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A CHROMATIC VANISHING RESULT FOR TR

LIAM KEENAN AND JONAS MCCANDLESS

Abstract. In this note, we establish a vanishing result for telescopically localized TR. More

precisely, we prove that T (k)-local TR vanishes on connective L
p,f
n -acyclic E1-rings for every

1 ≤ k ≤ n and deduce consequences for connective Morava K-theory and the Thom spectra

y(n). The proof relies on the relationship between TR and the spectrum of curves on K-theory

together with fact that algebraic K-theory preserves infinite products of additive ∞-categories

which was recently established by Córdova Fedeli.

1. Introduction

In this note, we study the telescopic localizations of TR inspired by the work of Land–Mathew–

Meier–Tamme [24] and Mathew [28]. Our starting point is the following result which follows from

the main result of [24]: If R is an E1-ring with Lp,fn R ≃ 0, then

LT (k)K(R) ≃ 0

for every 1 ≤ k ≤ n. For instance, if R = Z/pn for some integer n ≥ 1, then LT (1)K(Z/p
n) ≃ 0.

We consider this result as an extension of Quillen’s fundamental calculation that K(Fp)
∧
p ≃HZp

which in particular yields that LT (1)K(Fp) ≃ 0. This particular consequence was also obtained

by Bhatt–Clausen–Mathew [4] by means of a calculation in prismatic cohomology. Additionally,

the vanishing result above for T (k)-local K-theory can be applied to the Morava K-theoriesK(n)

and to the Thom spectra y(n) considered by Mahowald–Ravenel–Shick in [27].

1.1. Results. We will be interested in similar vanishing results for T (k)-local TR1. The invariant

TR plays an instrumental role in the classical construction of topological cyclic homology in [7, 19,

6], where TC is obtained as the fixedpoints of a Frobenius operator on TR. In §3, we briefly review

the construction of TR following [29] which produces TR together with its Frobenius operator

entirely in the Borel–equivariant formalism of Nikolaus–Scholze [30]. Even though TR does not

feature prominently in the construction of TC given in [30], TR remains an important invariant by

virtue of its close relationship to the Witt vectors and the de Rham–Witt complex [18, 19, 20, 21].

In [28], Mathew proves that T (1)-local TR is truncating on connective HZ-algebras which means

that if R is a connective HZ-algebra, then the canonical map of spectra

LT (1)TR(R)→ LT (1)TR(π0R)

is an equivalence. This property was verified for T (1)-local K-theory and T (1)-local TC in [4, 24].

Our main result is a version of this at higher chromatic heights:

1Note that LT(k)TR(R) ≃ LT(k)TR(R,p), where TR(R,p) denotes the p-typical version of TR. Indeed, the

canonical map TR(R) → TR(R,p) is a p-adic equivalence and T (n)-localization is insensitive to p-completion.

Therefore, we will not distinguish between p-typical TR and integral TR in this note.
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Theorem A. Let n ≥ 1. If R is a connective E1-ring such that Lp,fn R ≃ 0, then

LT (k)TR(R) ≃ 0

for every 1 ≤ k ≤ n.

We remark that Theorem A is a consequence of the work of [24] in the case where R admits a

more refined multiplicative structure; If R admits an Em-ring structure form ≥ 2, then the refined

cyclotomic trace K(R)→ TR(R) is a map of E1-rings. Consequently, the spectrum LT (k)TR(R)

admits the structure of a LT (k)K(R)-module and LT (k)K(R) ≃ 0 by [24, Theorem 3.8]. A similar

sort of reasoning has recently been employed with great success to study redshift phenomena for

algebraic K-theory in [9, 11, 15, 31]. We deduce the following results from Theorem A:

Corollary B. Let n ≥ 1. Then LT (k)TR(Z/p
n) ≃ 0 for every k ≥ 1.

