Floquet Flux Attachment in Cold Atomic Systems
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Flux attachment provides a powerful conceptual framework for understanding certain forms of
topological order, including most notably the fractional quantum Hall effect. Despite its ubiquitous
use as a theoretical tool, directly realizing flux attachment in a microscopic setting remains an
open challenge. Here, we propose a simple approach to realizing flux attachment in a periodically-
driven (Floquet) system of either spins or hard-core bosons. We demonstrate that such a system
naturally realizes correlated hopping interactions and provides a sharp connection between such
interactions and flux attachment. Starting with a simple, nearest-neighbor, free boson model, we
find evidence—from both a coupled wire analysis and large-scale density matrix renormalization
group simulations—that Floquet flux attachment stabilizes the bosonic integer quantum Hall state
at 1/4 filling (on a square lattice), and the Halperin-221 fractional quantum Hall state at 1/6 filling
(on a honeycomb lattice). At 1/2 filling on the square lattice, time-reversal symmetry is instead
spontaneously broken and bosonic integer quantum Hall states with opposite Hall conductances are
degenerate. Finally, we propose an optical-lattice-based implementation of our model on a square
lattice and discuss prospects for adiabatic preparation as well as effects of Floquet heating.
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Unlike more conventional states, topological phases
cannot be identified by their pattern of symmetry break-
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topological order [4, 5] and symmetry-protected topolog- '
ical (SPT) order [2, 6-8], there are, as yet, few guiding
principles for obtaining simple realizations of strongly-
interacting topological phases.
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From a conceptual viewpoint, one such principle, which (BIQH)
underlies our understanding of the fractional quantum
Hall effect [9], is the notion of flux attachment [10-13];
the conventional picture states that Coulomb repulsion
has the net effect of attaching an even number of mag-
netic flux quanta to every electron. Such composite ob-
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magnetic field (in fact, one which mimics that of an in-
teger quantum Hall effect); to this end, flux attachment
provides a unified description for, and explains the sim-
ilarity between, the experimental results for the integer
and fractional cases.

A considerable amount of recent attention has fo-
cused on correlated hopping [14-18] of the form, H =
(2nk — l)a}ai [Fig. 1(a,b)], in part because it provides a
natural framework for implementing flux attachment [19-
21]. In particular, within this Hamiltonian setting, the
a-particles naturally see the density of b-particles as flux
since, €™ = (1 —2n?). In addition to enabling a more
direct mapping between analytic predictions and micro-

FIG. 1.

(a) Schematic depiction of our square-lattice,
correlated-hopping model for two species of hard-core bosons
(residing on the A and B sublattice). The background flux
of the nearest-neighbor Floquet-driven Hamiltonian is ¢ per
square plaquette, leading to an effective Hamiltonian with
staggered flux 7/2 £ ¢ per triangular loops shown with dot-
ted lines. The added flux « breaks the time reversal symmetry
of the effective Hamiltonian. The striped chemical potential
(red shading) V = % facilitates adiabatic preparation. (b)
Analogous model for a honeycomb lattice, where the back-
ground flux is 7/2 per triangular plaquette (7 per hexagon).
(C) Phase diagram of the square lattice model with ¢ = 7/2
at half filling computed via iDMRG on a cylinder of width
L = 10 lattice sites.The hashed region appears to be smoothly
connected to the BIQH phase (see text). The error bars orig-
inate from the resolution of the numerics and the flow of the
transition with bond dimension.



scopic models, such correlated-hopping Hamiltonians
have also been shown to exhibit (fractional) Chern insu-
lators at anomalously large background fluxes [19]; un-
derstanding the interplay between topology and lattice-
symmetries in this high-flux-regime is the subject of ac-
tive investigation [22-27].

Despite seminal advances [14, 21, 28], owing to the
multi-body nature of the interactions, it remains an open
challenge to directly implement correlated hopping. In
this Letter, we propose and analyze a method to real-
ize correlated hopping in a periodically-driven (Floquet)
system of spins or hard-core bosonic particles. Our main
results are threefold. First, we analytically illustrate the
emergence of correlated hopping from the periodic mod-
ulation [29-33] of a simple hard-core boson model. We
utilize a perturbative coupled-wire construction to ex-
plore the existence of topological phases in the resulting
many-body Hamiltonian. Second, guided by this anal-
ysis, we perform large-scale density matrix renormaliza-
tion group (DMRG) simulations [34], which reveal the ex-
istence of both a bosonic integer quantum Hall (BIQH)
phase on the square lattice [19-21, 35], and a bosonic
fractional quantum hall (BFQH) phase on the honey-
comb lattice [20, 36]. Surprisingly, we also discover a
regime where the Hamiltonian is explicitly time-reversal
invariant, and yet, hosts a robust BIQH ground state; in
this regime, we find that BIQH states with either sign of
the Hall conductance are simultaneously stable [37].

Finally, motivated by the possibility of adiabatically
preparing the BIQH in cold atomic systems [38, 39],
we explore the surrounding phase diagram as a func-
tion of two natural experimental control parameters: the
anisotropy of the hopping strengths, and an overlaid
striped chemical potential. We provide a specific exper-
imental blueprint for realizing our protocol in a lattice
gas of ultracold bosonic atoms [40-44]; we emphasize
that our protocol can also be implemented in Rydberg
tweezer arrays where synthetic gauge fields arise from ei-
ther dipolar exchange interactions [17, 45, 46] or local
dressing fields [47, 48]. In addition to providing a micro-
scopic route to both realizing and understanding flux at-
tachment, our approach opens the door to a more general
framework for defect-particle binding and the simulation
of exotic phases and phase transitions [49-52].

