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Abstract The link between metabolic syndrome (MetS) and neurodegenerative as well as cere-
brovascular conditions holds substantial implications for brain health in at- risk populations. This 
study elucidates the complex relationship between MetS and brain health by conducting a compre-
hensive examination of cardiometabolic risk factors, brain morphology, and cognitive function in 
40,087 individuals. Multivariate, data- driven statistics identified a latent dimension linking more 
severe MetS to widespread brain morphological abnormalities, accounting for up to 71% of shared 
variance in the data. This dimension was replicable across sub- samples. In a mediation analysis, we 
could demonstrate that MetS- related brain morphological abnormalities mediated the link between 
MetS severity and cognitive performance in multiple domains. Employing imaging transcriptomics 
and connectomics, our results also suggest that MetS- related morphological abnormalities are 
linked to the regional cellular composition and macroscopic brain network organization. By lever-
aging extensive, multi- domain data combined with a dimensional stratification approach, our anal-
ysis provides profound insights into the association of MetS and brain health. These findings can 
inform effective therapeutic and risk mitigation strategies aimed at maintaining brain integrity.

eLife assessment
This important work contributes to our understanding of the combined effects of metabolic 
syndrome on fronto- temporal gray matter morphology from two large- scale datasets. The evidence 
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based on state- of- the art multivariate imaging analysis and detailed micro- and macrostructural 
contextualization analyses is convincing and provides an understanding of the neurological 
correlates of metabolic syndrome, although the study would have benefitted from the inclusion of 
longitudinal data.

Introduction
Metabolic syndrome (MetS) represents a cluster of cardiometabolic risk factors, including abdom-
inal obesity, arterial hypertension, dyslipidemia, and insulin resistance (Alberti et  al., 2006). With 
a prevalence of 23–35% in Western societies, it poses a considerable health challenge, promoting 
neurodegenerative, and cerebrovascular diseases such as cognitive decline, dementia, and stroke 
(Aguilar et al., 2015; Scuteri et al., 2015; Beltrán- Sánchez et al., 2013; Boden- Albala et al., 2008; 
Atti et al., 2019). As lifestyle and pharmacological interventions can modify the trajectory of MetS, 
advancing our understanding of its pathophysiological effects on brain structure and function as 
potential mediators of MetS- related neurological diseases is crucial to inform and motivate risk reduc-
tion strategies (Eckel et al., 2005).

Magnetic resonance imaging (MRI) is a powerful non- invasive tool for examining the intricacies of 
neurological conditions in vivo. Among studies exploring MetS and brain structure, one of the most 
consistent findings has been alterations in cortical gray matter morphology (Yates et al., 2012). Still, 
our understanding of the relationship between MetS and brain structure is constrained by several 
factors. To date, there have been only a few studies on MetS effects on gray matter integrity that 
are well- powered (Beyer et al., 2019; Lu et al., 2021; Wolf et al., 2016; Tiehuis et al., 2014). The 
majority of analyses are based on small sample sizes and report effects only on global measures of 
brain morphology or a priori- defined regions of interest, limiting their scope (Tiehuis et al., 2014; 
McIntosh et al., 2017; Sala et al., 2014). As a result, reported effects are heterogeneous and most 
likely difficult to reproduce (Marek et al., 2022). Existing large- scale analyses on the isolated effects 
of individual risk factors (such as hypertension or obesity) do not account for the high covariance of 
MetS components driven by interacting pathophysiological effects, which may prevent them from 
capturing the whole picture of MetS as a risk factor composite (Hamer and Batty, 2019; Opel et al., 
2021; Schaare et al., 2019; Borshchev et al., 2019). In addition, analyses addressing the complex 
interrelationship of MetS, brain structure, and cognitive functioning by investigating them in conjunc-
tion are scarce (Yates et  al., 2012). Lastly, while previous studies adopted a case- control design 
treating MetS as a broad diagnostic category (Lu et al., 2021; Wolf et al., 2016; Tiehuis et al., 2014), 
a dimensional approach viewing MetS as a continuum could offer a more nuanced representation of 
the multivariate, continuous nature of the risk factor composite.

Despite reports on MetS effects on brain structure, the determinants and spatial effect patterns 
remain unclear. A growing body of evidence shows that spatial patterns of brain pathology are shaped 
by multi- scale neurobiological processes, ranging from the cellular level to regional dynamics to large- 
scale brain networks (Fornito et al., 2015). Accordingly, disease effects can not only be driven by 
local properties, when local patterns of tissue composition predispose individual regions to pathology, 
but also by topological properties of structural and functional brain networks (Fornito et al., 2015; 
Seidlitz et al., 2020). Guided by these concepts, multi- modal and multi- scale analysis approaches 
could advance our understanding of the mechanisms influencing MetS effects on brain morphology.

We argue that further research leveraging extensive clinical and brain imaging data is required to 
explore MetS effects on brain morphology. These examinations should integrate (1) a research meth-
odology that strikes a balance between resolving the multivariate connection of MetS and brain struc-
ture while accounting for the high covariance of MetS components; (2) the recognition of impaired 
cognitive function as a pertinent consequence of MetS; and (3) the analysis of the spatial effect pattern 
of MetS and its possible determinants.

To meet these research needs, we investigated cortical thickness and subcortical volumetric 
measurements in a pooled sample of two large- scale population- based cohorts from the UK Biobank 
(UKB) and Hamburg City Health Study (HCHS) comprising in total 40,087 participants. Partial least 
squares correlation analysis (PLS) was employed to characterize MetS effects on regional brain 
morphology. PLS is especially suitable for this research task as it identifies overarching latent rela-
tionships by establishing a data- driven multivariate mapping between MetS components and brain 
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morphometric indices. Furthermore, capitalizing on the cognitive phenotyping of both investigated 
cohorts, we examined the interrelation between MetS, cognitive function, and brain structure in a 
mediation analysis. Finally, to uncover factors associated with brain region- specific MetS effects, we 
mapped local cellular as well as network topological attributes to observed MetS- associated cortical 
abnormalities. With this work, we aimed to advance the understanding of the fundamental principles 
underlying the neurobiology of MetS.

Results
Sample characteristics
Application of exclusion criteria and quality assessment ruled out 2188 UKB subjects and 30 HCHS 
subjects resulting in a final analysis sample of 40,087 individuals. For a flowchart providing details 
on the sample selection procedure please refer to Appendix 1—figure 1. Descriptive statistics are 
listed in Table 1. To sensitivity analyze our results, as well as to facilitate the comparison with previous 
reports which primarily rely on a case- control design, we supplemented group statistics comparing 
individuals with clinically defined MetS and matched controls, where applicable. Corresponding group 
analysis results are described in more detail in appendix 2.

Partial least squares correlation analysis
We investigated the relationship between brain morphological and clinical measures of MetS (abdom-
inal obesity, arterial hypertension, dyslipidemia, insulin resistance) in a PLS considering all individuals 
from both studies (n=40,087) (Figure 1). By this, we aimed to detect the continuous effect of any MetS 
component independent from a formal binary classification of MetS (present/not present). A correla-
tion matrix relating all considered MetS component measures is displayed in Appendix 1—figure 2. 
Before conducting the PLS, brain morphological and clinical data were deconfounded for age, sex, 
education, and cohort effects.

PLS identified eight significant latent variables which represent clinical- anatomical dimensions 
relating MetS components to brain morphology (Appendix  1—table 1). The first latent variable 
explained 71.20% of the shared variance and was thus further investigated (Figure 2a). Specifically, 
the first latent variable corresponded with a covariance profile of lower severity of MetS (Figure 2c; 
loadings [95% confidence interval]; waist circumference: –0.230 [–0.239, –0.221], hip circumference: 
–0.187 [–0.195, –0.178], waist- hip ratio: –0.167 [–0.176, –0.158], body mass index: –0.234 [–0.243, 
–0.226], systolic blood pressure: –0.089 [–0.098, –0.080], diastolic blood pressure: –0.116 [–0.125, 
–0.107], high- density lipoprotein: 0.099 [0.090, 0.108], low- density lipoprotein: –0.013 [–0.022, –0.004], 
total cholesterol: 0.003 [–0.006, 0.012], triglycerides: –0.102 [–0.111, –0.092], HbA1c: –0.064 [–0.073, 
–0.54], glucose: –0.049 [–0.058, –0.039]). Notably, the obesity- related measures showed the strongest 
contribution to the covariance profile as indicated by the highest loading to the latent variable. Age 
(<0.001 [–0.009, 0.009]), sex (<0.001 [–0.009, 0.009]), education (<0.001 [–0.009, 0.009]), and cohort 
(<–0.001 [–0.008, 0.007]) did not significantly contribute to the latent variable, which is compatible 
with sufficient effects of deconfounding. Details on the second latent variable which explained 22.33% 
of shared variance are provided in Figure 2—figure supplement 1. In brief, it predominantly related 
lower HbA1c and blood glucose to higher thickness and volume in lateral frontal, posterior temporal, 
parietal, and occipital regions and vice versa.

