Current Biology, Volume 31

Supplemental Information

Concerted evolution reveals co-adapted amino acid

substitutions in Na⁺K⁺-ATPase of frogs that prey on toxic toads

Shabnam Mohammadi, Lu Yang, Arbel Harpak, Santiago Herrera-Álvarez, María del Pilar Rodríguez-Ordoñez, Julie Peng, Karen Zhang, Jay F. Storz, Susanne Dobler, Andrew J. Crawford, and Peter Andolfatto

Figure S1. Proportion of ATP1A1, ATP1A2, and ATP1A3 paralogs in brain, muscle, and stomach of seven anuran species, related to Figure 1. RNA-seq reads for eight species were mapped to species-specific copies of ATP1A1, ATP1A2, and ATP1A3 using bwa (see Star Methods). Uniquely mapped reads were counted for each paralog and estimated as a proportion of the sum of the reads for all three ATP1A paralogs. *X. tropicalis: Xenopus tropicalis; P. hypochondrialis: Phyllomedusa hypochondrialis; R. catesbeiana: Rana catesbeiana; L. macrosternum: Leptodactylus macrosternum; L. pentadactylus: Leptodactylus pentadactylus; M. stelzneri: Melanophryniscus stelzneri; D. melanostictus: Duttaphrynus melanostictus.*

			ATP1A1]	ATP1A2			Τ	ATP1A3																				
		1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1 1	L 1		1	1	1	1	1	1 :	11	1	. 1
		0	1	1	1	1	1	1	1	2	2		0	1	1	1	1	1	1	1 2	2 2	2	0	1	1	1	1	1 :	11	. 2	2
		8	1	2	4	5	6	7	9	0	2		8	1	2	4	5	6	7	9 () 2	2	8	1	2	4	5	67	7 9	0	2
Family	Species	Y	Q	Α	т	Е	Е	Е	Q	Ν	Ν		Y	Q	A	Μ	Е	D	Е	QI	NN	1	Y	Q	A	т	E	D	5 5	5 G	iΝ
Human	Homo sapiens	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	S			•			•	•	•		•	•
Brown rat	Rattus norvegicus	•	R	S	·	·	·	·	Ρ	·	D		•	L	·	·	•	·	·	S	• •		·	·	·	·	•	•	• •	•	•
Lizard	Ameive ameive	•	·	•	·	·	·	·	Ν	·	•		•	·	•	·	•	·	•	•	• •		•	·	·	·	•	•	· A	۰ ۱	•
Bombinatoridae	Bombina maxima	•	·	·	·	·	D	·	·	·	·																				
Pipidae	Xenopus tropicalis	•	Т	·	·	·	·	·	Т	·	·		•	·	L	·	•	·	·	Ŀ			•	L	·	М	•	ΕI	Ε·	•	•
Pelobatidae	Pelobates fuscus	•	·	•	·	·	•	·	·	·	•		•	•	L	·	•	·	•	Ŀ			•	·	·	·	•	•	· A	٠	•
Megophryidae	Oreolalax rhodostigmatus	•	·	·	•	·					•		•		L		•			Ŀ					·						
Megophryidae	Leptobrachium boringii	•	·	·	•	·					•														·	•	•	•	· A	٠	
Microhylidae	Kaloula pulchra	•	•	•	•	•	•	D	•	•	•		•	•	L	•	•	•	•	Ŀ											
Mantellidae	Mantella betsileo	•	•	•	•	•	•	•	•	•	•												•		L	М	•	•	ΕI	N	1.
Dicroglossidae	Quasipaa boulengeri	•	•	•	•	•	D	•	•	•	•																				
Dicroglossidae	Fejervarya cancrivora	•	•	•	•	•	•	D	•	•	•		•	•	L	•	•	•	•	Ŀ											
Ranidae	Pelophylax lessonae														L		•			Ŀ								•	· A	A N	1.
Ranidae	Odorrana tormota														L		•			Ŀ						М		•	· A	A N	1.
Ranidae	Rana sphenocephala			I	М		D		T						L		•			Ŀ				L				•		N	1.
Ranidae	Rana catesbeiana														L		•			Ŀ				L				•		N	1.
Myobatrachidae	Limnodynastes peronii														L		•			Ŀ								•	· A	A N	1.
Hylidae	Cyclorana alboguttata														L		•			Ŀ											
Hylidae	Phyllomedusa hypochondrialis												•		L					1							•	•	· A	۰ ۱	
Craugastoridae	Craugastor fitzingeri												•		L					1											
Strabomantidae	Oreobates cruralis												•		L					1											
Leptodactylidae	Engystomops pustulosus												•		L					1							•	•	· A	۰ ۱	
Leptodactylidae	Lithodytes lineatus		•	•	•	•	•	D	•	•	•		•	•	L	•	•	•	•	I -											
Leptodactylidae	Leptodactylus macrosternum S		÷	•	•	÷	÷	·	÷	÷	·				ī														. ,	ι.	
Leptoddotyndde	Leptodactylus macrosternum R	•	R	Т	÷	÷	D	÷	÷	÷	D				•					•										•	
Dendrobatidae	Dendrobates auratus	·	·	·	·	·	·	·	·	·	·		•	·	L	·	·	·	·		• •		·	·	·	·	•	•	• ٦	٢·	•
Bufonidae	Melanophryniscus stelzneri	н	L	V	÷	÷	D	÷	Ν	÷	÷		•	÷	I.	1	•	1	٠I	N	• •		1	÷	÷	•	•	· I	N A	A N	1.5
Bufonidae	Atelopus zeteki		R	К	S	D	L	÷	D	÷	÷																				
Bufonidae	Duttaphrynus melanostictus	•	R	К	S	D	L	÷	D	÷	÷		•	Т	V	I.	÷	÷	D	Т	• •		•	L	÷	÷	•	• I	Е·	R	(+
Bufonidae	Bufotes viridis		R	Κ	S	D	L	÷	D	÷	÷		•	Т	V	I.	•	÷	D	Т	• •		•	R	К	S	D	LI	EC	D N	1 + 1
Bufonidae	Rhinella marina		R	Κ	S	D	L	÷	D			J										1	•	L			•	•	E	R	(- ·

