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Abstract. We give structural results about bifibrations of (internal) (∞, 1)-
categories with internal sums. This includes a higher version of Moens’ Theo-
rem, characterizing cartesian bifibrations with extensive aka stable and disjoint
internal sums over lex bases as Artin gluings of lex functors. We also treat a
generalized version of Moens’ Theorem due to Streicher which does not require
the Beck–Chevalley condition. Furthermore, we show that also in this setting
the Moens fibrations can be characterized via a condition due to Zawadowski.

Our account overall follows Streicher’s presentation of fibered category the-
ory à la Bénabou, generalizing the results to the internal, higher-categorical
case, formulated in a synthetic setting. Namely, we work inside simplicial ho-
motopy type theory, which has been introduced by Riehl and Shulman as a
logical system to reason about internal (∞, 1)-categories, interpreted as Rezk
objects in any given Grothendieck–Rezk–Lurie (∞, 1)-topos.
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1. Introduction

1.1. Overview. In the work at hand, we investigate the notion of internal sums
for fibrations of synthetic (∞, 1)-categories. In particular, we consider the case of
extensive internal sums and prove a version of Moens’ Theorem which says that es-
sentially all fibrations with extensive internal sums arise as Artin gluings of lex func-
tors. The setting is Riehl–Shulman’s synthetic (∞, 1)-category theory [62] which
takes place in a simplicially augmented version of homotopy type theory (HoTT) [85,
3, 81]. We generalize several results and proofs from Streicher’s notes [82] on fibered
category theory à la Bénabou to this setting.

Classically, a category C with all small coproducts is called (infinitary) extensive
if for any small family of objects (ai)i∈I in C the canonical maps

∏
i∈I C/ai →

C/
∐
i∈I ai. This can be equivalently expressed as saying that small coproducts

are stable under arbitrary pullbacks, and disjoint in the sense that any coproduct
injection is a monomorphism, and the intersection of a pair of different coproduct
injections is the initial object. If C is a finitely complete extensive category, it is
called lextensive.

The latter phrasing of extensiveness is most useful in the fibrational context,
and indeed Moens or lextensive fibrations are exactly the fibrational analogue of
lextensive categories.
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2 JONATHAN WEINBERGER

We provide a comprehensive treatment of them in the higher setting, formulated
in a type theory that is interpretable in internal (∞, 1)-categories inside an arbitrary
(∞, 1)-topos.

The extensivity property is akin to the descent property, which is part of Giraud’s
characterization of Grothendieck toposes, which lifts to the (∞, 1)-categorical case
via work by Rezk and Lurie. Therefore, our study adds to the study of higher topos
theory from a fibrational point of view. It can also be used to study internal higher
topos theory [43, 74] because it is phrased in an appropriate type theory. Indeed,
classically Moens’ Theorem aka the characterization theorem of lextensive fibrations
has been used to study geometric morphisms from a fibered point of view [82, 80].
Thus we also hope for future applications in higher categorical logic [71, 72, 73],
some of which suggested in Section 1.4.

1.2. Beck–Chevalley families. Let U be a universe. A co-/cartesian family
P : B → U of U-small synthetic (∞, 1)-categories aka Rezk types possesses functo-
rial transport for directed arrows in the base, i.e. any arrow u : a →B b induces a
transport functor u! : P a→ P b or u∗ : P b→ P a, respectively. A family is bicarte-
sian if it is both cocartesian and cartesian in which case the transport functors form
an adjunction u! : P a⇄ P b : u∗. A Beck–Chevalley family is a bicartesian family
that satisfies the Beck–Chevalley condition (BCC), which is phrased as follows. We
denote cartesian arrows by and cocartesian arrows by , respectively. The
BCC says that any dependent square

• •

• •

over a pullback is itself a pullback precisely if the top horizontal map is cocartesian,
too. This condition is also referred to as P having internal sums. The motivation
for this can be understood from the following (1-categorical) situation. Let C be
some not necessarily small category. The family fibration of C [8, Paragraph (3.3)],
[82, Example 1.5], [11, Example 8.1.9(b)], [27, Example 1.2.1], [76, Example 2.7],
is defined as the Grothendieck construction of the functor

Fam(C) : Setop → Cat

with

Fam(C)(I) := CI ,

Fam(C)(u : J → I) :=
(
Cu := u∗ := (−) ◦ u : CI → CJ

)
.

One can show that the fibration Fam(C) → Set having internal sums (namely,
being a bifibration satisfying the BCC) is equivalent to C having small sums. In
accordance with Bénabou’s philosophy, which is alluded to in the aforementioned
sources, one seeks to generalize such considerations to an arbitrary base with pull-
backs in place of just the category of sets.

Another important instance of bifibrations satisfying the Beck–Chevalley condi-
tion is given by Artin gluings of lex functors. Namely, given a lex functor F : B → C
between two lex Rezk types B and C, its Artin gluing gl(F ) : C ↓F ↠ B is defined
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by pulling back the codomain fibration ∂1 : C∆1

↠ C along F :

C ↓ F C∆1

B C

gl(F )

F

∂1
⌟

1.3. Moens families. If F : B → C is a functor between some lex Rezk types one
can show that the functor gl(F ) : C ↓F ↠ B is a lex bifibration, meaning that each
fiber is a lex Rezk type and the cartesian transport maps are lex functors (which
is then automatic since u∗ is a right adjoint). If, in addition, the functor F is lex,
the internal sums of gl(F ) are stable and disjoint. The former condition means
that cocartesian arrows are stable under pullback along any arrow. Disjointness is
defined as the condition that the fibered diagonal δf of a cocartesian arrow f is
always cocartesian:

d

d×e d d

d e
f

f

δf

⌟

These are fibrational generalizations of the usual notion of stability and disjointness
of sums in a category, giving rise to the notion of extensivity. Accordingly, we call a
lex cartesian family extensive or Moens family if it has stable and disjoint internal
sums. Occasionally, we might be interested in discarding the disjointness condition
in which case we call the fibration pre-Moens. As a central result, Moens’ Theorem
establishes a correspondence between lex functors and lextensive fibration.

More precisely, fix a lex type B. Consider the subuniverse

LexRezk :≡
∑
A:U

isRezk(A)× isLex(A)

of lex Rezk types. This gives rise to the type B ↓lex LexRezk of lex functors
F : B → C from B to some other lex Rezk type C. Moens’ Theorem will establish
an equivalence of B ↓lex with the type MoensFam(B) via the following mutually
inverse maps:

MoensFam(B) B ↓lex LexRezk

Φ

Ψ

≃

Φ(P : B → U) :≡ λb.(!b)!(ζb) : B → P z,

Ψ(F : B → C) :≡
(
gl(F ) : C ↓ F → B

)
,

wherez : B is terminal in B, and ζ :
∏
b:B P b is defined by letting ζb : P b

be terminal in P b for b : B. The theorem is due to Moens and his dissertation
work [46]. A systematic and comprehensive discussion is given by Streicher [82] in
his notes on fibered category theory à la Bénabou. In fact, Streicher observed that
a generalized version of Moen’s Theorem holds when dropping the assumption that
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Moens/lextensive

pre-Moens

lex BC gen. Moens

BC lex cartesian

cocartesian bicartesian cartesian

Figure 1. Logical dependency of notions of fibration

the bifibration in questions satisfies the Beck–Chevalley condition. One still gets a
meaningful notion of extensivity in this case, namely that a dependent square as
follows is a pullback if and only if the top horizontal edge is cocartesian:

• •

• •
This corresponds to the functor from the base only preserving the terminal element
but not necessarily pullbacks. The equivalences give rise to a diagram as follows

MoensFam(B) B ↓lex LexRezk

GMoensFam(B) B ↓ter LexRezk

ω′
(−)

ω′
(−)

gl

gl

≃

≃

where the types at hand are the Σ-types over the type B → U of the respective
flavors of fibrations, and of lex or terminal object-preserving functors, respectively.
These generalized Moens fibrations also play a role in work by Zawadowski [92]
who introduced them using a different characterization. Streicher has proven both
notions to be equivalent [84] which we also discuss.
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1.4. Further context and perspective on the work.

1.4.1. Geometric families of synthetic (∞, 1)-categories. Another interesting notion
is that of a geometric fibration, i.e., a Moens fibration π : E ↠ B that has small
global sections meaning that the fiberwise terminal element map ζ : B → E has a
right adjoint. Under the equivalence from Moens’ Theorem, these correspond ex-
actly to geometric morphisms between lex categories. This is discussed by Streicher
in [82, Section 16] as well as Lietz in [37, Section 8], with previous considerations
made by Bénabou in [9]. We believe that this can be worked out in simplicial HoTT
as well.

1.4.2. Jibladze’s Theorem for higher toposes. The geometric fibrations naturally
have a context in topos theory [80], and this should generalize in one way or the
other to the setting of higher toposes. We hope that it will be possible to establish
a version of Jibladze’s Theorem [82, Appendix A] for (∞, 1)-toposes (in the sense of
∞-sheaf toposes à la Grothendieck–Rezk–Lurie, or possibly the elementary case à
la Shulman–Rasekh [69, 53]). In the classical case, Jibladze’s Theorem [28] classifies
fibered toposes with internal sums as gluings of lex functors (i.e., the inverse image
part of some geometric morphism) to some topos.1 Note that in the higher case this
relies on Moens’ Theorem for (∞, 1)-categories which we have established in this
article. At present, there is no synthetic notion of (∞, 1)-topos within simplicial
type theory. Thus, when turning to the topos-specific aspects one would have to
use a different setting, such as a suitable ∞-cosmos (or class thereof). For a notion
of fibered ∞-toposes relying on a (possibly higher) notion of logical morphisms
the work by Rasekh [53] on elementary higher toposes in an ∞-cosmos of (∞, 1)-
categories could be guiding. For ensuing considerations of (local) smallness in this
context the work by Stenzel [71] could be relevant.

1.4.3. Moens’ Theorem in ∞-cosmoses. We have shown that going from bicarte-
sian fibrations to Beck–Chevalley and Moens fibrations goes through relatively
smoothely in the setting of simplicial homotopy type theory. We find it reason-
able to conjecture that it could very well be carried out for bicartesian fibrations
internal to an arbitrary∞-cosmos within Riehl–Verity’s theory [64, 65]. This would
then yield a model-independent version of Moens’ Theorem for extensive bicartesian
fibrations of (∞, n)-categories for 1 ≤ n ≤ ∞ (though not formulated in type the-
ory). However, finding the correct definitions in terms of (generalized) co-/cartesian
cells might take some work.

1.5. Structure, contributions, and related work. This text essentially con-
sists of parts of the author’s PhD dissertation, namely [89, Section 3.4 and Chap-
ter 5] plus some additional material. All of this can be found in Sections 2.2.4, 5.4
and 5.5. In Section 2 we recall the basics of synthetic fibered (∞, 1)-category theory
as found in [13, Sections 2 and 5] and [89, Chapter 3]. The basis for these develop-
ments are provided by Riehl–Shulman’s account of discrete fibrations of synthetic
fibered (∞, 1)-categories [62, Section 8] and Riehl–Verity’s co-/cartesian fibrations
in general ∞-cosmoses, cf. [64, Chapter 5] and [66, 65]. These were in turn deeply
influenced by Gray [23] and Street [78, 79, 77]. A thorough development of an
analytic account to (internal) co-/cartesian fibrations is given by Rasekh in [55, 54,
57].

1also mentioned in [29], but see the remark at the end of [82, Appendix A]
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Segal and Rezk spaces were studied by Rezk [58], Joyal–Tierney [31], Lurie [38],
Kazhdan–Varshavsky [34], and Rasekh [55]. Segal objects are treated by Boavida
de Brito [10], Stenzel [75], and Rasekh [54, 56]. The ensuing treatments of lex,
Beck–Chevalley, and (pre-)Moens fibrations in Sections 2.4, 4 and 5 are adaptations
of the work and presentation by Streicher [82, Sections 5 and 6] to the setting of
synthetic (∞, 1)-categories. Several of these results can also be found in the diploma
thesis by Lietz [37]. In Section 3 we briefly discuss bicartesian families, i.e. families
that are both co- and contravariantly functorial. Of particular interest will be
the Artin gluing of a functor between lex Rezk types, discussed in Section 3.2.
Internal sums are discussed via the notion of Beck–Chevalley family in Section 4.
A characterization of those families via cartesianness of the cocartesian transport
functor is given by Theorem 2.5, cf. also [37, Chapter 3, Theorem 1/(iii)] and [82,
Theorem 4.4]. Next, we prove in Proposition 4.5 that a functor between Rezk types
preserves pullback if and only if its gluing fibration has internal sums, after [82,
Lemma 13.2].

The main part of the paper is developed in Section 5 in the form of a thor-
ough discussion of Moens aka extensive families. We provide characterizations of
disjointness of stable internal sums in Proposition 5.4. A characterization of ex-
tensivity in the presence of internal sums is given in Proposition 5.7. For the most
part, this goes through even in the absence of internal sums. The goal of these and
further developments in Section 5.2 is then a synthetic version of Moens’ Theorem
in Section 5.3, Theorem 5.13, which establishes an equivalence between the type of
small Moens fibrations over a lex Rezk base B and the type of lex functors from
B to some other small lex Rezk type. Classically, this can be found in [82, The-
orem 15.18] and [37, Subsection 4.2, Theorem 5, and Chapter 5, Proposition 12].
The result gets generalized in Section 5.4, Theorem 5.16, to the setting where the
Beck–Chevalley condition is not necessary, corresponding to the functor from the
base only preserving the terminal element but not necessarily pullbacks. This gen-
eralization originally is due to Streicher [83, 82].

