
function) can be reconstructed using topological recursion.
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2. HIGHER QUANTUM AIRY STRUCTURES

2.1. A conceptual approach

In this section, we provide a conceptual introduction to the concept of higher Airy structures,
starting from the point of view of quantization of higher classical Airy structures. We propose a
basis-free definition of co-Airy structures, and its finite counterpart r-Airy structures. We offer a
basis-dependent and computational approach to higher Airy structures in Section 2.2l Readers who
are mostly interested in the computational aspects of Airy structures may prefer to skip directly
to Section

2.1.1. Classical picture

Let k be a field of characteristic zero and W be a finite-dimensional symplectic k-vector space
equipped with the symplectic form Q. k[[W]] is the completion of the graded ring of polynomial
functions on W. It is a Poisson algebra. The projection from k[[TW]] onto its subspace of degree i
is denoted ;. In fact, we can consider 7 as a linear map k[[W]] — W since the subspace of linear
functions on W is naturally isomorphic to W* and can be identified with W itself via the pairing

Q.

Definition 2.1. A classical co-Airy structure on (W, ) is the data of a k-vector space V together
with a linear map A : V' — k[[W]] such that

(Z) o © A=0.
(i1) T=m o\ : V - W is a linear embedding of V' as a Lagrangian subspace of W.
(i7i) The k[[W]]-ideal generated by Im X is a Poisson subalgebra of k[[W]].

If Tm X is a subspace of the space k,.[WW] of polynomial functions of degree at most r for some given
integer r > 2, we will call it a classical r-Airy structure.

For r = 2, (i4i) is equivalent to requiring that Im \ is a Poisson subalgebra and we recover the
Airy structures studied in [56] [B]. Definition 2] formally corresponds to r = co.

2.1.2. The quantization problem

The Poisson algebra C[[W]] can be quantized by forming the Weyl algebra Df,. We define it as
the completion of the graded associative algebra over C[[A]] of non-commutative polynomials in
elements of W modulo the relations [w,w'] = AQ(w,w") for any w,w’ € W. The grading is defined
by degW =1 and degh = 2.

Definition 2.2. A subspace A c DI is a graded Lie subalgebra if [L,L'] € h- A for any L, L’ € A.

We have a linear map cl : D, — C[[W]] which is a reduction to h = 0 and is called the classical
limit. It is such that

cl(%[L,L’]) - {cI(L), (L)}

Obviously, if A is a graded Lie subalgebra, then cl(A) is a Poisson subalgebra in C[[W]]. Conversely,
given a Poisson subalgebra A c¢ C[[W]], we may ask whether it can be quantized, i.e. whether
there exists a graded Lie subalgebra Ac D{L}V such that CI(A) = A. In this article, we will study the
quantization of classical co-Airy structures in the following sense.

Definition 2.3. A quantum oo-Airy structure on V' is a linear map ANV > ng such that clo ) is
a classical co-Airy structure and the left ideal A = ’D"}V -Im A is a graded Lie subalgebra. As before,
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if Im )\ is a subspace of the space of elements of degree at most r in D{}V, we will call it a quantum
r-Airy structure instead.

For r = 2, the condition that ’D"}V Im\is a graded Lie subalgebra is equivalent to Im A being a
graded Lie subalgebra, but this is no longer true for r > 2.

2.1.3. The partition function

The most important fact about quantum Airy structures is that they determine a partition function
via a topological recursion once a polarization is chosen.

Definition 2.4. A polarization of a symplectic vector space (W, Q) is a decomposition W =V eV’
such that V and V' are Lagrangian.

If we are given a Lagrangian subspace V of W, a polarization is a choice of a transverse La-
grangian subspace V’. In this case, we say that the polarization is adapted to V.

If we choose a polarization, the symplectic pairing gives a canonical identification V* = V' and,
therefore, an isomorphism W 2 T*V of symplectic vector spaces. Here TV =V & V* is equipped
with the natural symplectic form defined for v € V and ¢ € V* by Q(v,¢) = ¢(v). Therefore, the
C[[h]] algebra DI, acts faithfully on the space of functions on the formal neighborhood of 0 in V'

Funy, = [T Sym®(V*)[[A]].
d=0

Elements v e V act on f € Fun?, by derivation and x € V* by multiplication by linear functions

v-f=ho,f, x-f=af.

and the commutation relations in Dﬁ, are represented by the Leibniz rule.

The space F‘un?/ is in fact a graded associative algebra, where the grading is specified again by
degV* =1 and degh = 2. Besides, the action of ijv respects the grading

(Dev)d : (Fun?,)d, c (Fun?,)dﬂl,,

Thanks to this grading, for any elements L € D{}V and F ¢ F‘un?/ it is possible to make sense of
e FIM(L-eF/M) as an element of Fun’:.

Note that any F e Funfb/ can be uniquely decomposed as

R
F=Y “F,,  FyneSym"(V*).
g,n>0 n!
Theorem 2.5 ([56], Theorem 2.4.2). Let A:V — DI, be a quantum oo-Airy structure on 'V and
choose a polarization of (W,Q) adapted to the Lagrangian subspace Z(V') of W (as given by the
corresponding classical oo-Airy structure). There exists a unique F € Fun?, such that

(i) e FIM(A()-eF") =0 for anyveV,
(i1) Fy0=0 for any g >0,
(le) FO,l =0 and Fo)g =0.

The Fy,, are usually called “amplitudes” or “correlation functions” or “free energies”, and
Z = ef'I" is called the “partition function”. Conditions (i) — (ii) — (iii) imply that the amplitudes
are uniquely determined by a recursion on 2g — 2 +n > 0. The recursive formula is spelled out
in Corollary The main feature to remember about this formula is that its terms are in
correspondence with equivalence classes of excisions of embedded S +— ¥ ,, of smooth surfaces .S of
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genus h with k ordered boundaries into a smooth surface 3, ,, of genus g with n ordered boundaries,
such that the first boundary component of S coincides with the first boundary component of ¥ ,.
Here, two embeddings S — X, ,, and S’ — 3, ,, are considered equivalent if they are related by a
diffeomorphism of 3, , preserving the ordering of the boundary components of ¥, ,,. Therefore,
the number of equivalence classes is finite and they are characterized by the topology of ¥, ,, - 5.
This justifies the name topological recursion. In the special case of (r = 2)-Airy structures, the
only terms appearing correspond to excisions of pairs of pants, i.e. (h,k) =(0,3). The topological
recursion modeled on the excision of surfaces other than pairs of pants first appeared in [19].

2.1.4. Finite vs. countable dimension

We will encounter vector spaces V' which are countable products of finite-dimensional vector spaces.
V= H Vi
p20
This situation can be handled without difficulty in our discussions, by defining tensorial construc-
tions relying on the unambiguous finite-dimensional tensorial constructions. For instance, we agree

that the dual is
V* _ @ Vp* ,

p20
where @ is the direct sum as opposed to the direct product []. Then, the cotangent space T*V =
V @ V* has a well-defined symplectic pairing. We define the tensor product as

P
veV =][(VeV'),, (VeV),=@V,eV,,.

p=0 q=0
2.1.5. Classical versus quantum Airy structures

Due to Theorem 5] quantum Airy structures can be considered as initial data for the topological
recursion. As many known examples show, the Fj ,s often have an interpretation in enumerative
geometry or topological field theory, i.e. count surfaces of genus g with n punctures/boundaries
in various instances. Another trend of applications (for r = 2) concerns the computation of WKB
expansions of sections of holomorphic bundles on curves annihilated by a flat h-connection. The
beauty of the theory is that all these problems fit in the same universal scheme of the topological
recursion. On the other hand, it is not an obvious task to construct quantum Airy structures.

Reversing the usual path from a problem to its solution, we think that it is worth searching
for other constructions of quantum Airy structures as they would probably provide solutions to
interesting geometric problems. In particular, it is appealing to look for constructions directly
from the symplectic or Kéhler geometry of manifolds and their Lagrangians. We certainly have
the possible applications to the moduli space of flat connections on curves in mind.

We now point out that symplectic geometry easily gives rise to classical oco-Airy structures.
Consider for instance a real symplectic manifold (X, ), which can be assumed to be real-analytic
without any loss of generality according to [58]. Let Lo and L be two real-analytic Lagrangian
subvarieties, which intersect and are tangent at a point p € M. Take W =T, X with the symplectic
form induced by  := Qx|,, and V = T},Lg. A suitable choice of Darboux coordinates gives an
analytic isomorphism f : Ux — Uy from a neighborhood Ux € X of p to a neighborhood Uy, ¢ W
of 0, preserving the symplectic structure, such that f(p) =0 and f(LonUx) =V nUw. By the
inverse function theorem, upon taking smaller Us, there exists a linear map A, from V to the
space of real-analytic functions on Uy, realizing L locally as the zero-locus of A,y

f(LnUx)={weUw | VveV, Au(v)(w)=0}.
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Im A\an generates the ideal of the ring of real-analytic functions on Uy, which vanish on f(LnUx). In
fact, since L is Lagrangian, this ideal is a Poisson subalgebra. The condition 7},A¢ = T),L implies
that the linear map V' — W, which associates to v € V' the unique ¢, € W such that Q(t,,-) =
doAan (v), namely the differential of A\,, at 0 € W, is a Lagrangian embedding. Consequently, we
obtain a classical co-Airy structure by taking A(v) to be the formal Taylor series at 0 of Aay (v).

In the less frequent situation where there are Darboux coordinates such that L is cut out (locally
around p) by polynomial equations of degree < r, we obtain a classical r-Airy structure.

It is not easy to exhibit a classical 2-Airy structure A. In fact, this amounts (see [5]) to finding
a collection of functions (\;);er of the form
Ni=yi— 2 (SAL yzamy + Blyzays + 2CL yya), (XAt = 2(BS .~ Bl ), (2.1)
a,bel ael
where (z;);er is a basis of linear coordinates on V', (y;)es the dual coordinates on V* such that
{zi,y;} = 6;; and (A}, B,,C},) are scalars. The Poisson commutation relations impose an
overdetermined system of linear and quadratic constraints on these scalars. However, once a
classical 2-Airy structure has been found, it is fairly easy to describe its possible quantizations.
Indeed, such a quantization A; must be of the form
Xi =h0p, = Y, (AL ywats+ Bl o hdy, + 3Ch 1205, 05, )~ DY, [N, Nj]= Y A(B} ,—Bl )\
a,bel ael
for some scalars D*. The Lie algebra commutation relations are in fact equivalent to affine con-

straints for D*. Note that the “quantum correction” D* arises naturally from the ambiguity in
the ordering of x and h0, to quantize the B-terms in (2.1]).

The previous example suggests that the difficulty in finding classical r-Airy structures decreases
with r, and disappears for r = co. On the contrary, the difficulty of quantizing a given classical
r-Airy structure is absent for r = 2, but increases with r. Indeed, one has to introduce an increasing
number of quantum corrections which, for » > 2, must satisfy non-linear constraints in order to lift
the Poisson subalgebra condition to a graded Lie subalgebra condition.

2.2. A computational approach

The basis-free definitions of quantum higher Airy structures given in Section 2] clarify the geo-
metric context of our work. We are going to restart from scratch and give a roughly equivalent
presentation of the setup using bases. It can be read independently of Section [Z] some readers
may find these more basic definitions easier to grasp, it facilitates the exposition and is closer to
the notations of [56].