Figure S2. Variation among sites implicated in CG-resistance for ATP1A paralogs of various species, related to Figure 1 and 2. Sequences of ATP1A2 and ATP1A3 were reconstructed using the same method as ATP1A1 described in Materials and Methods. Consensus sequences of anuran species were generated in MEGA 7.0 and used as reference for each paralog. Only sites implicated in CG-resistance are shown. Following convention, positions of substitutions, shown at the top, are aligned relative to the sheep (*Ovis aries*) sequence NM_001009360 subtracting 5 AA from 5'end (e.g., the first position is 108). A dot indicates identity with the reference sequence. ATP1A1S and ATP1A1R of *Leptodactylus macrosternum* are indicated in blue and red, respectively. Bufonid (toad) species, the prey species that produce CG toxins, are highlighted in purple. Blank: missing data. We failed to identify an ortholog of ATP1A4 in any of the available anuran genome assemblies, including our assembly of *Leptodactylus fuscus*.

Figure S3. Annotation of ATP1A1S and ATP1A1R paralogs in the *Leptodactylus fuscus de novo* genome assembly, related to Figure 3. ATP1A1S (blue) and ATP1A1R (red) occur in tandem on scaffold s491313 (Genbank Acc# MT422194 and MT422195) ~80 kilobases apart. The boundary between exons and introns was determined by BLAST and manual correction (*i.e.*, ensuring that each intron started with GT and ended with AG). The gene structure figures were plotted with ggbio in R.