Bootstrap ratios ( =
singular vector weight

bootstrap−estimated standard error ) were computed to identify brain regions with a 
significant contribution to the covariance profile (see Methods). Cortical thickness in orbitofrontal, 
lateral prefrontal, insular, anterior cingulate, and temporal areas as well as volumes of all investigated 
subcortical regions contributed positively to the covariance profile as indicated by a positive boot-
strap ratio (Figure 2d). Thus, a higher cortical thickness and subcortical volume in these areas corre-
sponded with less obesity, hypertension, dyslipidemia, and insulin resistance and vice versa, i.e., lower 
cortical thickness and subcortical volumes with increased severity of MetS. A negative bootstrap ratio 
was found in superior frontal, parietal, and occipital regions indicating that a higher cortical thickness 
in these regions corresponded with more severe MetS. This overall pattern was confirmed via conven-
tional, vertex- wise group comparisons of cortical thickness measurements based on the binary classi-
fication of individuals with MetS and matched controls (Appendix 2—figure 4) as well as subsample 
analyses considering the UKB and HCHS participants independently (Figure 2—figure supplements 
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Table 1. Descriptive statistics UKB and HCHS.

Metric Stat*

Age (years) 63.55±7.59 (40087)

Sex (% female) 46.47 (40087)

Education (ISCED) 2.62±0.73 (39944)

Metabolic syndrome components

Waist circumference (cm) 88.47±12.71 (38800)

Hip circumference (cm) 100.90±8.79 (38801)

Waist- hip ratio 0.88±0.09 (38800)

Body mass index 26.47±4.37 (38701)

RRsystolic (mmHg) 138.30±18.57 (31234)

RRdiastolic (mmHg) 78.88±10.09 (31238)

Antihypertensive therapy (%) 6.96 (39976)

HDL (mg/dL) 61.76±23.69 (34468)

LDL (mg/dL) 137.38±36.29 (37456)

Cholesterol (mg/dL) 211.29±56.42 (37531)

Triglycerides (mg/dL) 148.90±83.84 (37510)

Lipid lowering therapy (%) 14.44 (39976)

HbA1c (%) 5.37±0.48 (37284)

Blood glucose (mg/dL) 90.29±17.58 (34432)

Antidiabetic therapy (%) 0.45 (39976)

Imaging

Mean cortical thickness (mm) 2.40±0.09 (40087)

Cognitive variables of the UK Biobank

Fluid Intelligence 6.63±2.06 (36510)

Matrix Pattern Completion 7.99±2.13 (25771)

Numeric Memory Test 6.69±1.52 (26780)

Paired Associate Learning 6.92±2.63 (26048)

Prospective Memory 1.07±0.39 (37192)

Reaction Time (sec) 594.16±109.08 (37015)

Symbol Digit Substitution 18.96±5.25 (25810)

Tower Rearranging Test 9.91±3.23 (25555)

Trail Making Test A (sec) 223.03±86.51 (26048)

Trail Making Test B (sec) 550.01±270.09 (26048)

Cognitive variables of the Hamburg City Health Study

Animal Naming Test 24.78±6.92 (2416)

Clock Drawing Test 6.43±1.12 (2479)

Table 1 continued on next page
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2 and 3). The correlation matrix of all spatial effect maps investigated in this study (bootstrap ratio 
and Schaefer 400- parcellated t- statistic from group comparisons) is visualized in Figure 2—figure 
supplement 4. All derived effect size maps were significantly correlated ( rsp  =0.67−0.99,  pFDR  < 0.05) 
(Schaefer et al., 2018).

Subject- specific imaging and clinical scores for the first latent variable were computed. These scores 
indicate to which degree an individual expresses the corresponding covariance profiles. By definition, 
the scores are correlated ( rsp  = 0.201, p<0.005, Figure 2b) indicating that individuals exhibiting the 
clinical covariance profile (severity of MetS components) also express the brain morphological pattern. 
This relationship was robust across a 10- fold cross- validation (avg.  rsp  = 0.19, Appendix 1—table 2).

These results were consistent in separate PLS analyses for both the UKB and HCHS samples, as 
displayed in Figure 2—figure supplements 2 and 3. In these subset- specific analyses, cognitive test 
performances significantly contributed to the first latent variable when included in the PLS. Conse-
quently, the first latent variable associated more severe MetS with both brain morphological abnor-
malities and poorer cognitive performance.

Mediation analysis of cognitive outcomes
To gain a better understanding of the link between MetS, brain morphology, and cognitive func-
tion, we performed a mediation analysis on cognitive test results and subject- specific PLS scores. 
Therefore, we investigated whether the imaging PLS score (representing MetS- related brain structural 
abnormalities) acts as a mediator in the relationship between the clinical PLS score (representing MetS 
severity) and cognitive test performances. Importantly, scores of the main PLS analysis, which did not 
include cognitive measures, were considered. The corresponding path plots are shown in Figure 3. 
The imaging score was found to fully mediate the relationship of the clinical score and results of the 
Trail Making Test B (ab = –0.011, PFDR <0.001; c’=–0.012, PFDR = 0.072; c=–0.023, PFDR <0.001), Fluid 
Intelligence Test (ab = 0.017, PFDR <0.001; c’=0.011, PFDR = 0.072; c=0.028, PFDR <0.001) as well as 
Matrix Pattern Completion Test (ab = 0.015, PFDR <0.001; c’=0.010, PFDR = 0.172; c=0.025, PFDR <0.001). 
Further, the imaging score partially mediated the relationship of the clinical score and results of the 
Symbol Digit Substitution Test (ab = 0.010, PFDR <0.001; c’=0.036, PFDR <0.001; c=0.046, PFDR <0.001), 
Numeric Memory Test (ab = 0.014, PFDR <0.001; c’=0.044, PFDR <0.001; c=0.058, PFDR <0.001) and 
Paired Associate Learning Test (ab = 0.015, PFDR <0.001; c’=0.044, PFDR <0.001; c=0.059, PFDR <0.001). 
For the remaining cognitive tests, no significant mediation was found.

Contextualization of MetS-associated brain morphological 
abnormalities
We investigated whether the pattern of MetS effects on cortical structure is linked to the regional 
density of specific cell populations and global brain network topology in a surface- based contextual-
ization analysis (see Methods).

Therefore, we first used a virtual histology approach to relate the bootstrap ratio from PLS to the 
differential expression of cell- type specific genes based on microarray data from the Allen Human 
Brain Atlas (Hawrylycz et al., 2012). The results are illustrated in Figure 4. The bootstrap ratio was 
significantly positively correlated with the density of endothelial cells ( Zrsp  = 0.190,  pFDR  = 0.016), 
microglia ( Zrsp  = 0.271,  pFDR  = 0.016), excitatory neurons type 8 ( Zrsp  = 0.165,  pFDR  = 0.016), inhibi-
tory neurons type 1 ( Zrsp  = 0.363,  pFDR  = 0.036) and excitatory neurons type 6 ( Zrsp  = 0.146,  pFDR  = 
0.034) indicating that MetS- related brain morphological abnormalities are strongest in regions of the 

Metric Stat*

Trail Making Test A (sec) 40.09±14.33 (2290)

Trail Making Test B (sec) 90.05±37.30 (2264)

Multiple- Choice Vocabulary Intelligence Test 31.27±3.58 (2026)

Word List Recall 7.75±1.84 (2342)

*Presented as mean ± SD (N).

Table 1 continued
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Figure 1. Methodology. (a) Illustration of the partial least squares correlation analysis. Starting from two 
input matrices containing per- subject information of regional morphological measures as well as clinical data 
(demographic and metabolic syndrome (MetS)- related risk factors) a correlation matrix is computed. This matrix 
is subsequently subjected to singular value decomposition resulting in a set of mutually orthogonal latent 

Figure 1 continued on next page
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highest density of these cell types. No significant associations were found regarding the remaining 
excitatory neuron types (Ex1- Ex5, Ex7), inhibitory neurons (In2- In8), astrocytes, and oligodendrocytes 
(Appendix  1—table 3). Virtual histology analysis results for bootstrap ratios corresponding with 
latent variables 2 and 3 are shown in Figure 4—figure supplement 1. As a sensitivity analysis, we 
contextualized the t- statistic map derived from group statistics. The results remained stable except 
for excitatory neurons type 6 ( Zrsp  = 0.145,  pFDR  = 0.123) and inhibitory neurons type 1 ( Zrsp  = 0.432, 

 pFDR  = 0.108), which no longer showed a significant association (Figure 4—figure supplement 2, 
Appendix 1—table 4).