2.2.1. Basis-dependent definition

Let V be a C-vector spaceﬂ. We are going to assume that V' has finite dimension D, but there is no
difficulty in adapting it to the case of countably infinite dimension as in Section 22T.4l Denoting
I={1,...,D}, let (y1)ier be a basis of V and (z;);e; be the dual basis. We can think of ys as
linear coordinates on V* and xs as linear coordinates on V*. Then W =V @ V* is equipped with
the Poisson bracket

Vl,mEI, {Il;ym}zal,m; {Ilaxm}:{yhym}:o-

IThe paper would be equally valid over a field of characteristic 0.
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We identify ng = K[, (21)ier, (RO, )ier]] with the completed algebra of differential operators
on V. We define an algebra grading by assigning

degx; = deghdy, = 1, degh=2. (2.2)

Definition 2.6. A higher quantum Airy structure on V is a family of differential operators (Hy)ger
of the form

Hy, = hOy,, — P, (2.3)
where Py € ng is a sum of terms of degree > 2. Moreover, we require that the left ng-ideal
generated by the Hys forms a graded Lie subalgebra, i.e. there exists g’,zf'JC2 € D{}V such that

[Hklkaz] =h Z g]]:i)szkg' (24)
kel

This definition is a basis-dependent definition that should be compared with the basis-free
Definition 2.3l As introduced there, we may define a quantum r-Airy structure as a higher quantum
Airy structure such that all P only have terms of degree < r.

Remark 2.7. In the particular case where all the Py are homogeneous of degree equal to 2, the
g,]:f r, must be scalars, and the Hy, generate a graded Lie subalgebra. We then recover the standard
definition of quantum Airy structures in [56].

Remark 2.8. It is easy to see the two distinctive properties of higher quantum Airy structures
from the basis-dependent definition

(1) The operators Hj have a very specific form. There are exactly D operators, and they all
start with a linear term of the form A0,, . This precise form is what is responsible for the
uniqueness of the solution to the constraints Hy - Z = 0, as we will see computationally by
calculating the resulting topological recursion.

(2) The operators satisfy the subalgebra property (24)), which is crucial to ensure that a
solution to the constraints Hy - Z = 0 exists.

We can write down an explicit decomposition of the differential operators H; in monomials. To
simplify notation, and anticipating further interpretations, we introduce the operators

Jl = h&wl, J_l = l.fL'l lel. (2.5)
We define a new index set Z={-D,...,-1,1,...,D}.
Let dj (possibly co) be the maximal degree in Hy,. We can decompose
S h )
He=Jdi= 2, > o 2 OVlKal: Jay Ja, s, (2.6)
m=2 £,j20 © qeTt
04+2j=m
where :---: denotes normal ordering, i.e. all the J; with negative is are on the left. The coefficients
CU[k|a] are fully symmetric under permutations of o = (v, . .., ay). By convention, the product

*Ja, - Ja, t 18 replaced by 1 when ¢ = 0.

Remark 2.9. Note that in the quantization framework introduced in Section 2] the terms with
7 =0 correspond to the quantization of classical terms with normal ordering, while the terms with
7 >0 arise as quantum ordering ambiguities.
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Example 2.10. To clarify the notation, let us compare with the notation used in [5] for quantum
Airy structures, where dy, = 2 for all k € I. In this case we have
He=Jp-1 5 COklar,a2]:Ja, Jo,: + hCV[K|2]

a1,a2€l

:hawk—(% Z C(O)[k|—al,—ag]alagxalxaz+ Z C(O)[k|—a1,a2]a1xalham

ay,a0€el a1,a0€l

az

+1 3 0Oklay, as]h?d 8za2+h0(1)[k|®]).

Tay
aq,a0€el

In the notation of [5], we recognize the tensors
k

A
C(O)[k| —a, -] = —=2
109
k

B
C(O)[k| _a17a2:| _ o1, ,
aq

COk|ay, an] = CF

Q1,02 )

CWV[klg] = D*.

To a higher quantum Airy structure, we can associate a partition function due to the following
key result of Kontsevich and Soibelman (see Theorem 2.5)).

Theorem 2.11. [56, Theorem 2.4.2] Given a higher quantum Airy structure (Hy)ker, the system
of equations
Vkel, Hp-Z-=0,

has a unique solution of the form

Z=exp| Y —Fya|,  FyneSym"v. (2.7)
920, n>1 :
2g-2+n>0

The existence of partition functions associated with higher quantum Airy structures and the
fact that they often have enumerative geometric interpretations (see Section [0) is essentially the
reason why quantum Airy structures are interesting. We can decompose

Fyn= Z Fynlalza, - za,
ael™
where Fy, ,[«] is fully symmetric under permutations of & = (a1, ..., ay ), and see the Fy ,, as gener-
ating series for the coefficients Fy ,,[a], which are expected to have an interesting interpretation in
enumerative geometry. By applying the differential operators Hy, on Z, we can obtain the Fy ,[«]
by induction on 2¢g -2+ n > 0, as we now show explicitly.

2.2.2. Recursive system

The set of constraints Hy - Z = 0 can be turned into a recursive system for the Fy ,[ca]. Due to
the specific form of the differential operators Hy (see Remark [2Z.8), this recursive system is always
triangular. And because it is known that a solution to the constraints exists (see Theorem 2.TT),
it follows that the recursive system uniquely determines this solution.

Let us explicitly write down the recursive system satisfied by the F, ,[a]. Given a formal series
f in A, we introduce the notation [A?]f to denote the coefficient of f of order g in A.
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Definition 2.12. For a € Z% and € I, we define

E§le[a|ﬂ] =[] 3151...3%”71 (Zfl 3Ja1"'Jai‘Z) . (2.8)

Notice that E_((]?,)I[QW] =0g,00n,1-
Then we have the following result.
Lemma 2.13. The system of equations
Vkel, Hy-Z=0,
implies the following system of equations
dp 1 ) y
EDKBI=Y. S = Y CDka]=Y,  [alB], (2.9)

m=2 £,j>0 4 et
0+2j=m

forall BeI™', n>0, all g>0, and all ke 1.

Proof. Apply the differential operator d;, =+ 0z, to ZYHy-Z =0, set all (x7)cs to zero and pick
the coefficient of order ¢ in h. O

We need some more notation. The coefficients F) ,,[a] were defined for 2g-2+n >0 and cve I"™
in (27). We extend this definition to a € ", by setting Fy ,[«] = 0 whenever one of the «; is
negative. For 2¢g — 2+ n =0, we introduce

F()_Q[OQ,OZQ] = |041|5o¢1,7o¢2 . (210)

Let o € Z' and B € I™!. The notation A - o means that X is a set partition of «, i.e. a
set of |A| non-empty subsets of o which are pairwise disjoint and whose union is . We denote
the elements (sets) of the partition A generically by A. A partition of 8 indexed by A is a map
p: A= P(B) such that (ur)rex are possibly empty, pairwise disjoint subsets of 5 whose union is
5. We summarize this notion with the notation p +y 3.

Then we have the following result.

Lemma 2.14. Leti,n>1. For a € Z* and €I, we have

E((]le[aW] = Z Z i ( H th=|>\+#xl[/\7ﬂ>\]) ) (2-11)

A h:A—N p=xB \ AeX
i+ sex Pa=g+A|
where the double prime over the summation symbol means that terms with hy = 0, |ux| = 0 and
[A| <2 are excluded from the sum. In other words, Fy 1 does not appear in the sum, and Fyo only
appears with [N =1 and |uy| = 1.

Proof. For ae I', i.e. all a; > 0, the identity is straightforward. It involves Fy 2 only via positive
indices, therefore such terms are zero. When some of the a; are negative, we remember that
Jo, = |au|z)q,|. Thus one of the S, must be 3, = |am|, otherwise by definition (see ([Z.8)) the
contribution would be zero. We can include these cases by introducing coefficients Fp 2[cv, Bim ]
that are equal to |oy| when f,, = -y, and zero otherwise. This is precisely how we defined the
Fy 2 coefficients in (ZI0). Thus the formula remains valid with these cases included, as long as the
condition enforced by the double primed summation is there. 0
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Example 2.15. To clarify the notation, let us write down explicitly what this expression looks
like for i = 1,2, 3.

EE]}T)l[a”ﬂ] = ngn[alaﬂ]a

1

=@ o1, 00|8] = Fy-rnaalar, a0, B8]+ Y Fuyispuilon, #1]Fhg 1spu [0z, p2]
hi+ho=
i1 Upia=p

Note that the second line is not valid for (¢g,n) = (1,1), in which case 5521) [a1, as|@] = 0 because

of the double prime condition in the summation (i.e. Fp2[aq,a2] cannot appear).

Further,
=) a1, az, as|]

”

= Fyonealon,an,03,81+ >0 (Fuyaspilon, 21 Fhy o402, s, pi2]
h1+h2=g*1
H1lpe=0

+Fh1,1+\,u1|[042a Ml]Fh2,2+m2|[041, ag, 2] + Fh1,1+|m\[0437/L1]Fh2,2+m2|[041, Q2, Mz])

”

+ Y Fuoasplon, 11 Fn, 1[0z, t2] Frg 14jus [0, ps] -
h1+h2+h3:g
pilpeUpz=03

Substituting [2I1) back into (29, we get the following formula for the coefficients Fy ,,[c].
Corollary 2.16. For all 8 € I"! we have

Falbls % 5T COW Y T 3 (T Apealind). 12

£,5>0 aeTt Ao h:iA-N B\ e
2<l+2j<dy, L+j+2 xex ha=g+A|

Let us now argue that Corollary 210 is a recursive system for the Fy ,[«]. For each term in
the right-hand side, using the constraints under the sums we get

Y (2ha -2+ N +|ual) =2(g + [A| - (€+ ) - 2A |+ L+n—-1=(2g-2+n) + (1 - € -2j).
A

Since we have £ + 25 > 2, we deduce that
S (2ha -2+ |\ +|ua]) <29 -2+n. (2.13)
by
Since the Fj; terms are absent, all terms in the left-hand side of the inequality are non-negative,
hence 2h—2+|A|+|ux| < 29-2+n for each A € A. In other words, (ZI2]) is a recursion on 2g—2+n > 0
determining uniquely Fy, ,, starting from the value of F} o given by (ZI0). For instance, the formula

gives for 2g-2+n=1
Foalk, 81, 82] = B182 CO[k| - B1,~B2], (2.14)
Fia[k] = CO[k|z], '

and for 2g-2+n =2
Fo [k, B1, B2, B3] = B1Bafs CO (k| - B1,~Ba, ~Ba] + 3 (B C O[] - B1, 0] Fo ev, B, Bs]
ael (215)
+ B2 COLk| = Ba, 0] Fo s, B1, B3] + B3 COk| - B3, a] Fos[a, B1, B2])
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and
Fiaolk,B]1=> BCOk| - B,a] Fi1[a] + Y %O(O)[Hal,az] Fo3[B,01,a2]
ael ay,azel (2.16)
+BCWk| - 8]

Remark 2.17. While [ZI2)) is recursive, it does not treat k& and fi,...,08,-1 in a symmetric
fashion. In other words, it is not clear from ([2.12) that the F, [k, 3] thus constructed are fully
symmetric. It could happen that no symmetric solution to (ZI2) exists. That is, the recursive
system does not justify the existence part of Theorem 2Tt it does however imply uniqueness if a
solution exists. In fact symmetry cannot hold for general coefficients Cs. The graded subalgebra
property of (Hy)ker — which implies nonlinear relations between the C's — is essential in proving
the existence of a solution Z to the constraints, which is equivalent to proving the existence of a
symmetric solution to (2I2]).