Figure S4. A) A species tree of *Leptodactylus* and outgroup species, related to Figure 1. The phylogenetic tree was constructed using an alignment of 813 orthologous mRNA sequences under the best partition model with IQ-TREE 2.0.4 (see Star Methods). Branch lengths: (*Engystomops pustulosus*:0.699436, (*Lithodytes lineatus*:0.395135, (*Leptodactylus fuscus*:0.559378, (*Leptodactylus pentadactylus*: 0.092965, *Leptodactylus macrosternum*: 0.203845)100:0.0216082)100:0.159296)100:0.0368124). **B**) A phylogenetic tree of ATP1A1 based on intron sequences, method same as above.

- L. colombiensis R

Figure S5. Western blot analysis of Na⁺,K⁺-ATPase with engineered ATP1A1 (α) subunits produced in this study, related to Figure 5. The western blots confirm the expression of recombinant Na⁺,K⁺-ATPase through cell culture. The 110 kDa ATP1A1 protein is stained with the α 5 monoclonal antibody followed by a horseradish peroxidase conjugated goat antimouse antibody. Samples represent six biological replicates of eight different recombinant Na⁺,K⁺-ATPase (Table S5). The protein ladder is indicated by an "L" above it. Each panel represents one gel. In two cases (4E and 8F*) sample were run on separate gels thus only the ladder and single sample lane are shown. Samples that were run a second time due to poor western blot quality are indicated by an asterisk (original runs are also included in this figure). ATPase activity levels (nmol P_i/mg protein) of each biological replicate are indicated under its respective band. ATPase activity is omitted for the repeated runs (indicated by asterisk).

Figure S6. Cardiotonic steroid (ouabain) inhibition curves for six each engineered *Leptodactylus* Na⁺,K⁺-ATPase produced in this study, related to Figure 5. Points and error bars represent the mean \pm SEM (n=6 biological replicates) percentage of protein activity relative to controls measured in the absence of ouabain and excluding the activity of background ATPases. The black inhibition curve was measured from commercially procured porcine cerebral cortex (CAS 9000-83-3, Sigma-Aldrich, Inc.) and represents a standard benchmark reference for cardiotonic steroid sensitivity (Log10 IC₅₀= -5.61). The ATP1B1 of *Leptodactylus macrosternum* was co-expressed with each engineered version of ATP1A1 (Table S5).

Species	Museum ID	Field ID	Data type	Locality	Latitude, longitude
Engystomops pustulosus		AJC 3734	RNA-seq	Mariquita, Tolima, CO.	05.2635, -074.891
Engystomops pustulosus		JSM 228	intron	Zambrano, Bolívar, CO	09.75, -074.8333
Lithodytes lineatus		AJC 6408	RNA-seq	El Cachivero, Meta, CO.	
Lithodytes lineatus	ANDES-A 2536	AJC 2406	intron	Trubon, Río Vaupés, Vaupés, CO.	01.21, -070.62
Leptodactylus fuscus	ANDES-A 3141	AJC 5344	plasmid	Neiva, Huila, CO.	02.8796, -075.2757
Leptodactylus fuscus		JSM 205	genome	Garzón, Huila, CO.	02.2058, -075.6440
Leptodactylus pentadactylus	ANDES-A 2327	AJC 4761	RNA-seq	Leticia, Amazonas, CO.	-03.865, -070.2061
Leptodactylus pentadactylus	ANDES-A 949	JMP 2179	intron	Leticia, Amazonas, CO.	-04.10592, -069.25
Leptodactylus macrosternum		AJC 3653	RNA-seq	Puerto Carreño, Vichada, CO.	06.10, -067.483
Leptodactylus macrosternum	ANDES-A 1148	AJC 3430	intron	Orocué, Casanare, CO.	04.9093, -071.4286
Leptodactylus insularum	ANDES-A 3146	AJC 5345		Neiva, Huila, CO.	02.8441, -075.3328
Leptodactylus insularum		AJC 3752	CDS	Montería, Córdoba, CO.	08.7917, -075.8629
Leptodactylus insularum		JSM 261	intron	Barú, Bolívar, CO.	10.1458, -075.6792
Leptodactylus colombiensis		AJC 5510		Santa María, Boyacá, CO.	04.8499, -073.2653
Leptodactylus colombiensis	ANDES-A 3066	AJC 3755	CDS	Nilo, Cundinamarca, CO.	04.3584, -074.5649
Leptodactylus colombiensis		AJC 4301	intron	San Martín, Meta, CO.	03.6969, -073.6986