Second, we associated the bootstrap ratio with three pre- selected measures of brain network 
topology derived from group consensus functional and structural connectomes of the Human Connec-
tome Project (HCP) (Figure 5): weighted degree centrality (marking brain network hubs), neighbor-
hood abnormality, and macroscale functional connectivity gradients (Petersen et al., 2022b). The 
bootstrap ratio showed a medium positive correlation with the functional neighborhood abnormality 
( rsp  = 0.464,  pspin  < 0.001,  psmash  < 0.001,  prewire  < 0.001) and a strong positive correlation with the 
structural neighborhood abnormality ( rsp  = 0.764,  pspin  = <0.001,  psmash  < 0.001,  prewire  < 0.001) indi-
cating functional and structural interconnectedness of areas exhibiting similar MetS effects. These 
results remained significant when the t- statistic map was contextualized instead of the bootstrap ratio 
as well as when neighborhood abnormality measures were derived from consensus connectomes of 
the HCHS instead of the HCP (Figure 5—figure supplements 1 and 2). We found no significant asso-
ciations for the remaining indices of network topology, i.e., functional degree centrality ( rsp  = 0.163, 

 pspin  = 0 .365,  psmash  = 0.406,  prewire  = 0.870), structural degree centrality ( rsp  = 0.029,  pspin  = 0.423, 

 psmash  = 0.814,  prewire  = 0.103) as well as functional cortical gradient 1 ( rsp  = 0.152,  pspin  = 0.313,  psmash  
= 0.406,  prewire  = 0.030) and gradient 2 ( rsp  = –0.177,  pspin  = 0.313,  psmash  = 0.406,  prewire  < 0.001).

Discussion
We investigated the impact of MetS on brain morphology and cognitive function in a large sample 
of individuals from two population- based neuroimaging studies. We report three main findings: (1) 
multivariate, data- driven statistics revealed a latent variable relating MetS and brain health: partici-
pants were distributed along a clinical- anatomical dimension of interindividual variability, linking more 
severe MetS to widespread brain morphological abnormalities. Negative MetS- related brain morpho-
logical abnormalities were strongest in orbitofrontal, lateral prefrontal, insular, cingulate, and temporal 
cortices as well as subcortical areas. Positive MetS- related brain morphological abnormalities were 
strongest in superior frontal, parietal, and occipital regions. (2) The severity of MetS was associated 
with executive function and processing speed, memory, and reasoning test performances, and was 
found to be statistically mediated by MetS- related brain morphological abnormalities. (3) The pattern 
of MetS- related brain morphological abnormalities appeared to be linked to regional cell composition 
as well as functional and structural connectivity. These findings were robust across sensitivity analyses. 
In sum, our study provides an in- depth examination of the intricate relationship between MetS, brain 
morphology, and cognition. A graphical abstract summarizing the results is included as Figure 6.

variables. Latent variables each consist of a left singular vector (here, clinical covariance profile), singular value, 
and right singular vector (here, imaging covariance profile). In addition, subject- specific clinical and imaging scores 
are computed. (b) The interplay between MetS, brain structure, and cognition was investigated in a post- hoc 
mediation analysis. We tested whether the relationship between the clinical score, representing MetS severity, 
and different cognitive test performances was statistically mediated by the imaging score. (c) Contextualization 
analysis. Upper row: based on microarray gene expression data, the densities of different cell populations 
across the cortex were quantified. Middle and lower row: based on functional and structural group- consensus 
connectomes based on data from the Human Connectome Project, metrics of functional and structural brain 
network topology were derived. Cell density as well as connectomic measures were related to the bootstrap ratio 
via spatial correlations. Modified from Petersen et al., 2022b; Zeighami et al., 2019. Abbreviations: Astro – 
astrocytes; DWI – diffusion- weighted magnetic resonance imaging; Endo – endothelial cells; Ex – excitatory neuron 
populations (Ex1- 8); In – inhibitory neuron populations (In1- 8); Micro – microglia; Oligo – oligodendrocytes; rs- fMRI 
– resting- state functional magnetic resonance imaging; SVD – singular value decomposition.

Figure 1 continued
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Figure 2. Partial least squares correlation analysis (PLS). (a) Explained variance and p- values of latent variables. (b) Scatter plot relating subject- specific 
clinical and imaging PLS scores. Higher scores indicate higher adherence to the respective covariance profile. (c) Clinical covariance profile. 95% 
confidence intervals were calculated via bootstrap resampling. Note that confound removal for age, sex, education, and cohort was performed prior to 
the PLS. (d) Imaging covariance profile represented by bootstrap ratio. A high positive or negative bootstrap ratio indicates high contribution of a brain 
region to the overall covariance profile. Regions with a significant bootstrap ratio (>1.96 or <–1.96) are highlighted by colors. Abbreviations: BMI – Body 
mass index, HDL – high- density lipoprotein, LDL – low- density lipoprotein,  rsp  - Spearman correlation coefficient.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Partial least squares correlation analysis – Latent variable 2.

Figure supplement 2. Partial least squares correlation analysis – UK Biobank (including cognitive test results).

Figure supplement 3. Partial least squares correlation analysis – Hamburg City Health Study (HCHS) (including cognitive test results).

Figure supplement 4. Spatial correlation of effect size maps.

https://doi.org/10.7554/eLife.93246
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PLS reveals a latent clinical-anatomical dimension relating MetS and 
brain health
MetS adversely impacts brain health through complex, interacting effects on the cerebral vasculature 
and parenchyma as shown by histopathological and imaging studies (Borshchev et al., 2019). The 
pathophysiology of MetS involves atherosclerosis, which affects blood supply and triggers inflamma-
tion (Libby et al., 2002; Birdsill et al., 2013); endothelial dysfunction reducing cerebral vasoreactivity 
Lind, 2008; breakdown of the blood- brain barrier inciting an inflammatory response Hussain et al., 
2021; oxidative stress causing neuronal and mitochondrial dysfunction Mullins et al., 2020; and small 
vessel injury leading to various pathologies including white matter damage, microinfarcts, and cere-
bral microbleeds (Frey et al., 2019).

To address these interacting effects, we harnessed multivariate, data- driven statistics in the form 
of a PLS in two large- scale population- based studies to probe for covariance profiles relating the full 
range of MetS components (such as obesity or arterial hypertension) to regional brain morphological 
information in a single analysis. PLS identified eight significant latent variables with the first variable 
explaining the majority (71.20%) of shared variance within the imaging and clinical data (Figure 2a). 
This finding indicates a relatively uniform connection between MetS and brain morphology, implying 

Figure 3. Mediation analysis results. Mediation effects of subject- specific imaging PLS scores on the relationship between metabolic syndrome (MetS) 
represented by the clinical PLS score and cognitive test performances. Path plots display standardized effects and p- values: (a) clinical score to imaging 
score, (b) imaging score to cognitive score, (ab) indirect effect (c’) direct effect, and (c) total effect. Significant paths are highlighted in blue; non- 
significant in light gray. If the indirect effect ab was significant, the text for ab is highlighted in blue. A blue dot in the path plot indicates if a relationship 
is significantly mediated, i.e., the indirect effect ab was significant and the direct effect c’ was reduced or non- significant compared to the total effect c. 
An empty dot indicates a partial mediation, and a full dot indicates a full mediation. Abbreviations: pFDR  - false discovery rate- corrected p- values; PLS – 
partial least squares correlation; TMT- A – Trail Making Test A; TMT- B – Trail Making Test B.

https://doi.org/10.7554/eLife.93246
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that the associative effects of various MetS components on brain structure are comparatively similar, 
despite the distinct pathomechanisms each component entails.

PLS revealed that all MetS components were contributing to this latent signature. However, waist 
circumference, hip circumference, waist- hip ratio, and body mass index consistently contributed 
higher than the remaining variables across conducted analyses which highlights obesity as the stron-
gest driver of MetS- related brain morphological abnormalities.

