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Abstract— In this paper, the problem of partial stabilization
of nonlinear systems along a given trajectory is considered. This
problem is treated within the framework of stability of a family
of sets. Sufficient conditions for the asymptotic stability of a one-
parameter family of sets using time-dependent control in the
form of trigonometric polynomials are derived. The obtained
results are applied to a model mechanical system.

I. INTRODUCTION

Trajectory tracking is one of the fundamental control
problems which has numerous applications in robotics and
process engineering. A theoretical justification of tracking
properties of control algorithms requires the stability analysis
of the tracking error dynamics in a neighborhood of the
reference curve. The stability proof can be straightforwardly
achieved, e.g., if the linearized error dynamics is completely
controllable. Tracking algorithms, based on the feedback
linearization and flatness techniques, are shown to be highly
efficient for various engineering models.

For kinematically redundant manipulating robots, the
tracking problem can be effectively formulated in terms of
a part of the state variables that characterize the control
objective. This analogy creates a connection between prag-
matically driven issues in the field of robotics and the notion
of partial stability, a concept that was rigorously defined by
A.M. Lyapunov and has been extensively explored by many
researchers (see, e.g., [31], [14], [38], [39], [40], [4], [22],
[34], [41], [17], [25], [35], [15], [13], [42], [1], [27] and
references therein). Specifically, the paper [14] explored the
connection between partial stability and full-variable stability
in nonholonomic mechanical systems, offering conditions for
achieving partial stability. Issues of partial stabilization in
the context of Lagrangian systems were investigated in [32],
[18]. Controllers that utilize passivity-based approaches for
partial stabilization have been suggested in [24], [3], [37].
The issue of achieving partial stabilization in stochastic
dynamical systems is addressed, e.g., in the papers [28], [36],
[44].

The issue of achieving partial stabilization within a finite
time frame for systems in chained-form and cascade config-
urations has been investigated, as illustrated in [16], [5], [7].
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An analysis of more extensive categories of nonlinear control
systems can be found in [13], [19]. The suggested adequate
conditions for partial stability are based on the premise that
the system allows for a Lyapunov function, with the time
derivative that is negatively definite concerning a specific
subset of variables.

In the paper [29], the motion planning problem for
autonomous vehicles is considered within the framework
of manoeuvre automata. In order to ensure the safety of
paths in complex environments, it is required to estimate
the reachable set of each manoeuvre. The proposed motion
planning scenario is illustrated by a unicycle mode with
two controls corresponding to the angular velocity and the
translational acceleration. The analogy between the equations
of motion of nonholonomic systems and underwater vehicles
has been pointed out in [2], where driftless control-affine
systems have been used to model the kinematics of an
autonomous submarine. These equations have been analyzed
in the paper [10] in the context of trajectory tracking problem
with oscillating inputs. A survey of recent advances in the
motion planning of autonomous underwater vehicles (AUV)
is presented in [26]. A mathematical model of an unmanned
surface vehicle (USV) in the form of a nonlinear control-
affine system with 6-dimensinal state and 3-dimensional
force input is considered in [33]. For this dynamical model,
a tracking controller is constructed under the assumption
that the planar reference trajectory is regular enough and
C2-bounded. The stability proof of the tracking algorithm is
based on Lyapunov’s direct method.

An important application of partial stability theory origi-
nates from planning the motion of robotic systems in task-
spaces. The goal of the latter problem is to steer the output
of a nonholonomic system to a neighborhood of the target
point. As the number of output variables (which charac-
terize the task space) is usually less than the dimension
of the state space, this task fits into the framework of
partial stabilization problems. An approach for solving the
motion planning problem in task-space is proposed in [23]
based on the Campbell–Baker–Hausdorff–Dynkin formula.
The efficiency of this approach has been tested by the
unicycle and car models with kinematic control. Fundamental
solutions of the Laplace equation are exploited in [30] to
generate obstacle-free motion of a disk robot in a bounded
connected workspace. The control function, corresponding to
the robot velocity, is obtained by an appropriate rescaling of
the gradient of the potential function. The control scheme
is implemented sequentially, and the convergence of the
trajectories to the goal is proved. Computational complexity
of the proposed control algorithm is estimated by numerical

ar
X

iv
:2

31
1.

04
47

6v
2 

 [
m

at
h.

O
C

] 
 6

 J
an

 2
02

4



experiments.
While the field of partial stability theory has advanced

substantially, contributions to the partial stabilization of
underactuated nonlinear control systems remain relatively
scarce. The challenge of partial stabilization persists for
general nonholonomic systems due to the difficulty in formu-
lating an appropriate Lyapunov-like function. In [9], practical
conditions for partial asymptotic stability were introduced for
control-affine systems that exhibit a partially asymptotically
stable equilibrium in their averaged form. This paper tackles
the issue of devising explicit partially stabilizing feedback
mechanisms for nonlinear control-affine systems that comply
with a specific Lie algebra rank condition in their vector
fields.

This paper presents a novel approach to partial stabi-
lization that significantly advances the state of the art by
addressing the challenge of stabilizing along non-feasible
curves – a task not previously tackled. By conceptualizing
this problem through the lens of the stability of sets, we
establish a unifies framework that allows for the stabilization
of system behaviors in the vicinity of a given trajectory
rather than at a fixed point. The introduction of time-varying
feedback laws is a crucial point in our construction, ensuring
exponential stability across a family of sets proximal to the
non-feasible curve.