Table S1. Collection information for samples of leptodactylid frogs used in this study, related to Figure 1. ANDES-A refers to the Amphibian collection of the *Museo de Historia Natural C. J. Marinkelle* of the Universidad de los Andes, Bogotá, Colombia. Collector acronyms are Andrew J. Crawford (AJC), Juan Salvador Mendoza (JSM), Juan Manuel Padial (JMP). All collecting sites are located in Colombia (CO). Samples without museum voucher IDs are in the process of being accessioned into the ANDES-A collection.

Species	Data type and format	GenBank Accession
Atelopus zeteki	RNA-seq, PE 140 bp	skin: SRR11583991
Bombina maxima	RNA-seq, PE 90 bp	skin: SRR566619
Bufotes viridis	RNA-seq, PE 100 bp	SRR2163277
Craugastor fitzingeri	RNA-seq, SE 100 bp	skin: SRR1560905
Cyclorana alboguttata	RNA-seq, SE 105 bp	muscle: SRR619475
Dendrobates auratus	RNA-seq, PE 150 bp	brain: SRR11583990
	* *	muscle: SRR11583979
		stomach: SRR11583968
	<i>de novo</i> assembly	CDS: MT813444
Duttaphrynus melanostictus	RNA-seq, PE 150 bp	brain: SRR11583966
	* *	muscle: SRR11583965
		stomach: SRR11583964
	<i>de novo</i> assembly	CDS: MT813445
Engystomops pustulosus	RNA-seq, PE 140 bp	brain: SRR11583963
	* *	stomach: SRR11583962
	<i>de novo</i> assembly	CDS: MT396181
	long-read sequencing	partial gene: MT422192
Fejervarya cancrivora	RNA-seq, PE 100 bp	SRR1554290
Homo sapiens	NCBI reference sequence	NM 001160233.1
Kaloula pulchra	RNA-seq, PE 150 bp	muscle: SRR11583961
1	12 1	stomach: SRR11583989
	<i>de novo</i> assembly	CDS: MT813446
Leptobrachium boringii	RNA-seq, PE 100 bp	SRR4436787
Leptodactvlus colombiensis	cloning, plasmid sequencing	CDS: MT396187 (ATP1A1S)
1		MT396188 (ATP1A1R)
	long-read sequencing	partial gene: MT422198 (ATP1A1S)
	6 1 6	MT422199 (ATP1A1R)
Leptodactylus fuscus	cloning, plasmid sequencing	CDS: MT396183 (ATP1A1S)
1 2 3		MT396184 (ATP1A1R)
	single-molecule genomic	<i>de novo</i> assembly:
	sequencing	GitHub:
		https://github.com/AndolfattoLab/Leptod
		actylus-fuscus-genome
		partial gene: MT422194 (ATP1A1S)
		MT422195 (ATP1A1R)
Leptodactylus insularum	cloning, plasmid sequencing	CDS: MT396191 (ATP1A1S)
		MT396192 (ATP1A1R)
	long-read sequencing	partial gene: MT422202 (ATP1A1S)
		MT422203 (ATP1A1R)
Leptodactylus macrosternum	RNA-seq, SE 140 bp	brain: SRR11583988
		stomach: SRR11583987
	<i>de novo</i> assembly	CDS: MT396189 (ATP1A1S)
		MT396190 (ATP1A1R)
	long-read sequencing	partial gene: MT422200 (ATP1A1S)
		MT422201 (ATP1A1R)
Leptodactylus pentadactylus	RNA-seq, SE 140 bp	brain: SRR11583986
		stomach: SRR11583985
	de novo assembly	CDS: MT396185 (ATP1A1S)