We interpret these findings as evidence that MetS- associated conditions jointly contribute to the 
harmful effects on brain structure rather than affecting it in a strictly individual manner. This notion is 
supported by previous work in the UKB demonstrating overlapping effects of individual risk factors 
on brain morphology (Cox et  al., 2019). Specifically, the first latent variable related to increased 
severity of obesity, dyslipidemia, arterial hypertension, and insulin resistance with lower thickness 
in orbitofrontal, lateral prefrontal, insular, cingulate, and temporal cortices as well as lower volume 

Figure 4. Virtual histology analysis. The regional correspondence between metabolic syndrome (MetS) effects (bootstrap ratio) and cell type- specific 
gene expression profiles was examined via an ensemble- based gene category enrichment analysis. (a) Barplot displaying spatial correlation results. 
The bar height displays the significance level. Colors encode the aggregate z- transformed Spearman correlation coefficient relating the Schaefer100- 
parcellated bootstrap ratio and respective cell population densities. Asterisks indicate statistical significance. The significance threshold of  pFDR  <0.05 
is highlighted by a vertical dashed line. (b) Scatter plots illustrating spatial correlations between MetS effects and exemplary cortical gene expression 
profiles per cell population significantly associated across analyses – i.e., endothelium, microglia, and excitatory neurons type 8. Top 5 genes most 
strongly correlating with the bootstrap ratio map were visualized for each of these cell populations. Icons in the bottom right of each scatter plot 
indicate the corresponding cell type. A legend explaining the icons is provided at the bottom. First row: endothelium; second row: microglia; third row: 
excitatory neurons type 8. Virtual histology analysis results for the bootstrap ratios of latent variables 2 and 3 are shown in Figure 4—figure supplement 
1. A corresponding plot illustrating the contextualization of the t- statistic derived from group statistics is shown in Figure 4—figure supplement 2. 
Abbreviations:  −log

(
pFDR

)
  – negative logarithm of the false discovery rate- corrected p- value derived from spatial lag models (Dukart et al., 2021; 

Burt et al., 2018);  r   – Spearman correlation coeffient.  Z
(
rsp

)
  – aggregate z- transformed Spearman correlation coefficient.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Virtual histology analysis of latent variables 2 and 3.

Figure supplement 2. Sensitivity virtual histology analysis based on t- statistic map from group comparison.

https://doi.org/10.7554/eLife.93246
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across subcortical regions (Figure 2c and d). This profile was consistent in separate PLS analyses of 
UKB and HCHS participants as well as group comparisons (Figure 2—figure supplement 4). Previous 
research aligns with our detection of a MetS- associated frontotemporal morphometric abnormality 
pattern (Beyer et al., 2019; McIntosh et al., 2017; Kotkowski et al., 2019). As a speculative caus-
ative pathway, human and animal studies have related the orbitofrontal, insular, and anterior cingulate 
cortex to food- related reward processing, taste, and impulse regulation (Tuulari et al., 2015; Rolls, 

Figure 5. Brain network contextualization. Spatial correlation results derived from relating Schaefer 
400×7- parcellated maps of metabolic syndrome (MetS) effects (bootstrap ratio) to network topological indices 
(red: functional connectivity, blue: structural connectivity). Scatter plots that illustrate the spatial relationship are 
supplemented by surface plots for anatomical localization. The color coding of cortical regions and associated 
dots corresponds. (a and b) Functional and structural degree centrality rank. (c and d) Functional and structural 
neighborhood abnormality. (e and f) Intrinsic functional network hierarchy represented by functional connectivity 
gradients 1 and 2. Complementary results concerning t- statistic maps derived from group comparisons between 
MetS subjects and controls are presented in Figure 5—figure supplement 1. Corresponding results after 
reperforming the analysis with HCHS- derived group- consensus connectomes are presented in Figure 5—figure 
supplement 2. Abbreviations: HCHS – Hamburg City Health Study;  prewire  - p- value derived from network rewiring 
(Maslov et al., 2004);  psmash  - p- value derived from brainSMASH surrogates (Burt et al., 2020);  pspin  - p- value 
derived from spin permutation results (Alexander- Bloch et al., 2018);  rsp  - Spearman correlation coefficient.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Sensitivity network contextualization analysis based on t- statistic map derived from group 
comparison.

Figure supplement 2. Sensitivity network contextualization analysis based on group- consensus connectomes 
from the Hamburg City Health Study.

https://doi.org/10.7554/eLife.93246
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2016). Conceivably, structural alterations of these brain regions are linked to brain functions and 
behaviors that exacerbate the risk profile leading to MetS (Rolls, 2023; Price et al., 2019). We also 
noted a positive MetS- cortical thickness association in superior frontal, parietal, and occipital lobes, a 
less intuitive finding that has been previously reported (Krishnadas et al., 2013; Leritz et al., 2011). 
Although speculative, the positive effects might be due to MetS compensating cholesterol disruptions 
associated with neurodegenerative processes (Qin et al., 2021).

The second latent variable accounted for 22.33% of the shared variance and linked higher markers 
of insulin resistance and lower dyslipidemia to lower thickness and volume in lateral frontal, poste-
rior temporal, parietal, and occipital regions. The distinct covariance profile of this latent variable, 
compared to the first, likely indicates a separate pathomechanistic connection between MetS compo-
nents and brain morphology. Given that HbA1c and blood glucose were the most significant contrib-
utors to this variable, insulin resistance might drive the observed clinical- anatomical relationship.

Brain morphological abnormalities mediate the relationship between 
MetS and cognitive deficits
Cognitive performance has been consistently linked to cardiometabolic risk factors in health and 
disease (Genon et al., 2022). Yet, the pathomechanistic correlates of this relationship remain to be 
understood. Our mediation analysis revealed that increased MetS severity correlates with worse 
performance in executive function and processing speed (Symbol Digit Substitution Test, Trail Making 
Test B), memory (Numeric Memory Test, Paired Associate Learning Test), and reasoning (Fluid intel-
ligence, Matrix Pattern Completion Test), with brain morphological abnormalities statistically medi-
ating these relationships. Additionally, group comparisons indicated poorer cognitive performance in 
MetS subjects (Appendix 2—tables 1 and 2) and including cognitive outcomes in the PLS as clinical 
variables revealed a significant contribution to the first latent variable (Figure 2—figure supplements 
2 and 3). These results suggest that MetS is significantly associated with cognitive deficits across 
various domains, and brain morphological abnormalities are a crucial pathomechanistic link in this 
relationship. In support of this, previous studies have shown that brain structure mediates the relation-
ship between MetS and cognitive performance in a pediatric sample and elderly patients with vascular 
cognitive impairment (Laurent et al., 2020; Seo et al., 2010; Kim et al., 2014). The detected latent 
variable might represent a continuous disease spectrum spanning from minor cognitive deficits due to 
a cardiometabolic risk profile to severe cognitive deficits due to dementia. In support of this hypoth-
esis, the determined brain morphological abnormality pattern is consistent with the atrophy pattern 

Figure 6. Graphical abstract.
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found in vascular mild cognitive impairment, vascular dementia, and Alzheimer’s dementia (Seo et al., 
2010; Kim et al., 2014; Morys et al., 2023).

Collectively, these findings highlight the role of MetS in cognitive impairment and underscore 
the potential impact of therapies targeting cardiometabolic risk factors. Although the definitive role 
of such therapies in preventing cognitive decline is not yet fully established, emerging evidence 
suggests that these interventions can mitigate the adverse cognitive effects of MetS (Veronese et al., 
2017; Lennon et al., 2023; Gelber et al., 2013). As our results highlight obesity as a key factor in 
the observed clinical- anatomical relationship, we think that future studies should further investigate 
weight- reducing interventions to examine their effects on cognitive outcomes. Advanced neuro-
imaging techniques promise to refine these therapeutic approaches by enabling to identify MetS 
patients at risk of cognitive decline that would benefit the most from targeted interventions for cogni-
tive health protection.

MetS-related brain morphological abnormalities link to cellular tissue 
composition and network topology
To better understand the emergence of the spatial pattern of MetS- related brain morphological 
abnormalities, we conducted two contextualization analyses leveraging reference datasets of local 
gene expression data as well as properties of brain network topology.

Using a virtual histology approach based on regional gene expression data, we investigated MetS 
effects in relation to cell population densities (Figure 4). As the main finding, we report that higher 
MetS- related brain morphological abnormalities coincide with a higher regional density of endothe-
lial cells. This aligns with the known role of endothelial dysfunction in MetS compromising tissues via 
chronic vascular inflammation, increased thrombosis risk, and hypoperfusion due to altered vasore-
activity and vascular remodeling (Lind, 2008). As endothelial density also indicates the degree of 
general tissue vascularization, well- vascularized regions are also likely more exposed to cardiometa-
bolic risk factor effects in general (Libby et al., 2002). Our results furthermore indicate that microglial 
density determines a brain region’s susceptibility to MetS effects. Microglia are resident macrophages 
of the central nervous system that sustain neuronal integrity by maintaining a healthy microenviron-
ment. Animal studies have linked microglial activation mediated by blood- brain barrier leakage and 
systemic inflammation to cardiometabolic risk (Denes et al., 2012; Tucsek et al., 2014). Activated 
microglia can harm the brain structure by releasing reactive oxygen species, proinflammatory cyto-
kines, and proteinases (Dheen et al., 2007). Lastly, we found an association with the density of excit-
atory neurons of subtype 8. These neurons reside in cortical layer 6 and their axons mainly entertain 
long- range cortico- cortical and cortico- thalamic connections (Lake et  al., 2016; Thomson, 2010). 
Consequently, layer 6 neurons might be particularly susceptible to MetS effects due to their expo-
sition to MetS- related white matter disease (Petersen et al., 2022a; Petersen et al., 2020). Taken 
together, the virtual histology analysis indicates that MetS- related brain morphological abnormalities 
are associated with local cellular fingerprints. Our findings emphasize the involvement of endothelial 
cells and microglia in brain structural abnormalities due to cardiometabolic risk, marking them as 
potential targets for therapies aimed at mitigating MetS effects on brain health.