The rest of this paper is organized as follows. The partial
stabilization problem is formulated in Section II within the
framework of a family of sets. The main result (Theorem 1)
is presented in Section III, and its proof is given in the
Appendix. Section IV illustrates our control design scheme
for an autonomous underwater vehicle model.

II. PRELIMINARIES

A. Notations and definitions

Consider a nonlinear system of the form

ẋ = f0(t,x)+
m

∑
k=1

fk(x)uk, (1)

where x = (x1, ...,xn)
T ∈ D ⊂ Rn is the state vector, u =

(u1, ...,um)
T ∈ Rm is the control, m < n, f0 : R+×D → Rn,

and f1, . . . , fm : D → Rn. We represent the state vector as
x = (yT ,zT )T with y = (y1, ...,yn1)

T and z = (z1, ...,zn2)
T ,

n1 +n2 = n, and assume that D = Dy ×Rn2 , where Dy ⊂Rn1

is a domain containing the point y = 0 ∈ Rn1 .
We will consider the problem of stabilization of system (1)

with respect to its y-variables. For this purpose, we introduce
some necessary notations and definitions which will be used
throughout the paper.

For vector fields f ,g ∈C1(D;Rn) and a point x∗ ∈ D, we

define the directional derivative Lg f (x∗) = ∂ f (x)
∂x g(x)

∣∣∣∣
x=x∗

and the Lie bracket [ f ,g](x∗) = L f g(x∗)− Lg f (x∗). For
a time dependent vector field f ∈ C1(R+ × D;Rn), the
directional derivative at a point (t∗,x∗) ∈ R+×D is

Lg f (t∗,x∗) =
∂ f (t∗,x)

∂x
g(x)

∣∣∣∣
t=t∗,x=x∗

.

We say that an f : R+×D → Rn, is:
- Lipschitz continuous with respect to x uniformly in t in

a set D̃ ⊆ D, if there exists an L > 0 such that ∥ f (t,x)−
f (t, x̃)∥ ≤ L∥x− x̃∥ for all x, x̃ ∈ D̃, t ≥ 0;

- bounded uniformly in t in a set D̃ ⊆ D, if there exists
an M > 0 such that ∥ f (t,x)∥ ≤ M for all x ∈ D̃, t ≥ 0.

Definition 1: Given a time-varying feedback law uε :
R+×D×Rn1 → Rm depending on a parameter ε > 0 and
a vector function y∗ : R+ → Dy, the πε -solution of (1)
corresponding to the initial condition x0 ∈ D at t = t0 ≥ 0
and the control u = uε(t,x,y∗(t)) is an absolutely continuous
function x(t)∈D, defined for t ∈ [t0,+∞), such that x(t0)= x0

and

ẋ = f0(t,x(t))+
m

∑
k=1

uε
k(t,x(t j),y∗(t j)) fk(x(t)), (2)

t ∈ I j = [t j, t j+1), t j = t0 + ε j for each j = 0,1,2, ... .
The concept of πε -solutions has been used, e.g., in [6],

[43], and its extension to the case of time-varying control
parameters is introduced in [9].

Definition 2: A one-parametric family of non-empty sets
{Yt}t≥0 with Yt ⊂Rn is called asymptotically stable for sys-
tem (1) with a feedback control of the form u= uε(t,x,y∗(t)),
if it is stable and attractive, i.e.:
− (stability) for every ∆> 0, there exists a δ > 0 such that,

for every t0 ≥ 0 and x0 ∈ Bδ (Yt0), the corresponding
πε -solution x(t) with the initial condition x(t0) = x0 is
uniquely defined for t ≥ t0 and x(t) ∈ B∆(Yt) for all
t ∈ [t0;+∞);

− (attraction) for some δ > 0 and for every ∆ > 0, there
exists a t1 ≥ 0 such that, for any t0 ≥ 0, and x0 ∈
Bδ (Yt0), the corresponding πε -solution x(t) with the
initial condition x(t0) = x0 satisfies the property x(t) ∈
B∆(Yt) for all t ∈ [t0 + t1,∞).

The stability concept for families of sets is described, e.g.,
in [21], [8], [9].

B. Problem statement

Let Dy ⊂Rn1 be a non-empty domain, y∗(t) be a curve in
Dy, y∗ ∈C(R+;Dy). In this paper, we consider the following
problem of stabilizing the y-variables of system (1) along the
curve y∗(t) :

Problem 1. Given a curve y∗ ∈C(R+;Dy) and a number
p > 0, the goal is to find a control uε(t,x,y∗) such that the
family of sets {Yp

t }t≥0 with

Y p
t = {x = (yT ,zT )T ∈ Rn1 : ∥y∗(t)− y∥< p,z ∈ Rn2} (3)

is asymptotically stable for the closed-loop system (1) with
u = uε(t,x,y∗) in the sense of Definitions 1 and 2.

In the sequel, by a neighborhood of a set Y p
t , t ≥ 0,

we mean the set Bδ (Y
p

t ) = {x ∈ Rn : ∥y− y∗∥ ≤ p+ δ ,z ∈
Rn2}. We assume that p is small enough to guarantee that
Bp(y∗(t))⊂ Dy for all t ≥ 0.