We conclude by showing in Section 5.5 that Zawadowski’s notion of cartesian
bifibrations [92] coincides with this generalized notion of Moens fibration. This has
been also observed by Streicher [84], and we provide a slight complementation of
his proof, and argue that everything goes through in the setting at hand.

1.6. Further related work. An account to Moens aka extensive fibrations can be
found in Jacob’s textbook [27]. The fibered viewpoint of geometric morphisms builds
crucially on this and has been comprehensively developed by Streicher [82, 84, 80]
and Lietz [37], building on central results by Moens [46]. The material in [82], com-
menced 1999, is based on Bénabou’s notes [7, 9]. Central aspects of his philosophy
are laid out in his essay Fibered categories and the foundations of naive category the-
ory [8]. These perspectives are also reflected in the recent online book by Sterling–
Angiuli [76]. In the context of (∞, 1)-categories Stenzel has adapted some concepts
from Bénabou’s work [71]. In logic, the fibered view of geometric morphisms has
furthermore been used in realizability by Frey [20, 21] and Frey–Streicher [19],
and in categorical modal logic by Doat [18]. Initially, the theory of Grothendieck
aka cartesian fibrations of (∞, 1)-categories (implemented as quasi-categories) was
developed by Joyal [31] and Lurie [39]. Follow-up groundlaying work on fibrations
of (internal) (∞, 1)-categories has been done notably by Ayala–Francis [4], Boavida
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de Brito [10], Barwick–Dotto–Glasman–Nardin–Shah [5], Barwick–Shah [6], Mazel-
Gee [45], Rezk [59], Cisinski [17], and Nguyen [48]. Recently, a model-independent
theory of internal (∞, 1)-categories and
co-/cartesian fibrations internal to an (∞, 1)-topos has been under development
by Martini [42, 41], and Martini–Wolf [44]. Directed homotopy type theories have
been proposed and suggested in various settings by Warren [87], Licata–Harper [36],
Nuyts [52], North [51], and Kavvos [33]. Parallel approaches in the context of
two-level type theories have been developed by Voevodsky [86], Capriotti [14], and
Annenkov–Capriotti–Kraus–Sattler [1]. This is put in a wider perspective by Buch-
holtz [12] in an essay on higher structures in homotopy type theory. In the set-
ting of simplicial type theory an account to directed univalence has been given
by Cavallo–Riehl–Sattler [16], and in a bicubical setting by Weaver–Licata [88].
A development of limits and colimits in simplicial HoTT has been established by
Bardomiano Martínez [40]. Two-sided cartesian fibrations in this setting have been
treated in [91]. A prototype proof assistant for simplicial type theory has been
developed by Kudasov [35].

2. Synthetic fibered (∞, 1)-category theory

2.1. Synthetic (∞, 1)-categories. We work in Riehl–Shulman’s simplicial homo-
topy type theory [62]. This is an augmentation of standard homotopy type theory
(HoTT) [85] by simplicial shapes (such as the n-simplices ∆n, boundaries ∂∆n,
(n, k)-horns Λnk , . . . ). HoTT has semantics in any given Grothendieck–Rezk–Lurie
(∞, 1)-topos2 E, so the additional layer corresponds to the image of the category
whose objects are finite cartesian powers of the interval 2 :≡ ∆1 with morphisms
all monotone maps, embedded into E

op

in the categorical direction. Within the
shape layer, we can reason about extensional equality of terms. This is reflected
into the type layer, so that one can talk about strict extension types defined in [62],
after Lumsdaine–Shulman. Given a shape inclusion Φ ⊆ Ψ (implicitly, in a com-
mon cube context I), a family A : Ψ → U of U-small types, and a partial section
a :

∏
t:ΦA(t), we can sonsider the ensuing extension type〈∏

t:ΨA(t)
∣∣Φ
a

〉
of sections b :

∏
t:ΨA(t) such that t : Φ ⊢ a(t) ≡ b(t). This allows one for any type

A to define e.g. the hom-type

homA(a, b) :≡ (a→A b) :≡
〈
∆1 → A

∣∣∣∂∆1

[a,b]

〉
for terms a, b : A. In the case of a family P : A→ U we can analogously define the
dependent hom-type

homP
u (d, e) :≡ (d→P

u e) :≡
〈∏

t:∆1 P (u(t))
∣∣∣∂∆1

[d,e]

〉
for u : a →A b and d : P a, e : P b. This formalism allows one to conveniently
express the Segal and Rezk completeness conditions, cf. [62, Sections 5 and 10]: A
type A is Segal if the map

Aι : A∆2

→ AΛ2
1

2more precisely, in a representing type-theoretic model topos, cf. [68, 61, 90]
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induced from the inclusion ι : Λ2
1 ⊆ ∆2 is an equivalence, i.e. its fibers are homotopy

propositions. A Segal type A is Rezk if the canonical map

idtoisoA :
∏
x,y:A

(x =A y)→ (x ∼=A y)

defined by path induction is an equivalence. This is precisely the (local) univalence
condition for A aka Rezk completeness. Since it is convenient for our purposes to
also consider maps whose domain is a type while the codomain is a shape we coerce
the shapes to be types as well (making use of the additional strict layer as needed),
cf. [13, Section 2.4]. For a comprehensive introduction to simplicial homotopy type
theory cf. [62, Sections 2 and 3], or the more compact overview in [13, Section 2].
The basics of plain homotopy type theory are laid out in [85, 2, 24, 70, 67, 60].

2.2. Cocartesian families. Cocartesian families capture the idea of covariantly
functorial type families. Namely, let B be a Rezk type and P : B → U be a family of
Rezk types. If P is cocartesian, then any arrow u : a→B b in B induces a transport
functor u! : P a → P b. Cocartesian families are precisely the type-theoretic ana-
logue of cocartesian fibrations which have been well-studied semantically. In fact,
since in HoTT, type families over a type B correspond to maps with codomain
B (cf. [85, Theorem 4.8.3] and [13, Section 2.5]) a notion of cocartesian family si-
multaneously determines a notion of cocartesian fibration, and vice versa. Given a
family P : B → U (over any type B) we write the unstraightening of P as

UnB(P ) :≡ ⟨P̃ , πP ⟩

where πP :≡ P̃ → B denotes the projection from the total type P̃ :≡
∑
b:B P b.

Conversely, given a map π : E → B, the straightening of P is given by the family

StB(π) :≡ λb.fib(π, b)

of homotopy fibers fib(π, b) :≡
∑
e:E π(e) =B b. We will often denote a map

π : E → B as π : E ↠ B, particularly in cases where it actually happens to
be a functorial fibration (cartesian or cocartesian). In HoTT, any type family
P : B → U transforms covariantly w.r.t. undirected paths p : a =B b, and the
cocartesian families over Rezk types precisely generalize this to the case of directed
arrows.

2.2.1. Cocartesian families. We want to consider families (or equivalently fibra-
tions) that admit a functorial transport operation. For this to make sense, the
underlying structure should be as categorical as possible, meaning that the base
type, the total type, and all the fibers should be Rezk. This is captured by what
we call isoinner families, i.e., type families satisfying the relative version of the
Segal and Rezk conditions. Note that, in general, if a map is right orthogonal
to some fixed map or shape inclusion, all its fibers are, too [13, Corollary 3.1.10].
Furthermore, any map between types that are both right orthogonal to a given
type map or shape inclusion is itself orthogonal to that given map or shape inclu-
sion [13, Proposition 3.1.1]. Maps between local types are necessarily local, see [13,
Proposition 3.1.15].

Definition 2.1 ((Iso)inner families, [13, Def. 4.1.1, Prop. 4.1.2, Def. 4.2.3]). Let
P : B → U be a family.
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(1) We call P inner if the square

P̃∆2

P̃Λ2
1

B∆2

BΛ2
1

is a pullback, induced by restricting the projection π : P̃ → B along the
inclusion Λ2

1 ↪→ ∆2.
(2) An inner family is isoinner if every fiber is a Rezk type.

Proposition 2.2 ([13, Prop. 4.1.4, 4.1.5, and 4.2.6]). Let P : B → U be a family.
(1) Let P be inner. Then every fiber P b is inner, for b : B. If B is Segal, then

the total type P̃ is Segal.
(2) Let P be isoinner. If B is Rezk, then the total type P̃ is Rezk.

Thus, isoinner families are families of synthetic (∞, 1)-categories, but they in gen-
eral do not admit functorial transport. This motivates our notion of (co)cartesian
family. Cocartesian families can be defined in terms of the existence of liftings of
arrows in the base to cocartesian arrows lying over them (with prescribed source
vertex). This is reminiscent of the classical 1-categorical notion of Grothendieck fi-
bration [82], but pertinent to a homotopical context. It constitutes a type-theoretic
version of the usual notions of Grothendieck or (co-)cartesian fibration of (∞, 1)-
categories [30, 39, 65, 64, 55].

Definition 2.3 (Cocartesian arrow, [13, Def. 5.1.1], cf. [64, Def. 5.4.1]). Let P :
B → U an isoinner family over a Rezk type B. An arrow f : e→P

u e
′ over an arrow

u : b→B b′ is P -cocartesian if and only if

isCocartArrPu (f) :≡
∏
b′′:B

∏
v:b′→b′′

∏
e′′:P b′′

∏
h:e→P

vue
′′

isContr
( ∑
g:e′→P

v e
′′

h =Pvu gf
)
.

Given an arrow u : b→B b′ in the base B, points e : P b and e′ : P b′ in the fibers,
we denote the type of P -cocartesian arrows over u from e to e′ as

(e P
u e

′) :≡
∑

f :e→P
u e

′

isCocartArrPu (f).

Definition 2.4 (Cocartesian family, [13, Def. 5.2.2], cf. [64, Def. 5.4.2]). For a Rezk
type B, an isoinner family P : B → U is cocartesian if and only if for u : b →B b′

and e : P b the type ∑
e′:P b′

(e P
u e

′)

is inhabited.

In fact, cocartesian arrows with a fixed starting point are determined uniquely
up to homotopy, implying that cocartesian lifts in the above sense are determined
uniquely up to homotopy. For a cocartesian family P : B → U , given arrows
u : b →B b′, v : b′ →B b′′ in the base, a cocartesian arrow f : e P

u e
′, and a

dependent arrow h : e →P
vu e

′′, we denote the unique filler g : e′ →P
v e′′ such that

h = g ◦P f as
g :≡ fillPf (g).
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There exists another characterization of cocartesian families precisely in terms of
the transport operation mentioned earlier.3

Theorem 2.5 (Cocart. families via transport, [13, Thm. 5.2.7], cf. [64, Pr 5.2.8(ii)]).
Let B be a Rezk type, and P : B → U an isoinner family with associated total type
projection π : E → B.

Then, P is cocartesian if and only if the map

ι :≡ ιP : E → π ↓B, ι ⟨b, e⟩ :≡ ⟨idb, e⟩
has a fibered left adjoint τ :≡ τP : π ↓B → E as indicated in the diagram:

E π ↓ B

B

ι

π
∂′
1

τ

⊣

2.2.2. Examples of cocartesian families.

Proposition 2.6. Let g : C → A ← B : f be a cospan of Rezk types. Then the
codomain projection from the comma object

f ↓ g A∆1

C ×B A×A

C

g×f

⟨∂1,∂0⟩
⌟

∂1

is a cocartesian fibration.

Proof. Cf. [13, Proposition 5.2.15], or the version for fibered comma types, [91,
Proposition 3.5]. □

Corollary 2.7 (Codomain opfibration). For any Rezk type B, the projection

∂1 : B∆1

→ B, ∂1 :≡ λf.f(1).
is a cocartesian fibration, called the codomain opfibration.

The domain projection of a Rezk type is a cocartesian fibration given that the
base has pushouts.

Proposition 2.8 (Domain opfibration). If B is a Rezk type that has all pushouts,
then the domain projection

∂0 : B∆1

→ B, ∂0(u) :≡ u(0)
is a cocartesian fibration.

Proof. Cf. [13, Proposition 3.2.10]. □

3Yet another characterization in terms of the existence of a left adjoint right inverse map
to the projection E∆1 → B∆1 ×B E, serving as the cocartesian lifting map, is given in [13,
Theorem 5.2.6] after [64, Proposition 5.2.8(ii)]. This is known as the Chevalley criterion.



INTERNAL SUMS FOR SYNTHETIC FIBERED (∞, 1)-CATEGORIES 11

Theorem 2.9 (Free cocartesian family). Let π : E ↠ B be a map between Rezk
types. Then the map ∂′1 : L(π)↠ B defined by

L(π) E

B∆1

B

B

∂0

π

∂1

⌟

∂′
1

is a cocartesian family, the free cocartesian family on π or the cocartesian replace-
ment of π.

Proof. Cf. [13, Theorem 5.2.19], as well as [22, Theorem 4.3], [6, Lemma 3.3.1]. □

Indeed, the cocartesian replacement can be shown in our setting to satisfy the
expected universal property (insofar we can formulate it in this type theory in
its present state), cf. [13, Proposition 5.2.20], [22, Theorem 4.5], and [6, Corol-
lary 3.3.4]. See also [63] for the general context of co-/monadicity.