For the second approach, we contextualized MetS- related brain morphological abnormalities using 
principal topological properties of functional and structural brain networks. We found that regional 
MetS effects and those of functionally and structurally connected neighbors were correlated (Figure 5c 
and d) – i.e., areas with similar MetS effects tended to be disproportionately interconnected. Put 
differently, MetS effects coincided within functional and structural brain networks. Therefore, our find-
ings can be interpreted as evidence that a region’s functional and structural network embedding – i.e., 
its individual profile of functional interactions as well as white matter fiber tract connections – are 
associated with its susceptibility to morphological MetS effects. Multiple mechanisms might explain 
how connectivity might be associated with MetS- related morphological alterations. For example, 
microvascular pathology might impair white matter fiber tracts leading to joint degeneration in inter-
connected cortical brain areas: that is, the occurrence of shared MetS effects within functionally and 
structurally connected neighborhoods is explained by their shared (dis- )connectivity profile (Mayer 
et al., 2021). In support of this, previous work using diffusion tensor imaging suggests that MetS- 
related microstructural white matter alterations preferentially occur in the frontal and temporal lobe, 
which spatially matches the frontotemporal morphometric differences observed in our work (Segura 
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et  al., 2009). Furthermore, we speculate on an interplay between local and network- topological 
susceptibility in MetS: functional and structural connectivity may provide a scaffold for propagating 
MetS- related perturbation across the network in the sense of a spreading phenomenon – i.e., a region 
might be influenced by network- driven exposure to regions with higher local susceptibility. Observed 
degeneration of a region might be aggravated by malfunctional communication to other vulnerable 
regions including mechanisms of excitotoxicity, diminished excitation and metabolic stress (Saxena 
and Caroni, 2011). These findings underscore the relevance of brain network organization in under-
standing the pathomechanistic link of MetS and brain morphology.

While this work’s strengths lie in a large sample size, high- quality MRI and clinical data, robust image 
processing, and a comprehensive methodology for examining the link of MetS and brain health, it also 
has limitations. First, the virtual histology analysis relies on post- mortem brain samples, potentially 
different from in- vivo profiles. In addition, the predominance of UKB subjects may bias the results, 
and potential reliability issues of the cognitive assessment in the UKB need to be acknowledged 
(Gell et al., 2023). Lastly, the cross- sectional design restricts the ability for demonstrating causative 
effects. Longitudinal assessment of the surveyed relationships would provide more robust evidence 
and therefore, future studies should move in this direction.

Conclusion
Our analysis revealed associative effects of MetS, structural brain integrity, and cognition, comple-
menting existing efforts to motivate and inform strategies for cardiometabolic risk reduction. In 
conjunction, a characteristic and reproducible structural imaging fingerprint associated with MetS 
was identified. This pattern of MetS- related brain morphological abnormalities was linked to local 
histological as well as global network topological features. Collectively, our results highlight how an 
integrative, multi- modal, and multi- scale analysis approach can lead to a more holistic understanding 
of the neural underpinnings of MetS and its risk components. As research in this field advances, lever-
aging neuroimaging may improve personalized cardiometabolic risk mitigation approaches.

Materials and methods
Study population – the UK Biobank and Hamburg City Health Study
Here, we investigated cross- sectional clinical and imaging data from two large- scale population- based 
cohort studies: (1) the UK Biobank (UKB, n=39,668, age 45–80 years; application number 41655) and 
(2) the Hamburg City Health Study (HCHS, n=2637, age 45–74 years) (Miller et al., 2016; Jagodz-
inski et  al., 2020). Both studies recruit large study samples with neuroimaging data alongside a 
detailed demographic and clinical assessment. Respectively, data for the first visit including a neuro-
imaging assessment were included. Individuals were excluded if they had a history or a current diag-
nosis of neurological or psychiatric disease. Field IDs of the used UKB variables are presented in 
Appendix 1—table 5. UKB individuals were excluded based on the non- cancer illnesses codes (http:// 
biobank.ndph.ox.ac.uk/showcase/coding.cgi?id=6). Excluded conditions were Alzheimer’s disease; 
alcohol, opioid, and other dependencies; amyotrophic lateral sclerosis; brain injury; brain abscess; 
chronic neurological problem; encephalitis; epilepsy; hemorrhage; head injury; meningitis; multiple 
sclerosis; Parkinson’s disease; skull fracture. Same criteria were applied to HCHS individuals based on 
the neuroradiological evaluation and self- reported diagnoses variables. To enhance comparability to 
previous studies we supplemented a case- control analysis enabling to complement continuous multi-
variate statistical analyses by group statistics. Therefore, a MetS sample was identified based on the 
consensus definition of the International Diabetes Federation (Appendix 1—table 6) and matched to 
a control cohort.

Ethics approval
The UKB was ethically approved by the North West Multi- Centre Research Ethics Committee (MREC). 
Details on the UKB Ethics and Governance framework are provided online (https://www.ukbiobank. 
ac.uk/media/0xsbmfmw/egf.pdf). The HCHS was approved by the local ethics committee of the 
Landesärztekammer Hamburg (State of Hamburg Chamber of Medical Practitioners, PV5131). Good 
Clinical Practice (GCP), Good Epidemiological Practice (GEP), and the Declaration of Helsinki were the 
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ethical guidelines that governed the conduct of the HCHS (Petersen et al., 2020). Written informed 
consent was obtained from all participants investigated in this work.

Clinical assessment
In the UK Biobank, a battery of cognitive tests is administered, most of which represent shortened and 
computerized versions of established tests aiming for a comprehensive and concise assessment of cogni-
tion (Sudlow et al., 2015). From this battery, we investigated tests for executive function and processing 
speed (Reaction Time Test, Symbol Digit Substitution Test, Tower Rearranging Test, Trail Making Tests A 
and B), memory (Numeric Memory Test, Paired Associate Learning Test, Prospective Memory Test), and 
reasoning (Fluid Intelligence Test, Matrix Pattern Completion Test). Detailed descriptions of the individual 
tests can be found elsewhere (Fawns- Ritchie and Deary, 2020). Furthermore, some tests (Matrix Pattern 
Completion Test, Numeric Memory Test, Paired Associate Learning Test, Symbol Digit Substitution Test, 
Trail Making Test, and Tower Rearranging Test) are only administered to a subsample of the UKB imaging 
cohort explaining the missing test results for a subgroup of participants.

In the HCHS, cognitive testing was administered by a trained study nurse and included the Animal 
Naming Test, Trail Making Test A and B, Multiple Choice Vocabulary Intelligence Test B, and Word List 
Recall subtests of the Consortium to Establish a Registry for Alzheimer’s Disease Neuropsychological 
Assessment Battery (CERAD- Plus), as well as the Clock Drawing Test (Morris et al., 1989; Shulman, 
2000).

MRI acquisition
The full UKB neuroimaging protocol can be found online (https://biobank.ctsu.ox.ac.uk/crystal/ 
crystal/docs/brain_mri.pdf; Miller et al., 2016). MR images were acquired on a 3 T Siemens Skyra MRI 
scanner (Siemens, Erlangen, Germany). T1- weighted MRI used a 3D MPRAGE sequence with 1 mm 
isotropic resolution with the following sequence parameters: repetition time = 2000 ms, echo time = 
2.01 ms, 256 axial slices, slice thickness = 1 mm, and in- plane resolution = 1 × 1 mm. In the HCHS, MR 
images were acquired as well on a 3 T Siemens Skyra MRI scanner. Measurements were performed 
with a protocol as described in previous work (Petersen et al., 2020). In detail, for 3D T1- weighted 
anatomical images, rapid acquisition gradient- echo sequence (MPRAGE) was used with the following 
sequence parameters: repetition time = 2500 ms, echo time = 2.12 ms, 256 axial slices, slice thickness 
= 0.94 mm, and in- plane resolution = 0.83 × 0.83 mm.