Note that the partial stabilization problem for the case of
static y∗(t) ≡ const is considered in [11] under appropriate
controlability rank condition. In the paper [9], the problem



of stabilizing the trajectories of a nonholonomic system
to a reference curve in Rn is considered. Up to our best
knowledge, the problem of partial stabilization to a curve is
considered here for the first time for underactuated nonlinear
systems.

For clarity of presentation, we rewrite system (1) as

ẏ = g0(t,x)+
m

∑
k=1

gk(x)uk, ż = h0(t,x)+
m

∑
k=1

hk(x)uk, (4)

where gk : Rn → Rn1 , hk : Rn → Rn2 , g0 : R+ ×Rn → Rn1

and h0 : R+ ×Rn → Rn2 are such that the vector fields of
system (1) are represented as

f0(t,x) =
(

g0(t,x)
h0(t,x)

)
, fk(x) =

(
gk(x)
hk(x)

)
,k = 1,m.

III. MAIN RESULT

In this section, we consider the class of systems (4), whose
control vector fields gk ∈ C1(Rn;Rn1) satisfy the following
rank condition for all x ∈ D:

span
{(

gi(x)
)

i∈S1
,
(
In1×n[ fi1 , fi2 ](x)

)
(i1,i2)∈S2

}
= Rn1 , (5)

where S1, S2 are some sets of indices S1 ⊆ {1,2, ...,m}, S2 ⊆
{1,2, ...,m}2 such that |S1|+ |S2|= n1.

This assumption represents a relaxation of the controlla-
bility rank condition that the vector fields of system (1) with
their Lie brackets span the whole tangent space:

span
{(

fi(x)
)

i∈S̃1
,
(
[ fi1 , fi2 ](x)

)
(i1,i2)∈S̃2

}
= Rn

at each x∈D with some S̃1 ⊆{1,2, ...,m}, S̃2 ⊆{1,2, ...,m}2,
|S̃1|+ |S̃2| = n. For the partial stabilization problems, the
latter requirement can be replaced with relaxed condition (5).
Thus, we take into account only the first n1 coordinates
of fi(x) and [ fi1 , fi2 ](x), i.e. we exploit the vector fields
gi(x) and In1×n[ fi1 , fi2 ](x) = L fi1

(x)gi2(x)− L fi2
(x)gi1(x).

Consequently, a smaller set of vector fields is needed to
satisfy the stabilizability condition, which simplifies the
control design. Condition (5) has been proposed in [11] for
the case y∗(t) ≡ const, and we exploit it here for solving
Problem 1.

In order to stabilize the y-variables of system (1) along a
curve y∗(t), we will use a time-varying feedback control of
the form

uε
k(t,x,y

∗) = ∑
i∈S1

φ
k
i (t,x,y

∗)

+
1√
ε

∑
(i1i2)∈S2

φ
k
i1,i2(t,x,y

∗),k = 1,m,
(6)

where

φ
k
i (t,x,y

∗) = δkiai(x,y∗),

φ
k
i1,i2(t,x,y

∗) = 2
√

πκi1i2 |ai1i2(x,y∗)|
(

δki1 cos
(

2πκi1i2t
ε

)
+δki2sign(ai1i2(x,y

∗))sin
(

2πκi1i2t
ε

))
.

Here, ε > 0 is a small parameter, κi1i2 ∈ N are pair-
wise distinct numbers, δi j is the Kronecker delta, and(
(ai(x,y∗))i∈S1 ,(ai1i2(x,y

∗))(i1i2)∈S2

)T
= a(x,y∗), where

a(x,y∗) =−αF−1(x)(y− y∗), α > 0, (7)

with F−1(x) denoting the inverse for n1 ×n1 matrix

F (x) =
(
(gi(x))i∈S1 ,(In1×n[ fi1 , fi2 ](x))(i1i2)∈S2

)
.

Obviously, the matrix F (x) is nonsingular in D because
of condition (5).

Let us mention that controllers of the form (6)-(7) has
been used, e.g. in [43], [9], [11]. In this paper, we adopt
the control design from the above mentioned papers to solve
Problem 1. Before formulating the main result of this section,
we introduce several assumptions on the vector field of
system (4) and the curve y∗(t).

Assumption 1: We suppose that the following properties
hold in D = Dy ×Rn2 .

A1.1) The functions fk ∈C1(D;Rn), k = 1,m, satisfy the rank
condition (5). Moreover, gk ∈C2(D;Rn1), g0 ∈C1(R+×
D;Rn1), and h0 ∈C(R+×D;Rn1).

A1.2) For any compact set D̃y ⊂ Dy, for all k1,k2,k3 ∈ 1,m,
j1, j2 ∈ 0,m,

– the functions fk1 , L fk2
gk1 , L fk1

L fk2
gk1 are

bounded in D̃ = D̃y ×Rn2 ;
– the functions fk1 are Lipschits continuous in D̃;
– the functions f0, L f j1

g j2 , L f0L fk2
gk1 and ∂g0

∂ t are
bounded uniformly in t in D̃;

– the function f0 is Lipschits continuous with respect
to x uniformly in t in D̃.