2.2.3. Cocartesian functors. Maps between type families are given by families of
maps between the fibers. These are also called fiberwise maps. In case of isoinner
fibrations these correspond to families of functors between the fibers, called fibered
functor in that case.

Definition 2.10 (Fiberwise map). For types A and B consider families P : B → U
and Q : A→ U . A fiberwise map or family of maps is given by a pair〈

j : A→ B,φ :
∏
a:A

Qa→ P j a
〉
.

In case P and Q are isoinner families over Rezk types B and A, we call ⟨j, φ⟩ a
fibered functor, and we write the corresponding type as

FunA,B(Q,P ) :≡
∑

j:A→B

∏
a:A

Qa→ P j a

It is a standard result in homotopy type theory (see [85, Definition 4.7.5, The-
orem 4.7.6] and [67, Definition 11.1.1, Lemma 11.1.2]) that, for fixed j : A → B, a
family of maps φ :

∏
a:AQa→ P j a corresponds to a map Φ : Q̃→ P̃ between the

total types together with a homotopy witnessing that the following square between
the total type projections commutes:

Q̃ P̃

A B
j

Φ

An appropriate notion of morphism between cocartesian families is given by
fibered functors that preserve the cocartesian arrows. We call those fibered functors
cocartesian functors.



12 JONATHAN WEINBERGER

Definition 2.11 (Cocart. functors, [13, Def. 5.3.2], cf. [64, Def. 5.3.2]). For Rezk
types A and B, let Q : A → U and P : B → U be cocartesian families. Given a
fibered functor

〈
j : A→ B,φ :

∏
a:AQa→ P j a

〉
, we call it a cocartesian functor if

the map

Φ : Q̃→ P̃ , Φ a d :≡ ⟨j(a), φj(a)(d)⟩

preserves cocartesian arrows, i.e., the following proposition4 is satisfied:

isCocartFunP,Q(Φ) :≡
∏

u:∆1→B
f :∆1→u∗P

isCocartArrPu (f)→ isCocartArrQju(φuf).

Here, φuf :≡ λt.φu t(f t) is the arrow defined by the action of the dependent func-
tion φ on the arrow u. Accordingly, the type of cocartesian functors from Q to P
is defined as

CocartFunA,B(Q,P ) :≡
∑

Φ:FunA,B(Q,P )

isCocartFunQ,P (Φ).

Given P : B → U and Q : B → U over the same base B a fibered functor from
Q → P is a dependent function φ :

∏
x:B Qx → Px. It is a cocartesian functor if

and only if

isCocartFunQ,P (⟨idB , φ⟩) ≃
∏

u:∆1→B
f :∆1→u∗Q

isCocartArrQu (f)→ isCocartArrPu (φuf).

Accordingly, we define the type of cocartesian functors over a common base as

CocartFunB(Q,P ) :≡
∑

φ:
∏

B Q→P

isCocartFunQ,P (⟨idB , φ⟩).

Cocartesian families and cocartesian functors satisfy analogues of the familiar
naturality properties, cf. [13, Propositions 5.2.4, 5.2.5, and 5.3.4]. There exists a
characterization of cocartesian functors analogous to Theorem 2.5:

Theorem 2.12 (Characterizations of cocart. functors, [13, Thm. 5.3.19], cf. [64,
Thm. 5.3.4]). Let A and B be Rezk types, and consider cocartesian families P :

B → U and Q : A→ U with total types E :≡ P̃ and F :≡ F̃ , respectively.
For a fibered functor5 Φ :≡ ⟨j, φ⟩ giving rise to a square

F E

A B

φ

ξ π

j

the following are equivalent:

(1) The fiberwise map Φ is a cocartesian functor.

4Note that being a cocartesian arrow is a proposition [13, Subsubsection 5.1.1].
5We are introducing a slight abuse of notation here, conflating between the dependent function

and its totalization. We hope that this increases readability rather than cause confusion.
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(2) The mate of the induced canonical fibered natural isomorphism is invertible,
too:

F E F E

ξ ↓ A π ↓ B ξ ↓ A π ↓ B

ι

φ

ι′
=

⇝ κ

φ

φ↓j

κ′=

φ↓j

Furthermore, cocartesian families and functors satisfy a lot of important closure
properties. We can prove this in type theory mirroring e.g. their corresponding
∞-cosmological closure properties, [64, Definition 1.2.1 and Proposition 6.3.14].

Proposition 2.13 (Cosmological closure properties of cocartesian families, [13,
Proposition 5.3.17]). Over Rezk bases, it holds that:

Cocartesian families are closed under composition, dependent products, pullback
along arbitrary maps, and cotensoring with maps/shape inclusions. Families corre-
sponding to equivalences or terminal projections are always cocartesian.

Between cocartesian families over Rezk bases, it holds that: Cocartesian functors
are closed under (both horizontal and vertical) composition, dependent products,
pullback, sequential limits,6 and Leibniz cotensors.

Fibered equivalences and fibered functors into the identity of 1 are always co-
cartesian.

2.2.4. More on cocartesian and vertical arrows. Let P : B → U be a cocartesian
family over a Rezk B. Given an arrow u : a→B b and a term e : P a we denote the
cocartesian lift, determined uniquely up to homotopy, as

P!(u, e) : e
P
u u

P
! (e),

somtimes suppressing superscripts whenever they are clear from the context.
We recover the following naturality and functoriality results for cocartesian fam-

ilies and functors.

Proposition 2.14 (Functoriality of cocartesian families, [13, Proposition 5.2.4]).
Let B be a Rezk type and P : B → U a cocartesian family. For any a : B and
x : P a there is an identity

P!(idb, x) = idx,

and for any u : homB(a, b), v : homB(b, c), there is an identity

P!(v ◦ u, x) = P!(v, u!(x)) ◦ P!(u, x).

Proposition 2.15 ([13, Proposition 5.2.5]). Let B be a Rezk type and P : B → U
be a cocartesian family. For any arrow u : homB(a, b) and elements d : P a, e : P b,
we have equivalences between the types of (cocartesian) lifts of arrows (recall Defi-
nition 2.3) from d to e and maps (isomorphisms, respectively) from u!d to e:

(d e) (u!d e)

(d e) (u!d e)

≃

≃

u

P bu

P b

6all three objectwise limit notions satisfying the expected universal properties w.r.t. to cocarte-
sian functors
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Proposition 2.16 (Naturality of cocartesian liftings, [13, Proposition 5.3.4]). Let
B be a Rezk type, P : B → U , Q : C → U cocartesian families, and Φ ≡ ⟨j, φ⟩ :
CocartFunB,C(P,Q) a cocartesian functor. Then Φ commutes with cocartesian lifts,
i.e., for any u : homB(a, b) there is an identification of arrows7

φ
(
P!(u, d)

)
=∆1→(ju)∗Q Q!(ju, φad)

and hence of endpoints

φb(u
P
! d) =Q(jb) (ju)

Q
! (φad).

In particular there is a homotopy commutative square:

Pa Qa

Pb Qb

φa

uP
! (ju)Q!

φb

If f is a cocartesian arrow and h some dependent arrow with the same source,
we denote the homotopically unique filler g such that h = gf by g ≡ fillPf (h). This
gives the following picture:

E u! e

e e′′

b′

B b b′′vu

u v

h

f g:≡fillf (h)

Definition 2.17 (Vertical arrows). Let P : B → U a family of Rezk types over a
Rezk type B. A dependent arrow f in P is called vertical if π(f) is an isomorphism
in B, where π : P̃ → B denotes the unstraightening of P . For d, e : P a we write
(d ⇝P

a e) :≡ (d →P a e) for the type of vertical arrows from d to e, or simply just
(d⇝ e) leaving the underlying data implicit.

Note that by the Rezk condition any biinvertible arrow can be replaced by a
(constant) path, cf. [13, Proposition 4.2.2]. Therefore, the type of vertical arrows
in P̃ is equivalent to the type

∑
b:B ∆1 → P b, cf. [89, Definition 2.7.1] or [91,

Definition 2.13]. Recall also several closure properties of cocartesian arrows that
will be important throughout the text.

Proposition 2.18 (Closedness under composition and right cancelation, [13, Prop. 5.1.8],
cf. [64, Lem. 5.1.5]). Let P : B → U be a cocartesian family over a Rezk type B.
For arrows u : homB(b, b

′), v : homB(b
′, b′′), with b, b′, b′′ : B, consider dependent

arrows f : homP,u(e, e
′), g : homP,v(e

′, e′′) lying over, for e : P b, e′ : P b′, e′′ : P b′′.
(1) If both f and g are are cocartesian arrows, then so is their composite g ◦ f .
(2) If f and g ◦ f are cocartesian arrows, then so is g.

Lemma 2.19 ([13, Prop. 5.1.9], cf. [64, Lem. 5.1.6]). Let P : B → U be an inner
family over a Segal type B.

7Here, (ju)∗Q denotes the pulled back family (ju)∗Q :≡ λt.Q(j(u(t))) : ∆1 → U .
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(1) If f is a dependent isomorphism in P over some morphism u in B, then u
is itself an isomorphism.

(2) Any dependent isomorphism in P is cocartesian.
(3) If f is a cocartesian arrow in P over an identity in B, then f is an iso-

morphism.

Moreover, in a cocartesian family vertical arrows are stable under pullback along
arbitrary arrows, given they exist. To prove this, we will need some preliminary
results. Note that these could presumably be stated in our setting more abstractly
introducing a notion of (orthogonal) factorization system, and showing that in a
cocartesian family cocartesian arrows as a left class and vertical arrows as a right
class yield an instance. However, we will not need the full power of this here so we
refrain from developing this result, but see the works by Joyal [30, Paragraph 24.13],
Lurie [39, Example 5.2.8.15], Myers [47, Proposition 2.4], as well as the nLab [49,
3. Examples], [50, Proposition 3.1], and Joyal’s CatLab [32, 6. Examples: More
examples].

Lemma 2.20 (Retract closedness of vertical arrows). Let π : E ↠ B be a map
between Rezk types. Then vertical arrows are closed under retracts, meaning: Given
a vertical dependent arrow f : x ⇝P y in P :≡ StB(π), then a dependent arrow
f ′ : x′ →P y′ is vertical if there exist dependent squares as follows:

x′ x x′

y′ y y′

f ′

g

g′
f

k

k′

f ′

idx

idy

Proof. Since f is vertical and by functoriality of π we can assume the above diagram
to lie over a square in B as follows:

a′ a a′

b′ a b′

u′

v

v′

w

w′

ida′

idb′

u′

It suffices to show that u′ : a′ →B b′ is an isomorphism. Indeed, from the assump-
tion we obtain chains of identifications

u′(wv′) = (u′w)v′ = w′v′ = idb′

and
(wv′)u′ = w(v′u′) = wv = ida′ .

□

In the following proposition we characterize the vertical arrows in a cocartesian
family as (merely) having right liftings against cocartesian arrows.

Proposition 2.21 (Right lifting property of vertical arrows). Let P : B → U be a
family of Rezk types over a small Rezk type B. If P is cocartesian, then a dependent
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arrow f : x→P
c y, c : B, in P is vertical if and only it merely has a right lift against

every cocartesian arrow, i.e., if and only if the type∏
a,b,c:B
u:a→Bb
v:b→Bc

∏
x′:P a
y′:P b

∏
f ′:x′ P

u y
′

∏
g:y′→P

v y

g′:x′→P
vux

∥∥∥ ∑
h:y′→P

v x

(hf ′ = g′)× (fh = g)
∥∥∥
−1

is inhabited.8

Proof. Consider an arrow u : a→B b and a term c : C. Let f : x⇝P
c y be vertical

and f ′ : x′ P
u y

′ be cocartesian, for x : P c, x′ : P a, y : P c, and y′ : P b
For any arrow v : b →B c together with dependent arrows g : y′ →P

v y, g′ :
x′ →P

vu x we want to find a filler h : y′ →P
v x as indicated, i.e. such that hf ′ = g′

and fh = g:

x′ x

P̃ y′ y

a c

B b c

f ′

g′

g

f

u

v

vu

h

Since f ′ is cocartesian, we readily obtain h := fillf (g
′) : y′ →v x such that hf ′ = g.

To get an identification for fh = g, we note that

(fh)f ′ = f(hf ′) = fg′ = gf ′

But this means fh = g since f ′ is cocartesian. This proves one direction.
Conversely, let h : x→P

u z be a dependent arrow over u : a→B c, a, c : B which
merely has a lift against each cocartesian arrow. Since P is cocartesian we obtain
a factorization as follows, together with a lift k as indicated:

x x

P̃ y z

a a

B c c

f

g

h

uu

k

π(k)

8In fact, if f is vertical the type
∑

h:y′→P
v x(hf

′ = g′) × (fh = g) of lifts can be shown to be
contractible (since f ′ is cocartesian). Thus, the lifting property could be strengthened to unique
lifting up to homotopy, cf. [39, Definition 5.2.8.1 and Example 5.2.8.15].
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We then find the following:

x y x

z z z

f k

h g h

idx

idz

So h is a retract of the vertical arrow g, hence is itself vertical by Lemma 2.20. □

This setup is enough to prove now the desired result: in a cocartesian family,
whenever the pullback of a vertical arrow exists it is vertical as well.