Floquet Flux Attachment—Let us start by demonstrat-
ing how a periodically-driven system of free hard-core
bosons can generate correlated hopping. Suppose two
identical species of bosons reside separately on the sub-
lattices, A and B, of a bipartite lattice [Fig. 1(a,b)]. Con-
sider the Hamiltonian

H(t)= Z[Jik cos(Qt + Gik)eiB““a;(bk + h.cl, (1)
(ik)

where a (b) is the annihilation operator for a hard-
core boson on sublattice A (B), B; captures a back-
ground flux, 6;; are bond-dependent constants, and
the nearest-neighbor hopping amplitudes are period-
ically modulated at frequency 2. One can factor
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FIG. 2. (a) Charge pumping under flux insertion provides

numerical evidence for the BIQH state on the square lattice at
various parameters, and the Halperin-221 fractional quantum
Hall state on the isotropic honeycomb lattice (last row of the
table). J/JL = 2 for all the plotted BIQH states. The BIQH
states were observed on various cylinder widths, L = 6,8, 10
lattice sites and the BFQH state on a cylinder of width L = 12
sites. (b) The negligible change in the ground state energy un-
der flux insertion in the BFQH and half-filled BIQH phases,
contrasted with that in the superfluid phase on the square
lattice at J/JL = 0.4. The superfluid energy has periodic-
ity 7 under flux insertion because for odd sublattice cylinder
widths (L/2), the ground states for periodic and antiperiodic
boundary conditions are exactly degenerate. (c¢) Energy and
Fidelity (wavefunction overlap) as a function of time-reversal
symmetry-breaking parameter «, showing a first order phase
transition between the two BIQH phases with 0., = +2 on
the square lattice, with ¢ = 7/2,(n) = 1/2, J;/JL = 2, and
da = m/24.

out the periodic drive, H(t) = e"*H; + e **H_,,
where H; = Z(ik} Jikewi’”‘[emi’“ajbk + h.c.] and H_; =
Z<ik> J;pe Wik [eiBikaIbk + h.c.]. For large driving fre-
quencies, the Hamiltonian can be expanded in powers
of 1/Q using a Floquet-Magnus expansion; the leading
order term is given by [53]:
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Crucially, H.g exhibits correlated hopping—as the a-
bosons hop on the A sublattice, they acquire a phase
which depends on the occupation of the intervening B-
lattice site (n} = b,tbk = 0,1), and vice versa. This

Hep = 5 [H1, H 1]



effective static Hamiltonian is prethermal and describes
the system for exponentially long times ~ %/ before
drive-induced Floquet heating occurs [54-59].

Bosonic Integer Quantum Hall Phase—Consider
Eq. (2) on the square lattice, where the hopping am-
plitudes along the horizontal and vertical directions are
given by Jy and Jy, respectively [Fig. 1(a)]. Using a
coupled-wire construction, we investigate the existence
of interesting quantum Hall states [20, 60]. To facili-
tate this approach, we choose 60;;, = 7/2 on the thick
red bonds depicted in Fig. 1(a), while 6;; = 0 otherwise.
The consequence of this choice for Heg is that bosons
can only hop to their next-nearest neighbors vertically
and diagonally, with coupling strengths proportional to
Ji and J J|, respectively. Thus, when the ratio JH/JJ_
vanishes, the bosons cannot hop between vertical chains.
A simple Jordan-Wigner transformation reveals that the
chains decouple into gapless Luttinger liquids. Turning
on the diagonal hopping between chains gaps out the
bulk degrees of freedom, but a perturbative analysis re-
veals that gapless modes can survive at the edge, sug-
gesting a quantum Hall state [61]. In particular, we find
that for a system with boson density (n) per site and
background flux ¢ = >, Bi; = m(2p + 2¢ + 1)(n) per
plaquette (p,q € 7Z), it is possible to realize a Halperin
state, where the commutation relations between the gap-
less modes are described by the Chern-Simons K-matrix:

2p 29+1
K= (2q+1 % ) 3, 62].

The simplest possible such state is the BIQH, a
symmetry-protected topological phase of matter charac-
0 1
1 0
we use iDMRG to compute the ground state at filling
factor v = 2m(n)/¢ = 2, where ¢ = /4 and (n) = 1/4,
in the hope of observing a BIQH state. We choose a
large value of the ratio J/J. = 2, such that the sys-
tem should presumably be deep in this topological phase.
The system is wrapped around an infinitely long cylin-
der with the vertical (/1) and horizontal (.J;;) hoppings in
the wrapping and infinite direction respectively, although
we confirm that the choice of wrapping direction has no
qualitative effect [61].

A tell-tale signature of the BIQH phase is its Hall con-
ductance o4,, which is always quantized to an even in-
teger. Within iDMRG, in order to compute o, [63], we
thread 27 flux through the cylinder and measure the re-
sulting charge pumping [64, 65]. As shown in Fig. 2(a),
the charge pumped increases linearly as a function of the
inserted flux, AQ = 320, = 2, providing evidence that
the ground state of the system is a BIQH state with a
quantized Hall conductance, 0., = 2.