We stress that Corollary B is a consequence of the work of [4, 24] by the reasoning above. For

n = 1, Corollary B can also be deduced from the work of Mathew [28]. Since T (1)-local TR is

truncating on connective HZ-algebra it is in particular nilinvariant by [25], so

LT (1)TR(Z/p
n) ≃ LT (1)TR(Fp) ≃ 0,

where the final equivalence follows since TR(Fp, p) ≃ HZp by Hesselholt–Madsen [19]. As a

consquence of Theorem A we deduce a new chromatic vanishing result for the connective Morava

K-theories, which we denote by k(n). While k(n) admits the structure of an E1-ring, it does not

admit the structure of an E2-ring so we cannot argue using the refined cyclotomic trace above.

Corollary C. Let n ≥ 2. Then LT (k)TR(k(n)) ≃ 0 for every 1 ≤ k ≤ n − 1.

Similarly, we obtain a chromatic vanishing result for the Thom spectra y(n) considered in [27].

1.2. Methods. We end by explaining the strategy of our proof of Theorem A. They key input

is the close relationship between TR and the spectrum of curves on K-theory as studied in [3, 5,

18, 29]. For every E1-ring R, the spectrum of curves on K-theory is defined by

C(R) = lim←Ð
i

ΩK̃(R[t]/ti),

where K̃(R[t]/ti) denotes the fiber of the map K(R[t]/ti)→ K(R) induced by the augmentation.

If we assume that R is connective, then TR(R) ≃ C(R) by [29, Corollary 4.2.5]. This result was

preceded by Hesselholt [18] and Betley–Schlichtkrull [3] who established the result for associative

rings after profinite completion. Combining the theorem of the weighted heart (cf. [13, 17, 16])

with the recent result of Córdova Fedeli [12, Corollary 2.11.1] which asserts that algebraic K-

theory preserves arbitrary products of additive ∞-categories, we reduce to proving that

LT (k)K
⊕ (∏

i≥1

ProjωR[t]/ti ) ≃ 0

provided that Lp,fn R ≃ 0, where ProjωR[t]/ti denotes the additive ∞-category of finitely gener-

ated projective R[t]/ti-modules and K⊕ denotes additive algebraic K-theory. This claim can be

verified explicitly by using [24, Proposition 3.6].
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2. Preliminaries on weight structures and K-theory

The main technical apparatus for deducing our chromatic vanishing result for TR is the notion

of a weight structure on a stable ∞-category in conjunction with the closely related theorem of

the weighted heart (cf. [13, 16]). This will help us reduce to studying additive algebraic K-theory

of additive ∞-categories.

Definition 2.1. A weight structure on a stable ∞-category C consists of a pair of full subcate-

gories C[0,∞] and C[−∞,0] of C such that the following conditions are satisfied:

(1) The full subcategories C[0,∞] and C[−∞,0] are closed under retracts in C.

(2) For X ∈ C[−∞,0] and Y ∈ C[0,∞], the mapping spectrum mapC(X,Y ) is connective.
(3) For every X ∈ C, there is a fiber sequence

X ′ →X →X ′′

with X ′ ∈ C[−∞,0] and X
′′[−1] ∈ C[0,∞].

The heart of the weight structure is the subcategory C
ht = C[0,0], where C[a,b] = C[a,∞] ∩ C[−∞,b].

The weight structure is said to be exhaustive if every object is bounded, in the sense that

C = ⋃
n∈Z

C[−n,n].

A weighted ∞-category is a stable ∞-category equipped with a weight structure.

Remark 2.2. The heart of a weighted∞-category is an additive∞-category ([16, Lemma 3.1.2]).

We recall the following terminology which will play an important role throughout this note.