Theorem 2.22 (Pullback stability of vertical arrows in a cocartesian family). Let
B be a Rezk type and P : B → U a cocartesian family. Consider a vertical arrow
f : x⇝ y in P . If g : y′ → y is a dependent arrow such that the pullback f ′ :≡ g∗f
exists, then f ′ is vertical, too:

x′ x

y′ y

f ′

g

g′

f

⌟

Proof. By Proposition 2.21 it suffices to show that f ′ (merely) has a right lifting
against any cocartesian arrow f ′′ : z′ z, given arrows z : k → y′ and k′ : z′ → x′:

z′ x′

z y′

k′

f ′′

k

f ′

First, Proposition 2.21 gives us a lift h of the composite outer diagram in:

z′ x′ x

z y′ y

k′

f ′′

k

f ′

g

f

g′

⌟

h

Consider now the induced arrow m : z → x′:

z

x′ x

y′ yg

f

h

k

m

f ′
⌟

We claim that m is the desired lift. By definition, it satisfies f ′m = k, so we only
have to check the condition mf ′′ = k′. To obtain a witness for this, consider the
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two pullbacks:

z z

x′ x x′ x

y′ y y′ y

g′

f ′

g

f f ′

g

g′

f

g′mf ′′

kf ′′ kf ′′

g′k′

⌟⌟

We have fg′mf ′′ = fg′k′. But then the universal property of the pullbacks implies
mf ′′ = k′ as desired. □

2.3. Cartesian families. Completely dually, one can formulate a theory of carte-
sian families which are contravariantly functorial w.r.t. to directed paths. That is,
for P : B → U a cartesian family, for any arrow u : b → a and d : P a there exists
a cartesian lift f :≡ P ∗(u, d) : u∗d d, satisfying the dual universal property: For
any v : c → a, and any h : e →P

uv d there exists a filler g : e →P
v u∗ d, uniquely up

to homotopy, s.t. h = P ∗(u, d) ◦ g. In particular, this induces a map

u∗ : P a→ P b.

Likewise, we have a notion of cartesian functor. The fibered adjoint characterization
(respectively, the Chevalley condition) turn out to be a right adjoint (respectively,
right adjoint right inverse (RARI)) condition instead. Furthermore, the cartesian
arrows are pullback stable, and any dependent arrow factors as (·⇝ · ). Some-
times, we will distinguish in the notation between cartesian and cocartesian filling
by writing cartFill...(. . .) or cocartFill...(. . .), respectively. As already introduced,
vertical arrows (respectively their types) are denoted by a squiggly arrow ·⇝ ·.

Proposition 2.23 (Pullback stability of cartesian arrows). Let P : B → U be
a cartesian family over a Rezk type B. Then cartesian arrows are stable under
pullback, i.e. whenever f : e′ P e is a cartesian arrow in P , then whenever for
another dependent arrow g : e′′ →P e the pulled back arrow f ′ :≡ g∗f : e′′′ →P e′′

exists it is cartesian, too.

Proof. Consider f , g, and g′ as given by the assumption. Let d : h → e′′ be
some dependent arrow in P . Let k ≡ fillf (gh) : d → e′ be the filler induced
from cartesianness of f . This determines a cone [d, h, k] over the cospan [g, f ]. By
assumption, [e′′′, f ′, g′], with g′ :≡ f∗g : e′′′ → e′ is a pullback, i.e., a terminal cone
over [g, f ], there exists, uniquely up to homotopy, a gap arrow m : d → e′′′ with
g′m = k and f ′m = h as indicated:

d

e′′′ e′

e′′ e

f ′

g

f

k:≡fillf (gh)

h ⌟

m

g′

We now want to show that any arrow r : d → e′′′ such that f ′r = h is homotopic
to m. Any such arrow m can be canonically coerced into a cone morphism from
[d, h, k] to [e′′′, f ′, g′]. But by terminality of [e′′′, f ′, g′] as a cone over [g, f ], the
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E

e

ζb r ζb ζa r

B b z b a z
!b

!e
!be

!ζb

u !a

h

!b

Figure 2. Construction of fiberwise terminal objects

type of these cone morphisms is contractible, giving an identification m = r of cone
morphisms which descends to an identification between the respective arrows.

All in all, this renders f ′ : e′′′ e′′ a cartesian arrow.
□

2.4. Lex cartesian families.

2.4.1. Lex cartesian families. A specific class that becomes important in the next
chapter are the lex cartesian families. These admit terminal elements and pull-
backs in each fiber, and they get preserved under cartesian reindexing. We recall
the notions of terminal element and pullback from [62, Definition 9.6] and [13, Def-
inition 5.1.7] (or their dual versions, respectively). See also more generally [40,
Definitions 3.3 and 3.4].

Definition 2.24 (Terminal elements and pullbacks in a Rezk type). Let B be a
Rezk type.

(1) Let z : B be term. We call z a terminal element of B if the type B ↓ z is
contractible.

(2) Let τ : BΛ2
2 , called a cospan in B. A pullback over τ is a terminal element

in the type of cones over τ

τ/B :≡
〈
∆1 ×∆1 → B

∣∣∣Λ2
2

τ

〉
.

We are looking at the preservation properties only for the case of finite limits,
see [40, Section 3.2] for a more general treatment.

Definition 2.25 (Preservation of terminal elements and pullbacks). Let A,B be
Rezk types.

(1) Let A have a terminal object z. A functor F : A → B preserves terminal
elements if F (z) is terminal in B.

(2) A functor F : A→ B preserves (all) pullbacks if for all cospans τ : AΛ2
2 the

induced functor
F ◦ − : A/τ → B/(Fτ)

preserves terminal elements.
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Definition 2.26 (Lex Rezk types and lex cartesian families). (1) A Rezk type
is lex if it it has all pullbacks and a terminal object. A functor between
Rezk types is a lex functor if it preserves terminal elements and pullbacks
in the sense of Definition 2.25.

(2) Let B be a lex Rezk type. A cartesian fibration over B is lex if all the fibers
of P have terminal objects and pullbacks, and both notions are preserved
by the reindexing functors.

We will analyze the lexness conditions further in Propositions 2.27 and 2.32.
This is gives the following alternative characterization: a cartesian family P :

B → U over a lex type B is lex if and only if the total type P̃ is lex and the
unstraightening πP : P̃ → B is a lex functor. Note that for a functor f : A →
B preserving a terminal object z : A is a propositional condition. If z′ denotes
the terminal object in B there is a path f(z) = z′ if and only if f(z) : B is
terminal, i.e.

∏
b:B isContr(b →B f(z)) if and only if the homotopically unique

arrow !f(z) : f(z)→ z′ is an isomorphism. We will not discuss this further here, but
similar considerations hold for limits in general, by their defining universal property
as terminal objects of the respective Rezk types of cones, see [40, Subsection 3.2].

In principle, we also think in the synthetic setting there could be a more uniform
and abstract treatment of “X-shaped limit fibrations”, for a given shape or type X,
after [11, Definition 8.5.1], but we do not develop this here. Instead we follow the
account of [82, Section 8], adapting it to the synthetic setting.

2.4.2. Terminal elements. The overall aim is to recover the standard characteriza-
tion of lex cartesian fibrations: Fix a base with the desired limits. Then the total
type has those limits and they are preserved by the fibration if and only if the fibers
each have the respective limits, and the reindexing functors preserve them. First,
we consider the case of terminal elements.

Proposition 2.27. Let P : B → U be a cartesian family and B be a Rezk type
with terminal object z : B. Denote by π : E ↠ B the unstraightening of P . Then
the following are equivalent:

(1) The total Rezk type E :≡ P̃ has a terminal object z̃, and π preserves it,
i.e. π(z̃) : B is terminal.

(2) For all b : B, the fiber P b has a terminal object, and for all arrows u :
b→B a the functor u∗ : P a→ P b preserves the terminal object.

Proof. 1 =⇒ 2: For the visualization of both parts, cf. Figure 2. Denote by
z̃ :≡ ⟨z, r⟩ : E the terminal object of E, with z : B terminal. For b : B,
consider the point ζb :≡ (!b)

∗r : P b. We claim that this is the terminal
object of the fiber P b. Indeed, consider the canonical arrow !r : e →!b r.
Then there is a unique arrow !be : e→P b ζb such that P ∗(!b, r)◦!be =!r. But
by terminality of r, the cartesian lift P ∗(!b, r) also is propositionally equal
to the terminal projection !ζb : ζb → r. Now, for any given map g : e→P b ζb
we have that !ζb ◦ g =!e, but by the universal property of !ζb there is only a
unique such arrow g up to homotopy. Hence, ζb is terminal in P b.

Let u : b →B a. We will show that there is a path u∗ ζa = ζb. As we
have just seen, we have ζa = (!a)

∗(r), and similarly for ζb. Consider their
terminal projections to r, which are necessarily cartesian arrows. From this
and the identification !b =!a ◦ u in B, we get a unique filler h : ζb →u ζa.
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Moreover, h is cartesian by left cancelation, so h = P ∗(u, ζa) : ζb
P
u ζa.

This establishes the desired path.
1 =⇒ 2: Conversely, consider the section ζ :

∏
b:B P b choosing the terminal

element in each fiber. Let b : B. By assumption, the cartesian lift of
the terminal map !b : b → z has ζa as its source vertex, up to a path.
Let e : P b be some point. Since ζb is terminal in P b, there exists a
unique morphism !be : e →P b ζb, and post-composition with the cartesian
lift P ∗(!b, ζz) : ζb ζz gives a morphism te : e→ ζz:

E e

ζb ζz

B b z
!b

te
!be

Finally, any morphism f : e → ζz, up to homotopy, lies over !b : b → z,
and necessarily has the same factorization again, hence is identified with
te. Therefore, ⟨z, ζz⟩ defines the (“global”) terminal element of E, and we
have π(z, ζz) :≡ z.

□

The end of the proof of Proposition 2.27 shows that, with the same preconditions,
if either of the conditions is satisfied, the map ζ : B → E choosing fiberwise terminal
elements presevers terminal elements.

Corollary 2.28. Let P : B → U be a cartesian family and B be a Rezk type with
terminal object z : B. Denote by π : E ↠ B the unstraightening of P and assume
that E has a terminal object and that π preserves it. Then ⟨z, ζz⟩ : E is terminal.

2.4.3. Pullbacks. We are now turning to the analogous statement for pullbacks,
which requires more preparation First, we give two conditions on dependent squares
being pullbacks.

Lemma 2.29 ([82, Lemma 8.1(1)]). Let P : B → U be a cartesian family over a
Rezk type B. Then any dependent square in P which lies over a pullback and all of
whose sides are cartesian arrows is itself a pullback.
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Proof. Consider a square in P̃ together with a cone, and the fillers m, m′ over r
which are induced by cartesianness of f ′ and g′, respectively:

x

P̃ d′ d

e′ e

c

b′ a′

B b a

f ′

g

g′

f

h

h′

m′

m

u

w

w′

u∗v

⌟

r

v

We have fh = (fg′)m and gh′ = g(f ′m′) = (fg′)m′. But also fh = gh′, so
(fg′)m = (fg′)m′. But since fg′ is cartesian as the composition of two cartesian
arrows, we get a homotopy m = m′ as desired. This in particular induces gives
an identification between the two ensuing cone morphisms defined by m and m′,
respectively, from [h′, h] to [f ′, g′], both being cones over the cospan [g, f ]. □

Lemma 2.30 ([82, Lemma 8.1(2)]). Let P : B → U be a cartesian family over a
Rezk type B. Then any dependent square in P of the form

e′′′ e′′

e′ e

g

f

f ′

g′

is a pullback.

Proof. Consider a point d and maps h : d→ e′, h′ : d→ e′′ such that g′h′ = fh. By
cartesianness of f ′, there uniquely exists k : d→ e′′′ such that there is a homotopy
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H : f ′k = h′:

d

P̃ e′′′ e′′

e′ e

b

a′ a

B a′ a

g

f

f ′

g′

k

h′

h

u

u

uv

v

v

⌟

(?)

To show that also h = gk, it suffices to show that f(gk) = g′h′, since also fh = g′h′,
which taken together then would imply h = gk by cartesianness of f . Indeed, by
the above we have a chain of paths

f(gk) = (fg)k = (g′f ′)k = g′(f ′k) = g′h′,

which implies the claim that h = gk. This means that k : d → e′′′ induces a
morphism from to [h, h′] to [g, f ′] as cones over the cospan [f, g′]. The type of such
cones is equivalent to

∑
r:d→e′′′(gr = h) × (f ′ × r = h′). By cartesianness of f ′

the type
∑
r:d→e′′′(f

′ × r = h′) is contractible with center ⟨k,H⟩. The argument
we gave above yields a homotopy K : (gk = H). By strictification, this exhibits
⟨k,K,H⟩ as a terminal projection from [h, h′] to [g, f ′], hence [g, f ′] as pullback
cone. □

The next lemma presents a sufficient condition for the “local” pullbacks being
“global” pullbacks.

Lemma 2.31 (cf. [82, Lemma 8.2]). Let P : B → U be a cartesian family and B be
a Rezk type where all pullbacks exist. Assuming that all fibers have pullbacks, and
these are preserved by the reindexing functors, we have: A pullback in a fiber P b
is also a pullback in P̃ .