2.2.3. Reduction

In general a higher quantum Airy structure (Hy)ge; may involve linear differential operators. In
this section we argue that we can essentially get rid of the linear differential operators. Note that
this section is not essential for the rest of the paper.

Let (Hg)ger be a higher quantum Airy structure. Assume that Ij;, c I is such that Hy = Jj, for
all k € I;,. For any k € I, we introduce the reduced differential operator Hy|yeq, which is obtained
from Hj, by formally setting J,,, = 0 (in the normal-ordered expression for Hy) whenever |m| € L.
Note that H;|yeq = 0 for all ¢ € Ijj,. We can think of the Hyl|..q as differential operators on V' or on
its subspace

Viea={zeV | Vmeln, zn=0}.

Lemma 2.18. There exists a unique solution to the differential constraints Hy|eaZ = 0. Moreover,
the partition function Z, considered as a formal function on V, coincides with the unique solution
to the differential constraints HiZ = 0.

In other words, if we are interested in calculating Z, we can forget about the linear differential
constraints H; for i € I;;,, and instead solve the reduced differential constraints Hi|eaZ = 0 on
‘/rcd-

Proof. Let J be the left ideal generated by the Hj, and let Z be the unique solution to the
differential constraints HiZ = 0. It is straightforward to show inductively that for all k£ € I,
Hilreqa € J. Thus, Hi|reaZ = 0, and hence Z is also a solution to the reduced differential constraints.

To show that it is unique, we look at the form of the differential operators. First, we know
that HyZ = JiZ =0 for all k € Ly, so Z does not depend on those z. It follows that Z depends
on the same number of variables as the number of non-zero Hyleq. Moreover, it is clear that
the non-zero Hy|req satisfy the degree 1 condition of quantum higher Airy structures with respect
to these variables. Together those imply that the differential constraints Hg|,eaZ = 0 uniquely
reconstruct the coefficients F, ,,[a] of the partition function by topological recursion. It follows
that the solution is unique. O

What we have proven is that there always exists a unique solution to the reduced differential
constraints Hy|eqZ = 0, and that this solution coincides with the unique partition function of the
higher quantum Airy structure (Hp)ger. It is tempting to conclude that the Hy|eqs thus also form
a higher quantum Airy structure. But to claim that we would need to show that the left ideal
generated by the reduced Hglyeq is a graded Lie subalgebra of the algebra of differential operators
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on Vieq. While we expect this to be true and we prove it in a special case (Lemma E12), we do
not have a complete proof of this fact currently.

2.3. Crosscapped Airy structures

A variant of the topological recursion involving Fy ,, for half-integer ¢ is required in applications
to large size expansions in S-matrix integrals [26] and to open intersection theory [69] [3]. We can
include this variant in the formalism of Airy structures by allowing half-integer powers of A, i.e. a
formal variable A'/? of degree 1, as follows.

Definition 2.19. A crosscapped higher quantum Airy structure on a vector space V equipped with
a basis of linear coordinates (x)ker is a family of differential operators indexed by k € I of the

form H, k = h Oy, — P where the terms in P, € DTY‘Q/ have degree > 2. Moreover, we require that the

left DT* -ideal generated by the Hs forms a graded Lie subalgebra i.e. there exists gk ko € Dh1/2

such that

Vkl,kQEI, Hk?17H]C2 ngl k2Hk3'
ksel

The degree condition means that we have a decomposition

=Jp - Z Z L Z C(J/2) (ko] Ty Jay:
m>2 £,5>0 o aeZt
Z+j m
Proposition 2.20. Given a crosscapped higher quantum Airy structure (Hy)ger, the system of
equations

Vkel, Hy-Z=0, (2.17)
has a unique solution of the form
ho~t
Z=exp| 3 — Funl, FyneSym™(V*). (2.18)
geN/2, n>1 TV
2g-2+n>0

given by the recursive system (212) where one allows half-integer genera.

Proof. The proof of existence is a small adaptation of the proof of [56] and therefore omitted. To
prove uniqueness, we repeat the arguments of Section to show that (2.17) computes the Fj, ,
inductively on 2¢g — 2 +n > 0. In fact, this recursive system takes the form (2I2]) except that j, g
and hy can be nonnegative integers or half-integers (but note that 2g — 2 +n is always an integer).
The condition (ZI3)) is still valid and implies, as there are no Fy, ,, with 2go—2+n¢ <0 in ([2I3),
that this recursive system determines uniquely all Fj, from the value of Fp > specified by the
convention (2.10]). O

It is perhaps instructive to write down the value of F,, given by the recursion. In fact this
also gives for g = 0 a recursion on n, therefore the formula for the Fj , are the same as those of
Section Notice that Fy/;; is absent from ZI8). With 2g -2+ n = 1, we have a new term
Fyj35 while the formulae (Z.I4) remain unchanged

Fo [k, B1, B2] = B182 CO[k| - B1,~B2],
Fiyoolk, 8] = BCUk| -],
Fi1[k] = (1)[k|®].
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With 2g -2 +n = 2, F} 2 receives a new contribution compared to (2.16) and we have two new
terms with half-integer genus

Fo.alk, B1, B2, B3] = B1B2fBs COLK| - B1,~B2, B3]+ 3 (1 COK| - 1, ] Fo 3], B2, Bs]

el
+ B C O [k| - B2, a] Fos[ev, B, Bs] + B3 CO[k| - B3, 0] Fos[e, B1, B2]) ,
Fijaslk, B1,B2] = B182 O k] = B1,-Ba] + > CUD[k|a] Fy 3], 1, B2]

ael

+ > (B COLE| - 1, a] Fijaola, B2] + B2 CO[E| - B2,a] Fijaalo, B1]),

ael

Fialk, 8] = BCW [k - 81+ Y. BCO[K| - B,0] Fi1[]

ael

+ Z %C(O)[k|a1,a2]Fo,3[3,041,042]a

aq,a0el

Fyjo1[k] = COP K@)+ Y (CW[kla] Fijo[a] + CYP ko] Fia[a])

ael

+ Z %C(O)[k|alaa2]F1/2,2[0417042]-

aq,a0el
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3. W ALGEBRAS AND TWISTED MODULES

Our main construction of higher quantum Airy structures will take the form of W constraints for
some particular modules of W algebras. W algebras are vertex operator algebras (VOAs), and
hence we introduce some terminology and notation about VOAs and modules over them.

We are primarily interested in Heisenberg VOAs and W algebras in this paper. From a conformal
field theory point of view, W algebras arise as the algebra of modes when the CFT includes chiral
primary fields of conformal weight > 2. Algebraically, they are certain “non-linear” extensions of
the Virasoro algebra; the first examples were constructed in [73)].

To obtain higher quantum Airy structures we need to construct particular modules for these
VOAs. Those will always be obtained by restriction of twisted modules of Heisenberg VOAs to
W algebras. In order to construct a twisted module, we essentially construct fields that have
fractional power expansions in formal variables. From the point of view of conformal field theories,
these correspond to choosing a branch in the orbifold VOA.

In this section we introduce VOAs and twisted modules. Along the way we construct a number
of interesting left ideals for the algebra of modes of W algebras that are graded Lie subalgebras.
This will prove crucial in the next section to construct higher quantum Airy structures.

3.1. Vertex operator algebras

There are many references on this topic. We mostly follow the presentation of [10) B3], 48|, [46].
Definition 3.1. A vertex operator algebra (VOA) is a quadruple (V,Y,]0),|w)) such that

e V is a Z-graded vector space (the space of states) V = @;zV; such that V; = 0 for [
sufficiently negative and dimV} < oo for all [ € Z. If |v) € V}, we say that the conformal
weight of |v) is [.

e Y is a linear map (the state-field correspondence)

V. — End(V)[z27']

Y(,2): -
Gy e Y (),2) = S
Y(|v),z) is called the wvertex operator (or field) associated to the state |v), and v, its
modes.
e |0) € V is the vacuum state, which satisfies the vacuum property

Y (|0),2) =idv
and the creation property
V|v)eV, Y(jv),2)|0)—|v) e zV[[2]].
e |w) €V is the conformal state, which satisfies the truncation condition
V|v) eV, v lwy=0 for [ € Z sufficiently positive,

and the Virasoro algebra condition, which can be stated as follows. Let w,, be the modes
of Y(Jw),z), and define L; = wj;1. Then

-1 .
[Li, L] = (I =m)Ljsm +¢ ?5l+m,01d\/7

where ¢ € C is the central charge. Further, if |v) is homogeneous of conformal weight n,
then Lo |[v) = n|v) and we have the derivation property

VeV, Y(L-ﬂu),z)z%Yﬂu),z).
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e Finally, we have the axiom of locality. (Y(|U) ,z)) is a local family of fields; i.e., for

|u),|v) €V,
(z1 = 22) N [Y(u), 21), Y (Jv),22)] = 0 for some N, , € Z,,

Although innocuous looking, this axiom gives the vertex operator algebra much of its
structure. In particular, this is equivalent to the Jacobi identity /Borcherds identity.

veV

We will often drop the Y,|0) and |w) in the definition of a VOA and merely denote it by the
underlying space of states V. We note that the mode L keeps track of the conformal weight of
the states.

As the vertex algebra is (usually) non-commutative, we define the notion of normal ordering

Definition 3.2. We define the normally ordered product of two fields Y (Ju),z) and Y (|v),z) as
the following
Y ([u), 2)Y (Jo) ,w): = Y(|u), 2)-Y (jv),w) + Y(|o) ,w)Y (Ju)  2)+,

where we defined Y (Jw), 2); = Yo wiz™7t and Y (Jw), 2)- = Yo wiz 7L

3.2. W(g) algebras

There are various equivalent constructions of W-algebras. They are defined as the semi-infinite
cohomology of affine vertex algebras of level k € C [43] associated to a Lie algebra g. For
generic k, they are isomorphic to certain intersections of kernels of screening operators on free
field/Heisenberg algebras [43] [46] [49], and for the principal W algebras of simply-laced type there
is also a coset realization [7]. Both the coset and screening realizations admit a certain limit where
the W algebra is described as an orbifold by the compact Lie group G of the Lie algebra g. This
is the situation we are interested in. In this case, the W algebra is a subalgebra of the Heisenberg
vertex algebra of rank equal to the rank of g. For W algebras of type gly,,, we can also use the
quantum Miura transformation, which gives us explicit generators.

We now construct our first example of a VOA, the Heisenberg VOA. Then we explain the
construction of W algebras as subalgebras of the Heisenberg VOA.

3.2.1. Heisenberg vertex operator algebras

Let L be a lattice of finite rank equipped with a symmetric non-degenerate bilinear form
(y:LxL->Z

Define b := L ®7 C. The bilinear form on L induces a bilinear form on . We define the Heisenberg

Lie algebra b as the affine Lie algebra

6:(@[)@#)@@[(, (3.1)
leZ
with Lie bracket relations

[glunm] :<§7n> 16l+m,0K7 57776 hu l7mEZ7 (3 2)
[K,5] =0, '

where we introduced the notation & =€ ®t!, [ € Z for any € € b.