Moreover, the ground state energy remains nearly con-
stant under flux insertion, indicating that the system
is gapped [Fig. 2(b)]. The large entanglement entropy
and short correlation length provide further evidence
that the ground state is indeed a gapped, entangled lig-
uid [Figs. 3(a)]. Our numerics suggest that this BIQH

terized by K = ) Guided by the above analysis,
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FIG. 3. Phase transitions out of the spontaneous time-
reversal symmetry-breaking BIQH phase: correlation length £
along the cylinder direction and entanglement entropy S: (a)
at fixed p = 0, showing a phase transition from a superfluid
to BIQH with increasing J)/Jy1, (b) at fixed J;/J. = 2.0,
showing a phase transition from BIQH to a striped param-
agnetic phase with increasing pu, (c) at fixed J/JL = 0.4,
showing the various phase transitions from a superfluid to
the striped paramagnetic phase with increasing p. The inter-
vening phase appears to be smoothly connected to the BIQH.
(d) Density and nearest-neighbor correlations for the BIQH
at Jy/J. =2.0,u =0 and the SPM at J;/J. =2.0,p = 2.4.
All the data is acquired on a cylinder of width L = 10 lattice
sites.

state is stable for any Jy/J1 2 0.3 [61].

Bosonic Fractional Quantum Hall—Our coupled wire
analysis suggests that even more exotic states can be re-
alized. For example, choosing p = 1,q = 0 yields the
221-Halperin state [19, 20], which is topologically or-
dered, exhibits a fractional Hall conductance o, = 2/3
and supports chiral edge modes, unlike the BIQH state.
Unfortunately, we were unable to stabilize such a state
on the square lattice. However, a similar coupled wire
analysis on the honeycomb lattice [Fig 1(b)] predicts the
emergence of a 221-Halperin ground state for the param-
eters: Jy, = J, (n) = 1/6, 0, = 0,27/3,47/3 and a
background flux of 7 /2 per triangular plaquette [19, 20].
To investigate this prediction, we again perform iDMRG
and measure charge pumping as a function of flux in-
sertion. As depicted in Fig. 2(a), we indeed observe the
expected 0gy = 2/3. We note that the ground state
energy exhibits a weak dispersion as a function of flux
insertion [Fig. 2(b)], albeit significantly smaller than the
superfluid that we will soon discuss.

Spontaneous Time-Reversal Symmetry Breaking—A
naive interpretation of our coupled wire analysis might
seem to suggest that a BIQH phase should also be sta-
ble for even larger external flux ¢ = 7/2 and filling
(n) = 1/2. However, at these parameter values, the
coupled wire analysis is unable to distinguish between



the two different BIQH phases with Hall conductance
0gy = *2. This is because the effective correlated-
hopping model [Eq. (2)] is time-reversal invariant for ex-
ternal flux ¢ = 7/2—an emergent symmetry which is
broken by higher order terms in the Floquet-Magnus ex-
pansion.

Due to this emergent time-reversal symmetry, it is nat-
ural to assume that the ground state for the effective
model must be time-reversal invariant. However, iDMRG
instead finds two degenerate ground states which break
time-reversal symmetry with Hall conductance 05, = 2
[Fig. 2(a)]. This degeneracy can be lifted by apply-
ing an additional staggered flux, +«, per next-nearest
neighbor triangular plaquette [Fig. 1(a)]. The original,
time-reversal invariant point at o = 0 can then be rein-
terpreted as the phase transition point separating the
two BIQH phases. If the phase transition is continu-
ous, one expects a time-reversal invariant critical ground
state [19]. Instead, we find strong evidence from both
the energy and wavefunction overlap [Fig. 2(c)] that
the transition is first order, with concurrent spontaneous
time-reversal symmetry-breaking at o = 0.

Interestingly, this model realizes a BIQH state at an
unusually large background flux, ¢ = 7/2. Indeed, other
models which host the BIQH state, such as the bosonic
Harper-Hofstadter model, generally require a smaller
flux, which is closer to the continuum limit [66, 67]. In
contrast, constructing a quantum Hall state by exploit-
ing correlated-hopping to directly drive flux attachment
allows for the realization of the BIQH state in a more
lattice-dominated regime.

Phase diagram for adiabatic preparation—In order to
explore the possible adiabatic preparation of this sponta-
neous time-reversal symmetry-breaking BIQH state, we
identify two natural tuning parameters, which can drive
the system into nearby phases exhibiting lower entan-
glement. In particular, we construct the phase diagram
on the square lattice surrounding the BIQH state as a
function of: (i) the hopping anisotropy J/J1, and (ii) a
striped chemical potential, V' = £ [Fig. 1(a)].

Let us begin by setting @ = 0 and varying the
anisotropy. As illustrated in Fig. 3(a), the system under-
goes a phase transition out of the BIQH state as Jj/J, is
decreased. For J/J. <1, we observe three features in-
dicative of a superfluid phase: (i) a sharp decrease of the
entanglement entropy, (i) a rapid growth of the corre-
lation length with bond dimension and (iii) sharp peaks
in the structure factor [61]. In addition, for a superfluid,
flux insertion is expected to frustrate the phase coher-
ence and lead to spectral flow of the ground state energy,
as depicted in Fig. 2(b). Interestingly, our coupled wire
analysis suggests that the BIQH phase should be stable
for any non-vanishing J, suggesting the possibility that
the superfluid region in the phase diagram could van-
ish in the thermodynamic limit; the observed superfluid
is perhaps stabilized by the energy gap present in our
finite-width cylinder geometry.

Let us now turn on the chemical potential, u [Fig. 1(a)].
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FIG. 4. Schematic depiction of the proposed experimental
setup. (a) We focus on 8TRb in a square optical lattice. The
bosonic hopping J is suppressed by an overlaid linear poten-
tial Ay. (b) The hopping is restored by laser assisted tun-
neling. Depicted are two of the four lasers used (red/blue
arrows). These allow for Floquet modulation of the corre-
spondingly colored bonds, as well as control of the background
flux.