Proof. Let π : E ↠ B be the unstraightening of P . For any b : B, consider a
pullback square in P b, together with a cone in E, as follows:

(1)

d

e′ e2

e1 e
f1

f2

g2

g1

h2

h1
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Projecting down we find that π(h1) = u = π(h2) for some u : b →B a. Consider
the factorizations

d u∗ en enmn kn

hn

for n = 1, 2. We claim that (u∗ f1) ◦m1 = (u∗ f2) ◦m2. To see this, consider the
following induced diagram

d u∗ e2 e2

u∗ e1 u∗ e e

e1

f2

k2

k

m2

u∗ f1

k1

h1

f1

u∗ f2

h2

m1

in which the right square commutes. Now, in fact the left sub-square commutes
as well because both sides are equalized by the cartesian arrow k: By assumption
we have (f1k1)m1 = (f2k2)m2, i.e. (k(u∗f1))m1 = (k(u∗f2))m2, hence (u∗f1)m1 =
(u∗f2)m2 as claimed.

Now, by assumption the square of vertical arrows in 1, is a pullback in P b, and
gets preserved by u∗ : P a → P b. Then the gap map ℓ : d ⇝ u∗ e′ as indicated
below is vertical:

d

u∗ e′ u∗ e2

u∗ e1 u∗ e

m2

m1

ℓ

Then, for k′ :≡ P ∗(u, e′) : u∗ e′ ue
′ we claim that the mediating arrow for the

original diagram 1 is given by

ℓ′ :≡ k′ ◦ ℓ : d→ e′.

Indeed, we find

gnℓ
′ = gn(k

′ℓ) = (kn ◦ u∗ gn)ℓ = knmn = hn

for n = 1, 2. Furthermore, ℓ′ is unique with this property because its vertical
component is determined uniquely up to homotopy as a gap map of a pullback in
P b. This exhibits ℓ′ together with the two homotopies gkℓ′ = hk for k = 1 or k = 2,
as the terminal cone morphism from [h1, h2] to [g1, g2] witnessing that the square
[g1, g2, f1, f2] is a pullback. □

Finally, we can state the desired characterization.

Proposition 2.32 (cf. [82, Theorem 8.3]). Let P : B → U be a cartesian family and
B be a Rezk type where all pullbacks exist. Denote by π : E ↠ B the unstraightening
of P . Then the following are equivalent:

(1) The total Rezk type E has all pullbacks, and π preserves them.
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(2) For all b : B, the fiber P b has all pullbacks, and for all arrows u : b →B a
the functor u∗ : P a→ P b preserves them.

Proof.
1 =⇒ 2 Since π preserves pullbacks, every pullback, taken in E, of vertical arrows
in a fiber P b is a pullback in P b, i.e. given a cone of vertical arrows, the mediating
arrow is necessarily vertical as well. What is left to show is that the reindexing
functors preserve the pullbacks. Let u : b→B a. Consider a pullback square in P a,
together with the cartesian liftings of u w.r.t. to each point. Then, by Lemma 2.30
the ensuing squares are pullbacks, as indicated in:

E u∗ e′′′ e′′′

u∗ e′′ e′′

u∗ e′ e′

u∗ e e

B b au

⌟

⌟

⌟

By [67, Remark 26.1.5(ii)], we obtain that the left hand square is a pullback, as
desired.
2 =⇒ 1 Conversely, consider a cospan an E, comprised of dependent arrows (f :
d→ e← d′ : f ′). First, we consider their vertical/cartesian-factorizations, f = gk,
f ′ = g′m. This gives rise to the following situation, which we will readily explain:

d′′′ d′′ d′

e′′′′ e′′′ e′′

d e′ ek
g

g′

mm′

h′

h

h′′′

f

f ′

h′′

k′

⌟

⌟⌟
τ

ℓ′

ℓ

τ ′
⌟

σ

σ′

First of all, the diagram τ is a pulback by Lemma 2.29. The (vertical) fillers k′
and m′, respectively are induced by h′ and h being cartesian, respectively. Then
by Lemma 2.30, the squares σ, σ′ are pullbacks, too. Since the fibers have pull-
backs, the square τ ′ exists. As the reindexings preserve the local pullbacks, we can
apply Lemma 2.31, so τ ′ is a pullback in E. Altogether, this yields the pullback
square of f ′ along f . □

The last part of the proof implies that, under the assumptions of the proposition
the map ζ : B → E that picks the terminal element in each fiber sends pullbacks
to pullbacks.

Corollary 2.33. Let B be a Rezk type with all pullbacks. Consider a cartesian
family P : B → U . Denote by π : E ↠ B the unstraightening of P and assume
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that E has all pullbacks and π preserves then. Then ζ : B → E sends pullbacks to
pullbacks.

Proof. We first observe that, for any u : b →B a we find for ζu : (ζb →P
u ζa)

the decomposition ζu = P ∗(u, ζe) ◦ k where k : ζb ⇝b u
∗e is the filler given by

cartesianness. Hence, ζ maps any (pullback) square in B to a composite square as
at the end of the proof of Proposition 2.32. But by the same arguments, the square
exhibits itself as a pullback square. □

Together with the corresponding statement for preservation of terminal elements,
we obtain the following corollary, that will be crucial later in constructing the corre-
spondence between lextensive fibrations and lex functors for Moens’ Theorem The-
orem 5.13.

Corollary 2.34 (Lexness of the fiberwise terminal map). Let π : E ↠ B be a lex
cartesian fibration. Then the map ζ : B → E that maps b to ⟨b, ζb⟩ where ζb is the
terminal element in the fiber over b is a lex functor.

Proof. Combine Corollaries 2.28 and 2.33. □

2.4.4. Pullbacks in slices. Throughout the paper, we will need to compute pullbacks
in slice Rezk types. Recall the (dual) considerations of [13, Proposition 5.1.5,
Definition 5.1.6, and Definition 5.1.7]. We are proving that these pullbacks arise
from pullbacks in the base.

Proposition 2.35 (Pullbacks in slice Rezk types). Let B be a Rezk type with
all pullbacks, and a : B. Consider morphisms u : b →B a, u′ : b′ →B a, and
u′′ : b′′ →B a. Let κ :≡ ⟨f, g⟩ : Λ2

2 → B/a be a cospan in the slice category, given
by

u′′

u′ u

g

f

for f : (u′ →B/a u) and g : (u′′ →B/a u) ( i.e., such that there exist identifications
uf = u′ and ug = u′′). Consider a square in B:

b′′′ b′′

b′ b

g

f

g′

f ′

Assume it gives rise to a cone σ :≡ ⟨u′′′, f ′, g′⟩ : (B/a)/κ, i.e., we have:

u′′′ u′′

u′ u

g

f

g′

f ′

Then σ is terminal if and only if its evaluation at 0 ( i.e., the cone ⟨b′′′, f ′, g′⟩ over
⟨f, g⟩) is a terminal cone in B.

Proof. One computes (B/a)/κ ≃
∑
c:B

∑
v:(c→Ba)

∑
h:(v→B/au

′)

k:(v→B/au
′′)

(fh = gk). We can

strictify this data, getting rid of the homotopy. Indeed, this type is equivalent to
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an extension type whose terms are 3-cubes in B (whose definition we will not spell
out here) that restrict as indicated:

• b′′

b′ b

a a

a a

u′′

f

u
u′

g

Morphisms between two cones are given accordingly:

•

• b′′

• b′ b

a a

a a

u′′

f

u
u′

g

Since B is a lex Rezk type, we can consider the square

b′′′ :≡ b′ ×b b′′ b′′

b′ b

g

f

g′

f ′

⌟

in B. Setting u′′′ :≡ u′g′ = u′′f ′ : b′′′ → a gives rise to a a cone

σ :≡ ⟨b′′′ : B, u′′′ : b′′′ →B a, f ′ : u′′′ →B/a u
′′, g′ : u′′′ →B/a u

′⟩ : (B/a)/κ.

Let τ :≡ ⟨c : B, v : c →B a, h : v →B/a u
′, k : v →B/a u

′′⟩ : (B/a)/κ be another
cone. By the pullback property of the initially considered square in B, its mediating
map lifts to define a morphism of cones:

c

b′′′ b′′

a b′ b

a a

a a

f ′

u′′′

u′′

g′

f

u
u′

g

k

v

h

ℓ
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Indeed, from a homotopy g′ℓ = h we get u′′′ℓ = (u′g′)ℓ = u′h = v, so ℓ really
defines a term in (v →B/a u

′′′). Any such cone in B/a after projection yields a
pullback in B. Hence ℓ is unique up to homotopy with that property. □

3. Bicartesian families

In this section, we consider families that are both cartesian and concartesian,
corresponding to bicartesian fibrations. Specifically, we are interested in such fi-
brations satisfying a so-called Beck–Chevalley condition (BCC). This form of the
BCC has its origins in the work of Bénabou–Roubaud leading to their famous char-
acterization of descent data of a fibration. In the (∞, 1)-categorical context such
fibrations play a role e.g. in higher ambidexterity, cf. work by Hopkins–Lurie [26]
and Heuts’s notes [25] of Lurie’s work. We successively generalize Streicher’s ex-
position and proofs [82, Section 15] to the synthetic (∞, 1)-categorical setting, also
making explicit some arguments not detailed in op. cit.

3.1. Bicartesian families.

Definition 3.1 (Bicartesian family). Let B be a Rezk type. A bicartesian family
is a type family P : B → U which is both cartesian and cocartesian.

Bicartesian families are hence equipped with both co- and contravariant trans-
port operations for directed arrows. In fact, these induce adjunctions on the fibers.

Proposition 3.2. Let P : B → U be a bicartesian family. For any a, b : B,
u : a→B b, there is an adjunction:

P a P b
u!

u∗

⊣

Proof. For fixed a, b : B, we define a pair of maps

Φ : (u! d→ e)⇄ (d→ u∗e) : Ψ,

intended to be quasi-inverse to each other, through

Φ(g) :≡ cartFillPP∗(u,e)(g ◦ P!(u, d)), Ψ(k) :≡ cocartFillPP!(u,d)
(P ∗(u, e) ◦ k).

We write f :≡ P!(u, d) : d u! d and r :≡ P ∗(u, e) : u∗e e. For a dependent
arrow g : u! d→P e we have g′ :≡ Φ(g)◦r = g◦f by construction. Next, we find that
Ψ(g′)◦f = r◦Φ(g). Combining these identities it follows that Ψ(g′) = Ψ(Φ(g)) = g
by cocartesianness of f . The other roundtrip is analogous. □

We now explain a few important constructions producing bicartesian fibrations.

3.2. The family fibration. For an arbitrary map π : E ↠ B between Rezk types
one can produce its free cocartesian fibration, [13, Theorem 5.2.19].

This cocartesian fibration turns out to be a bifibration in case B has all pullbacks,
then called the family fibration. To analyze the structure of the family fibration,
we first recall the codomain fibration.

Proposition 3.3 (Codomain fibration). If B is a Rezk type that has all pullbacks,
the codomain projection

∂1 : B∆1

→ B, ∂1(f) :≡ u(1)
is a cartesian fibration.
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Proof. This is dual to [13, Proposition 5.2.17]. In particular, for an arrow u : a→B b
in B, a point in the fiber over b is given by an arrow v : b′ →B b in B. The cartesian
lift of u w.r.t.v is given by the pullback square:

B∆1

a×b b′ b′

a b

B a b

u∗v

u

u

v∗u

v
⌟

∂1

□

Proposition 3.4. Let B be a Rezk type with all pullbacks and π : E ↠ B a
cartesian fibration, then the free cocartesian fibration

L(π) E

B∆1

B

B

π

∂0

∂1

∂′
1

⌟

is itself a also cartesian fibration, hence a bicartesian fibration.

Proof. For any isoinner fibration π : E ↠ B between Rezk types, the map ∂′1 :
L(π)↠ B is a cocartesian fibration by [13, Theorem 5.2.19].

If (and only if) B has pullbacks the codomain projection ∂1 : B∆1 → B is a
fibration, see Proposition 3.3. As cartesian fibrations are closed under pullback and
composition (dually to [13, Proposition 5.3.17]), we get that ∂′1 :≡ ∂1 ◦ (∂0)∗π is
cartesian. □

Definition 3.5 (Family fibration). Let B be a Rezk type with all pullbacks and
π : E ↠ B a cartesian fibration. Then, by Proposition 3.4, the free cocartesian
fibration ∂′1 : L(π) ↠ B is a cartesian fibration, too. This bifibration is called the
family fibration associated to P .

Proposition 3.6 (Cartesian lifts in the family fibration). Let π : E ↠ B be a
cartesian fibration over a Rezk type B with all pullbacks. The cartesian lift of an
arrow u : a → b in B with respect to ⟨v : b′ → b, e : P b′⟩ in L(π) is given by
the pullback square of v along u, together with the cartesian lift over the upper



30 JONATHAN WEINBERGER

L(π) (u′)∗e e

a×b b′ b′

a b

B a bu

v′

u

u′

v

P∗(u′,e)

⌟
∂′
1

Figure 3. Cartesian lifts in the family fibration

horizontal arrow as indicated in the following diagram:

L(π) (u∗v)∗e e

a×b b′ b′

a b

B a b

u∗v∂′
1

u

u

v∗u

v

P∗(u∗v,e)

⌟

Proof. This follows by computing the lifts fiberwisely, cf. [13, Subsection 5.2.3]. □

3.3. The Artin gluing fibration.

Definition 3.7 (Artin gluing). Let B,C be Rezk types and F : B → C a functor.
Then the map gl(F ) : C ↓ F ↠ B constructed by pullback

C ↓ F C∆1

B C
F

∂1gl(F )
⌟

is called the Artin gluing (or simply gluing) of F .