We define the Weyl algebra Hy as the universal enveloping algebra of 6 quotiented by the
relation K =1. We also define a class of modules over Hp, called Fock modules as follows. For any
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A € by, define the Fock module Sy as the H-module generated by the vector |A), such that for any
§eb,
vi> 07 §l |)‘> = Oa and 50 |A> = (55 A) |/\) .

If we define 7 as the subalgebra of H;, generated by the negative elements {§; | { € h, 1< 0},
we have the isomorphism Sy = Sym(#7)|\) as vector spaces.

The Fock module Sy = Sym(#;)|0) admits a vertex operator algebra structure, by which we
mean that we can find a quadruple (Sp,Y,|0),|w)), that satisfies the axioms of Definition 31l The
vacuum state is |0). The state-field correspondence Y (-, 2) : So = End(Sp)[[z,27]] is defined as

Y (|0), ) = ids, ,
VEeh,  Y(Ea]0),2)=Yae (3.3)
leZ

States of the form ﬁkl--- ™. 10) where k; > 0 clearly span Sy, and the state-field correspondence
is defined as

I n 1 dn! I
V(e € |0)’Z):'ﬁdz’fl =Y (£4,10),2) - FoDiaT Y(E410),2):. (3.4)
Finally, if we pick an orthonormal basis £!,... &% for b, we define the conformal vector |w) as
14 _ _
=5 2ELEL o) (35)
i=1

Its modes form a Virasoro algebra with central charge ¢ = dim b = rank L. It can be checked that
those satisfy the axioms of a VOA.

Definition 3.3. We denote the Heisenberg vertex operator algebra associated to h by Sy.

3.2.2. Lattice vertex operator algebras

From the previous section, one can naturally define the lattice vertex operator algebra associated
to L, which contains the Heisenberg VOA as a sub-VOA.

The underlying vector space of the lattice VOA is V, := @acr, S (recall that Sy are the Fock
modules defined in the previous section). In particular Sy c Vy,, and we define the vacuum state |0)
and the conformal state |w) as the ones for the Heisenberg VOA Sy. The state-field correspondence
deﬁned earlier (33) also holds. Tt suffices to define the state-field correspondence for the states
déT he general prescription is obtained by taking normally ordered products as in ([34]).) We

Va(z) =Y (JA),2) = Urz™ exp (— > %2_1) exp (— > %z_l) ,

1<0 >0

hav

where U) is a shift operator

Urlv) =ceapn v+ A) and [Ux,\n]=0, n#0,
and ¢y, € C* is a (essentially) unique 2-cocycle. We will also denote the state |\) by e”.
Definition 3.4. We denote the lattice vertex operator algebra associated to the even lattice L by

Vr.

If L = @ is the root lattice of a simple simply-laced Lie algebra g then Vg is isomorphic to the
simple affine vertex algebra of g at level one and is also denoted by Li(g).

2V>\(z) is the standard notation for these operators, here we use bold letters not to confuse them with vector
spaces of VOAs also denoted V' elsewhere in the text.
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3.2.3. The W(g) algebras

A standard introduction to W algebras is [6]. Let g be a simple finite-dimensional Lie algebra.
Then to each embedding of sly in g one can associate the W algebra of g at level k € C via quantum
Hamiltonian reduction from the affine vertex algebra of g at level k. The best-known case is the
one of the principal embedding of sl in g, which we will simply denote by W*(g). Let now g be
simply-laced. In this case the principal W algebra can also be realized as a coset [7, Main Theorem
2], that is, for generic k

Cla) o alt] v, k+RY
W) 2 (i@ ® L) ™, 0= e
with A" the dual Coxeter number of g, and Vj(g) the universal affine vertex algebra of g at level k
and Li(g) its simple quotient at level one. Let G be the compact Lie group whose Lie algebra is
g. In the limit & — oo this coset becomes just the G-orbifold of the lattice vertex algebra [30] and
this is the case we are interested in

W(g) =W (g) = L1 (9)°.

W*(g) and in particular W(g) is strongly generated by elements W* of conformal weights d; + 1,
where the d; are the Dynkin exponents of g, see for example [46] Theorem 15.1.9]. For generic
level it is also freely generated by these fields and the orbifold limit is always a generic point of a
deformable family of vertex algebras by [30].

Remark 3.5. In summary, the principal W algebras form a one-parameter family of vertex alge-
bras and we are interested in a very special point, namely the level for which the W algebra can
be realized as a G-orbifold inside the lattice vertex algebra (for this g needs to be simply-laced).
This level is special for a second reason. W algebras enjoy Feigin-Frenkel duality [44] and our level
is the self-dual case, i.e. W(g) is its own Feigin-Frenkel dual.

For completeness we recall the definition of strong generators for a vertex operator algebra:

1\

Definition 3.6. A vertex operator algebra V' is said to be strongly generated by elements (y*)1,
in V if the underlying vector space V is spanned by

'Y}kl ""Y?kn 0}, where k; > 0.

In addition, V is said to be freely generated if the above spanning set is a basis for the underlying
vector space V.

Remark 3.7. If we know the state-field correspondence for the set of strong generators of a vertex
operator algebra V', say v* =+";|0), we can use the strong reconstruction theorem [46, Theorem
4.4.1] to determine the state-field correspondence for the states 7', 4", |0) where k; >0

1 om 1 det 1 dt
YOk 00:2) = Gy e Y 0RO ) oy

Hence, we can interpret strong generation as the statement that all fields of the VOA can be
obtained as linear combinations of normally ordered products of the fields Y (7*,2) where i €
{1,...,n} and their derivatives.

Y (4" 10),2):. (3.6)

3.2.4. Examples

Let us now study some examples of W(g) algebras.

Example 3.8. The algebra W(slz) is isomorphic to the Virasoro vertex algebra with central
charge ¢ = 1. It is well known that this VOA is strongly generated by a single vector of conformal
weight 2.
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Strictly speaking, we only defined W algebras for simple and simply-laced Lie algebras. It is
straightforward to construct W algebras for direct sums of those. In particular, in the following
we will study the algebra W(gly,1) = W(sly+1) ® Sp, defined as the tensor product of W(sly.1)
and a rank one Heisenberg vertex algebra Sy.

Example 3.9. The Lie algebra gly,; is the algebra of (N +1) x (N + 1) matrices over C. Tts
Cartan subalgebra h can be described as the subspace of diagonal matrices. We equip it with the
basis (x")N, where x' is the matrix element that has a 1 in the (i+1)th place on the diagonal and
0 elsewhere. The algebra W(gly,,) with central charge ¢ = N + 1 is strongly freely generated by
the following N + 1 vectors in the Heisenberg VOA S, associated to b

ei(x°1s ... xM) |0) ie{l,...,N+1}, (3.7)

where the e; denotes the i-th elementary symmetric polynomial. The proof of this statement
follows immediately from the Miura transformation, see [8, Corollary 2.2] where we take the limit
a — 0. The result is originally due to [42].

Example 3.10. The Lie algebra Dy = soon is the Lie algebra of orthogonal 2N x 2N matrices
over C. The roots of 505 can be described as +x® + x/ where ()Y, is an orthonormal basis for
the Cartan subalgebra CV. The following vectors in Sy strongly generate the algebra W(soox )
with central charge ¢ = V.

N . o
Vd:(ZeXde:i‘ +e_§e>_<1)|0) de{2,4,6,...,2N -2},
= (3.8)
7Y =t X 10) -
The conformal weight of these vectors are 2,4,...,2N — 2 and N, which are indeed the Dynkin
exponents of s0oy. This statement follows from the results of [7, [30], i.e. from the description of
W(so2n) as SOgpn-orbifold of the lattice vertex algebra of ooy .

Remark 3.11. We note the important fact that W(g) is invariant under G' and hence under the
action of the Weyl group of g. This remark will be fundamental, in our construction of higher Airy
structures as W(g)-modules in Section [l

3.3. The graded Lie subalgebra property

In this section we construct a number of left ideals for the algebra of modes of W algebras that
are graded Lie subalgebras. This will be essential for the construction of higher quantum Airy
structures from modules of W algebras in the next section. We refer the reader to Section 3 of [12]
for a more thorough treatment of the subalgebra property in the context of VOAs.

3.3.1. Graded Lie subalgebras and left ideals

Let V be a vertex operator algebra with finitely many strong and free generators v',..., ™ of
conformal weights Aq,...,A,, and let A be the suitably completed algebra (the current algebra)
of modes of V.

Let F,V be the subspace of V spanned by elements %, -’ [0) with A;, +--+A;, <p. Then

F={F, | peZ} is a vertex algebra filtration, called “Li’s filtration” (see Section 3.1.2 in [12]). It
induces a filtration on A denoted by F,A.

The algebra of modes A is a Lie algebra with respect to the commutator [-,-]. Moreover, as
shown in Section 3.1.2 of [I2] (see Lemma 3.3), for principal W-algebras we have:

[FpA, FyA] € FprgaA. (3.9)
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Our goal is to find graded Lie subalgebras of A, in the following sense. Let S be a given subset
of the modes of the strong generators v*,...,7™ of V, and A- S € A be the left A-ideal generated
by S. We say that A- S is a graded Lie subalgebra of A if

[A-S,A-S]cA-S. (3.10)

Because of (8], in our construction of higher quantum Airy structures this condition will become
equivalent to the subalgebra condition in Definition after introducing A as in Section

We can make this subalgebra property more explicit by introducing an ordering on the set of
all modes (i.e, the underlying set of A). We define an ordering such that a mode in S is always
greater than a mode not in S. We say that elements of the ideal A-S are good with respect to S.
In particular, v is good if the right-most term of every ordered monomial of v (expressed in terms
of the strong generators) is in S.

The following lemma is clear.

Lemma 3.12. The left A-ideal generated by the modes in S is a graded Lie subalgebra of A if and
only if for any two modes v,,,7, € S, one has that [,,,7},] € Fa,+a,-2A is good with respect to S.

The following subsections give examples in an increasing order of complexity. However the idea
of construction is always the same. We are looking for a suitable module M, generated by a
highest weight vector |A) and such that this highest weight vector is annihilated by a mode if and
only if this mode is in the set S of interest (i.e., it is a good mode). It then remains to show that
the commutator of two modes in S is still good and essentially this amounts to showing that a
basis of M is given by all the ordered monomials that are not good. We start with the case where
M is the vacuum of our vertex algebra.

3.3.2. The vacuum subalgebra Asq

Our first subalgebra is the left ideal generated by all modes of the strong generators of a W algebra
that annihilate the vacuum state |0).

Proposition 3.13. Consider a vertex operator algebra V' freely strongly generated by homogeneous
states ' € V indeved by i € T (where T is a finite set), with respective conformal weights A; € 7.
Let A be the suitably completed algebra of modes of V. Let S = {7} }iez k20, and consider the left
ideal Asg = A-S. Then, Asg is a graded Lie subalgebra of A. Equivalently, when k, k" >0,

i i - j 1 i
[’Yk?/}/k’] = Z Z f((ik;)(i/7kr)/y}]7 € fAi+Air—2A (311)
j=1p20
(1,5)
for some f(i i), i) € A.

Proof. We have the following commutation relations which follow from the locality axiom/Bor-
cherds identity [46, Section 3.3.6]

RAEDY (:1)('7:7{71./)164—1@’—1717 (3.12)

m>0

where k, k' > 0.