By doing so, we explicitly break translation symmetry
along the cylinder axis, while leaving it intact along the
perpendicular direction. At large i, one expects the sys-
tem to be in a paramagnetic state which conforms to this
externally-imposed symmetry breaking. This is precisely
what is observed upon increasing u at fixed Jy/J1 = 2.
As depicted in Fig. 3(b), the system remains in the BIQH
phase for small values of the chemical potential, and then
transitions, at pu. = 2.0 + 0.1 into a striped paramag-
net [61], a phase easy to access experimentally. Intrigu-
ingly it appears that there is no direct transition from the
striped paramagnet to the superfluid phase, and instead
there is always an intervening phase [Fig. 3(c)]. This
phase appears to be smoothly connected to the BIQH
phase, although we cannot verify integer charge pump-
ing in the hashed region [Fig. 1(c)] due to its proximity
to several phase transitions.

Ezxperimental realization—Motivated by recent ad-
vances in the implementation and characterization of
topological phases in cold atomic systems [33, 36, 40, 68—
72], we propose an experimental protocol to directly real-
ize our correlated hopping model. In particular, we envi-
sion realizing Eq. (1) via laser-assisted tunneling of neu-
tral atoms in a two-dimensional optical lattice [73, 74].
To be specific, we consider 8Rb and focus on a square
lattice geometry where Harper-Hofstadter models have
already been experimentally investigated [36, 69, 75, 76].
In the presence of a linear potential, A,, along the y
axis [Fig. 4(a)], the system is described by the following
bosonic tight-binding Hamiltonian:

Hy=—JY (ajnﬂ,nam,n +al, e + h.c.)

m,n

+ ) Ay, (3)

where m (n) is the lattice site index along x (y). For



A, > J, tunneling is suppressed along the y-axis, while
atoms are free to tunnel along the = direction.

In order to restore resonant tunneling and to realize the
background flux ¢ [Fig. 1(a)], we employ a resonant Flo-
quet modulation scheme. Note that this Floquet mod-
ulation is used to realize H.g from Hy and is distinct
from the Floquet flux attachment described by Eq. (2).
Choosing a set of four independent pairs of laser beams,
labeled as v = {1,2,3,4} further enables us to realize
the bond-dependent phases ;. For simplicity, only two
pairs of beams are shown in Fig. 4(b). Let us illustrate
the resonant modulation technique by focusing on the
interference generated by a single pair. The two beams
[e.g. v = 1 in Fig. 4(b)] are aligned along the z and
y axes; both are vertically-polarized and retro-reflected,
with wave vectors chosen to be [kj| ~ [ki| = k = -,
where a is the lattice constant. This generates a time-
dependent interference pattern that can be adjusted rela-
tive to the underlying square lattice in order to selectively
modulate the colored bonds [Fig. 4(b)]. The laser beams
along y have two frequency components w] £ and the
ones along = have a single frequency component at wl"y;

crucially, the energy difference between the two beams,
w] —w| = w = Ay/h, is resonant with the potential
energy difference between neighboring sites.

Up to constant terms, the spatially-varying, time-
dependent potential resulting from each pair of laser

beams can be expressed as:

V7 (t) =Vp cos(wt) cos (2t + 6;)
m v T v

cos <m2 + gox) cos <n2 + cpy) , (4)
where Vj is the strength of the potential and 6y corre-
sponds to the phase of the two sidebands at w] 4 €.
We specify the following phases for the four distinct
pairs of laser-assisted tunneling beams: (90;’, @Z) =
{(0,7/4),(7/2, -7 /4), (7,37 /4), (/2,7 /4)}. This al-
lows us to modulate all of the vertical bonds in the lattice,
while maintaining addressability of the phase 6.

In the high-frequency limit, w > J/h, Q, and for
moderate modulation amplitudes Vy < Aw, the lowest-
order Floquet Hamiltonian of the driven system, H(t) =
Hy+ 3, V7(t), can be expressed as:

T
Hp = — Z [Jes cos (Ot + 67) alnynamynﬂ cos(m§ + o))
m,n,y

., T T
sin(n— + —

2 ' 4 + 90;) + Ja:rn,namﬂ,n +h.c], (5)

_ V
where Jog = JﬁDAy'
gered background flux. In order to achieve a homo-
geneous flux as well as amplitude modulation of the

This Hamiltonian realizes a stag-

horizontal bonds, we add a staggered potential A, =
(=1)™A,/2 along the x axis, and restore resonant tun-
neling via an additional pair of running laser beams [69].

To ensure that the leading-order approximations of
both the laser Floquet modulation and the Floquet flux
attachment are valid, the system must satisfy a hierarchy
of energy scales: w > J/h, Q and Q > Jeg/h. For 8'Rb,
the following set of parameters satisfying these criteria
can be readily achieved: w = 27 x 5kHz, ) = 27 x 1kHz
and Jog/h = 100Hz [30, 74].

Conclusion—Our work opens the door to a number
of intriguing directions. Most directly, the correlated
hopping model we consider might be able to stabilize
ppg-Halperin states beyond the 221 state at even lower
filling, as suggested by our coupled wire model. To real-
ize even more exotic phases, a natural extension of our
model would be to relax the hard-core boson constraint,
or equivalently to utilize higher spin Hamiltonians, so
that the correlated hopping could drive flux attachment
in finer gradations than simply 0 or w. More practically,
the optimum route for adiabatic preparation of the BIQH
or Halperin 221-state, and the timescales required in re-
alistic experimental systems, remain open questions.
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I. DETAILS OF THE FLOQUET-MAGNUS EXPANSION

Here we will provide the details for the Floquet-Magnus expansion used to derive the effective Hamiltonian Eq. 2
in the main text. Firstly, note that
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Substituting equations S2 and S3 back in to the first line of Eq. 2 yields the correct expression for the effective
Hamiltonian at leading order in the Floquet-Magnus expansion.