For every connective E1-ring R, let Proj
ω
R denote the full subcategory of the ∞-category LMod≥0R

spanned by those connective left R-modules which are finitely generated and projective. Recall

that an object of ProjωR can be written as a retract of a finitely generated free R-module (cf. [26,

Proposition 7.2.2.7]). For any not necessarily connective E1-ring, let PerfR denote the∞-category

of perfect R-modules defined as the smallest stable subcategory of LModR which contains R and

is closed under retracts. The following is our main example of interest:

Example 2.3. For a connective E1-ring R, let PerfR,≥0 be the full subcategory of PerfR spanned

by those perfect R-modules which are connective, and let PerfR,≤0 denote the full subcategory of

PerfR spanned by those perfect R-modules M which have projective amplitude ≤ 0. This means

that every R-linear map M → N is nullhomotopic provided that N is 1-connective. The pair

(PerfR,≥0,PerfR,≤0) defines an exhaustive weight structure on PerfR whose heart is equivalent to

the additive ∞-category ProjωR of finitely generated projective R-modules (cf. [17, 1.38 & 1.39]);
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while the proofs therein are stated for connective E∞-rings, the same arguments work in the E1

case.

The algebraic K-theory of a weighted∞-category is often determined by the additive algebraic

K-theory of its heart by virtue of the theorem of the weighted heart first established by Fontes [13]

but we also refer the reader to [16, Corollary 8.1.3, Remark 8.1.4]. Let A denote an additive ∞-

category regarded as a symmetric monoidal∞-category with the cocartesian symmetric monoidal

structure, so that the core A
≃ inherits the structure of an E∞-monoid. Recall that the additive

algebraic K-theory of A is defined by

K⊕(A) = (A≃)grp,

where (A≃)grp denotes the group completion of the E∞-monoid A
≃. We have the following result

which will play an instrumental role below (cf. [13, Theorem 5.1] and [16, Corollary 8.1.3]):

Theorem 2.4. The canonical map of spectra

K⊕(Cht) → K(C)

is an equivalence for every stable ∞-category C equipped with an exhaustive weight structure.

3. Chromatic vanishing results

The main goal of this section is to prove Theorem A from §1 and discuss various consequences.

As explained, our proof of this result relies on the close relationship between TR and the spectrum

of curves in K-theory (cf. [3, 18, 29]). We will regard TR as a functor TR ∶ Algcn
E1
→ Sp given by

TR(R) ≃mapCycSp(T̃HH(S[t]),THH(R))

following [29] and this agrees with the classical construction of TR by [29, Theorem 3.3.12]. By

virtue of our assumption that R is connective, there is an equivalence of spectra

TR(R) ≃ lim
←Ð

ΩK̃(R[t]/ti),

where K̃(R[t]/ti) denotes the fiber of the map K(R[t]/ti)→ K(R) induced by the augmentation.

In this generality, the result was obtained by the second author in [29] preceded by Hesselholt [18]

and Betley–Schlichtkrull [3] who proved the result for associative rings after profinite completion.

With this equivalence at our disposal, we prove the following result:

Theorem 3.1. Let n ≥ 1. If R is a connective E1-ring such that Lp,fn R ≃ 0, then

LT (k)TR(R) ≃ 0

for every 1 ≤ k ≤ n.

The limit in the definition of the spectrum of curves on K-theory above does not commute

with T (k)-localization. Instead, the proof of Theorem 3.1 relies on the following result, which is

proved by combining the theorem of the weighted heart and a recent result which asserts that

additive algebraic K-theory preserves infinite products of additive ∞-categories, due to Córdova

Fedeli [12].
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Proposition 3.2. Let R be a connective E1-ring which vanishes after Lp,fn -localization. If {Si}i∈I
is collection of connective E1-rings with a map of E1-rings R → Si for every i ∈ I, then

LT (k)(∏
i∈I

K(Si)) ≃ 0

for every 1 ≤ k ≤ n.