Since the codomain projection ∂1 : C∆1

↠ C is always a cocartesian fibration the
gluing gl(F ) is a cocartesian fibration as well. We will be concerned with the case
that C has all pullbacks. In this case ∂1 : C∆1

↠ C also is a cartesian fibration,
hence a bifibration, and consequently the same is true for gl(F ) : C ↓ F ↠ B.
Hence, from the description of the co-/cocartesian lifts in pullback fibrations [13,
Proposition 5.2.14], the respective lifts in gl(F ) can be computed as illustrated in
Fig. 4. Given an arrow u : b→ b′ in B, a cocartesian lift with respect to an arrow
v : c→ F b in C is the square with boundary [v, idb, F u, F u◦v], see the left square
of Figure 4. A cartesian lift of u : b→B b′ with respect to a term w : c→C F b′ in
the fiber of b′ is given by the pullback square on the right of Figure 4.
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C ↓ F c c F b×F b′ c c

F b F b′ F b F b′

B b b′ b b′

v

F u

Fu◦v

F u

w
⌟

u u

Figure 4. Cocartesian and cartesian lifts in the gluing fibration

A vertical arrow in the gluing fibration is exactly given by a square of the form:

C ↓ F c c′

F b F b

B b b

The gluing bifibration of a functor betweeen lex Rezk types is always lex.

Proposition 3.8 (Lexness of Artin gluing). Let F : B → C be a functor between
lex Rezk types. Then the bicartesian fibration gl(F ) : C ↓ F ↠ B is a lex cartesian
fibration.

Proof. By Propositions 2.27 and 2.32 it suffices to argue that all the fibers are lex
Rezk types and that the cartesian transition maps are lex functors. Since C is as-
sumed to be lex, gl(F ) is bicartesian (see also Proposition 3.3), hence the cartesian
reindexings are right adjoints so they preserve limits by [40, Theorem 3.11]. Finite
completeness of the fibers can be shown analogously to the 1-categorical case keep-
ing in mind Figure 4 and that the terminal element in a slice Rezk type is given by
the identity (see [62, Lemma 9.8] for the dual version of the statement). □

We will freely make use of Proposition 3.8 in the following sections whenever
necessary.

4. Beck–Chevalley families

In categorical logic, Beck–Chevalley conditions say that substitution (i.e. pull-
back) commutes with existential quantification (i.e. dependent sums). This gener-
alizes to the fibrational setting by considering cartesian arrows in place of substitu-
tions (acting contravariantly), and cocartesian arrows in place of dependent sums
(acting covariantly). We refer to [82, Section 6] for more explanation.

4.1. Beck–Chevalley condition.

Definition 4.1 (Beck–Chevalley condition, [82, Definition 6.1]). Let P : B → U
be a family over a Rezk type all of whose fibers are Rezk. Then P is said to satisfy
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the Beck–Chevalley condition (BCC) if for any dependent square of the form

d′ e′

P̃ d e

a′ b′

B a b

f ′

g′ g

f

u′

u

vv′
⌟

it holds that: if f is cocartesian, and g, g′ are cartesian, then f ′ is cocartesian.

Proposition 4.2 (Dual of the Beck–Chevalley conditions). Let P : B → U be a
family over a Rezk type B all of whose fibers are Rezk. Then P satisfies the BCC
from Definition 4.1 if and only if it satisfies the dual BCC, which says: Given any
dependent square

d′ e′

d e

f ′

g′ g

f

in P over a pullback, then: If f and f ′ are cocartesian, and g′ is cartesian, then g
is cartesian as well.

Proof. Assume, the BCC from Definition 4.1 is satisfied. We consider a square,
factoring the arrow g into a vertical arrow followed by a cartesian arrow, we obtain:

d′ e′

v∗e

d e

g′

f

f ′

g

m

k

m′

Then, applying the BCC to the “smaller” square (still lying over the same pullback
since m is vertical), m′ :≡ m ◦ f ′ must be cocartesian. But then m is, too, by right
cancelation, as f ′ is cocartesian. But since it is also vertical, it is an isomorphism,
so g is cartesian, as claimed.

The converse direction is analogous. □

4.2. Beck–Chevalley families. Preparing the treatment of Moens fibrations, we
state a few first results about BC fibrations, aka fibrations with internal sums.

Definition 4.3. A map between π : E ↠ B is a Beck–Chevalley fibration or a
cartesian fibration with internal sums if:

(1) The map π is a bicartesian fibration, i.e. a cartesian and cocartesian fibra-
tion.

(2) The map π satisfies the Beck–Chevalley condition.
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d e d e

a′ b′

a b v′!(d) v!(e)

v′

u

u′

v

f f

P!(v
′,d)

τu(σ,f)

P!(v,e)

⇝

σ

Figure 5. Action on arrows of τ (over u : a→ b in B)

Recall the criterion characterizing cocartesian fibrations via the existence of a
fibered left adjoint which acts as the “cocartesian transport” functor. The Beck–
Chevalley condition is equivalent to this functor being cartesian.

Theorem 4.4 (Beck–Chevalley fibrations via cartesianness of the cocartesian trans-
port functor, cf. [82, Theorem 6.1], [37, Chapter 3, Theorem 1/(iii)]). Let P : B →
U be a cartesian family over a Rezk type B which has all pullbacks. We denote
the unstraightening of P by π : E ↠ B which is, in particular, a cartesian fibra-
tion. Then π is Beck–Chevalley fibration if and only if the following conditions are
satisfied:

(1) The mediating fibered functor

ιP : E →B π ↓B, ιP (b, e) :≡ ⟨b, idb, e⟩

has a fibered left adjoint:

E π ↓ B

B

π
∂′
1

τπ

ιπ

⊣

(2) The fibered left adjoint τπ : π ↓B → E is a cartesian functor over B.

Proof. Recall from Theorem 2.5 that the existence of the fibered left adjoint is
equivalent to π : E ↠ B being a cocartesian fibration (already without requiring
B to have pullbacks and π to be a cartesian fibration). For b : B the action of the
fiberwise map τ :≡ τπ at b : B is given by

τb(v : a→ b, e : P (a)) :≡ ∂1 v!(e).

Let u : a→ b be a morphism in B. Over u, the action on arrows of τ maps a pair
⟨σ, f⟩ consisting of a commutative square σ in B with boundary [v′, u′, u, v] and a
dependent arrow f : d→P

u′ e to the dependent arrow

τu(σ, f) = cocartFillP!(v,e)◦f (P!(v
′, e)),

cf. Fig. 5. Recall the description of cartesian lifts in the family fibration from Propo-
sition 3.6. Then, we claim that τ mapping these L(π)-cartesian lifts to P -cartesian
arrows is equivalent to the Beck–Chevalley condition. To see this, consider an ar-
bitrary cartesian arrow in ∂′1 : π ↓B ↠ B. This is given by the data of a square in
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the base and a cartesian arrow as in:

(u′)∗e e

a×b b′ b′

a b

f

v′

u

v
⌟

u′

Applying τπ to this data yields the arrow g as in:

(u′)∗e e

(v′)!(u
′)∗d v!(e)

g

f

If π : E ↠ B is a Beck–Chevalley fibration then (by the dual BCC Proposition 4.2)
g is cartesian, and so τπ is a cartesian functor.

On the other hand, assuming τπ to be a cartesian functor means that the arrow
g as above is always cartesian. Since we are considering arbitrary pullbacks in the
base together with arbitrary dependent squares lying over them, this entails the
dual BCC from Proposition 4.2 which is equivalent to Definition 4.1. □

Next up is a useful result stating that any functor (between Rezk types with
pullbacks) preserves pullback if and only if its Artin gluing satisfies the Beck–
Chevalley condition.

Proposition 4.5 (Internal sums for gluing, [82, Lemma 13.2]). Let A and B be
Rezk types with pullbacks and F : A → B an arbitrary functor (hence all its fibers
are Rezk). Then the following are equivalent:

(1) The functor F preserves pullbacks.
(2) The gluing fibration gl(F ) ≡ ∂1 : B ↓ F ↠ A is a Beck–Chevalley fibration.

Proof. We note first that since B has all pullbacks, gl(F ) : B ↓F ↠ A is a cartesian
fibration since it is a pullback of the fundamental fibration ∂1 : B∆1

↠ B. But
∂1 : B∆1

↠ B is always a cocartesian fibration. Hence, gl(F ) is a bifibration if B
has pullbacks.

1 =⇒ 2: For a pullback square in A we consider a square lying over in the
gluing fibration which is a cube as in Fig. 6

where the pullback square at the bottom of the cube is the image of
the given pullback square in C. By composition and right cancelation of
pullbacks, the top face of the cube in Figure 6 is also a pullback: Then, r′
turns out to be an isomorphism. By Rezk-completeness, it can be taken
to be the identity idc : c → c, exhibiting the back square of the cube as a
cocartesian arrow in the glueing fibration, as desired.
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a′ ×a c b′ ×b c

c c

B ↓ F a′ :≡ b′ ×b a b′

a b

A d′ e′

d e

m

g

f

k

⌟

v

u

w

r

v∗v′

(v′)∗v

uv′

r′

(uv′)∗w

w∗(uv′)

⌟⌟

⌟

v′

Figure 6. Verifying the Beck–Chevalley condition

2 =⇒ 1: From the Beck–Chevalley condition we obtain, for any pullback
square in A a commutative cube above as follows:

a′ a′

c c

B ↓ F a′ b′

a b

A d′ e′

d e

m

g

f

k

⌟

v

u

w

r

uv′

(uv′)∗w

w∗(uv′)

⌟⌟

Since the right outer square is a pullback, by composition also the bottom
square is. This shows that gl(F ) preserves pullbacks.

□

5. Moens families

We are interested in a specific subclass of BC fibrations that go by the name of
(l)extensive or Moens fibrations. These are a fibrational generalization of (l)extensive
categories [15]. Ultimately, this leads to Moens’ Theorem which says that Moens
fibrations over a fixed base type can be identified with lex functors from this type
into some other lex type. This is crucial to develop the fibered view of geometric
morphisms, cf. [82, Section 15 et seq ], [80]. Applications in realizability have been
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given by Frey in his doctoral thesis [20, 21] and more recently by Frey–Streicher [19].
Again, we are adapting the reasoning from [82, Section 15].

5.1. (Pre-)Moens families and internal sums. Recall from classical 1-category
theory that a category C with pullbacks and coproducts is extensive (or lextensive
depending on convention) if and only if, for all small families (Ai)i∈I the induced
functor

∏
i∈I C/Ai → C/

∐
i∈I Ai is an equivalence. This is equivalent to the con-

dition that injections of finite sums are stable under pullback, and for any family
of squares

Bk B

Ak
∐
i∈I Ai

gk

fk

all of these are pullbacks if and only if all the maps gk : Bk → B exhibit B as the
coproduct cone. This generalizes fibrationally as follows.

Definition 5.1 (Stable and disjoint internal sums). Let P : B → U be a lex
fibration with internal sums over a Rezk type B. Then P has stable internal sums
if cocartesian arrows are stable under arbitrary pullbacks. The internal sums of
P are disjoint9 if for every cocartesian arrow f : d P e the fibered diagonal is
cocartesian, too:

d

d×e d d

d e
f

f

δf

⌟

Definition 5.2 ((Pre-)Moens families). Let B be a lex Rezk type. A lex Beck–
Chevalley family P : B → U is a pre-Moens family if it has stable internal sums.
We call a pre-Moens family P : B → U Moens family (or extensive family or
pre-geometric family) if, moreover, all its (stable) internal sums are also disjoint.

An immediate result is the following.

Lemma 5.3 ([82], Lemma 15.1). Let B be a lex Rezk type and π : E ↠ B be a
Moens fibration. Then, for d, e, e′ : E, and cocartesian morphisms g : e e′, in
any pullback of the following form, the gap map is cocartesian, too:

d

d′ e

d e′
h

g

f

⌟

k

9In a category, a coproduct is disjoint if the inclusion maps are monomorphisms, and the
intersection of the summands is an initial object.
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Proof. Consider the following diagram, arising from canonical factorizations over
the pullbacks d′ ≡ d×e′ e and e×e e′, resp:

d e

d′ e×e′ e e

d e e′

k

f

δg

f g

g

⌟

⌟ ⌟

By disjointness of sums, δg : e e ×e′ e is cocartesian, and by general pullback
stability, so is k : d d′. □

The preceding lemma can be used to characterize disjointness given that stable
internal sums exist.

Proposition 5.4 (Characterizations of disjointness of stable internal sums, [82],
Lem. 15.2). Let B be a lex Rezk type and P : B → U be a pre-Moens family. Then
the following are equivalent:10

(1) The family P is a Moens family, i.e. internal sums are disjoint (and stable).
(2) Cocartesian arrows in P satisfy left canceling, i.e. if g, g ◦f are cocartesian

then so is f .
(3) Cocartesian transport is conservative, i.e. if k is vertical, and both f and

f ◦ k are cocartesian, then k is an isomorphism.
(4) Any dependent square in P of the form

d e

d′ e′

f

g

h

k

where f , k are vertical and g, h are cocartesian is a pullback.