A1.3) The function y∗ : R+ → Dy is Lipschitz continuous.
The following result shows that the family of controls (6)-

(7) solves Problem 1 for system (4) under Assumption 1.
Theorem 1. Let Assumption 1 be satisfied for system (4)

and a curve y∗ ∈ C(R+;Dy), and let p,δ > 0 be arbitrary
numbers such that Bδ (Y

p
t )⊂ D for all t ≥ 0, where the sets

Yp
t are defined in (3).
Then there exists an ε > 0 such that, for any ε ∈ (0,ε], the

family of sets
{

Yp
t
}

t≥0 is asymptotically (and even exponen-
tially) stable for system (4) with the controls uk = uε

k(t,x,y
∗)

defined by (6) and the initial conditions x(0) = x0 ∈ Bδ (Y
p
t ).

The proof of this theorem is presented in the Appendix.
Remark 1: Unlike the paper [11], we do not require the

z-extendability of solutions to system (4), which is instead
guaranteed by Assumptions A1.1)–A1.2). However, if it
holds that z(t)-variables of the solutions of system (4) belong
to some set D2 ⊂ Rn2 whenever the corresponding part
y(t) is in D1, than we can take D̃ = Dy × D2 in A1.2).
If, additionally, the functions g0,gk are bounded uniformly
in t in D̃, then the boundedness and Lipschitz continuity
properties of the functions h0,hk are not required. This can
be easily seen from the proof of Theorem 1.

Remark 2: With the use of control formulas from [8], the
obtained result can be easily extended to systems whose
vector fields satisfy the controllability rank condition with
first- and second-order Lie brackets.



IV. CASE STUDY: AN AUTONOMOUS UNDERWATER
VEHICLE MODEL

Consider the equations of motion of an autonomous un-
derwater vehicle with four independent controls:

ẋ1 = cos(x5)cos(x6)v,
ẋ2 = cos(x5)sin(x6)v,
ẋ3 =−sin(x5)v,
ẋ4 = ω1 +ω2 sin(x4) tan(x5)+ω3 cos(x4) tan(x5),
ẋ5 = ω2 cos(x4)−ω3 sin(x4),
ẋ6 = ω2 sin(x4)sec(x5)+ω3 cos(x4)sec(x5).

(8)

Here, (x1,x2,x3) denote the position of the center of mass,
(x4,x5,x6) describe the vehicle orientation (Euler angles), v is
the translational velocity along the Ox1 axis, and ω1,ω2,ω3
are the angular velocity components. Such equations of
motion have been presented, e.g., in [2]. The stabilization
problem for system (8) by means of oscillating control is
considered in [9]. In this section, we consider the problem of
stabilizing the (x1,x2,x3) coordinates of system (8) by three
controls v, ω2, and ω3, so we assume that the first component
of the angular velocity cannot be controlled. Let us denote
v = u1,ω2 = u2,ω3 = u3, y = (x1,x2,x3)

T , z = (x4,x5,x6)
T ,

x = (yT ,zT )T , and rewrite system (8) in the form (4):

ẏ =
3

∑
k=1

ukgk(x), ż = h0(t,x)+
3

∑
k=1

ukhk(x),

where
h0(t,x) = (ω1(t),0,0)T ,

g1(x) = (cosx5 cosx6,cosx5 sinx6,−sinx5)
T ,

g2(x) = g3(x) = h1(x) = (0,0,0)T ,

h2(x) = (sinx4 tanx5,cosx4,sinx4 secx5)
T ,

h3(x) = (cosx4 tanx5,−sinx4,cosx4 secx5)
T .

The rank condition (5) is satisfied in D = {x ∈ R6 : −π

2 <
x5 < π

2 } with S1 = {1}, S2 = {(1,2),(1,3)}. Indeed, it is
easy to check that the matrix F (x) is nonsingular in D with
detF (x)≡ 1:

F (x) = (g1(x) I3×6[ f1, f2](x) I3×6[ f1, f3](x)) ,

where
I3×6[ f1, f2](x) =

(
cosx4 sinx5 cosx6 + sinx4 sinx6,

cosx4 sinx5 sinx6 − sinx4 cosx6, cosx4 cosx5
)T

,

I3×6[ f1, f3](x) =
(
− sinx4 sinx5 cosx6 + cosx4 sinx6,

− sinx4 sinx5 sinx6 − cosx4 cosx6,−sinx4 cosx5
)T

.

According to formulas (6), we define the controls as uk =
uε

k(t,x,y
∗), so that

u1 =a1(x,y∗)+

√
4πκ12|a12(x,y∗)|

ε
cos

2πκ12t
ε

+

√
4πκ13|a13(x,y∗)|

ε
cos

2πκ13t
ε

,

u2 =sign(a12(x,y∗))

√
4πκ12|a12(x,y∗)|

ε
sin

2πκ12t
ε

,

u3 =sign(a13(x,y∗))

√
4πκ13|a13(x,y∗)|

ε
sin

2πκ13t
ε

,

(9)

where a(x,y∗) =−αF−1(x)(y− y∗).
For numerical simulations, we choose

y∗(t) = (0.2t cos(0.2t),0.2t sin(0.2t),0.2t)T , ω1(t) =
0.25cos(t) and put ε = 0.1, α = 15. Fig. 1 illustrates the
behavior of system (8) with control (9) and the initial
condition x0 = (0,0,0, π

4 ,
π

4 ,
π

4 )
T .