Proof. For i ∈ I, the stable∞-category PerfSi
admits an exhaustive weight structure whose heart

is equivalent to the additive ∞-category ProjωSi
by Example 2.3. The canonical composite

K⊕ (∏
i∈I

ProjωSi
) →∏

i∈I

K⊕(ProjωSi
)→∏

i∈I

K(PerfSi
)

is an equivalence by [12, Corollary 2.11.1] and Theorem 2.4, so we have reduced to proving that

LT (k)K
⊕ (∏

i∈I

ProjωSi
) ≃ 0

for 1 ≤ k ≤ n. By [24, Proposition 3.6], it suffices to prove that the endomorphism E1-rings of

A =∏
i∈I

ProjωSi

vanish after Lp,fn -localization. If P ∈ A, then the endomorphism E1-ring of P is given by

EndA(P ) ≃∏
i∈I

mapSi
(Pi, Pi),

where mapSi
(Pi, Pi) denotes the mapping spectrum in LModSi

. For each i ∈ I, we may choose

a positive integer ni ≥ 1 such that Pi is a retract of S⊕ni

i by virtue of our assumption that Pi is

a finitely generated projective Si-module. Consequently, we obtain a retract diagram of spectra

EndA(P ) →∏
i∈I

S
⊕n2

i

i → EndA(P )

which proves the desired statement since the middle term is a left R-module, hence vanishes after

Lp,fn -localization by virtue of our assumption that R is Lp,fn -acyclic. �

Remark 3.3. In general, E-acyclic spectra are not closed under infinite products; for each n ≥ 0,

the nth Postnikov truncation τ≤nS is K(1)-acyclic, whereas ∏n≥0 τ≤nS is not, else LK(1)S ≃ 0.

The assumptions of Proposition 3.2 should be viewed as a uniformity condition on the spectra

K(Si), forcing their product to become acyclic.

Proof of Theorem 3.1. SinceR is a connective E1-ring, there is an equivalence of spectra TR(R) ≃
C(R) by [29, Corollary 4.2.5]. Thus, the spectrum ΣTR(R) is the fiber of a suitable map

∏
i≥1

K̃(R[t]/ti)→∏
i≥1

K̃(R[t]/ti)

which proves the desired statement as these products vanish after T (k)-localization for 1 ≤ k ≤ n

by virtue of Theorem 3.2. �

Remark 3.4. As remarked above, we have used work by Córdova Fedeli [12] in a crucial way.

This result on K-theory of additive ∞-categories is part of a long tradition of examining the

interaction of algebraic K-theory and infinite products of categories. One of the first results

of this kind is due to Carlsson, who showed that K-theory preserves infinite products of exact

1-categories with a cylinder functor [10]. In [23], Kasprowski–Winges proved that K-theory
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preserves infinite products of additive categories. Furthermore, Kasprowski–Winges [22] used

a characterization of Grayson [14] to prove that non-connective algebraic K-theory preserves

infinite products of stable∞-categories and this was used in [8] with Bunke to prove the analogous

statement of prestable ∞-categories.

Remark 3.5. Another attempt to prove Proposition 3.2 proceeds by invoking the recent result

of Kasprowski–Winges [22], which asserts that the canonical map of spectra

K(∏
i∈I

Perf(Si))→∏
i∈I

K(Si)

is an equivalence (cf. Remark 3.5). Proceeding as in the proof of Proposition 3.2, it suffices to

prove that the endomorphism E1-rings of the product of the stable ∞-categories Perf(Si) vanish
after Lp,fn -localization. This is closely related to the following assertion:

(∗) Let E denote the endomorphism E1-ring of a finite spectrum V of type n. If v ∶ ΣkE → E is

the associated vn self-map of E, then there is a canonical lift of v to a map of E-E-bimodules.

By the description of the E1-center as Hochschild cohomology, the statement (∗) is equivalent
to asking for a lift of the class v ∈ π∗(E) to a class ṽ ∈ π∗ZE1

(E) along the E1-map ZE1
(E) → E.

Classes which do lift in this way can be viewed as “homotopically central” elements of E, and

we remark that such lifts exist for all E2-rings, by the universal property of the E1-center.

However, the assertion (∗) is false as we learned from Maxime Ramzi, and we thank him

for help with the following argument. If such a lift exists, then we obtain an equivalence of

LK(n)-LK(n)-bimodules

ϕ ∶ ΣkLK(n)E → LK(n)E,

and there is an equivalence of E1-rings EndK(n)(LK(n)V ) ≃ LK(n)E since V is a finite spectrum.