3Perhaps the easiest way to see this is to introduce h from the start in the vertex operator algebra, as in
Section 3.1.2 of [12]. In this case, B3) becomes [A", A"] ¢ hA" for the h-rescaled modes, and ([BI0) becomes
[AP. 8 AN . S]chAP.S.
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The assumption on strong generation implies that we can express each (vﬁnvi/)sz_m as a finite
linear combination of normal ordered monomials in the generators. Let us look at one of these
normally ordered terms

Tor Voa Vo (3.13)
This monomial could either annihilate the vacuum state |0) or not. Let us first consider the case
where it does. The normal ordering prescription implies that the term furthest to the right, i.e.
vpL annihilates the vacuum. In that case, we are done, as 7,* b is an element of Asg.

Now, let us assume that the term (BI3]) does not annihilate the vacuum |0). Then pz, <0, and
due to the normal ordering prescription, this implies that all the modes appearing in (BI13) are
negative modes We know that v [0) = 0 = ”y}; |0} and hence [*y,i,”yg,] |0) = 0. This means that
vﬁ}”ym ”pr |0) must cancel with some other terms (which are also normally ordered products of
negative modes) in the sum on the right-hand side of (BI2) after acting on the vacuum state |0).
However this contradicts the assumption of free generation (which is that vectors of the form
”ypl ”pr |O) where p; <0 form a basis for V'), and hence cannot occur. O

3.3.3. The subalgebra Aa

We can now construct another interesting left ideal that is a graded Lie subalgebra of A. In this
case, we consider all modes 7 of the generators of a W algebra for k > A; — 1, where A; is the
conformal weight of v*. The construction is rather straightforward.

Proposition 3.14. Consider a vertex operator algebra V strongly generated by homogeneous states
vt € V indexed by i € T where T is a finite set, with respective conformal weights A; € Z. Let A
denote the suitably completed algebra of modes. Let S = {vi }iez ksn,-1, and consider the left ideal
Apa = A-S. Then Aa is a graded Lie subalgebra of A. Equivalently, for k> A;—1 and k' > Ay -1,
we have

n 1
Dokl =2 3 Jii wan € Faa, 24 (3.14)

Proof. Using the strong generation assumption, we can express the commutator (BI4) as sums of
normally ordered monomials of the form

by b b
/Ypi /ng"'/Ypi? (315)

where Y5 (pi —b; +1) = (k= A; +1) + (K = Ay + 1) due to the conformal weight condition. As
k>A;—1and k' > Ay -1, we get

L L
Zpi > Z(bz -1
=1 =1

and hence at least one of the p; > b; — 1. Due to the normal ordering procedure, the last mode on
the right 725 will have this property. This gives the statement of the Lemma. O

3.3.4. The intermediate subalgebras

In fact we can construct many more subalgebras as intermediate cases interpolating between A
and Aa for the W(gly, ;) algebras that we described in Example B9 The particular form of the
strong generators, namely as elementary symmetric polynomials, is crucial for the construction.

In this subsection, we use a different convention for mode expansion of a field as we find it more
convenient. We shift the index of the modes by the conformal weight, i.e., when |v) has conformal
weight A,

Y(lv),2)=> v PR (3.16)
leZ
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The correspondence between the two ways of indexing is v; = viza,-1.

Let us start with the setup. We aim to find one subalgebra in W(gly,,) for each partition of
r:=N+1. Solet A= (A1,..., ) be a fixed partition of r, that is the \; are positive integers such
that 7 = Ay + A2 + - + A, and we order them by size, i.e. A\ > X2 >...> A, > 1. Such a partition
defines good modes as follows.

Definition 3.15. We say that W,  is A-good if A(a) —m >0 where

AMa) =min{ s\ + +Xs>a}.
Now fix a A-order on {1,...,r} x Z with the following properties

(1) (a,-m) > (b,—n) if W2, is A-good but W?, is not A-good.
(2) (a,-m) > (b,-n) if W, and W’  are A\-good and both m,n >0 and a < b.
(3) (a,-m) > (b,—-n) if W, and W  are A-good and both m,n >0 and a = b and m < n.

Let I ={(a1,-m1) > (ag,—m2) > ... > (ag,—my)} be an ordered set. Then we say that
W= W, W2 W

—MmMy —m2 —m1
is an ordered element of the universal enveloping algebra of modes. We define the A-degree of a
mode to be
2a-1 if AMa) #m
d Wa = ’
e8x(Wen) {2@ if A\(a) =m

and extend this definition to ordered monomials as the sum of the A-degrees of the terms. The
A-degree of a ordered polynomial is then the maximal \-degree of its ordered summands. Note
that since W?  is a polynomial of degree a in the modes of the Heisenberg vertex algebra it
follows immediately that the A-degree of any commutator [W¢,  ,W?° ] is strictly smaller than
deg)\ (ng) + deg)\ (len)

We will call a A-order simply an order whenever it is clear which A we are using.

Theorem 3.16. Let A be the mode algebra of W(gl,) and \ a partition of r, then the algebra of
A-good modes forms a graded Lie subalgebra of the Lie algebra of modes. In addition, there exists
a W(gl,.)-module My generated by a highest weight vector |\) such that W, |\) =0 if and only if
We,, is a A-good mode.

Proof. We first consider the partition A = () of 7. The corresponding A-good modes are all non-
negative modes (W%, )m<o. Let v be a generic weight of the rank r Heisenberg vertex algebra S
so that via the embedding of W(gl,) in Sy the Fock module S, also becomes a W(gl,.)-module.
For generic weight v this is a simple W(gl,.)-module and so ordered words in the negative modes
acting on the highest weight vector |v,) of S, form a basis of S,

Sl,:spanC(W‘” WL uy,) | (a1,-m1) > (ag,—msa) > - > (ag,—my), ml>0f0rl:1,...,€).

—my —-mq
We now consider the vector space M with above graded PBW-basis but consider the weight as a
variable so that M can be analytically continued to a module of W(gl,.) over the polynomial ring
in r variables v1,...,v,.. Here the v; are the eigenvalues of the zero-modes of N strong generators
of the Heisenberg vertex algebra. Then specializing to any weight v defines a new module M,,. At
generic v this module will be simple while at special non-generic points it will be indecomposable
but reducible. We generically have M,, 2 S, but for example Mg # Sp. Denote the highest weight
vector of My by |0). By construction W¢, 10) = 0 if and only if W®,, is a A\-good mode. In order
to prove that these A-good modes form a graded Lie subalgebra of the algebra of modes we have
to show that for any two A-good modes W¢,, and W?, the commutator [W?, W? ] is an ordered
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polynomial in the modes and the right most term in each summand is A-good. Consider an ordered
set I ={(a1,-my) > (az,-mz) >+ > (ag,—my)} so that

Wpi= W2 W2 W

—My =m2 =m1
is an ordered element of the universal enveloping algebra of modes. We call Wy a A-good monomial
if W2, is A-good and say that the index set I is A-good. The PBW-basis on My is then given
by all Wy|0) such that I is not a Ad-good index set. It follows that

[mevwlin] = ZCIWI = Z crtWr + Z ctWr.
I I A-good I not A-good

Acting on |0) and since all \-good modes annihilate |0) we have
0= Z C[W[ |0) .

I not A-good
Since the Wy |0) with I not a A\-good index set form a basis of My it follows that ¢y = 0 for I not
a A-good index set. We thus have proven the claim for the partition A = (7). We note that this is
precisely the result proved in Proposition B.14]

The general case is not much different and can be reduced to this case. We prove it by induction
for r. The base case r = 1 is trivial and just a special case of what we have just proven, since
W(gl,) is the rank one Heisenberg vertex algebra and the only partition of 1 is A = (1).

Let 7 > 1. The induction hypothesis is that the statement of the Theorem is true for all r’ < r,
i.e. for all partitions p of W(gl,.) and in addition we require the existence of a W(gl,,)-module
M,, generated by a highest weight vector |p) that is annihilated by all p-good modes and the
Wi |p) with I not p-good form a basis of M,,. With this notation the module M, is also denoted
by M, and the highest weight vector |0) is denoted by |(+")).

Let A = (A1,...,Ap) be a fixed partition of r, that is the A, are positive integers such that
N = X + X+ + A, and we order them by size, i.e. Ay > Ay > - > A, > 1. Further let
" =r—X\, so that u = (A1,...,Ai-1) is a partition of r'. We consider the embedding W(gl,.) in
W(gl,,) ® W(gl, ) and the module M, ® M,,). We want to prove that via this embedding as
W(gl,)-modules My = M, ® M(,,).

We denote the strong generators of W(gly) by (W?);_;, and the ones of W(gl,.) ® W(gl, ) by
(Zb)Z;l and (YC);\fl. Then due to the realization of the strong generators of the W algebras in

terms of normally ordered elementary symmetric polynomials of Heisenberg vertex algebra fields
we immediately have that

a—1
W(z) =Z%(2) + ). 27 N2)YY(2) + Y(2),

d=1
where we note that many of these terms on the right may not appear. For instance Z*(z) = 0 for
a>r"and Y*(z) =0 for a > A,. Hence

a—1

we =2% el+> S z7¢ oY +1eY?,,

d=1neZ
and of course Z%,, =0 for a > " and Y* = 0_,, for a > \,. The p-degree of W(gl,..) lifts to a degree
map on W(gl,,) ® W(gl, ) by saying that the Y, all have u-degree zero. Let [A) := |u) ® [(Ap)).
Then a straightforward verification tells us that

We Ay =0 if and only if W?,, is A-good.

In particular, if W is not A-good then its leading degree summand is 2%, ® 1 if a < 7" and
Zf:\(a) ® Yf;:: ay if @ > 7" In either case the leading degree summand does not annihilate |A)
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which is equivalent to saying that Z*, ® 1 if a < ' is not p-good and VAl “x(@) and Y ) are

m+)\(a
neither u-good respectively ()\p)-good if a>7r". Let I ={(a1,-m1) > (az,—m2) > > (ag,—myg)}
be an ordered set with ordered monomial W := Wffne Wff,wainl Let s satisfy s=Lif ag <71,
s=0if a; > 7" and otherwise defined such that a, <7’ but as,1 > r’. It follows that the projection

of Wy on leading u-degree, which we denote by X, is
X1 =275 (a)" L) Lo L2 2% ® YT Y e

—m2T-my m2+>\(a2) _ms+1+)‘(as+1) ’
Looking back at our requirements on the order of modes we see that the first factor is p-ordered
and the second one is (\,)-ordered. Consider a polynomial of type

Z C[W[.

I not A-good

Assume that it annihilates |A). In particular, the leading p-degree summands annihilate [A) and
hence

0= Z C[X[ |)\>

I not A-good

_ r’ L7 as as ay ap—T . sy1—1"

- Z cr Z—X(ae) Z—A(%H)Z*m Z*m2Z*m1 |'u> ®Y—m[+>\(ae) Y—ms+1+>\(as+1) |()\ZD)> :
I not A-good

By the induction hypothesis, non-good monomials acting on the highest weight vector form a basis
of M,, respectively M, ) and hence all ¢; = 0. We thus have constructed the claimed module
M.

It is now easy to show that for any two A-good modes W, and W?, the commutator [W% , W? ]

is an ordered polynomial in the modes and the right—most term in each summand is A-good. We
have

[ngawén] = Z CIWI + Z CIVVI .
I A\-good I not A-good

Acting on |A) and since all A\-good modes annihilate |\) we have
0= Z C[W[ |/\) .