Fig. 1. The blue graph illustrates the behavior of (x1,x2,x3)-components
of the solution of system (8)–(9), and the red curve is y∗(t).

V. CONCLUSION

The presented case study demonstrates that our approach
is applicable to the class of underactuated control-affine
systems adhering to a specific Lie algebra rank condition,
thereby encompassing essentially nonlinear dynamical be-
havior. On one hand, our method extends the paradigm of
partial stabilization to encompass curve-following behaviors;
on the other hand, it generalizes our earlier results by encom-
passing systems with non-zero drift and situations where the
reference curve is defined in a lower dimensional subspace.
The outcome of this work is oriented towards robotics, where
there is a compelling need to stabilize only a portion of a
system’s states, enhancing the control and maneuverability of
robotic platforms across diverse and potentially unpredictable
environments.

APPENDIX

The proof of Theorem 1 combines and extends the tech-
niques introduced in the papers [9], [11], [12]. Note that the
results of those papers cannot be directly applied because of
more general assumptions. In particular, we do not require
the z-extendability of solutions.

Proof of Theorem 1. Given a p > 0, let us fix δ , δ
′

such
that 0 < δ < δ

′
and B

δ
′ (y∗(t)) ⊂ Dy for all t ≥ 0. Denote

D
′
= B

δ
′ (y∗(t))×Rn2 . From assumption A1.2), there exist

positive constants Mg, Mh, Mg0 , Mh0 , Lg, Lh, Lg0 , Lh0 , Mg2 ,

Mg20 , Lg20 , Mg3 , Mg30 such that for all x, x̃ ∈ D
′
, t, t̃ ≥ 0, and



k1,k2,k3 ∈ {1,2,3, ...,m},

∥y∗(t)−y∗(t̃)∥ ≤ L∗|t−t̃|,

∥g0(t,x)∥ ≤ Mg0 , ∥gk(x)∥ ≤ Mg,

∥∥∥∥∂g0(t,x)
∂ t

∥∥∥∥≤ Lg20 ,

∥h0(t,x)∥ ≤ Mh0 , ∥hk(x)∥ ≤ Mh, ∥L fk2
gk1(x)∥ ≤ Mg2 ,

∥g0(t,x)−g0(t, x̃)∥ ≤ Lg0∥x−x̃∥,
∥h0(t,x)−h0(t, x̃)∥ ≤ Lh0∥x−x̃∥,
∥gk(x)−gk(x̃)∥ ≤ Lg∥x−x̃∥,∥hk(x)−hk(x̃)∥ ≤ Lh∥x−x̃∥,
max{∥L f0g0(t,x)∥,∥L fk g0(t,x)∥, ∥L f0gk(t,x)∥} ≤ Mg20 ,

∥L fk3
L fk2

gk1(x)∥ ≤ Mg3 , ∥L f0L fk2
gk1(t,x)∥ ≤ Mg30 .

Furthermore, assumption A1.1) implies the existence of a
µ > 0 such that ∥F−1(x)∥≤ µ for all x ∈ D′, where F−1(x)
is the inverse matrix for F (x).

Let x0 = (y0T
,z0T

)T ∈ Bδ (Y
p
0 ), and denote

Uε = max
0≤t≤ε

m

∑
k=1

|uε
k(t,x

0,y∗0)|.

For the simplicity and without loss of generality, we put
t0 = 0. Using (7) and Hölder’s inequality, one can show that,
for any x0 ∈ Bδ (Y

p
0 ),

Uε ≤ c1∥y0 − y∗0∥+
c2√

ε

√
∥y0 − y∗0∥ ≤ cu

√
∥y0 − y∗0∥

ε
, (10)

where c1=
√
|S1|αµ, c2=2

√
2απµ

(
∑( j1 j2)∈S2

(κ j1 j2)
2
3

) 3
4
,

and cu = c1
√

ε(p+δ )+ c2.
The first step of the proof is to show that all solutions of

system (4) with initial conditions in Bδ (Y
p
0 ) are well defined

in D′ on the time interval [0,ε] with some small enough
ε > 0. Using the integral representation of the y-component
of the solutions of system (4) with x0 ∈ Bδ (Y

p
0 ), we get

∥y(t)−y0∥=
∥∥∥ t∫

0

g0(s,x(s))ds+
m

∑
k=1

t∫
0

gk(x(s))uk(s)ds
∥∥∥

≤
t∫

0

∥g0(s,x0)∥ds+
m

∑
k=1

∥gk(x0)∥
t∫

0

|uk(s)|ds

+

t∫
0

∥g0(s,x(s))−g0(s,x0)∥

+
m

∑
k=1

∥gk(x(s))−gk(x0)∥|uk(s)|ds

≤(L0+LgUε)

t∫
0

(
∥y(s)−y0∥+∥z(s)−z0∥

)
ds

+(Mg0+MgUε)t.

Similarly,

∥z(t)−z0∥ ≤ (Lh0+Uε Lh)

t∫
0

(
∥y(s)−y0∥+∥z(s)−z0∥

)
ds

+(Mh0+Uε Mh)t.