		MT396186 (ATP1A1R)
	long-read sequencing	partial gene: MT422196 (ATP1A1S)
		MT422197 (ATP1A1R)
Limnodynastes peronii	RNA-seq, PE 100 bp	SRR8712702
Lithodytes lineatus	RNA-seq, PE 75 bp	muscle: SRR11583984
		stomach: SRR11583983
	de novo assembly	CDS: MT396182
	long-read sequencing	partial gene: MT422193
Mantella betsileo	RNA-seq, PE 90 bp	skin: SRR7592160
Megophrys nasuta	RNA-seq, PE 150 bp	brain: SRR11583982
		muscle: SRR11583981
		stomach: SRR11583980
	de novo assembly	CDS: MT813448
Melanophryniscus stelzneri	RNA-seq, PE 150 bp	brain: SRR11583978
		muscle: SRR11583977
		stomach: SRR11583976
	de novo assembly	CDS: MT813449
Odorrana tormota	RNA-seq, PE 150 bp	skin: SRR6896138
Oreobates cruralis	RNA-seq, PE 126 bp	intestine: SRR5507183
Oreolalax rhodostigmatus	RNA-seq, PE 150 bp	SRR6265740
Pelobates fuscus	RNA-seq, PE 90 bp	SRR5119616
Pelophylax lessonae	RNA-seq, PE 90 bp, PE	SRR1164893
Quasipaa boulengeri	RNA-seq, PE 100 bp, PE	SRR2962603
Rana catesbeiana	RNA-seq, PE 150 bp	brain: SRR11583975
		muscle: SRR11583974
		stomach: SRR11583973
	de novo assembly	CDS: MT813450
Rana sphenocephala	RNA-seq, PE 150 bp	brain: SRR11583972
		muscle: SRR11583971
		stomach: SRR11583970
	de novo assembly	CDS: MT813451
Rattus norvegicus	NCBI reference sequence	NM_012504.1
Rhinella marina	RNA-seq, PE 140 bp	brain: SRR11583969
		skin: SRR11583967
	de novo assembly	CDS: MT813452
Xenopus tropicalis	NCBI reference sequence	NM 204076.1

Table S2. Sources of ATP1A1 sequences included in the phylogenetic analysis, related toFigure 1. New data generated by this study are indicated by blue text (RNA-seq datasets:

GenBank PRJNA627222, genome assembly: GitHub

https://github.com/AndolfattoLab/Leptodactylus-fuscus-genome).

Sequencer	HiSeq X
Assembly software	Supernova 2.1.1
Number of reads	775.95 million
Read format	Paired-end 150 nt
Effective read depth coverage	48.35
Estimated genome size	2.42 Gb
Weighted mean molecule size	29.36 kb
Number of scaffolds >= 10 kb (long scaffolds)	16,530
N50 contig size	19.69 kb
N50 scaffold size	362.61 kb
Assembly size (only scaffolds ≥ 10 kb)	1.26 Gb
BUSCO version	4.0.5
Lineage dataset	Tetrapoda_odb10
Input genome format	Supernova pseudohap2_2
Total groups searched	5310
Complete BUSCOs	3182 (60.0%)
Complete and single-copy BUSCOs	3041 (57.3%)
Complete and duplicated BUSCOs	141 (2.7%)
Fragmented BUSCOs	669 (12.6%)
Missing BUSCOs	1459 (27.4%)

Table S3. Summary of the *de novo* genome assembly of *Leptodactylus fuscus*, related toFigure 1.