I not A-good

Since we just proved that all the Wy [\) where I is not a A\-good index set form a basis of M, it
follows that ¢y =0 for I not a A-good index set. This finishes the proof of the Theorem. O

3.4. Twisted modules

In preparation for the construction of higher quantum Airy structures in the next section, we now
introduce twisted modules for the Heisenberg VOAs. Those will restrict to interesting modules for
the W algebras realized as subalgebras of the Heisenberg VOAs.

3.4.1. Definitions

Let us define automorphisms of vertex operator algebras.

Definition 3.17. An automorphism o, of finite order r, of a vertex operator algebra V is an
automorphism o : V — V on the (vector) space of states, with ¢” = idy, which preserves the
vacuum state |0) and the conformal state |w), and such that for any |v) € V it acts as

oY (jv),z)0™" =Y (a]v),2).

Given such an automorphism, we define the notion of a twisted module.
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Definition 3.18. A Z-graded o-twisted V -module W is a Z-graded vector space W = @,z W; such
that W, = 0 for [ sufficiently negative and dim W, < oo for all [ € Z, with a linear map

V — End(W)[[zl/T, zfl/’”]]

Ya('uz) : |1}> — Yg(|’U) ,Z) = Zle%Zle*

-1 -

We require that the vacuum property, creation property and the Virasoro algebra condition
hold for W and Y, (-, 2). In addition, we require the following conditions.

e The monodromy around z = 0 is given by the action of o, namely if o [v) = 279" |v) we
have
Vg =0 unless a € ¢/r +Z.

o (YW(|U) ,z))UEV is a local family of fields; i.e. for |u),|v) €V,
(21 = 22) N [V (Ju), 21), Yo (J0), 22)] = 0 for some Ny, , € Z, . (3.17)

e We have a product formula

k
Far =) ol Vo) ) )

for all [u),|v) € V, |[w) e W and where N = N,, ,, is chosen from the locality axiom.

=Y (un-1-x V), 2) [w) (3.18)

Z1=22=Z2

In the above definition if we set o = id, we get the usual notion of (untwisted) modules. The idea
of twisted modules is to introduce fields that have expansions in fractional powers of z. In physics
this formalizes the notion of orbifold CFTs. Intuitively, we are working on the branched covering
z = (", by rewriting the fields as expansions in ¢ (or fractional powers of z). However, we have
to be careful about the normal ordering in this context. In physics terms, the operator product
expansion (OPE) of the fields changes, and the product formula (BI8]) captures this precisely. This
product formula (and easy corollaries) will be very useful in our W algebra computations.

Remark 3.19. Note that since o(|w)) = |w), the conformal field has a mode expansion
Y (lw),2) =) L 2L (3.19)
leZ
with only integer powers of z.

3.4.2. Twisted modules of the Heisenberg VOA

Given an automorphism o of h, we define a o-twisted Sp-module as follows. We define the o-twisted
Heisenberg Lie algebra b, and define a h,-module called the twisted Fock module, denoted 7. The
latter carries the structure of a o-twisted module over the Heisenberg vertex operator algebra Sp.

Here is the detailed construction. Let o be an automorphism of the Cartan subalgebra h c g of
finite order r
(0(5)70(77»:(5777)7 UT:idh'
Any such automorphism lifts to an automorphism of Sy which we also denote by o. We note that
h admits an orthonormal basis of eigenstates for the action of o.

We extend the automorphism o to h[[t'/",t7/"]] @ CK as follows. Given & € h, we use the
notation &, := £ ® t"* where n € %Z as before. The action of ¢ is then

o(&)=c( @™,  o(K)=K, 1leiZ.



HIGHER AIRY STRUCTURES, W ALGEBRAS AND TOPOLOGICAL RECURSION 34

The o-twisted Heisenberg algebra is the subspace of o-invariant elements
bo = (B[, 0 CK)

The algebra ho is generated by the elements & such that £ is diagonal under the action of o, and
the central element K, with the following Lie bracket relations

[glunm] = 16l+m70 <§777>K7 [Ku 60] =0. (320)
We also introduce its negative part

b= P byot.

lelZo

Definition 3.20. Let 7 = Sym(h;)|0) be the h,-module such that K |0) = |0) and &0) = 0 for
Eehandl>0.

We would like to give 7 the structure of a o-twisted module of the Heisenberg VOA Sy as
follows. Let ¢ € h be a diagonal element, i.e. o(&) = e 2"P¢ for some p € {0, %, e %1} Then the
state-field correspondence for the module is defined as follows

Y0(|O) 72) =idr,
Y5 (§-110),2) = Zzgn 2L (3.21)

It is easy to check that this gives 7 the structure of a o-twisted module over Sy.

Remark 3.21. The state-field correspondence for general elements in 7 can be computed using
the state-field correspondence for the states &1 10) (B2I) and the product formula for twisted

modules (BI8).

3.5. Introducing A

From now on, it is convenient to rescale the Killing form by some formal parameter /2, and
base change to the field Cy1/2 := C((h'/?)). In other words, we have a new Heisenberg VOA (still
denoted Sp) in which the commutation relations read

(&, mm] = RI(E, 1) Stmo - (3.22)

The reason to write h'/? instead of A is to match with the convention (L3) adopted in [56} [5] for
the partition functions of quantum Airy structures. The construction of Section B.4.2 can still be
applied to define a o-twisted module again denoted 7. The only notable modification compared to
the previous sections is that in Propositions and [3.14] a factor of A appears in the right-hand
side of the commutation relations, and that in the reconstruction of the state-field correspondence,
one should include a factor of A2 per each d.. In particular, the Lie subalgebras constructed in
Section become graded Lie subalgebras.

In all our examples except Section B2 only integer powers of A will remain the end of the day
and we could effectively work with Cp c Cp1yo.
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4. HIGHER QUANTUM AIRY STRUCTURES FROM VYV ALGEBRAS

This section gives a general prescription to produce higher quantum Airy structures starting with
a Lie algebra g and an element o of the Weyl group of g.

(1) We construct a o-twisted module 7 of the Heisenberg VOA associated to the Cartan
subalgebra b of g.

(2) Upon restriction to the W algebra W(g) (which is a sub-VOA of the Heisenberg VOA),
the module becomes untwisted. The underlying vector space of T is the space of formal
series in countably many variables, and elements of W(g) act as differential operators (of
order at most rank(g)) in those variables.

(3) In Section B3] we constructed a number of ideals that are graded Lie subalgebras of the
Lie algebra of modes. We pick one of these subalgebras from the algebra of modes of the
W algebra module 7. These modes fulfill the second (and hardest to check) condition to
be a higher quantum Airy structure.

(4) A further conjugation of these modes (a.k.a dilaton shift) allows us to realize the first
condition about degree 1 terms, thereby producing quantum rank(g)-Airy structures.

We apply this program in detail for gly,; (type Ax) and soan (type D) for different choices
of the Weyl group element o.

4.1. The W(gly,,) Airy structures
4.1.1. The twisted module T for the Heisenberg VOA

Recall Example[39 The Cartan subalgebra b c gly,; has a basis given by x* where i € {0,..., N},
with the following bilinear form o

(X" x7)=6i;.
We shall focus on the automorphism o of the Cartan subalgebra h induced by the Coxeter element
of the Weyl group & n.1, namely

VLI SR SRR )
This automorphism has order
r=N+1.

We define a primitive 7-th root of unity 6 := ¢*7/", which will appear throughout the section.
Applying a discrete Fourier transform, we can define a basis (v®)"Z} of b that is diagonal under

the action of o

N . .
v =07y ae{0,...,r—1}. (4.1)
7=0
Then we indeed have o(v®) = 0%v®. Note that
(’Ua,’l)b) = 70p|arth - (4.2)

where the notation 4, means 1 if £ is divisible by 7, and 0 otherwise. We observe that ve@te/rk-1

is invariant under o for k € Z. Hence we can represent the Sp(gly,1)-twisted module
T(g[N+1) = (Chl/z [5[:1,5[:2,1:3, .. ] s

with the fields

v*(2) =Y, (v [0),2) = Tz L
kea/r+Z

We also recall the differential operators defined in (23]
Vi> 0, Jl = haml, J_l = l:vl .
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Jo has not been defined before: we set it equal to a scalar Jy = Q. The differential operators J;
satisfy the expected bracket relations

[Jrks Jrkr ] = Brdpjaun KOpirr 0 = B (0", vb)k&ﬁk:p forkeafr+Zand k' ed' |r+7Z,

therefore we do have an equivalent description of the twisted module introduced in Section
We also stress that the normal ordering of the modes carries over to this realization as the standard
normal ordering on differential operators, with derivatives on the right and multiplication by
variables on the left.

Via restriction, we can now consider 7 as a module for the subvertex algebra W(gly,;) c
So(aln1)-

Remark 4.1. Even though 7 is not a twisted module for the subvertex algebra W(gly,,), we
will slightly abuse notation and still refer to the fields associated to the generators of W(gly,)
as “twist fields”. We will use the notation

{(z) = Yd(gfl |O> ’ Z)
for the twist fields, where o is the automorphism of the Heisenberg VOA used to construct the
twisted module.

4.1.2. Computing the twist fields of the generators of W(gln,1)

From Example 3.9 we know that the elementary symmetric polynomials
e, X0y eSy  ie{l,...,N+1}

are a set of strong generators for W(gly,,), and we are going to compute the modes of their twist
fields.

Let us introduce some notation and prove some essential lemmas now. We first want to express
the twist field corresponding to the state v®jv?3---v% |0) in terms of the twist fields vl(2). If
A = (a;)5., is a finite sequence, we use P(A) to denote the set of unordered, pairwise disjoint
subsequences of length 2 of A. If B € P(A), we use |B| to denote the number of pairs appearing in
B, and A \ B the subsequence of A where one has removed the elements that appear in the pairs

appearing in B. Of course |B| < |i/2]. For instance, the elements B of P(a1,a2,as,as) such that

|B| =2 are

{(alaaQ)a(a37a4)}7 {(a17a3)7(a25a4)}5 {(a15a4)5(a27a3)}'
Lemma 4.2. Let A = (ay)i_, where ay € {0,...,N}. The twist field Y, (v 020" ]0),2) can be
expressed as the following normally ordered product

O),Z)Z Z (h272)‘B| H b1b25b1+b2,r . H vl(z):'

BeP(A) {by,bs}eB 2r lcANB

ai as ,a;
Yg(vflvfl-uvfl

Proof. This is an application of the product formula [BI8). If ¢ = 2 in the above expression, we
choose N =2 in the product formula to get

1 d?

Yo (0303 10).2) = 5 75 { (21 - 2)%0" (21)0™ (22)
1

(4.3)

Z1=22=Z2
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We compute the OPE of the twist fields, i.e. we express their product in terms of the normally
ordered products

0" (21)0" (22) = 0" (21)0"% (22)0 + ), [UZII,UZEJZ{]“JZQbJ Ok >00k5<0

kieay[r+Z
kocas [r+Z

=" (21)v" (22): + Y, hki(v®, 0" 2) gtk
kieay[r+Z
k1>0

and the scalar product is given by [2)). Notice that we can extend the sum to ky = 0. Let us write
k1 =ay/r+ k] for ki € Z. The condition k1 >0 is then equivalent to k] > 0. We therefore obtain

V" (210 (22) = 07 (20)0% (22) + D B(Bay, 00030 + Sasag,r)r(ar [r + k) 2y 7 gk
k’>0

ay/r
=0 (21)v" (22) + h(0ay,0002,0 + Oay+as,r)T 3@(M) .