Applying Grönwall–Bellman inequality to the both estimates,
we obtain:

∥y(t)− y0∥ ≤e(L0+LgUε )t
(
(Mg0+Uε Mg)t

+(Lg0+Uε Lg)

t∫
0

∥z(s)− z0∥ds
)
,

∥z(t)− z0∥ ≤e(Lh0+Uε Lh)t
(
(Mh0+Uε Mh)t

+(Lh0+Uε Lh)

t∫
0

∥y(s)− y0∥ds
)
.

Thus, for any t ∈ [0,ε], x0 ∈ Bδ (Y
p

0 ),

∥y(t)− y0∥ ≤ ecg
√

ε

(
Mg0ε +Mgcu

√
ε∥y0 − y∗0∥

+
cg√

ε

t∫
0

∥z(s)− z0∥ds
)
,

(11)

∥z(t)− z0∥ ≤ ech
√

ε

(
Mh0ε +Mhcu

√
ε∥y0 − y∗0∥

+
ch√

ε

t∫
0

∥y(s)− y0∥ds
)
,

(12)

where

cg=Lg0

√
ε +Lgcu

√
p+δ , ch=Lh0

√
ε +Lhcu

√
p+δ .

Substituting (12) into (11), we get:

∥y(t)− y0∥ ≤ ecg
√

ε

(
Mg0ε +Mgcu

√
ε∥y0 − y∗0∥

+ cgech
√

ε

(
Mh0ε

3/2 +Mhcu

√
ε∥y0 − y∗0∥

+
ch

ε

t∫
0

s∫
0

∥y(p)− y0∥d pds
))

.

Then integration by part in the last term of the above estimate
yields:

∥y(t)− y0∥ ≤ecg
√

ε

(
ε(Mg0 + cgech

√
ε Mh0

√
ε)

+ cu

√
ε∥y0 − y∗0∥(Mg + cgech

√
ε Mh

√
ε)
)

+ cgche(cg+ch)
√

ε

t∫
0

∥y(s)− y0∥ds.

Applying again Grönwall–Bellman inequality, we con-
clude that, for any ε > 0 and for all t ∈ [0,ε],

∥y(t)− y0∥ ≤ cy1

√
ε∥y0 − y∗0∥+ cy2ε, (13)

where

cy1 = cu(Mg + cgech
√

ε Mh
√

ε)e
√

εcg(1+
√

εche(cg+ch)
√

ε ),

cy2 = (Mg0 + cgech
√

ε Mh0

√
ε)e

√
εcg(1+

√
εche(cg+ch)

√
ε ).

With the obtained estimate, inequality (12) reads as

∥z(t)− z0∥ ≤ cz1

√
ε∥y0 − y∗0∥+ εcz2 , (14)



where cz1 = ech
√

ε(Mhcu +
√

εchcy1), cz2 = ech
√

ε(Mh0 +√
εchcy2).

Let us underline that the coefficients cy1 ,cy2 ,cz1 and cz2
in estimates (13) and (14) are monotonically increasing with
respect to ε and δ .

Estimates (13) and (14) ensure the well-definiteness of the
solutions of system (4) on the time interval [0,ε]. Indeed,
estimate (14) means that there is no blow-up of the z-
component of solutions of system (4) with initial condition
x0 ∈ Bδ (Y

p
0 ). To show that y(t) ∈ B

′
δ
(y∗(t)) for all t ∈ [0,ε],

we exploit the estimate (13):

∥y(t)− y∗(t)∥ ≤ ∥y(t)− y0∥+∥y∗(t)− y∗0∥+∥y0 − y∗0∥

≤ cy1

√
ε∥y0 − y∗0∥+ cy2ε +L∗

ε + p+δ .

(15)
Thus, to ensure the well-definiteness of the solutions in

D
′

for t ∈ [0,ε], it suffices to show that

∥y(t)− y∗(t)∥ ≤ dist(y∗(t),∂D
′
) = p+δ

′

for each t ∈ [0,ε].
As δ < δ

′
, we may define ε0 as the positive root of the

equation

cy1

√
ε(p+δ )+ ε(cy2 +L∗) = δ

′ −δ ,

i.e.

ε0 =


√√√√( cy1

√
p+δ

2(cy2 +L∗)

)2

+
δ

′ −δ

cy2 +L∗ −
cy1

√
p+δ

2(cy2 +L∗)


2

.

Then for any ε ∈ [0,ε0], the solutions of system (4) with
controls (6) and initial conditions x0 ∈ Bδ (Y

p
0 ) are well-

defined in D
′

for all t ∈ [0,ε].
The next step of the proof is to show that the distance

between y(t) and y∗(t) does not increase after the time t = ε,
i.e. ∥y(ε)− y∗(ε)∥ ≤ ∥y0 − y∗0∥. For this purpose, note that
any solution of system (4) with initial data x0 ∈ Bδ (Y

p
0 ) and

controls (6) can be represented by means of the Chen–Fliess
type series [20], [43], [9], [11]. For analyzing the value y(ε),
consider the y-component of the series expansion, where the
term εF (x0)a(x0,y∗0) is added and subtracted:

y(ε) = y0 ± εF (x0)a(x0,y∗0)

+

ε∫
0

(
g0(t,x)+

m

∑
k=1

gk(x)uε
k(t,x,y

∗)

)
dt

= y0 − εα(y0 − y∗0)+ εg0(0,x0)