Estimation of brain morphological measures
To achieve comparability and reproducibility, the preconfigured and containerized CAT12 pipeline 
(CAT12.7 r1743; https://github.com/m-wierzba/cat-container; Wierzba and Hoffstaedter, 2022) was 
employed for surface reconstruction and cortical thickness measurement building upon a projection- 
based thickness estimation method as well as computation of subcortical volumes (Gaser et al., 2022). 
Cortical thickness measures were normalized from individual to 32 k fsLR surface space (conte69) to 
ensure vertex correspondence across subjects. Subcortical volumes were computed for the Melbourne 
Subcortex Atlas parcellation resolution 1 (Tian et al., 2020). Volumetric measures for the anterior and 
posterior thalamus parcels were averaged to obtain a single measure for the thalamus. Individuals 
with a CAT12 image quality rating lower than 75% were excluded during the quality assessment. To 
facilitate large- scale data management while ensuring provenance tracking and reproducibility, we 
employed the DataLad- based FAIRly big workflow for image data processing (Wagner et al., 2022).

Statistical analysis
Statistical computations and plotting were performed in python 3.9.7 leveraging bctpy (v. 0.6.0), 
brainstat (v. 0.3.6), brainSMASH (v. 0.11.0), and the ENIGMA toolbox (v. 1.1.3). matplotlib (v. 3.5.1), 
neuromaps (v. 0.0.1), numpy (v. 1.22.3), pandas (v. 1.4.2), pingouin (v. 0.5.1), pyls (v. 0.0.1), scikit- learn 
(v. 1.0.2), scipy (v. 1.7.3), seaborn (v. 0.11.2) as well as in matlab (v. 2021b) using ABAnnotate (v. 0.1.1).

Partial least squares correlation analysis
To relate MetS components and brain morphology, we performed a PLS using pyls (https://github. 
com/rmarkello/pyls; Markello, 2021). PLS identifies covariance profiles that relate to two sets of vari-
ables in a data- driven multivariate analysis (Krishnan et al., 2011). Here, we related regional cortical 
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thickness and subcortical volumes to clinical measurements of MetS components, i.e., obesity (waist 
circumference, hip circumference, waist- hip ratio, body mass index), arterial hypertension (systolic 
blood pressure, diastolic blood pressure), dyslipidemia (high- density lipoprotein, low- density lipopro-
tein, total cholesterol, triglycerides) and insulin resistance (HbA1c, non- fasting blood glucose). Before 
conducting the PLS, missing values were imputed via k- nearest neighbor imputation (nneighbor = 4) with 
imputation only taking into account variables of the same group, i.e., MetS component variables were 
imputed based on the remaining MetS component data only and not based on demographic vari-
ables. To account for age, sex, education, and cohort (UKB/HCHS) as potential confounds, they were 
regressed out of brain morphological and MetS component data.

We then performed PLS as described in previous work (Petersen et al., 2022b). Methodological 
details are covered in Figure 1a and Box 1. Brain morphological measures were randomly permuted 
(npermute = 5000) to assess the statistical significance of derived latent variables and their corresponding 
covariance profiles. Subject- specific PLS scores, including a clinical score and an imaging score, were 
computed. Higher scores indicate stronger adherence to the respective covariance profiles: a high 
clinical score signifies pronounced expression of the clinical profile, and a high imaging score reflects 
marked adherence to the brain morphological profile. Bootstrap resampling (nbootstrap = 5000) was 
performed to assess the contribution of individual variables to the imaging- clinical relationship. Confi-
dence intervals (95%) of singular vector weights were computed for clinical variables to assess the 
significance of their contribution. To estimate the contributions of brain regions, bootstrap ratios 
were computed as the singular vector weight divided by the bootstrap- estimated standard error. A 
high bootstrap ratio is indicative of a region’s contribution, as a relevant region shows a high singular 
vector weight alongside a small standard error implying stability across bootstraps. The bootstrap 
ratio equals a z- score in the case of a normally distributed bootstrap. Hence, brain region contribu-
tions were considered significant if the bootstrap ratio was >1.96 or <−1.96 (95% confidence interval). 
Overall model robustness was assessed via a 10- fold cross- validation by correlating out- of- sample PLS 
scores within each fold.

Mediation analysis
In a post- hoc mediation analysis, we investigated how the subject- specific clinical PLS score of the 
first latent variable, reflecting the degree of an individual’s expression of the identified MetS risk 
profile, relates to cognitive test outcomes, and whether this relationship is influenced by the imaging 
PLS score of the first latent variable, which represents the degree of brain morphological differences 
(Figure 1b). This analysis allows to separate the total effect of the clinical PLS score on cognitive 
performance into: (1) a direct effect (the immediate link of clinical scores and cognition), and (2) an 
indirect effect (the portion influenced by the imaging PLS score). This approach helps to disentangle 
the complex interplay between MetS and cognitive function by examining the role of brain structural 
effects as a potential intermediary. We considered an indirect effect as mediating if there was a signif-
icant association between the clinical and imaging PLS scores, the imaging PLS score was significantly 
associated with the cognitive outcome, and if the link between clinical scores and cognitive outcomes 
weakened (partial mediation) or became insignificant (full mediation) after accounting for imaging 
scores. The significance of mediation was assessed using bootstrapping (nbootstrap = 5000), with models 
adjusted for age, sex, and education. To obtain standardized estimates, mediation analysis inputs 
were z- scored beforehand. Given the variation in cognitive test batteries between the UKB and HCHS 
cohorts, only individuals with results from the respective tests were considered in each mediation 
analysis. To account for the different versions of the Trail Making Tests A and B used in both cohorts, 
test results were harmonized through z- scoring within the individual subsamples before a pooled 
z- scoring step.

Contextualization analysis
We investigated the link of MetS and regional brain morphological measurements in the context 
of cell- specific gene expression profiles and structural and functional brain network characteristics 
(Figure 1c). Therefore, we used the Schaefer- parcellated (400×7 and 100×7, v.1) bootstrap ratio map 
and related it to indices representing different gene expression and network topological properties of 
the human cortex via spatial correlations (Spearman correlation,  rsp ) on a group- level (Schaefer et al., 
2018).
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Virtual histology analysis. We performed a virtual histology analysis leveraging gene transcrip-
tion information to quantify the density of different cell populations across the cortex employing 
the ABAnnotate toolbox (Lotter, 2022; Dukart et al., 2021). Genes corresponding with specific cell 
populations of the central nervous system were identified based on a classification derived from single 
nucleus- RNA sequencing data (Lake et al., 2016). The gene- cell type mapping is provided by the 

Box 1. Partial least squares correlation analysis 
explained.

Regional morphometric information (Schaefer 400- and Melbourne Subcortical Atlas- 
parcellated) and clinical data (age sex, education, and MetS component data) were arranged 
in two matrices  Xnparticipants×nbrain regions  and  Ynparticipants×nclinical variables  and then z- scored. Subsequently, 
a clinical- anatomical correlation matrix was calculated. Singular value decomposition was 
performed on the correlation matrix which resulted in a set of mutually orthogonal latent 
variables. The smaller dimension of the correlation matrix – its rank – equals the latent variable 
count. In our case, this was the number of clinical variables. Singular value decomposition 
results in a left singular vector matrix ( Unbrain regions×nlatent variables ), right singular vector matrix 
( Vnclinical variables×nlatent variables ) and a diagonal matrix of singular values ( ∆nlatent variables×nlatent variables ). 
Together, these represent a set of latent variables with a latent variable being composed 
of a left and right singular vector and a corresponding singular value. Each latent variable 
represents a specific covariance profile within the input data. A singular vector weights the 
corresponding original variables to maximize their covariance, i.e., the weighted regional 
values of a singular vector  Ubrain regions, latent variable j  can be interpreted as a maximally covarying 
brain morphology pattern and its corresponding clinical substrate ( Vclinical variables, latent variable j ). 
The explained variance of a latent variable was calculated as the ratio of its corresponding 
squared singular value to the sum of the remaining squared singular values. Significance 
of a latent variable was assessed by comparing the observed explained variance to a non- 
parametric distribution of permuted values acquired by permuting the subject order in X 
(npermute = 5000).
Subject- specific PLS scores measure to which extent an individual expresses a covariance 
profile represented by a latent variable. Thus, scores can be thought of as factor weightings in 
factor analysis. A high score describes the high agreement of a participant with the identified 
pattern. They were calculated by projecting U on X for an imaging score

 Imaging score = UX   

and V on Y for a clinical score

 Clinical score = VY   

Bootstrap resampling was performed to identify brain regions and clinical variables with a 
high and robust contribution to the clinical- anatomical association. Individuals were randomly 
sampled from X and Y with replacement (n=5000) which resulted in a set of resampled 
correlation matrices propagated to singular value decomposition resulting in a sampling 
distribution of singular vector weights for each input variable. This enabled the computation 
of 95% confidence intervals for the clinical variables and a bootstrap ratio for the brain 
regions.