Construct Name	Engineered Substitution(s)	Description	Ouabain sensitivity (mol/L) Mean(log10 IC ₅₀) ± SD	ATPase activity nmol Pi/(mg protein*min) ± SD
S	-	Sensitive (S) paralog of <i>L</i> . macrosternum ATP1A1	-5.63 ± 0.59	16.30 ± 5.01
S+Q111R	Q111R	Q111R on the S paralog background	$\textbf{-4.89} \pm 0.85$	10.68 ± 3.71
S+N122D	N122D	N122D on the S paralog background	$\textbf{-5.06} \pm 0.66$	7.16 ± 3.62
S+Q111R+N122D	Q111R + N122D	Q111R and N122D on the S paralog background	-3.62 ± 0.28	8.29 ± 3.86
S+10subs	A112T, E116D, I135V, L180Q, I199L, I279V, S403C, L536M, Q701L, I788M	All substitutions strongly distinguishing R and S paralogs, except Q111R and N122D, on the S paralog background	-5.82 ± 0.47	16.37 ± 3.05
R-Q111R-N122D	R111Q, D122N	Reversions R111Q and D122N on the R paralog background	-5.60 ± 0.33	17.41 ± 2.87
S+12subs	Q111R, A112T, E116D, N122D, I135V, L180Q, I199L, I279V, S403C, L536M, Q701L, I788M	Twelve substitutions strongly distinguishing R and S paralogs on the S paralog background	-3.23 ± 0.75	12.17 ± 2.43
R	-	Resistant (R) paralog of <i>L. macrosternum</i> ATP1A1	$\textbf{-3.25}\pm0.77$	14.09 ± 2.77

Table S4. List of engineered ATP1A1 constructs used to test functional effects of amino acid substitutions in *Leptodactylus* including summary of the ouabain sensitivity and catalytic properties of Na⁺,K⁺-ATPase for each ATP1A1 construct, related to Figure 5. The values represent the mean and standard deviation (SD) ouabain sensitivity (log₁₀IC₅₀) of ATPase activity of six biological replicates. ATP1B1 of *Leptodactylus macrosternum* was co-expressed with ATP1A1.

Note: R and S paralogs of *L. macrosternum* differ by the 12 substitutions that are the focus of this study and by 9 additional amino-acid substitutions and a two-amino acid insertion-deletion difference. Our experiments revealed that these 10 *L. macrosternum*-specific substitutions do not contribute detectably to S vs. R differences in CG resistance of enzyme function (using all 10 as one co-variate, ANOVA p>0.5. Following convention, positions of substitutions are standardized relative to the sheep (*Ovis aries*) sequence NM 001009360 - 5 AA from 5' end.

(Explanatory Variables) ANOVA	Ouaba log10(in sensit IC ₅₀)	ivity		ATPase activity nmol Pi/(mg protein*min)					
	df	MS	F	p value	df	MS	F	p value		
Q111R	1, 42	42.8	107. 8	2.7e-13	1, 42	83.0	6.9	0.015		
N122D	1, 42	11.8	27.7 2	2.3e-6	1, 42	101.4	7.98	7.2e-3		
10subs	1,42	0.59	1.6	0.22	1, 42	228.1	17.96	1.2e-4		
R-S background	1, 42	0.04	1.9	0.74	1, 42	11.5	0.34	0.34		
Q111R:N122D	-	-	-	-	1, 42	7.6	5.64	0.022		

(Explanatory Variables) Linear regression	Ouaba log10(in sensit IC ₅₀)	ivity		ATPase activity nmol Pi/(mg protein*min)						
	Est	SE	t	p value	Est	SE	t	p value			
Intercept Q111R N122D 10subs R-S background Q111R:N122D	-6.03 1.32 1.14 0.26 -0.08	0.17 0.21 0.21 0.22 0.26	-36.3 6.27 5.45 1.19 -0.34	<2e-16 2.7e-13 2.3e-6 0.24 0.74	14.3 -4.39 -6.81 1.94 1.39 6.90	1.19 1.88 1.88 1.46 1.46 2.91	12.1 -2.34 -3.63 17.96 0.34 5.64	3e-15 0.024 7.7e-4 0.18 0.35 0.022			

Table S5. Statistical analysis of ouabain sensitivity and ATPase activity, related to Figure 5. Significant p values are highlighted in bold.

Note: "R-S background" in the ANOVA refers to 9 additional amino acid substitutions and a two amino acid insertion-deletion difference that distinguishes the R and S constructs (derived from *Leptodactylus macrosternum*).