II. COUPLED WIRE ANALYSIS

In this appendix, we provide a field theoretical description of the effective Floquet Hamiltonian Eq. (2) in the limit
of [Jy/JL| < 0 (J) and J_ are horizontal and vertical couplings Jix, respectively).

A. Single correlated hopping chain
For J; = 0, vertical chains are decoupled and the corresponding Floquet Hamiltonian for each chain is given by

Hag=t.Y [m}a“l@nz — 1) = iblbpsy (208, — 1) + Hel | (S4)
l

where t; = 2J2 /Q. This Hamiltonian can be mapped onto two decoupled hard-core boson chains with the standard
hopping via the Jordan-Wigner transformation [S1],

ag = (=)@ Ky, by = (+i)be K¢, (S5)
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FIG. S1. The coordinate system used for the square lattice, labelling vertical chains with j and each second diagonal with [
The Jordan-Wigner string for a1 (b3), enclosed by the blue (red) circle, is represented by the blue (red) dashed line.

with the string operators,
K¢=cos |7 a4 |,
<t
(S7)

®) nz(b). We then find

Note ﬁ‘;
Hypg=—t, Z (d;dpﬂ + I;ZINJ@+1 + H.C.) .
4

Now we can apply the standard bosonization technique [S2]. The low-energy effective Hamiltonian is given by the
(S8)

free boson theory,
v® . s
Haogp ~ /da: > o [(@ap®)? + (@:6°)]

s=a,b

(S9)

where v°® = 2t sin(w(n®)), x = dy with dy being the lattice spacing, and the bosonic fields satisfy the commutation

relations,
6°(2), " (a")] = imbow O(x — @),

with ©(x) being the Heaviside step function. The lattice boson operators are expressed in terms of the bosonic fields
(S10)

as
Gy ~ e @ Z C%,, cos (2ml*(x) + 2rm(n®)L),
m>0
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d
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The string operators may also be expressed as
K§ ~ Y DS, cos[(2m+1)0(x) + m(2m + 1)(n*)4],
(S14)

m>0
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Here C5,,, and D3, | are numerical constants and N° are zero-mod operators formally defined by

NT = / i L0,0° (). (S15)
™

—0o0
Let us consider the single particle correlation functions (c&ag/} and <bzb@/>. In our free boson theory, the vertex
operators €™ (®) and ¢ (*) hoth have scaling dimension m? /4. Using Eqgs. (S5) and (S10)-(S14) and keeping only
most slowly decaying parts, we find
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The momentum distribution functions are obtained by their Fourier transforms: (n®(k)) = (a'(k)a(k)). They diverge
logarithmically as k approaches I & m(n’) for the A sublattice and —% + 7(n®) for the B sublattice,

1

k=3 F )]

1

(n®(k)) ~ log EEETTol
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The positions of the singularities depend on the boson density of different species. This behavior is contrasted from
that for the standard hard-core boson chain, H = —t Z(azau_l +H.c.), for which the momentum distribution function
exhibits a power-law divergence (n®(k)) ~ |k|='/2 as k — 0 [S2].

B. Coupled wire Hamiltonian

We are now in a position to study the low-energy physics of the correlated hopping chains weakly coupled by J) in
the spirit of coupled-wire construction [S3-S5]. We start from the decoupled chain Hamiltonian,

HSH = tL Z [ia;’eaj7g+1(2n;@ — 1) — ib;)ebj7g+1(2n?7e+1 — 1) + H.c. , (Slg)
3.t

where the site index (j,¢) is assigned in the way depicted in Fig. S1. With this assignment and choosing a Landau
gauge to implement the flux ¢ for each square plaquette, the effective Floquet Hamiltonian involving Jj couplings is
given by
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where ¢ = 2.J1 J)| /2. Applying the Jordan-Wigner transformation (S5) for each chain, we find
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For |J)| < |JL|, we can treat Hly as perturbations and apply the above bosonization procedure to obtain the low-
energy effective Hamiltonian as similarly done in Ref. [S1]. Keeping only terms relevant for quantum Hall states, we
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where the bosonic fields satisfy the commutation relations [9; (z), gp;i (z')] = im055:6;7O(x — 2') and we have defined
gfpm’ Ffp,q)’ X?p,q),j(x)’ and Xfp,q),j (z) by
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If the couplings g?p 9 and g?p 9 both flow to the strong-coupling fixed point, it is possible to find a quantum Hall
state described by the 2 x 2 K matrix [S6],

. 2p  2q+1
k(2,5 o
This can be understood by the fact that the bosonic fields Xfp)q)’j(x) and X‘(gnq)’j(m) are left unpaired and remain

gapless at the outermost wires j = 1 and N,,, respectively, while they are gapped elsewhere in the bulk 1 < j < N,,.
These bosonic fields satisfy the commutation relations,

102X Cp.01,3 @)s Xy (@] = = 105X p.0.5 (%) Xipg) g7 (@)] = 2im K 85500 (w — '), (528)

as expected from the Chern-Simons theory [S6]. To obtain the quantum Hall states, several remarks are in order. For
given p and ¢, the flux ¢ and the boson densities (n®) must satisfy the commensurability condition I‘fp g = 0 for the
corresponding interactions to slowly vary in . This requires

(2p)(n®) + m(2¢ +1)(n") mod

¢=ml2p (S29)
¢ = m(2p)(n®) + 7(2¢ + 1)(n*) mod 7.