Proof. 1 =⇒ 2: Let f : e → e′ and g : e′ e′′ such that g ◦ f : e e′′ is
cocartesian. Since P is a Moens family we can apply Lemma 5.3 to obtain
that the gap map φ : e e′ ×e′′ e as in

e

e′′′ e

e′ e′′

g′

g

gf
f

φ

⌟

is cocartesian. By stability, g′ is cocartesian, too, hence so is f = g′ ◦ φ.
2 =⇒ 1: By stability of sums, for a cocartesian arrow f : d e, the map
f∗f : d ×e d → d is cocartesian. Then, the gap map δd : d → d ×e d is
cocartesian, since idd = f∗f ◦ δd.

10Streicher [82] points out that Items 2–4 only require stability of cocartesian arrows along
vertical maps.
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2 =⇒ 3: This follows since an arrow that is vertical and cocartesian neces-
sarily is an isomorphism.

3 =⇒ 2: Let g, f be given such that gf exists, and both gf as well as g
are cocartesian. Consider the factorization f = mh where m is vertical
and h is cocartesian. By right cancelation of cocartesian arrows, since both
gf = (gm)h and h are cocartesian, so must be gm.

3 =⇒ 4: Consider the induced pullback square:

d

e′′ e

d′ e′

k′

g′

k

h

f

f ′

⌟

g

Since P is a bifibration, the vertical arrows are stable under pullback along
any arrow, and satisfy left cancelation. Hence, since k is vertical, so is k′,
and consequently f ′ as well (since f is). By the assumption in (3) since f ′
is vertical and both g′ and h = g′ ◦ f ′ are cocartesian f ′ is an isomorphism.

4 =⇒ 3: Any square of the form

d e

d′ e

k

f

fk

⌟

is a pullback by precondition, hence k is an identity.
□

5.2. Extensive internal sums. We can now provide a characterization of Moens
families among the BC families. In particular, we obtain a fibered version of Law-
vere extensivity as an alternative characterization for (internal) extensivity. Clas-
sically, a category C is Lawvere-extensive if for any small set I, the categories CI
and C/

∐
i∈I 1 are canonically isomorphic. To prepare, consider first the following

construction. Let B be lex Rezk type and P : B → U be a cocartesian family.

Definition 5.5 (Terminal transport functor). For a terminal element z : B, we
define the functor1112

ωP,z :≡ ω : P̃ → P z, ω :≡ λb, e.(!b)!(e).

The action on arrows of this functor is illustrated in 7. The arrow ωf is vertical
over the terminal element z : B, for any f : ∆1 → B.

Definition 5.6 (Choice of terminal elements). Let B be a Rezk type and P : B →
U be family with Rezk fibers such that every fiber has a terminal element. Then
we denote, by the Principle of Choice, the section13 choosing fiberwise terminal

11In [82], the functor ω is called ∆.
12Note that we can suppress the dependency on a specified terminal element z : B.
13We have ocasionally considered a variant of this map as a function B → P̃ . We hope that

this mild abuse of notation does not cause any confusion.
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e ω(e)

e′ ω(e′)

b z

b′

f

P!(!b′ ,e
′)

P!(!b,e)

ω(f)

u

!b

!b′

Figure 7. Action on morphisms of the transport functor ωP,z

elements by
ζP :≡ ζ :

∏
b:B

P b,

i.e. for any b : B the element ζb : P b is terminal.

We define
ω′ ≡ ω′

P : B → P z, ω′(b) :≡ ω(ζb) ≡ (!b)!(ζb).

We are now ready for the promised characterization.

Proposition 5.7 (Stable disjoint sums in terms of extensive sums, [82], Lem. 15.3).
Let B be a lex Rezk type and P : B → U be a Beck–Chevalley family. Then, the
following are equivalent:

(1) The family P is a Moens family, i.e. P has stable disjoint sums.
(2) The bicartesian family P has internally extensive sums, i.e. for vertical

arrows f : d→ d′, k : e→ e′, cocartesian arrows g : e e′, in a square

d e

d′ e′

f

g

h

k

the arrow h : d → e is a cocartesian arrow if and only if the square is a
pullback.

(3) The internal sums in P are Lawvere-extensive, i.e. in any square of the
form

d e

ζa ω′(a)

!ad

P!(!a,ζa)

h

k

where k : e ⇝ ω′(a) is vertical the arrow h : d → e is cocartesian if
and only if the given square is a pullback. Here, ζ and ω′ are as defined
in Definitions 5.5 and 5.6.

(4) Let z : B be a terminal element in B. For any a : B, the transport functor
(!a)! : P a → P z reflects isomorphisms and k∗P!(!a, ζa) is cocartesian in
case k is vertical.
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Again, as remarked by Streicher, the equivalences between all but the first state-
ment hold already in the case that cocartesian arrows are only stable under pullback
along vertical arrows (in a lex bifibration).

Proof. (1) =⇒ (2): Consider a square as given in (2). If it is a pullback
we have an identification h = k∗g, and by stability h is cocartesian, too.
Conversely, given such a square where h is cocartesian, consider the factor-
ization:

d

d′′ e

d′ e′

k′

g

g′

k

h

f

f ′

⌟

The arrow g′ = k∗g is cocartesian by stability of sums. The arrow k′ = g∗k
is vertical since vertical arrows in a cocartesian fibration are stable under
pullback by Theorem 2.22. By the same reason, they are left cancelable,
hence f ′ is vertical. But since P is a Moens family, by Prop. 5.4, cocartesian
arrows also satisfy left cancelation, hence f ′ is cocartesian, too, and thus
an equivalence.

(2) =⇒ (3): The latter is an instance of the former.
(3) =⇒ (2): First, consider the following diagram:

d d′

e e′

ζa ω′(a)

k

m≡!ae

g

f

k′

m′

P!(!a,ζa)

(∗)

(∗∗)

We will first establish the claim that:

(†) g is cocartesian iff (∗) is a pullback.

By Lawvere extensivity (3) the square (∗∗) is a pullback. If (∗) is a pull-
back, then the outer square is a pullback, so by Lawvere extensivity g is
cocartesian. Conversely, if g is cocartesian, by Lawvere extensivity the
outer square is a pullback, so by canceling (∗) is a pullback, too.

Now, consider a square as follows:

y d

x e

r

h

ℓ

k(+)

We are to show that (+) is a pullback if and only if h is cocartesian. Assume
that h is cocartesian. Consider the following pasted diagram, involving the
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diagram (∗) from before:

y d d′

x e e′

r

h

ℓ

k

g

f

k′
⌟

(+)

The square on the right hand side is a diagram by (†). The outer square
gives rise to the following pasted diagram

y d′

x e′

ζb ω′(b)

gh

r

fℓ

k′

m′′!bx

where m′′ is the (vertical) filler induced by the cocartesian arrow fℓ. The
lower square is a pullback by Lawvere extensivity (3). Then by (†) the
upper composite square is a pullback. Thus, the square (+) is a pullback,
too, by canceling.

Assume, conversely, that the square (+) is a pullback. Then, in the
diagram below the square on the right is a pulllback, too, by (†):

y d d′

x e e′

r

h

ℓ

k

g

f

k′
⌟ ⌟

The composite square is a pullback, too. Then, again, as seen before gh is
cocartesian by (†). Then consider the following diagram:

y y′ y′′

d d′

h′ g′

h′′ h′g′′

g

h

gh

Since both g′h′ and gh are cocartesian, g′′ is an isomorphism. By (†) the
right square is a pullback, so h′′ is an isomorphism, too. But then h is
cocartesian, too.

(3) =⇒ (4): Let f : d ⇝ d′ be a vertical arrow in P a such that (!a)!(f) :
(!a)!(d)→ (!a)!(d

′) is a path. Then:

d (!a)!(d)

d′ (!a)!(d
′)

f (!a)!(f)
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Consider the cube induced by cocartesian filling w.r.t. P!(!a, ζa)◦!d and
P!(!a, ζa)◦!′d, respectively:

d (!a)!(d)

ζa ω′(a)

d′ (!a)!(d
′)

ζa ω′(a)

!d′

fill

f

!d

fill

⌟

⌟

The bottom and top squares are pullbacks by Lawvere extensivity. Then,
by [91, Proposition A.2], the map f is an identity as well.

For a : B and a vertical arrow k : e ⇝z ω
′(a) consider the pullback

square:

e′ e

ζa ω′(a)

k′

P!(!a,ζa)

f

k

⌟

Since P is in particular a cocartesian fibration, k′ is vertical by Theo-
rem 2.22. By Lawvere extensivity, f is cocartesian.

(4) =⇒ (3): Given a square as in (3), we see that the arrow h is cocartesian
if and only if it is a pullback, by the second condition in (3).

□

Corollary 5.8 (Cocartesian transport and slices in Moens families [82, Corol-
lary 15.4]). Let B be a Rezk type and P : B → U a Moens family.

Then, for all arrows u : a→ b in B and points d : P a, the functor

u! ↓ d : P a ↓ d→ P b ↓ u!d,
u! ↓ d(d′, f : d′ ⇝a d) :≡ ⟨u!d′, f ′ : u! d′ ⇝b u! d⟩,

where f ′ :≡ cocartFillP!(u,d′)(P!(u, d) ◦ f), is an equivalence. In particular, we have
equivalences

u! ↓ ζa : P a ↓ ζa ≃ P b ↓ u!ζa, (!a)! ↓ ζa : P a ↓ ζa ≃ P z ↓ ω′(a),

and by terminality we have P a ≃ P a ↓ ζa.

Proof. First, note that application of u! ↓ d to a vertical arrow f : d′ ⇝a d gives
rise to the square:

d′ u! d
′

d u! d

P!(u,d
′)

f

P!(u,d)

f ′

Since P is Moens the square is a pullback, by Proposition 5.7 (2).



INTERNAL SUMS FOR SYNTHETIC FIBERED (∞, 1)-CATEGORIES 43

We claim that an inverse to u! ↓ d is given by the pullback functor

P!(u, d)
∗ : P b ↓ u! d→ P a ↓ d,

P!(u, d)
∗(e, g : e⇝b u! d) :≡ ⟨d×u! d e, P!(u, d)

∗(g) : d×u! d e⇝a d⟩.
To prove P!(u, d)

∗ ◦ u! ↓ d = idP a↓d, we start with a vertical arrow f : d′ ⇝a d.
Pulling back f ′ : u! d′ ⇝b u! d along P!(u, d) gives back f again as just argued.

For the other identification u! ↓d◦P!(u, d)
∗ = idP b↓u! d, consider a vertical arrow

g : e⇝b u! d. Applying P!(u, d)
∗ gives the pullback square:

d×u! d e e

d u! d

P!(u,d)
∗g

P!(u,d)

g

g
⌟

Again, by Proposition 5.7 (2), this means that g : d ×u! d e → e is cocartesian, so
the above square is identified with:

d×u! d e e

d u! d

P!(u,d)
∗g

P!(u,d)

P!(u,d×u! d
e)

g
⌟

But this exhibits g to be (homotopic to) the filler

cocartFillP!(u,d×u! d
e)(P!(u, d) ◦ P!(u, d)

∗g),

as desired. □

Corollary 5.9 (Pullback preservation of cocartesian transport in Moens families,
[82, Corollary 15.5]). Let B be a Rezk type and P : B → U a Moens family.

Then for all u : a→ b in B, the covariant transport functor

u! : P a→ P b

preserves pullbacks.

Proof. Observe that u! : P a→ P b factors as follows:

P a P a ↓ ζa P b ↓ u! ζa P b

a

 ay
ζa


 u! ay
u! ζa

 u! a

u!↓ζa
≃

∂0≃

u!

The first two maps are equivalences, so they preserve pullbacks. The domain pro-
jection □

As a crucial ingredient for Moens’ Theorem, the gluing of pullback-preserving
functors always is a Moens fibration.

Proposition 5.10. Let B and C be a lex Rezk types and F : B → C be a pullback-
preserving functor. Then gl(F ) : C ↓ F ↠ B is a Moens fibration.
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c c′

F b′ F b′

C ↓ F F b F b′

F b F b′

B b b′

b b′

h

F u

F u

f

k

f ′

Fu◦g

⌟

⌟

h′

g

Figure 8. Extensivity of sums in gl(F )

Proof. Since F preserves pullback, gl(F ) is a Beck–Chevalley fibration by Propo-
sition 4.5. Then, by Proposition 5.7, it suffices to prove that the internal sums in
gl(F ) are extensive. But this follows from considering a dependent cube as given
in Figure 8 and the fact that k : c → c′ is an isomorphism if and only if the top
square is a pullback.14 □

Lemma 5.11 (cf. [82, Lemma 15.6]). Let B be a lex Rezk type and P : B → U be
a Moens fibration. Then the gap arrow in any diagram of the form

d d′

e′′′ e′

d′′ e e′′

f ′

f

⌟

h′g′

g

h

k

m

⌟

f ′′

is cocartesian as well.