 
Bootstrap ratio =

Singular vector weight Ubrain region i, latent variable j
Standard error estimated from bootstrapping   

The bootstrap ratio measures a brain region’s contribution to the observed covariance profile 
of a respective latent variable, as a relevant region shows a high singular vector weight 
alongside a small standard error implying stability across bootstraps.
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PsychENCODE database (http://resource.psychencode.org/Datasets/Derived/SC_Decomp/DER-19_ 
Single_cell_markergenes_TPM.xlsx; Wang et al., 2018). The abagen toolbox (v. 0.1.3) was used to 
obtain regional microarray expression data of these genes for Schaefer 100×7 parcels based on the 
Allen Human Brain Atlas (AHBA) (Markello et al., 2021). The Schaefer 100×7 atlas was used as it 
better matches the sampling density of the AHBA eventually resulting in no parcels with missing 
values. Regional expression patterns of genes corresponding to astrocytes, endothelial cells, excit-
atory neuron populations (Ex1- 8), inhibitory neuron populations (In1- 8), microglia, and oligoden-
drocytes were extracted. Instead of assessing the correspondence between MetS effects and the 
expression pattern of each gene directly, we employed ensemble- based gene category enrichment 
analysis (GCEA) (Fulcher et al., 2021). This approach represents a modification to customary GCEA 
addressing the issues of gene- gene dependency through within- category co- expression which is 
caused by shared spatial embedding as well as spatial autocorrelation of cortical transcriptomics data. 
In brief, gene transcription indices were averaged within categories (here cell populations) and spatially 
correlated with the bootstrap ratio map. Statistical significance was assessed by comparing the empir-
ical correlation coefficients against a null distribution derived from surrogate maps with preserved 
spatial embedding and autocorrelation computed via a spatial lag model (Burt et al., 2018). Further 
details on the processing steps covered by ABAnnotate can be found elsewhere (https://osf.io/gcxun; 
Lotter et al., 2023).

Brain network topology. To investigate the cortical MetS effects pattern in the context of brain 
network topology, three connectivity metrics were leveraged based on data from structural and 
functional brain imaging: weighted degree centrality, neighborhood abnormality as well as macro-
scale functional connectivity gradients as described previously (Petersen et al., 2022b). These were 
computed based on functional and structural consensus connectomes at group- level derived from 
the Human Connectome Project Young Adults dataset comprised in the ENIGMA toolbox (Larivière 
et al., 2021; Larivière et al., 2020). The preprocessing of these connectomes is described elsewhere 
(Larivière et al., 2020).

Weighted degree centrality. Weighted degree centrality is a measure of a brain region’s topolog-
ical relevance and is commonly used for the identification of brain network hubs (van den Heuvel 
and Sporns, 2013). The degree centrality of a node  i  was computed as the sum of its functional or 
structural connection weights (Rubinov and Sporns, 2010). The resulting values were ranked before 
further analysis.

Neighborhood abnormality. Neighborhood abnormality represents a summary measure of a 
cortical property in the node neighborhood defined by functional or structural brain network connec-
tivity (Shafiei et al., 2020). In this work, the MetS- related morphological abnormalities (bootstrap 
ratio or t- statistic) in nodes  j  connected to node  i  were averaged and weighted by their respective 
functional or structural seed connectivity ( wij ):

 
Ai = 1

Ni

∑
j∈Ni

Cjwij
  

where  j  is one of the connected nodes  Ni  ,  Cj  is the measure of MetS- related effects on cortical 
thickness and the corresponding connection weight  wij  . The term  

1
Ni  corrects for the nodal degree by 

normalizing the number of connections. For example, a high positive or negative  Ai  represents strong 
connectivity to nodes of pronounced MetS effects (Petersen et al., 2022b).

Functional connectivity gradients. To contextualize the MetS- related morphological abnormalities 
with the functional network hierarchy, we derived macroscale functional connectivity gradients as a 
proxy of the canonical sensorimotor- association axis, which determines the distribution of manifold 
cortical properties (Margulies et al., 2016; Sydnor et al., 2021). Functional connectivity gradients 
were derived by applying diffusion map embedding on the HCP functional connectivity matrix using 
BrainSpace (Vos de Wael et al., 2020). A functional connectivity gradient can be interpreted as a 
spatial axis of connectivity variation spanning the cortical surface, as nodes of similar connectivity 
profiles are closely located on these axes.

For this analysis, the statistical significance of spatial correlations was assessed via spin permuta-
tions (n=1000) which represent a null model preserving the inherent spatial autocorrelation of cortical 
information (Alexander- Bloch et al., 2018). Spin permutations are performed by projecting parcel- 
wise data onto a sphere which then is randomly rotated. After rotation, information is projected back 
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on the surface, and a permuted  rsp  is computed. A p- value is computed comparing the empirical 
correlation coefficient to the permuted distribution. To assure that our results do not depend on null 
model choice, we additionally tested our results against a variogram- based null model implemented 
in the brainSMASH toolbox (https://github.com/murraylab/brainsmash; Burt and Murray, 2020) as 
well as a network rewiring null model with preserved density and degree sequence (Burt et al., 2020; 
Maslov et al., 2004).

All p- values resulting from both contextualization analyses were FDR- corrected for multiple 
comparisons. As we conducted this study mindful of the reuse of our resources, the MetS effect maps 
are provided as separate supplementary files to enable further analyses (Supplementary files 1- 3).

Sensitivity analyses
For a sensitivity analysis, we reperformed the PLS separately within the UKB and HCHS cohorts. In 
contrast to the PLS main analysis, in these subset- specific PLS analyses cognitive test performances 
were also incorporated as clinical variables as cognitive batteries were subset- specific. This approach 
was employed to evaluate the stability of the results and to determine if cognitive tests contribute to 
the latent variables.

To test whether the PLS indeed captures the link of MetS and brain morphology, we conducted 
a group comparison as in previous studies of MetS. Besides descriptive group statistics, the cortical 
thickness of individuals with MetS and matched controls was compared on a surface vertex- level 
leveraging the BrainStat toolbox (v 0.3.6, https://brainstat.readthedocs.io/) (Larivière et al., 2023). A 
general linear model was applied correcting for age, sex, education, and cohort effects. Vertex- wise 
p- values were FDR- corrected for multiple comparisons. To demonstrate the correspondence between 
the t- statistic and cortical bootstrap ratio maps, we related them via spatial correlation analyses. The 
t- statistic map was also used for sensitivity analysis of the virtual histology analysis and brain network 
contextualization.

To ensure that the brain network contextualization results were not biased by the connectome 
choice, we reperformed the analysis with structural and functional group consensus connectomes 
based on resting- state functional and diffusion- weighted MRI data from the HCHS. The corresponding 
connectome reconstruction approaches were described elsewhere (Petersen et al., 2022b).
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Appendix 1
General appendix

Appendix 1—figure 1. Flowchart sample selection procedure.

https://doi.org/10.7554/eLife.93246
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Appendix 1—figure 2. Correlation matrix of metabolic syndrome- related risk factors. The upper triangle of the 
matrix displays Pearson correlations with dot size and color representing the magnitude of the coefficients. The 
diagonal shows kernel density plots. The lower triangle illustrates the variables’ linear relationships via regression 
plots. Of note, non fasting plasma glucose was investigated in this analysis. Abbreviations: BP – blood pressure.

Appendix 1—table 1. Partial least squares analysis - latent variables.

Latent variable Explained variance (%) p- value

0 71.20 0.0002

1 22.33 0.0002

2 2.12 0.0002

3 1.84 0.0006

4 1.03 0.0026

5 0.52 0.0266

6 0.38 0.0100

7 0.23 0.0032

8 0.18 0.1178

9 0.16 0.2122

10 0.00 0.3137

11 0.00 0.0608

12 0.00 1

13 0.00 1

14 0.00 1

15 0.00 1

https://doi.org/10.7554/eLife.93246
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Appendix 1—table 2. Partial least squares analysis- Cross- validation.

CV fold rsp

0 0.17

1 0.21

2 0.22

3 0.16

4 0.15

5 0.18

6 0.23

7 0.13

8 0.20

9 0.22

Appendix 1—table 3. Virtual histology analysis - Bootstrap ratio (partial least squares, PLS).