We also note that in the perturbatively accessible regime [.Jj| < |JL|, only the coupling constants with (p, ¢) = (0,0)
or (0,—1) become relevant in the renormalization group sense. This corresponds to the BIQH state, the focus of the
main text. Indeed, the choice of parameters (n?) = (n’) = (n) = 1/2 and ¢ = 7/2 used for the numerical study
meets the above commensurability conditions. However, at the small system sizes accessible to numerics, we have of
course not yet reached the strong-coupling fixed point. This explains why at perturbatively small J/J, we observe
a superfluid phase, but at large enough .J;/.J1 there is a phase transition into a BIQH state.

C. Mutual flux attachment for BIQH state

The mutual flux attachment proposed in Ref. [S7] is nicely furnished in our coupled-wire system for the BIQH state
without any uncontrollable approximation. The following argument is strongly inspired from a recent study of duality



web in Ref. [S8]. We now define the “mutual composite boson” fields by a nonlocal transformation [S9],

i (x) = +ngnj —J)( ( )waf,), (S30)
J'#i

) () )+ Y sen(i’ — 5)60% (x), (S31)
J'#I

0j(z) = 05 (). (S32)

They satisfy the commutation relations,
[@?(l‘), @?/(I‘/)] = ZT('(SJJ/@(J} — .’1,")7
[04(2), @b (2')] = ind; ;1 [O(x — 2’) — 1]

J

(S33)

while the other commutators vanish. We then consider the Euclidean action corresponding to the decoupled chain
Hamiltonian (S23),

So—/dea:Z 3 { 0,050,0 + {(aw;)%(axo;f}]. (S34)
Jj s=a,b
In terms of the mutual composite boson fields, the action is written as
A2
/dexZ 3 [ 0,030, % + {(a@; ~ 3 sen(y’ —j)&&)j—) + (az@;%)?}}, (S35)
J s=ab J'#J

where s' = b(a) for s = a(b). To formally resolve the nonlocality of this action, we define auxiliary fields aj ; and af ;
by

aij = Z sgn (5’ —j)am@?,, a? Z sgn(j’ — 7)0.0%, (S36)
J'#7 J'#3
and implement these constraints by Lagrange multipliers a(l) i+l and ao ja1 @8
i 1
SLM:/deJ?Z%[(%,H;_a,' {alj ngn 0,0 }
J J'#7
@Ry a2, ) {al, — Y sl - j)@@ﬁ-,}} . (37)

J'#J
After some algebra, the action S{, = S + SLym is expressed as

+al

/ 3 i A ey 5y i ob b %3 % 1
_ a a > 2 2 2 > 3 5 3
J

v? " . Wb

i i
1 2 2 2 1 1 2 1 1 1 2 2
+ E{al,j(ao,ﬂ_% a aO,j—%) o a’O,j-&-%(aLj-i-l - al,j)} + 4W{@1,j(@o,j+% - ao,j_%) - ao7j+%(a1,j+1 al,j)} .

(S38)

This action can be seen as a discrete analog of two-component bosonic fields minimally coupled with the mutual

Chern-Simons term ﬁe“”)‘(ai@ai + aié)ua%\) under the gauge choice ai = a3 = 0. We also consider interchain
interactions corresponding to the BIQH state with (p,q) = (0,0),

Hy = */d:zzz [g% cos (9% + 67 — TND — o2+ 08, —7NY) + g¥cos (@} + 09 — @0y + 6%, 1))
J

- / dx Z (g% cos (BF — ®F,,) + g° cos (<I> <I>?+1)] (S39)
J
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FIG. S2. Numerical study of the correlated hopping model on the square lattice with half filling and background flux ¢ = 7/2,
simulated on a cylinder of width L = 8 sites. (a) Charge pumping under flux threading. (b) Energy response under flux
threading. (c) Correlation length and entanglement entropy, showing a phase transition from a Luttinger liquid to BIQH with
increasing Jj/J1. (d) Shifting of the critical point to smaller values of J|/J1 as the threaded flux increases from ® =0 to 7.

The interactions maintain a local form in terms of the mutual composite boson fields. According to Eq. (S33), the
operators ¢®(®) can be viewed as bosonic particle operators and thus the interactions can induce a condensation.
This precisely reproduces the argument of Ref. [S7] which states that the BIQH state is obtained by the condensation
of composite bosons with the mutual 27 flux attachment.

III. NUMERICAL METHODS

The numerical simulations are carried out using DMRG algorithm of TenPy library [S10]. The 2D lattice is placed
on an infinitely long cylinder of width L sites, with periodic boundary conditions in both direction. For the honeycomb
lattice, ”Cstyle” ordering of the MPS is used.

Imposing the symmetries of the Hamiltonian by conserving charges in tensor network methods leads to large
speedups and reduction in memory usage. However, enforcing too many restrictions could, in turn, result in the
algorithm getting stuck in local minima. In our simulations, we find that explicitly imposing the U(1) x U(1)
symmetry, i.e. particle number conservation on each sublattice, would sometimes lead to failure of DMRG in finding
the correct ground state. Thus, we conserve the total particle number only. However, we carefully confirmed that in
all cases the final ground state obtained does not break the full U(1) x U(1) symmetry explicitly.

To implement the background flux on the honeycomb lattice, we utilize the same gauge choice as Ref. [S19] for the
next-nearest-neighbor couplings. On the square lattice, we use a Landau gauge for the choice of nearest-neighbor Bjy,
and set B;; = Bji, + By, (as defined in the derivation of Eq. 2) for the the next-nearest-neighbor correlated hoppings

(2nt — 1)ala;.