Species	Primer
Engystomops	N-terminal
pustulosus	Forward: EP_wwBC6_1F
	GATGTAGAGGGTACGGTTTGAGGCACATGGCGGCAAGAAGAA
	Reverse: EP_wwBC6_11R
	GATGTAGAGGGTACGGTTTGAGGCGTGGAGCATCGGTCCAGGA
	C-terminal
	Forward: EP_wwBC7_11F
	GGCTCCATAGGAACTCACGCTACTGATCCTGGACCGATGCTCCA
	Reverse: EP_wwBC7_19R
	GGCTCCATAGGAACTCACGCTACTTGACAATGCTGACGAAGAAGGC
Lithodytes	Forward: Lep_wwBC3_1F
lineatus	TACATGCTCCTGTTGTTAGGGAGGACATGGCGGCAAGAAGAA
	Reverse: Lep_wwBC3_21R
	TACATGCTCCTGTTGTTAGGGAGGAGGCACAGAACCACCATGT
Leptodactylus	Forward: Lep_wwBC5_1F
pentadactylus	ACAGCATCAATGTTTGGCTAGTTGACATGGCGGCAAGAAGAA
	Reverse: Lep_wwBC5_21R
	ACAGCATCAATGTTTGGCTAGTTGAGGCACAGAACCACCATGT
Leptodactylus	Forward: Lep_wwBC2_1F
macrosternum	AGGTGATCCCAACAAGCGTAAGTAACATGGCGGCAAGAAGAA
	Reverse: Lep_wwBC2_21R
	AGGTGATCCCAACAAGCGTAAGTAAGGCACAGAACCACCATGT
Leptodactylus	Forward: Lep_wwBC1_1F
insularum	AACGGAGGAGTTAGTTGGATGATCACATGGCGGCAAGAAGAA
	Reverse: Lep_wwBC1_21R
	AACGGAGGAGTTAGTTGGATGATCAGGCACAGAACCACCATGT
Leptodactylus	Forward: Lep_wwBC8_23F
colombiensis	AGAGGGTACTATGTGCCTCAGCACAAGTATGAGCCCGCAGCCACTTC
	Reverse: Lep_wwBC8_3044R
	AGAGGGTACTATGTGCCTCAGCACCCAGGGCTGCGTCTGATGATTAA
Leptodactylus	Cloning primer for ATP1B1 amplification from cDNA.
macrosternum	Forward: ATCCTCGAGATGGCCAGAGACAAAACCAAGGA
	Reverse: ATCCTCGAGATGGCCAGAGACAAAACCAAGGA
Leptodactylus	Cloning primer for ATP1A1 amplification from cDNA.
macrosternum	Forward: TAATACTAGTATGGGATACGGGGCCGGACGTGAT
	Reverse: ACTGCGGCCGCTTAATAATAGGTTTCTTTCTCCA
Leptodactylus	Cloning overhang primer for ATP1A1-R variant amplification from truncated version of gene
macrosternum	in TOPO-TA vector.
	Forward:
	TAATACTAGTATGGGATACGGGGCCGGACGTGATGAGTATGAGCCCGCAGCCACT
	TCTGAACATGGCGGCAAGAAGAAAGGCAAAGGGAAGGATAAGGAT
	Reverse:
	ACTGCGGCCGCTTAATAATAGGTTTCTTTCTCCACCCAGCCGCCAGGGCTGCGTCT
	GATTATCAGTTTTCGGATTTCATCATATATGAAGATGAGCAGAGAGTAGGGGAAG
	GCACAGAACCACCATGTTGGTTTCAGTGGGTACATGCGGAGTGCCACATCCATGCC
	TGGG
Leptodactylus (all	Sequencing primer for ATP1A1 from cDNA.
species)	Forward: ATAAGTATGAGCCCGCAGCC
	Reverse: CCAGGGCTGCGTCTGATTATG

Table S6. List of primers used in this study, related to Figures 1 and 5.