+σ1(ε,x0)+ r0(ε)+ r1(ε),

(16)

where

σ1(ε,x0) =−εF (x0)a(x0,y∗0)+
m

∑
k=1

gk(x0)

ε∫
0

uk(s1)ds1

+
m

∑
k1,k2=1

L fk2
gk1(x

0)

ε∫
0

s1∫
0

uk1(s2)uk2(s2)ds2ds1,

r0(ε) =

ε∫
0

s1∫
0

(
∂g0(s2,x(s2))

∂ s2
+L f0g0(s2,x(s2))

+
m

∑
k=1

(
L fk g0(s2,x(s2))uk(s2)

+L f0gk(s2,x(s2))uk(s1)
))

ds2ds1,

r1(ε) =
m

∑
k1,k2=1

t∫
0

s1∫
0

s2∫
0

(
L f0L fk2

gk1(x(s3))

+
m

∑
k3=1

L fk3
L fk2

gk1(x(s3))uk3(s3)
)

×uk1(s1)uk2(s2)ds3ds2ds1.

Let us estimate the values of ∥σ1(ε,x0)∥, ∥r0(ε)∥, ∥r1(ε)∥.
Calculating the integrals in σ1(ε,x0) according to for-

mula (6), we get

σ1(ε,x0) =−εF (x0)a(x0,y∗0)+
m

∑
k=1

εgk(x0)ak(x0,y∗0)

+ ε ∑
(k1,k2)∈S2

I[n1×n][ fk1 , fk2 ]ak1k2(x
0,y∗0)

+
ε2

2 ∑
(k1,k2)∈S1

L fk2
gk1(x

0)ak1(x
0,y∗0)ak2(x

0,y∗0)

+
ε3/2
√

π
∑

k1∈S1

ak1(x
0,y∗0)

m

∑
k2=1

I[n1×n][ fk1 , fk2 ]

× ∑
j:( j,k2)∈S2

√
|a jk2(x

0,y∗0)|
κ jk2

sign(a jk2(x
0,y∗0))

=
ε2

2 ∑
(k1,k2)∈S1

L fk2
gk1(x

0)ak1(x
0,y∗0)ak2(x

0,y∗0)

+
ε3/2
√

π
∑

k1∈S1

ak1(x
0,y∗0)

m

∑
k2=1

I[n1×n][ fk1 , fk2 ]

× ∑
j:( j,k2)∈S2

√
|a jk2(x

0,y∗0)|
κ jk2

sign(a jk2(x
0,y∗0)).

Then from A1.3),

∥σ1(ε,x0)∥ ≤
ε2Mg2

2
∥a(x0,y∗0)∥2

+
2ε

3
2 Mg2√

π
∥a(x0,y∗0)∥

3
2

m

∑
j1=1

(
∑

( j2, j1)∈S2

κ
− 2

3
j2 j1

) 3
4

.

By the definition of a(x0,y∗0),

∥σ1(ε,x0)∥ ≤ cσ ε
3/2∥y∗0 − y0∥3/2,



where

cσ =

√
εMg2α2µ2

2

√
p+δ

+
2Mg2(αµ)3/2

√
π

m

∑
j1=1

(
∑

( j2, j1)∈S2

κ
− 2

3
j2 j1

) 3
4

,

provided that x0 ∈ Bδ (Y
p

0 )
For estimating ∥r0(ε)∥ and ∥r1(ε)∥, we apply Assumption

A1.2):

∥r0(ε)∥ ≤ cr0ε
3
2 , ∥r1(ε)∥ ≤ cr1ε

3
2 ∥y0 − y∗0∥,

where cr0 = 1
2
√

ε(
√

εLg20 + Mg20(
√

ε + cu
√

p+δ )),

cr1 =
1
6 c2

u(Mg30

√
ε +Mg3cu

√
p+δ ).

Let us analyse the value ∥y(ε)− y∗(ε)∥. From (16),

y(ε)− y∗(ε) =(1− εα)(y0 − y∗0)− (y∗(ε)− y∗0)

+ εg0(0,x0)+σ1(ε,x0)+ r0(ε)+ r1(ε).

From A1.2), A1.3), and the above obtained estimates on
∥σ1(ε,x0)∥, ∥r0(ε)∥, ∥r1(ε)∥,

∥y(ε)− y∗(ε)∥ ≤ (1− εα)∥y0 − y∗0∥+L∗
ε + εMg0

+ cσ ε
3
2 ∥y0 − y∗0∥

3
2 + cr0ε

3
2 + cr1ε

3
2 ∥y0 − y∗0∥

≤ ∥y0 − y∗0∥(1− ε(α − cσ

√
ε(p+δ )− cr1

√
ε))

+ ε(L∗+Mg0 + cr0

√
ε),

provided that ε < ε1 =
1
α

and x0 ∈ Bδ (Y
p

0 ).
Thus, we achieve the following estimate:

∥y(ε)− y∗(ε)∥ ≤
(
1− ε(α −

√
εq)
)
∥y0 − y∗0∥

+ ε(L∗+Mg0 +
√

εcr0),

where q = cσ

√
p+δ +cr1 is monotonically increasing with

respect to δ .
Our next goal is to show the attraction of the y-components

of the solution to the p−neighborhood of the curve y∗(t).
Assume that α >

ν(L∗+Mg0 )

p with some ν > 1.
Using estimate (15), we may ensure the following prop-

erty: if x0 ∈ Y
p
ν

0 then x(t) ∈ Y p
t for all t ∈ [0,ε] with a small

enough ε. Indeed, let us define ε2 as the positive root of the
equation

cy1

√
ε p
ν

+ ε(cy2 +L∗) =
p(ν −1)

ν
,

i.e.