IV. EFFECTS OF SYSTEM SIZE

The iDMRG results shown in the main text for the square lattice with half filling and background flux ¢ = 7/2
are all obtained for system size L = 10. While we have numerical evidence for the existence of the BIQH phase on
systems of size L = 6, 8,10 [Fig. S2(a)], the phase diagram exhibits a marked difference for system sizes where L/2
is even or odd (compare Fig.S3(a) to Fig.1(c)). This might be expected from the coupled chain picture: when L/2
is even, the system has a finite size gap which is not present in the odd case. In this section, we analyze the phase
diagram for the even case by focusing on system size L = 8.
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FIG. S3. (a) Phase diagram of the correlated hopping model on the square lattice with half filling and background flux ¢ = 7/2,
as a function of Jj/J1 and striped potential i, simulated on a cylinder of width L = 8 sites. (b) Entanglement entropy and the
variance of density in the perpendicular direction along a cut at fixed Jj/J. = 0.5. (c) Entanglement entorpy and correlation
length along a cut at fixed J)j/J. = 2. (d) Density and nearest-neighbor correlations for the LL at J/J1 = 0.5, = 0 and the
CDW at JH/JJ_ =0.5,u =2.1.

One major difference between the even and the odd case is the nature of the phase to the left of BIQH. The
coupled wire analysis in the previous section predicts that an infinitesimal coupling .Jj should drive the system into a
BIQH state. However, the correlation length and entanglement entropy data in Fig.S2(c) suggests that the transition
into the BIQH phase happens around J;/J. = 1.2. Then a natural question arises: Is there an intermediate phase
between the decoupled LL at J = 0 and the BIQH phase? or should one think of this "intermediate phase” as one
that is smoothly connected to the decoupled LL whose existence is due to the energy gap present at our finite size
simulations?

Our numerical data supports the latter description for systems of even size, unlike the odd case. First, the correlation
length connects smoothly to zero as J)/J, decreases from 1 to 0 [Fig. S2(c)], compared to the odd case where it
diverges[Fig. 3(a)]. Furthermore, the large energy dispersion under flux insertion at .J; /J1 = 0.2 [Fig. S2(b)] suggests
that the state is gapless, which is consistent with the case of decoupled LLs. lastly, the correlation length data in Fig.
S2(d) shows the critical point moving towards the decoupling limit as the inserted flux ® is increased. This is also
consistent with the decoupled LL scenario because the gap decreases with inserted flux and the results should more
closely match what we expect to see in the thermodynamic limit.

As shown in Fig.S3, another major difference between the even and the odd case is the markedly distinct behavior
of the system upon increasing p for 1 < Jy/J1 < 2. Rather than transitioning directly to the striped paramagnet
phase from the BIQH phase, there appears to be an intermediate spontaneous symmetry-breaking phase. This phase
exhibits the same striped pattern as the paramagnet, but also spontaneously breaks symmetry in the perpendicular
direction. The associated charge density wave (CDW) pattern is characterized by an order parameter measuring the
variance of the density in the perpendicular direction [Fig S3(b)]. Much like the shaded region in Fig. 1(c) in the main
text, we caution that the region between the Luttinger Liquid phase and striped paramagnetic phase is difficult to
converge in bond dimension due to its proximity to multiple phase transitions. It is possible, therefore, that the CDW
does not represent the true ground state in the thermodynamic limit for all the green shaded region in Fig. S3(a).
The presence of a strongly diverging correlation length as well as the smooth decrease in the order parameter suggests
that the CDW-SPM transition is continuous. Meanwhile, the correlation length at the BIQH-CDW transition is only
weakly enhanced as a function of the iDMRG bond dimension, and there is a sharp increase in the order parameter,
consistent with the possibility of a first order phase transition; this is further supported by wave function overlap
calculations.

V. EXPERIMENTAL REALIZATION OF THE FLOQUET SCHEME

The set up in Fig.4 consists of four independent pairs of laser beams labeled as v = {1, 2, 3,4} (only two are shown
for simplicity). Each pair consists of two vertically-polarized laser beams that are retro reflected and aligned along
the primary axes of the lattice (z and y axis),



E|(r,t) =2E, eI cos(kz + ¢7) (540)
E (r,t) =2E, el““ﬁ‘”t*@ cos(ky + ¢7) (S41)
+2E, /WL =Dt=0] cog(ky + ©y)
—4BE, ™1t cos( 4 07 ) cos(ky + )

with the wave vectors chosen to be |kj| ~ [k | = k = -, where a is the lattice constant. The laser beams along y
%

have two frequency components w] £ 2 and the ones along z a single component at w7, with w] — W =w = Ay/h

resonant with the potential energy difference between neighboring sites. The total time-dependent potential that
results from the interference of these beams consists of several terms Vioy = Vest + Vog + Veross- A constant part

V2 = 4F?2 cos®(kx + ¢) + 8E2 cos? (ky + ©p)s (S42)
and the second term
Vit, = 8E; cos(2Q + 26]) cos® (ky + ¢}, (S43)

which generates a modulation at 2€2. We will re-examine both terms at the end of this section. What we are interested
in is the cross term

v

Cross

= 16E, E, cos(wt) cos(Qt + 0 ) cos(kx + ] ) cos(ky + ¢7), (S44)

In the high frequency limit w > €, the term cos(2t+6]) can be treated as constant and the dynamics are described
by

Hit)=-Y (Jxajn+1ma,n,n + Tyl G + h.c.) (S45)