The∞-category of K(n)-local spectra is equivalent to the ∞-category ModLK(n)E(SpK(n)) since
LK(n)V is a compact generator of SpK(n). As a consequence, for every K(n)-local spectrum X ,

we obtain an equivalence ΣkX →X by base-changing along ϕ. This is a contradiction since the

homotopy groups of a K(n)-local spectrum are not periodic. We indicate an example of this at

every height n ≥ 1. Let k be a perfect field of characteristic p, let G be a 1-dimensional formal

group of height n, and let En denote the associated Lubin–Tate theory which canonically carries

the structure of an E∞-ring. For every topological generator g of Z×p , there is a map of E∞-rings

ψg ∶ En → En, and we let Fn denote the fiber of the map

En
1−ψg

ÐÐÐ→ En.

A calculation reveals that the homotopy groups of Fn are not periodic. For instance, if n = 1,

then F1 ≃ LK(1)S since the map ψg is induced by Adams operations on E1 ≃ KU∧p .

Finally, we explore some immediate consequences of Theorem 3.1.

Corollary 3.6. Let R be a connective E1-algebra over Z/pj. If n ≥ 1, then LT (n)TR(R) ≃ 0.

Proof. Note that Lp,fn R is a module over Lp,fn Z/pj ≃ 0, so the assertion follows from Theorem 3.1.

�
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Recall that Corollary 3.6 above also follows from [4, 24, 28] as discussed in the introduction.

We deduce some consequence for connective Morava K-theory. Let k(n) denote the connective

cover of the nth Morava K-theory K(n). The spectrum k(n) carries the structure of an E1-ring

but not the structure of an E2-ring. We have the following:

Corollary 3.7. If n ≥ 2, then LT (k)TR(k(n)) ≃ 0 for every 1 ≤ k ≤ n − 1.

Proof. For n ≥ 2, the canonical map k(n) → Fp is a Lp,fn−1-local equivalence by [24, Lemma 2.2],

so the assertion follows from Theorem 3.1. �

Remark 3.8. There is a fiber sequence of spectra

K(Fp)→ K(k(n))→ K(K(n)),
by [1, Proposition 4.4] preceded by [2]. We consider this as an analogue of Quillen’s dévissage

theorem for algebraic K-theory of ring spectra. One might ask whether we can establish a similar

fiber sequence for TR. In particular, this would allow us to deduce an analogue of Corollary 3.7

for the non-connective Morava K-theory.

Let y(n) denote the Thom spectrum considered in [27, Section 3]. This is the Thom spectrum

associated to the map of E1-spaces

ΩJpn−1S
2 ↪ Ω2S3 → BGL1(S∧p)

where Jpn−1S
2 is the 2(pn−1)-skeleton of ΩS3, which has a single cell in each even dimension.

The map Ω2S3 → BGL1(S∧p) is the spherical fibration constructed by Mahowald (for p = 2) and

Hopkins (for p odd) whose Thom spectrum is HFp. We have the following:

Corollary 3.9. If n ≥ 2, then LT (k)TR(y(n)) ≃ 0 for every 1 ≤ k ≤ n − 1.

Proof. This follows immediately by combining Theorem 3.1 with [24, Lemma 4.14]. �

Remark 3.10. If R is a connective HZ-algebra, then the canonical map

LT (1)K(R)→ LT (1)K(R[1/p])
is an equivalence by [4, 24]. The analogue of this result does not hold for TC as explained in [24,

Remark 4.27], which in particular means that the result also does not prolong to TR. However,

at chromatic heights n ≥ 2, TC does satisfy a version of chromatic purity (cf. [24, Corollary 4.5]).

In particular, if A→ B is an Lp,fn -local equivalence of E1-rings, then the induced map

LT (n)TC(τ≥0A) ≃Ð→ LT (n)TC(τ≥0B).
is an equivalence. One can wonder whether such a statement is true of T (n)-local TR, but our
methods here do not seem to shed light on this problem.
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