Z1— %2

Inserting this result into ([@3]), we get

ay,.a a a ai\r—a
Yo (vM0%2 |0), 2) = 107 (2)0%2(2): + h(0ay.00a.0 + Oay sas.r) %
=0 (2)v2(2): +hdayrasr ey
" 2rz2
The general formula follows from an easy induction argument. O

Definition 4.3. We introduce certain sums over r-th roots of unity which we encounter throughout
our computations

) 1 r=1 J 9m211_1+m21/ ]
(7) . ) = mpa;
\Ij (a“2]+17"'7a/1) ° Z' Z . O(H (9m2l’ _emm, I_I 9 ) ° (44‘)

tma,...,m;=0 \l’=1 l 25+1
miEMr

In the special case where j = 0, we drop the (0) i.e. U(ay,...,a;) =9 (ay,... a;).

Note that we prove several properties of these sums over roots of unity in Appendix [Al
Definition 4.4. We introduce the twist fields
Wi (z) =Y, (e (X%, ) 10) ,z) , 1e{l,...,r}.
The scalar prefactor 77! is just a convenient normalization. Let us express the twist fields in
terms of the Heisenberg twist fields v'(z).
Proposition 4.5. We have for any i€ {1,...,r}

) 1 r—1 3! ) ) i
Wi(z) == D (agj1,...,a:)(hz"2) v (2):.
r a2j+1;7az =0 2J (Z - 2-7) a l=gl+1
J<li/2]
Pmof We express the elementary symmetric polynomials e;(x",...,x") in terms of the basis
(v")IZ3 of b. Inverting (1)), we get
1 r—1

i Zelaa

and plugging it into the expression for the elementary symmetric polynomials gives

1 v
ei(xo,...,XN):F Z U(-ay,...,—a;) v 0%,
;=0
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We observe that U (-aq,...,—a;
fields associated to e;(x%;,...,x

) 1 r=1 v
W'(z) = . Y U(a,...,a) Yo (vH 0% 0% |0), 2)

) =¥(ay,...,a;). Now, we use Lemma to compute the twist

1 ) (4:5)
== Y W(ar,.na) Y (R2RIET] 2R T Wl(2):.
T a1,..5a:=0 BeP(as,...,a:) {b1,bs}eB 2r lcA\B

We would like to separate the sums over the 2j indices appearing in the pairs and the others,
for j € {0,...,|i/2]}. As A is an ordered set, we first need to identify the subset J ¢ {1,...,:}
of cardinality |.J]| = 2j which correspond the indices of elements of A that appear in B. For fixed
j, there are m such Js and the corresponding terms in the sum (LH]) are all equal. For
instance, they are equal to the case {1,...,2j}. B now corresponds to a choice of a pairing
between elements of J. The sum over the values ay € {0,...,r -1} for k € J will not depend on the
choice of pairing B. There are (25 — 1)!! such pairings. It is enough to consider the single pairing
B={(1,2),(3,4),...,(2j - 1,25)} provided we multiply our sums by

7! 7!
—_— (2 - 1)l ———.
@G-z P 56
Consequently,
1 L2E G (a2

i 1 J aoyr—-1a9y 5(1, r_y+aqr,r : a
Wi(z) =~ Z Z oG 2y (e 11 T | S

ai,...,a;=0 j=0 =1 1=25+1

The claim follows by performing the sum over a,...,as; using Lemma [A] proved in Appendix

(Al O
Definition 4.6. We define the modes W} of the twist field W'(z) as

Wl(z Z Z —k 1,

keZ

We observe that the expression for the modes W} only involve integer powers of h

We extract the expression for the modes from Proposition A3l
Corollary 4.7. We have

li/2] Iy i
Wi . > % > T (poji1,pajazy - i) - [T Jn:, (4.6)
T 29500 - 2j)! P2jatrpicl 1=2j+1

>y pi=r(k—i+l)

where for cases such that j = i/2 the condition Y, p; = r(k —i+ 1) is understood as the Kronecker
delta condition 6 ;1.

Proof. We start with Proposition L5 and compute the residue

Wi 1 [%Q:J Tz—:l ilhI v (a a:) Res (dz Lk-2j . IlI ,Ual(z).)
k== — Py RS PR ] : :
T 20 asjers -0 27 j!(i - 2j)! a z=0 1=25+1
1 Li/2] r—1 il hI ) i
= — _— \IJ(J)(’I”ICQ'+1,...,TIQ): H Jrb, -
r JZ:;) azjﬂz)al 027 (i - 24)! klgg/:wz ! 1=2j+1 l
¥, ky=k—i+1

To get to the second line, we used that ¥ is a r-periodic function of each of its arguments,
because they appear as powers of r-th roots of unity. Summing over asj;i,...,a; amounts to
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summing over p; = rk; € Z with the only constraint Y}, pg = r(k—i+1). Note that in the case where

j =1/2, the condition };p; = r(k — i+ 1) becomes the delta condition that k =4 - 1. O
It is easy to compute the W) (agjy1, ... ,a;) for low values of i (see Lemma[AF). For instance,
we have the linear and quadratic operators for r > 2
Wi = Jir
1 (r?-1)h
2 . . .
Wi = 3 > (760ipy iy — 1) Ty Iy i — Ték’l . (4.7)
P1,p2€Z

p1+p2=r(k-1)
For r > 3 we have the cubic operator

1
ng == Z (T26rlp1‘sr\pz Orlpg = TOrlpy = TOripy = T0rpy + 2) “IpyIps Jps

6 P1,P2,p3€L
p1+p2+p3=r(k-2) (4.8)

(r-2)(r*-1)h
IV R Jr(k-2) >

and so on.

4.1.3. The higher quantum Airy structures

We are ready to prove one of our main results. As noted in Example B9 we know that the
W(gly,1) vertex algebra with central charge ¢ = N + 1 is strongly freely generated by the states
ei(X%, ..., x™)|0). Thus we can use the construction of Section to obtain a number of left
ideals for the algebra of modes of the twist fields W#(z) that are graded Lie subalgebras. This
gives us the second condition that is required to obtain a higher quantum Airy structure. For the
first condition, we need to modify the modes W]z so as to create a term of degree 1 of the form J,
for some p > 0 — which acts as a derivation on 7 (gly,;). This can be achieved via the following
operation.

Definition 4.8. We define the dilaton shift as a conjugation of the differential operators W}

Hj := TsWéTQI, T, := exp(—j—;l).

We note here that by the BakerfCampbellfHausdorff formula, conjugating by T, is equivalent
to shifting J_; - J_s — 1 in the modes W}.

We then construct the following class of higher quantum Airy structures

Theorem 4.9. Let r>2, and s€{1,...,r+1} be such that r = +1 mod s. Let

o i1 | XL

r
Assume Jo =Q =0. The family of differential operators
Hy=TWiT;Y ie{l,....,r}, k20401, (4.9)

forms a quantum r-Airy structure on the vector space V = @50 C{x,) equipped with the basis of
linear coordinates (Zp)p>0-

Proof. We note that the W} defined in (6] is a differential operator on Cpij2[[21,22,23,...]]
which is a linear combination of terms of degree i + 2j for j € {0,...,|i/2]|} using the notion of
degree introduced in ([2:2). We need to check the two conditions of Definition 2.8 for the differential
operators H}c
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First, we note that the algebra of modes of a VOA-module has the same Lie algebraic structure
as the modes of the VOA itself. Further, conjugating by T, does not change the algebra of the
modes. Then, the graded Lie subalgebra condition for higher quantum Airy structures follows
directly from Section B3l In the case s = r + 1, the indicated W,z form the graded Lie subalgebra
Asp; in the case s = 1, they form the graded Lie subalgebra Aa; and for the remaining values of
1 < s <r such that r +1 =0 mod s, we prove in Appendix [Bl that we get a partition of r (as in
Section B.3]— see Theorem [3.1G)), and they form a graded Lie subalgebra A(, 5. The only subtlety
here is that in these subalgebras, the mode W, = Q is always present; since it is a scalar, to be
part of a higher quantum Airy structure we must set @ = 0.

To check the second condition about the form of the operators H ,i, we need to identify the terms
of degree at most 1 in H }c To start, let us assume that s € Z arbitrary. We first examine the terms
of degree 1. Clearly, since Jy = @ = 0, a term :Hf:2j+1 Jp, + will contribute if and only if j = 0 and
there is some [y such that for any [ # [y we have p; = —s. The constraint on the sum of ps imposes
pi, =7k + (s—1)(i —1). We therefore obtain using the r-periodicity of ¥ in each argument

HIZ = (—1)1-71\IJ(—S,—S,...,—S,(i—l)S) Jrk+(s—7‘)(i—1) +O(2)a (410)
| —

i

.
i—1 times

where O(2) indicates terms of degree > 2. Thus, we see that we need to choose (k,7) such that

rk+(s—r)(i-1)>0. (4.11)

In addition, we need to check that the prefactor in equation ([@I0) involving ¥ is always non-zero.
Before we do that, let us consider the terms of degree 0. A term :Hf=2j+1 Jp, + will contribute
in degree 0 if and only if j = 0 and p; = —s for all [. The constraint on the sum of p imposes
rk+i(s—r)+r=0. We see from condition ([@IT]) that

rk+i(s—r)+7r>s.

Thus, we choose s > 0 to ensure that no terms of degree 0 appear. When s > 0, the prefactor
involving ¥ is evaluated in Lemmas and [A-4] and shown to be never zero. In particular, for s
coprime to r, we get .

Hj, = Jops(s—ryi-1) + O(2) .

Let us introduce the set Z,. s = {(i,k) | 1 <i<r and k >0° + 6; 1} and the map

T — Z
(i,k) — rk+(s-r)(i-1) °
We obtain a higher quantum Airy structure if Il is a bijection onto Z,, i.e. if each J, = ho,,
with p > 0 appears exactly in one operator H} for (i,k) € Z, ;. It is easy to see that the non-empty
fibers of I, have cardinality d = ged(r, s). In other words, when r and s are not coprime, the same
ho,, will appear as degree one term in two different operators Hf, which cannot happen in higher
quantum Airy structure. Let us now assume that r and s are coprime, so that Il is injective.
We can rewrite the condition (4II)) as the condition k >i~1-2(i~1). For i =1, this is k > 1.
For i > 2, since s is coprime with r and 2 <4 <7, it follows that & >4 ~1- 2(i~1) if and only if
k>i-1- 2D Therefore y(Z;.) = Z. O

10, : (4.12)

From the last paragraph of the proof, we see that the first condition to be a higher quantum
Airy structure restricts the allowed values of s to be positive integers that are coprime to r. The
second condition to be a higher Airy structure, or equivalently the subalgebras of modes that we
identified in Section [3:3] imposes the stronger constraint that » = +1 mod s.
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Remark 4.10. For completeness, we compute Fp 3 and Fj; for all these higher quantum Airy
structures in Appendix In fact, we do a little bit more; we calculate Fp 3 for all choices of s
that are coprime with . The result is that Fp 3 is indeed well defined and symmetric for r = +1
mod s, as expected; however, it cannot be symmetric when r # +1 mod s (see Proposition [B.2)).
In other words, when r # £1 mod s, the H}C cannot form a higher quantum Airy structure, since
a solution Z to the differential constraints H};Z =0 does not exist. Given that for any s coprime
with r the H; have the right form to be a higher quantum Airy structure, it follows that the left
ideal generated by the H; is a graded Lie subalgebra if and only if » = +1 mod s.