ε2 =
p
(√

c2
y1
+4(ν −1)(cy2 +L∗)− cy1

)2

4ν(cy2 +L∗)2 .

Then estimate (15) yields

∥y(t)− y∗(t)∥ ≤ ∥y(t)− y0∥+∥y∗(t)− y∗0∥+∥y0 − y∗0∥

≤ cy1

√
ε∥y0 − y∗0∥+ εcy2 + εL∗+

p
ν
≤ p,

provided that ∥y0 − y∗0∥ ≤
p
ν

and ε ≤ ε2.
Consider two possibilities:

1.1) If x0 ∈Y
p
ν

0 , then, as discussed above, ∥y(t)−y∗(t)∥ ≤ p
for all t ∈ [0,ε], that is x(t) ∈ Y p

t for all t ∈ [0,ε]

1.2) If x0 ∈ Bδ (Y
p

0 )\Y
p
ν

0 , i.e. ∥y0 − y∗0∥ ≥
p
ν
, then

∥y(ε)− y∗(ε)∥ ≤
(
1− ε(α −

√
εq)
)
∥y0 − y∗0∥

+
ε(L∗+Mg0 +

√
εcr0)∥y0 − y∗0∥

∥y0 − y∗0∥

≤
(

1− ε

(
α −

ν(L∗+Mg0)

p

−
√

ε

(
q+

νcr0

p

)))
∥y0 − y∗0∥

For an arbitrary λ ∈
(

0,α − ν(L∗+Mg0 )

p

)
, let us define

ε3 =
(
(α−λ )p−ν(L∗+Mg0 )

pq+νcr0 )

)2
. Then, for any ε ∈ (0,ε3),

∥y(ε)− y∗(ε)∥ ≤ (1− ελ )∥y0 − y∗0∥.

Thus, ∥y(ε) − y∗(ε)∥ ≤ ∥y0 − y∗0∥ ≤ p + δ and x(ε) ∈
Bδ (Y

p
ε )⊂ D

′
.

So we may repeat all the above argumentation for the
solutions with the initial condition x(ε) with the same
choice of λ ∈

(
0,α − ν(L∗+Mg0 )

p

)
and ε ∈ min

{
ε0,ε1,ε3

}
.

This proofs the well-definiteness in D′ of the solutions of
system (4) with x0 ∈ Bδ (Y

p
0 ) for t ∈ [0,2ε]. Besides, we can

consider again two cases:
2.1) if ∥y(ε)− y∗(ε)∥ ≤ p

ν
then ∥y(t)− y∗(t)∥ ≤ p for t ∈

[ε,2ε];
2.2) if ∥y(ε)− y∗(ε)∥> p

ν
then

∥y(2ε)− y∗(2ε)∥ ≤ (1− ελ )∥y(ε)− y∗(ε)∥.

Iterating all above-described steps, we may conclude that the
solutions of system (4) with control (6) and initial conditions
x0 ∈Bδ (Y

p
0 ) are well defined in D′ for all t ≥ 0. Furthermore,

if x0 ∈ Y
p
ν

0 then x(t) ∈ Y p
0 for all t ≥ 0. If x0 ∈ Bδ (Y

p
0 )\Y

p
ν

0 ,
then there exists an N ∈ N such that ∥y(t)− y∗(t)∥ > p for
each t = 0,ε,2ε, ...,(N − 1)ε and ∥y(t)− y∗(t)∥ ≤ p

ν
for all

t ∈ [0,+∞). It remains to describe the behavior of y(t) for
an arbitrary t ∈ [0,Nε].

As follows from the previous argumentation, the following
estimate holds for t = 0,ε,2ε, ...,(N −1)ε :

y( jε)− y∗( jε)≤ (1− ελ ) j∥y0 − y∗0∥ ≤ e−λ jε∥y0 − y∗0∥,

for j = 0,1, ...,N −1.
For an arbitrary t ∈ [0,Nε], denote by tin =

[ t
ε

]
the integer

part of t
ε
. Notice that t − tinε < ε, then

∥y(t)− y∗(t)∥ ≤ ∥y(tinε)− y∗(tinε)∥+∥y(t)− y(tinε)∥
+∥y∗(t)− y∗(tinε)∥ ≤

√
∥y(tinε)− y∗(tinε)∥

×
(

cy1

√
ε+
√

∥y(tinε)− y∗(tinε)∥
)
+ ε(cy2 +L∗)

≤ γ1(∥y0 − y∗0∥)e−
λ t
2 + εγ2,

where

γ1(∥y0 − y∗0∥) = e
ελ
2

√
∥y0 − y∗0∥

(
cy1

√
ε + e

ελ
2

√
∥y0 − y∗0∥

)
is monotonically increasing with respect to ∥y0 − y∗0∥, and
γ2 = cy2 +L∗.

This completes the proof of Theorem 1.
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