Cell type Zrsp pFDR

Endo 0.190 0.016

Micro 0.271 0.016

Ex8 0.165 0.016

In1 0.363 0.036

Ex6 0.146 0.034

Oligo 0.207 0.057

In7 0.079 0.083

Ex1 0.122 0.144

In2 0.058 0.179

In3 0.047 0.208

Astro 0.071 0.259

In8 0.055 0.299

Ex7 0.044 0.336

In5 0.037 0.388

Ex4 –0.020 0.776

Ex5 –0.055 0.924

In4 –0.056 0.949

In6 –0.099 0.949

Ex2 –0.102 0.967

Ex3 –0.289 0.999

Appendix 1—table 4. Virtual histology analysis - t- statistic (group comparison).

Cell type Zrsp pFDR

Endo 0.208 0.020

Micro 0.321 0.040

Ex8 0.208 0.040

Oligo 0.233 0.055

Appendix 1—table 4 Continued on next page
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Cell type Zrsp pFDR

In1 0.432 0.108

Ex6 0.145 0.123

Ex1 0.156 0.229

In3 0.058 0.233

Astro 0.120 0.233

In7 0.059 0.233

In2 0.063 0.233

Ex7 0.089 0.263

In5 0.063 0.300

In8 0.066 0.317

Ex4 0.015 0.585

Ex5 –0.007 0.690

In6 –0.078 0.861

Ex2 –0.070 0.861

In4 –0.087 0.901

Ex3 –0.341 0.997

Appendix 1—table 5. UK Biobank field IDs.

Age 21003

Sex 31

Education 6133*

Waist circumference 48

Hip circumference 49

Body mass index 21001

RRsystolic 4080

RRdiastolic 4079

HDL 30760

LDL 30780

Cholesterol 30690

Triglycerides 30870

HbA1c 30750

Blood glucose 30740

Medication for cholesterol, blood pressure, diabetes 6153

Fluid Intelligence 20191

Matrix Pattern Completion 6373

Numeric Memory Test 20240

Paired Associate Learning 20197

Prospective Memory 20018

Reaction Time 20023

Appendix 1—table 4 Continued

Appendix 1—table 5 Continued on next page
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Age 21003

Symbol Digit Substitution 20159

Tower Rearranging Test 21004

Trail Making Test A 6348

Trail Making Test B 6350

Abbreviations: RR = blood pressure.
*Converted to International Standard Classification of Education (ISCED) via the UKBB parser (https://github.com/ 
USC-IGC/ukbb_parser; Zhu et al., 2019).

Appendix 1—table 6. Metabolic syndrome Criteria of the International Diabetes Federation (IDF) 
(Alberti et al., 2006).

Metabolic syndrome = obesity + two further criteria

Obesity waist circumference ♀:≥80 cm; ♂:≥94 cm

Dyslipidemia (raised triglycerides) ≥150 mg/dL (1.7 mmol/L) or lipid lowering medication

Dyslipidemia (reduced HDL cholesterol)
♀:<50 mg/dL (1.29 mmol/L); ♂:<40 mg/dL (1.03 mmol/L) in 
males

Arterial hypertension (raised blood pressure)
systolic BP ≥130 or diastolic BP ≥85 mm Hg or 
antihypertensive medication or diagnosis of hypertension

Insuline resistance

Fasting plasma glucose ≥100 mg/dL (5.6 mmol/L) or 
antidiabetic therapy or diagnosis of diabetes mellitus type 
2*

*Measurements of fasting plasma glucose were not available for the study sample. Consequently, the criterion of 
insulin resistance was only based on the diagnosis of diabetes mellitus and administration of antidiabetic therapy.

Appendix 1—table 5 Continued

https://doi.org/10.7554/eLife.93246
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Appendix 2
Case-control analysis
As a sensitivity analysis and to facilitate the comparison with previous reports which mainly rely on 
group statistics, we supplemented the continuous partial least squares correlation analysis with a 
group analysis based on a case- control design.

Matching procedure
After quality assessment, individuals with metabolic syndrome were identified based on the 
consensus criteria of the International Diabetes Federation (nUKB = 6746, nHCHS = 759). An individual 
was considered to exhibit MetS in case of obesity (increased waist circumference) and two further 
criteria being raised plasma triglycerides, reduced HDL cholesterol, arterial hypertension or insulin 
resistance. Of note, measurements of fasting plasma glucose were not available for the study sample. 
Consequently, the criterion of insulin resistance was only based on the diagnosis of diabetes mellitus 
and administration of antidiabetic therapy. Within each cohort, an equally sized control cohort was 
sampled which was matched for age, sex and education (International Standard Classification of 
Education) using propensity score matching as implemented in the matchit (v4.3.3) R package. MetS 
and control samples from both cohorts were pooled yielding an analysis sample of 15,010 individuals 
(nMetS = 7505,, ncontrols = 7505). For detailed matching results refer to Appendix 2—figures 1 and 2 
shown below.

Group comparison of clinical data
Sample characteristics were compared between participants with MetS and controls using  χ

2
  

-tests for binary and two- sample t- tests for continuous data. Cognitive variables were compared 
within UKB and HCHS subgroups via analyses of covariance (ANCOVA) adjusting for age, sex and 
education. Resulting test statistics were converted to Cohen’s d which quantifies the group difference 
in standard deviations. P- values were false- discovery rate (FDR)- corrected for multiple comparisons. 
Separate group statistics of demographic, risk and cognitive variables for the UKB and HCHS 
are shown in Appendix 1—table 1–2. Individuals with MetS exhibited a more severe risk profile 
indicating that the group definitions captured considerable differences in the MetS components 
profile. Group differences regarding MetS criteria proportions are visualized in Appendix 2—figure 
3. As the cognitive assessment of the UKB and HCHS differed, cognitive scores were compared 
between groups within the individual studies. UKB subjects with MetS performed significantly worse 
in the Fluid Intelligence Test (6.66±2.10 vs 6.82±2.09, Cohen’s d=0.08,  pFDR  < 0.001), Numeric 
Memory Test (6.64±1.61 vs 6.84±1.53, Cohen’s d=.12,  pFDR  < 0.001), Paired Associate Learning 
Test (6.45±2.60 vs 6.73±2.61, Cohen’s d=0.10,  pFDR  < 0.001) and Symbol Digit Substitution Test 
(18.47±5.12 vs 19.00±5.16, Cohen’s d=0.10,  pFDR  < 0.001). HCHS subjects exhibiting MetS showed 
worse cognitive performance in the Animal Naming Test (23.71±6.46 vs 24.77±6.75, Cohen’s d=0.16, 
 pFDR  < 0.009) and Multiple- choice Vocabulary Intelligence Test (31.18±3.43 vs 31.71±3.22, Cohen’s 
d=0.16,  pFDR  < 0.034).

Vertex-wise cortical thickness analysis
The cortical thickness of individuals with MetS and matched controls were compared on a 
surface vertex- level leveraging the BrainStat toolbox (v 0.3.6, https://brainstat.readthedocs.io/). 
Corresponding results are shown in Appendix  2—figure 4. The vertex- wise t- statistic, which 
captures the differential MetS effects across the cortical surface, was Schaefer 400 and Schaefer 
100- parcellated and propagated to further analyses. The t- statistic map strongly correlated with the 
bootstrap ratio maps derived from the PLS analyses. Furthermore, the t- statistic map was significantly 
associated with density of endothelial cells ( Zrsp  = 0.208,  pFDR  = 0.040), microglia ( Zrsp  = 0.321,  pFDR  
= 0.040), excitatory neurons type 8 ( Zrsp  = 0.208,  pFDR  = 0.004) and also correlated significantly with 
the functional neighborhood abnormality ( rsp  = 0.313,  pspin  = 0.024,  psmash  = 0.018,  prewire  < 0.001) 
and structural neighborhood abnormality ( rsp  = 0.775,  pspin  = <0.001,  psmash  < 0.001,  prewire  < 0.001).

https://doi.org/10.7554/eLife.93246
https://brainstat.readthedocs.io/
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Appendix 2—figure 1. Matching - UK Biobank.
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Appendix 2—figure 2. Matching – Hamburg City Health Study.
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Appendix 2—figure 3. Proportion of metabolic syndrome criteria. Barplots indicate the percentage amount of 
metabolic syndrome (MetS) criteria that apply by group for the pooled sample. Significant group differences in 
χ2- tests are highlighted by asterisks.

Appendix 2—figure 4. Vertix- wise group comparison of cortical thickness. Vertex- level group comparison 
between individuals with metabolic syndrome and matched controls. Resulting surface maps of standardized 
t- statistic estimates encode the group- differences between patients and controls, with lower cortical thickness in 
the metabolic syndrome (MetS) group being represented by a positive t and lower by a negative t. The vertex- wise 
t- statistic map was Schaefer- parcellated for the downstream analyses.
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