Let Fy ,, be the coeflicients of the partition function of the Airy structure of Proposition
We can derive from it the following basic properties.

Lemma 4.11. For2g-2+n>0 and p1,...,pn >0, we have

e Homogeneity:

Zpl¢s(2g—2+n) — Eq,n[pla-'-upn]zo'
i=1

o If r|py, for some m, then Fy ,[p1,...,pn] =0.
e Dilaton equation

Eq,n+1 [Sapla cee 7pn] = 8(29_ 2 +n)Fq,n|:p17 cee 7pn]

e More generally, for d> =65 41, we have the Virasoro constraints

F‘Ln‘*l [S + draplu o 7pn]

n
= Z meg,n[kz +dTap15' .. 71/)\1'7" . apn]
m=1

i (4.13)

+ 5 Z (Fgl,n+2|:lvd’r_lvpla-'- apn] + Z Fh,1+|J||:le]Fh’,l+|J’[dT—lv‘],])a
=1 JuJ' ={p1,....pn}
h+h'=g

with the convention that the insertion of a negative index is zero. The dilaton equation is
d=0, and for s=r+1 we also have the string equation.

4.1.4. Reduction to slyi1

The quantum 7-Airy structures of Theorem always contain H ,i = Jy, for k£ > 0. Hence their
partition function Z is independent of the variables xy,. for k > 0. Let us define the reduced
operators by the formula

Wli|rcd = W}i|J;W=0 keZ

LUzl ip : d 4.14
= — — \I/(J)(pg 1,...,pi): J :. ( : )
r JZ(:J 2JJ!(Z_QJ)!psz,..ZpieZwZ 7 lzglﬂ "

> pi=r(k—i+1)
As the dilaton shift in Theorem [£.9] does not affect the modes indexed by & divisible by r, we also
have . o R ‘
H]Zc|red = T5W13|rede_1 = Hi}|']p7‘:0 PEZ +
Although we do not know a general reason for H,i|md to be a quantum Airy structure itself, for
this particular case we can check that it is indeed the case. We also reprove Lemma [2.18] in this
particular case.



HIGHER AIRY STRUCTURES, W ALGEBRAS AND TOPOLOGICAL RECURSION 42

Lemma 4.12. Let us consider a quantum r-Airy structure from Theorem[.9 Its partition function
is equivalently characterized by the constraints Ji,. - Z =0 for any k>0 and

Jor-Z=0k>0, and  Hilea-Z=0, ie{2,...,r}, k20" +d;;. (4.15)

Moreover, the family of operators H}|vea indexed by i€ {2,...,r} and k>0 +8;1 forms a quantum
r-Airy structure on the vector space with basis of linear coordinates (xp)pen«ri.

Proof. As a preliminary, we are going to show that H,z can be expressed solely in terms of the
reduced operators. Since the dilaton shift does not affect the modes (Jx; )gez it is enough to prove
this property for W,z instead of H ,i, and the result will follow by conjugation. We can always
decompose

le = Z Z J*Tal""]*ﬂle T}%c,a,b Jrby - Irb,,

£,m>0 ar,...,ap>0
L+m<iby,....bm,>0

where the T};)ab do not involve the modes J,, for | € Z. Using the expressions ([@G) for the
operators W,i, and using the r-periodicity of () with respect to any of its entries, we get:

k,ab = T -
: r j=0 p2]‘+17v~1pi—l—7n€Z\TZ 2‘]']'(1_6—777/—2‘])|
Zl pl=T(k*’i+1+zl al—zl/ bl’)

) i—f—m
X\P(J)(p2j4la"'api757m7 O,---,O): H '];Dz:'
— 1=2j41

l+m times
We also used that J_,,,, are always on the left (resp. Jn,r are on the right) of a normal ordered
expression, so we can remove them outside the normal ordering. The U with the Os in them is
evaluated using the Lemma proved in the Appendix to get

1(r—i+l+m)! (i-£-m)!

i

L Y il
e 5 O gor, o opien) T
3=0 P2j1rePitom €LNTT, 27 j1(i =€ —m - 2j)! 1=2j+1 .

Yipi=r(k=i+1+Y, mi=Y nyr)
and therefore
Hi= Y

£,m>0 ay,...,ap>0 (T_Z)!
l+m<iby,...,by, >0

(r—i+l+m)! it
J_"‘al.“J_"‘aﬁ Hk+gzl(al*1)*zl/(bl/+l)|red erl.”']rbm . (4"16)

Now consider the constraints Hf -Z = 0 for i € {1,...,7} and k > ?" + ;1. They contain
H,i -Z = Jy- - Z =0 for all k£ > 0 so the partition function is independent of x,,, for m > 0. As
a result, for i > 2 and k£ > 0°, the coefficient of x4, 2, in H} - Z is proportional to T;e,a,@ -7

m

therefore to Hlijrlzl(al—l)hcd' Since m; > 0, we get the family of constraints

Hilea-Z=0, ie{2,....,r}, k>0 (4.17)
Conversely, the constraints [L17) together with J,;-Z =0 for k > 0 imply, by reconstructing the
linear combinations ([@I0), that H; - Z =0 forie {1,...,r} and k> 0" +J; ;.

For the last statement, let

V=P C(z,) Viea= @ C(zp),

p>0 peNNrN
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and consider the Weyl algebras D%*Vre . C D%*V of differential operators on Vieq and V. Let J* be
the graded subalgebra of D%*V generated by the .Jp, for £p > 0. We have a canonical decomposition
Dy = T Dy, T
and a natural projection p : D%*V - D%*Vred' By definition
Hli|red = p(lec) :
We denote Hyeq — respectively H — the subspace spanned by Hj |req for i € {2,...,7}, respectively
ie{l,...,r}) — and k > 9" + §; 1 over the field C((h)). The graded Lie subalgebra condition for
these H,z translates into
[H,H]=hDh., H.

Let us apply the projection p to this equation. We get on the right-hand side hDrfﬁ*V - Hyeqa- On
the left-hand side, we have to take into account that if ji,j3 € J* and hy, hs € D%*‘/red

(3711, 3 hajs ) = 41 Uivsds 1 hahads = 33 (57 G2 Thahudy = 31 s [has haliy s -
After applying p we find a result of the form

plthiji.jahajs | = hehihg + he hihg = [y, ha],
for some ¢, ¢’ € C[[R]]. Therefore
[Hrcd; Hrcd] = hDT*Vred Hrcd )

which proves that the ideal generated by H,eq is a graded Lie subalgebra. As it is already clear
that for any p e N\ 7N there exists a unique (k,7) such that H}|icqa = R 0,, + O(2), this proves the
claim. g

4.1.5. Arbitrary dilaton shifts and changes of polarization

In this subsection, we will construct deformations of the quantum r-Airy structures of Theorem (4.9
by exploring more general conjugations. Although this may seem superfluous, these examples will
appear naturally in the next section when we study higher quantum Airy structures coming from
general spectral curves.

We first introduce more general dilaton shifts. We would like to conjugate the modes W} in
(#35) by an operator of the form

~ 1 Ti
T::exp(— —Jl) ,
h g(:) [
where 7; are scalars. This simultaneously shifts J_; — J_; + 7; for all [ > 0.

Proposition 4.13. Let r >2. Denote

. '_1
s:=min{l>0|n #0 and r 1}, alzzi—l—{s(l )J

r
and assume that 1 <s<r+1 and r =+1 mod s. The family of differential operators
Hi=(-r)""TWiT™ ie{l,...,r}, k204681, (4.18)

forms a quantum r-Airy structure up to a change of basis of linear coordinates.

Proof. We need to show that the two conditions in Definition are satisfied. Since 75 # 0, we
define 7, as
Tq = Ts(0s,q + 7q)
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so that 7, = 0 for ¢ < s. We compute as in the proof of Theorem that (up to rescaling by
constants)

i - : ~

=—(-1)" ' Z \IJ(_QQa---v_inp)[H((Ss,ql +qu):|t]p+0(2)-
" PEL, q2,--+,qi 28 1=2
p=r(k—i+1)+X/ o q
Therefore we can write _
Hi= Y Lu(xpdy+0(2),
2115 (4,k)

where II; was defined in (Z12) and is a bijection between the set of indices (i,k) considered in
(#I8) and the set of positive integers. (Lgp)aps0 i an upper triangular matrix with diagonal
entries 1 (this value comes from Lemma [AZ] for r and s coprime). Let us perform the change of
basis on linear coordinates

Yp = Z (_1)m Z [nﬁ Lal;az+1:| T

m>0 b=ap>a1>...>Am-1>0m >0

For any b > 0 the right-hand side is well defined as it is a finite sum (using the upper-triangularity
of L). By construction we have

i 0
o, = Z Ly, (iky,p 1Oz, + 0(2) = F T — +0(2).
Pl (3F) YL, (4,k)

Notice that these expressions make sense using the prescriptions for vector spaces of countable
dimension described in Section 2.1.4 i.e. J,, are elements of V' and linear coordinates are elements
of the dual. We therefore have checked the first condition of Definition

The graded Lie subalgebra condition which holds for the operators of Theorem [£.9]is preserved
after conjugation. Hence we obtain a higher quantum Airy structure. O

Another conjugation that will appear in the next section is the change of polarization. We
would like to conjugate our modes with an operator of the form

o ¢lm
ey o]

m>0

where ¢y, = ¢m, are scalars. Using the Baker-Campbell-Hausdorff formula, we see that it shifts

the modes as
Va>0, Jog—>Jaty Gol 1
>0 !

(4.19)

and leaves J, invariant if a > 0.

Proposition 4.14. Under the same conditions as in Proposition [{.13, the family of differential
operators

Hi=(-r)"" @ TWT &7, ie{l,...,r}, k>0 46,1,
forms a quantum r-Airy structure up to a change of basis of linear coordinates.

Proof. The graded Lie subalgebra condition is stable under conjugation. We are going to argue
that

S(TWTHe = (TW T +0(2). (4.20)
This will automatically imply that the (-7,)!~* fiJTW,iT‘lﬁfl satisfy the first condition in Defini-
tion 2.6] hence form a quantum r-Airy structure.

We observe that the operation ([@I9]) respects the degree. It replaces J_;s by Jy,s. If the result
is not normal ordered anymore, normal ordering creates a new term where two Js are replaced by
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a h (which is still of the same degree). As there is no term of degree 1 of the form J_; with [ >0
in Hj, we get the claimed (Z20). O

4.2. W(gly,,) Airy structures for other automorphisms
4.2.1. The twisted module

We come back to the W(gly,,) algebra, but now we construct twisted modules for an arbitrary
automorphism o, consisting of d > 2 disjoint cycles of order r1,...,r4 which sum to r:= N +1. We
relabel the basis elements of f

X“"i = XFHZWMTV wed{l,...,d}, ie{l,...,ru},

such that
O_(X,u,i) _ X,u.,z#l mod 7, )

We then introduce the basis of eigenvectors indexed by p€{1,...,d} and a € {0,...,r, -1}

ru—1
pa _ —aj mj _ J2im/r
v —EGTMX , O, =

j=0

which are diagonal under the ¢ action
m,a\ _ na Hya Hm,a V;b —
o(v) =07 v, (0" 0"7) = 00 T O fass -
Hence we can represent the So(gly,1)-twisted module
~ 1.2 d 1 .2 d 1
T (0lni1) 2 Chapp[zy, 27,27, 0, 5, .., X5