™ 7T .
+ Z (nAy + Z V) cos(wt) cos(m§ + ) cos(n§ + @J)) Ao,y
m,n ¥

where m (n) is the lattice site index along  (y), V| = 16E,E,, cos(2t + 6 ). This Hamiltonian is periodic and can be
approximated using a Floquet-Magnus expansion. The static term of the Hamiltonian contains diverging components
proportional to iw = A,. Therefore a transformation into the rotating frame is performed using the unitary operator

Ay
Rus(t) = exp ll Z (n t Z - sin(wt) cos(mg + ) cos(ng + <p;)> ﬁm’n] (546)

m,n

= exp lz Z Xm,n(t)ﬁm,n] .
m,n

The transformed Hamiltonian can be written in the following form,

Hyg(t) == > (Jaenn0af i + Ty Ol +1ic.) (47)

with T’;En,n(t) = Xm+1,n (t) - Xm,n (t) and ngn,n(t) = Xm,n+1(t) - Xm,n(t) given by
N (1) = =1 sin(wt) (548)
v . Ayt
W) = = sin(ut) + =27, (549)
where we have defined

s

ne = 3 cos(n2 —|—<py)51n(m2 + — 1 —|—<pL) (S50)
V2V ™ T T
Yy 0 i
Ny = E — cos(m§ + ) sm(n§ + 1 +¢7)- (S51)



The lowest order of the time-independent Floquet Hamiltonian using the Magnus expansion is thus given by

s

27 27
o X X o
= "o (J am-‘rlnamn/ e " SlanT+Jya:r?1,n+1am,n/ el (T S””)dr+h.c.>
0 0
m,n

= 3 (o) i+ Ty Ty + ) (552)
where J,(z) = 5= f02” e!T=esinT) dr ig the vth order Bessel function of the first kind. Using the expansion 7, () =
> (1" (%)?"*¥, the Bessel functions can be approximated to the first order by Jy(z) ~ 1 and Jy(z) ~ x/2 for

n nl(n+v)!

x < 1. Thus, in the limit Vy < hw, the effective Hamiltonian is given by

HF:—Z(Jam+1namn+Je mn+1amn+hc) (S53)
with
8V2E,E .
Jeff Jy 770 = Jy\CAyy ZCOS(Qt +07) cos(mg + o)) Sln(ng + % +¢p)- (Sh4)

As desired, the effective coupling strength depends on cos(Qt+6]) and the spatial dependence cos(m %5 +¢J) sin(n +
T + ) allows us to separately address the bonds with different values of 6). With the ch01ce of ((pw,gﬂ) =
{(0,7/4), ()2, =7 /4), (7,37 /4), (7 /2,7/4)}, we can address the red(dashed), blue(dashed) blue(solid), and red(sohd)
bonds respectively [Fig. S4(c)]. We then set ] = 7/2 for dashed lines and 6] = 0 for solid lines. Note that, under
these parameters, the spatial dependence of V!, and Vg, for the combined setup gets cancelled and we obtaln

Z Vi, = 8E2 + 16E2 (S55)
Z v, = 0. (S56)
~

The oscillation of the cos()sin() term in Eq. S54 between +1 results in a staggered background flux ¢ = 0, 7. In
order to acquire a homogeneous flux as well as the amplitude modulation on the horizontal bonds, we repeat the same
technique of laser-assisted tunneling in the perpendicular direction [Fig. S4(a,b)], by adding a staggered potential
Ap, = (=1)™A,/2 along the x axis. A pair of running lasers with w; —w| = w = A,/h is then used to restore the
tunneling.

B (r,£) =B,ef1tH0) (557)
E, (I‘, t) :Eyei[(wL +Q)t+ky+6o] + Eyei[(wlfﬂ)ﬂrky*@o] (858)
=2F," @R cos (Ot 4 6;)

The resulting potential is

V(r,t) = E*+ 2E§ + 2E§ cos(2Qt + 26y) + 4E, E, cos(Qt + 6p) cos(wt + kx — ky) . (S59)
|2
Vest Vaq cross

The first two terms don’t have any spatial dependence, so again we are only interested in Vi,.ss, leaving us with the
following Hamiltonian.

Hi) ==Y (Jzain vl TG + h.c.) (S60)

m,n

Ag .
=+ Z < OSIH wt + ©m, n) + (1)m2> Nm,n;s



10

w = A, @ _+ /4 A m/4 +57r/4 H

m 0 o m

L3 /4 L /4 g T /4

w) o O

a 5m/4 & 5r/Ah m/4
; § 14
Tr/4 A 3m/4 a 3m/4
\/\/\/\'AAZ y (0,0-)? SN SR
1 z

FIG. S4. Second part of the experimental setup, where (a) the bosonic hopping J, is suppressed by an overlaid staggered
potential Ag, and (b) a pair of running-wave beams are used to restore resonant tunneling. (c¢) Phase distribution of the final
effective Hamiltonian, realizing a homogenous background flux ® = 7/2.

where Vo = 4E,E, cos(2t + 6p) and @y, = (M —n+1)3.
Eq. S60 has the exact same form as Eq. 5.22 of [S11]. Following equations 5.23-5.29 of [S11], we obtain the final
effective Hamiltonian

Hp ==Y (Jfe®mral \ amn + IS0, Gmn +hec), (S61)
with
. 1V2V, 2v2E,E
Jot = oy AIO =J, A Y cos(Qt + 6) (S62)
| —(emt1,n + Pmn)/2 for m odd
Bmin = { +(Pmt1,n + ©mn)/2+ 7 for m even. (S63)
As shown in Fig. S4(c), the combination of Peierls phases result in a homogeneous background flux ® = 7 and we

have constructed our desired Hamiltonian.
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