Proof. Since P is a Moens family cocartesian arrows are stable under pullback
along vertical arrows (by internal extensivity, see Proposition 5.7, (2)), and since
P is a cocartesian family vertical arrows are stable under pullback along all ar-
rows (by Theorem 2.22). By the Pullback Lemma, this gives rise to the following

14The identities in the cube are part of the prerequisites to prove extensivity.
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diagram:

d

y′ x d′

y e′′′ e′

d′′ e e′′
g′ h′

h

g

m

m′′
k′

k⌟

⌟

m′

g′′

m′′′

g′′′⌟

⌟

f

f ′

∼=
f ′′

Hence, f ′′ is (up to identification) the composition of two cocartesian arrows, hence
cocartesian itself. □

Proposition 5.12 (Left exactness of terminal transport, [82, Lemma 15.7]). Let B
be a lex Rezk type and P : B → U be a Moens family. Then the terminal transport
functor ω : P̃ → P z is lex.

Proof. Preservation of the terminal object follows from

ω(z, ζz) ≡ (!z)!(ζz) = idζz .

Consider a dependent pullback

e′′′ e′′

e′ e

f ′

g′

f

g
⌟

in P̃ , where f lies over an arrow u, and g over an arrow v in B. Considering the
induced diagram

e′′′ e′′

d v! e
′′

e′ u! e
′ emk

r′

m′

ℓ

f ′

g′

⌟

r

h⌟

f

g

σ

by Lemma 5.11, we find that the gap map h is cocartesian.
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The image of the lower left square under ω is the front square of the following
cube:

e′′′ d

ω(e′′′) ω(d)

e′ u! e

ω(e′) ω(u! e)

h

g′

k

r′

ω(h)

ω(k)

ω(r′)
ω(g′)

The arrows ω(h) and ω(k) are both isomorphisms: as images of arrows under ω
they are both vertical, and by right cancelation of cocartesian arrows they are
cocartesian, too, hence isomorphisms.

By Corollary 5.9 the pullback square σ gets mapped to a pullback square under
ω, too (actually, by internal extensivity, all of the squares of the ensuing cube are
pullbacks):

d v! e
′′

ω(d) ω(v! e
′′)

u! e e

ω(u! e) ω(e)

m′

r′

m

r

ω(r)

ω(m)

⌟

ω(m′)

ω(r′)

⌟

Applying ω to the upper square in the subdivided diagram gives, by Corollary 5.9:

e′′′ e′′

ω(e′′′) ω(e′′)

d v! e
′′

ω(d) ω(v! e
′′)

h

m′

f ′

ω(m′)

ω(f ′)
⌟

⌟

ℓ

Patching these three squares together yields a diagram of the following shape
which contracts to a pullback lying in P z:

• •

• •

• • •

⌟

⌟
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□

5.3. Moens’ Theorem. We are now ready to prove a version of Moens’ Theorem
characterizing the type of Moens fibrations over a fixed lex base as the type of lex
functors from this type into some other lex type. The proof is an adaptation of [82,
Theorem 15.18], cf. also [27, Exercise 9.2.13]. Ideally, this equivalence should go
between two categories, i.e., Rezk types in our case. However, since the version
of simplicial type theory at hand lacks the Rezk universe of small Rezk types, we
rather construct the respective types as as Σ-types, which are not expected to be
(complete Segal). They have the right objects but not the correct kinds of arrows
and higher simplices. However, replacing the Σ-types we are about to define by the
correct Rezk analogues (namely, their Rezk completions) should yield, essentially
by the same proof, the improved, “categorical” version of Moens’ Theorem. After
all, we are working in simplicial type theory, so functions between Rezk types are
automatically functors. The condition of being a Moens family is propositional,
hence this gives rise to a predicate

isMoensFam :
(∑
B:U
UB

)
→ Prop

witnessing that a family P : B → U is a Moens family (over a small Rezk type
B). We do not spell out a definition of isMoensFam but it can be read off of our
definitions and characterizations of Moens families.

Similarly, we have a predicate isLex: Rezk→ Prop on the type Rezk :≡
∑
A:U isRezk(A)

of small Rezk types, witnessing that a small Rezk type A is lex. This gives rise to
a subuniverse

LexRezk :≡
∑
A:U

isRezk(A)× isLex(A) ↪→ Rezk

of lex Rezk types. Likewise, for any B,C : U , our definition of lex exact functor
gives rise to a predicate

isLexFunB,C : (B → C)→ Prop,

giving rise to the type

(B →lex C) :≡
∑

F :B→C

isLexFunB,C(F )

of lex exact functors from B to C, which is a subtype of the functor type B → C.

Theorem 5.13 (Moens’ Theorem, [82, Theorem 15.18], [37, Section 5, Proposi-
tion 12]). For a small lex Rezk type B : U the type

MoensFam(B) :≡
∑

P :B→U
isMoensFamP

of U-small Moens families is equivalent to the type

B ↓lex LexRezk :≡
∑

C:LexRezk

(B →lex C)

of lex functors from B into the type LexRezk of U-small lex Rezk types.
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Proof. We define a pair of quasi-inverses

MoensFam(B) B ↓lex LexRezk

Φ

Ψ

≃

by setting

Φ(P : B → U) :≡ ω′
P ≡ λb.(!b)!(ζb) : B → P z,

Ψ(F : B → C) :≡
(
gl(F ) : C ↓ F → B

)
.

Indeed, the definitions of Φ and Ψ are well-typed.
First, we have Φ ≡ ω′ ≡ ω ◦ ζ. The map ζ is lex by Corollary 2.34. Finally, the

functions are indeed well-typed due to Propositions 5.10 and 5.12.
For the first roundtrip, let P : B → U be a Moens family. We have Φ(P ) ≡ ω′

P :
B → P z and Ψ(Φ(P )) ≡ gl(ω′) : P z ↓ ω′

P ↠ B. We want to give an identification
P = gl(ω′

P ) in the type of Moens families over B which amounts to a fiberwise
equivalence P̃ ≃B P z ↓ ω′

P . Abbreviating ω′ :≡ ω′
P we are to define a pair of

fibered quasi-inverses:

P̃ P z ↓ ω′

B

φ

ψ
≃

We introduce the following notation. For b : B, e : P b, consider the following
canonical square:

P̃ e (!b)!e

ζb ω′(b)

B b z
!b

νb

!be

κe

µe

We denote by !be : e→ ζb the terminal map of e in P b, and by νb : ζb !bω
′(b) the

cocartesian lift of !b w.r.t. ζb : P b.
By κe, we denote the cocartesian lift of !b w.r.t. e : P b. We abbreviate by

µe : (!b)!e→ ω′(b) the filler
µe :≡ fillκe

(νe◦!be).
Then, we define

φ :
∏
b:B

P b→ P z ↓ ω′ b, φb(e) :≡ µe : (!b)!e⇝z ω
′(b)

and
ψ :

∏
b:B

P z ↓ ω′ b→ P b, ψb(f : e⇝z ω
′(b)) :≡ ζb ×ω′(b) e : P b.

For the first part of the round trip, we take e : P b which gets mapped to φb(e) =
µe : (!b)!e⇝z ω

′(b). Computing the pullback ψb(µe) recovers e by Proposition 5.7,
(3) (or (2)). The reverse direction is established as follows. Starting with a (vertical)
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arrow f : e ⇝z ω
′(b), we consider the dependent pullback, with a pasted identity

of arrows:
(!b)!e

′

e′ e

ζb ω′(b)

!be

νb

f

⌟

Then, the arrow ψb(φb(e)) is given by the composite

(!b)!e
′ == e

f−−→ ω′(b)

which can be identified with f . In sum, we have proven Ψ ◦ Φ = id. We are left
with the other direction.

Let C be a lex Rezk type and F : B → C a lex functor. Then Ψ(F ) = gl(F ) :
C ↓F ↠ B. To compute the application of Φ, we have to first specialize the action
of the fiberwise terminal element section for gl(F ). It is given by

ζ :≡ λb.⟨b, F b, idF b⟩ :
∏
b:B

∑
c:C

c→ F b.

Since F is lex we have an identification F (z) = y where y : C is terminal. Then
the terminal transport functor of the fibration gl(F ) yields

ω′ :≡ ⟨F b, F (!z) : F b→ y⟩ : B →
∑
c:C

c→ y.

We have Φ(Ψ(F )) = ω′
StB(gl(F )), and since y is terminal, we can identify this map

with F . □

5.4. Generalized Moens families. Streicher observes at the end of [82, Section 5]
that a generalized version of Moens’ theorem holds even in the absence of internal
sums, i.e. the Beck–Chevalley condition. The idea is the following. Given any
functor F between lex Rezk types the gluing gl(F ) is always a lex bifibration that
moreover satisfies internal extensivitity in the sense of Proposition 5.7, Item 2—even
in the absence of internal sums. We call such families generalized Moens. Now, if F
happens to preserve terminal elements we can argue essentially as in Theorem 5.13.
Conversely, for any generalized Moens family P : B → U the functor ω′

P : B → P z
preserves the terminal element.

Definition 5.14 (Generalized Moens family). Let P : B → U be a lex bicartesian
family over a Rezk type B. We call P a generalized Moens family if the following
two propositions hold:

(1) In P , cocartesian arrows are stable under pullback along vertical arrows.
(2) Any dependent square whose neighboring and opposing faces are vertical

and cocartesian, respectively, as indicated in the figure is a pullback:

d e

d′ e

f

g

h

k

⌟
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For lex bicartesian families P : B → U this gives rise to a proposition

isGMoensFam(P )

witnessing that P is generalized Moens. We do not spell out the definition but it
is straightforward, see the discussion at the beginning of Section 5.3

Recall that the gluing of any functor between lex Rezk types is always a lex
bifibration, cf. Proposition 3.8. It is straightforward to check that in a gluing Rezk
type a dependent cube as below is a pullback if and only if the arrow h is an
isomorphism:

• •

• •

• •

• •

h

⌟

⌟

Without detailing this further this establishes the following proposition:

Proposition 5.15. Let F : C → B be a functor between small lex Rezk types B
and C. Then the Artin gluing gl(F ) : C ↓B ↠ B is generalized Moens.

Note that for any Rezk type B with a terminal element and any cocartesian
family P : B → U whose fibers have terminal elements the map ω′

P : B → P z pre-
serves the terminal object. This observation together with Proposition 5.15 implies
that we can extend the pair of maps from Theorem 5.13. Noting further that in the
proof of Theorem 5.13 we actually do not need F : B → C to preserve pullbacks
but only terminal elements implies Streicher’s generalized version of Moens’ Theo-
rem. Again, we are looking at the (easy to define) sub-type (B →ter C) of functors
(B → C) that are only demanded to preserve the terminal element.

Theorem 5.16 (Generalized Moens’ Theorem, [82, Theorem 15.19]). For a small
lex Rezk type B : U the type

GMoensFam(B) :≡
∑

P :B→U
isGMoensFamP

of U-small Moens families is equivalent to the type

B ↓ter LexRezk :≡
∑

C:LexRezk

(B →ter C)

of terminal element-preserving functors from B into the type LexRezk of U-small
lex Rezk types.

Proof. The equivalence is given as in Theorem 5.13. □

5.5. Zawadowski’s definition. In [92] Zawadowski introduces a variant of lex
bifibrations15 where the covariant reindexing u! ⊣ u∗ preserves pullbacks and the
units and counits of these adjunctions are cartesian natural transformations. Stre-
icher has shown [84] that these conditions are in fact equivalent to the fibration

15therein called cartesian bifibrations but we won’t use this term to avoid confusions with our
preexisting terminology
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P̃ u∗u! x u!u
∗ y

x u! a u∗ y y

B a b a bu u

Figure 9. Unit and counit from the transport in a bicartesian fibration

being generalized Moens. We provide a slight complementation of his proof (using
the generalized Moens’ Theorem).

Recall that in a cartesian bifibration, P : B → U over a Rezk type B, for any
u : a→B b we have an adjunction u! ⊣ u∗, with u! : P a→ P b and u∗ : P b→ P a.
This gives rise to the unit

η :≡ ηP,u : idP a ⇒ u∗u!, ηx :≡ cartFillP∗(u,u! x)(P!(u, x)) : x⇝
P
a u

∗u! x

and the counit, respectively:

ε :≡ εP,u : u!u
∗ ⇒ idP b, εy :≡ cocartFillP!(u,u∗ y)(P

∗(u, y)) : u!u
∗y ⇝P

b y

See Section 5.5 for an illustration.

Theorem 5.17. Let P : B → U be a lex bifibration over a Rezk type B. Then P
is generalized Moens if and only if the following two propositions are satisfied:

(1) The cocartesian reindexing maps u! : P a → P b preserve pullbacks, for all
u : a→B b.

(2) The units η :≡ ηP,u : idP a ⇒ u∗u! and counits ε :≡ εP,u : u!u
∗ ⇒ idP b are

cartesian natural transformations, for all u : a →B b. This means for all
f : x→P a x

′, g : y →P b y
′, the naturality squares are pullbacks:

x u∗ u! x u! u
∗ y y

x′ u∗ u! x
′ u! u

∗ y′ y′

f

ηx

u! u
∗ g

εy′

εy

g
⌟

⌟

ηx′

u∗u! f

Proof. In [84] Streicher proves that a lex bifibration satisfying Zawadowski’s Con-
ditions 1 and 2 is generalized Moens. His proof carries over to our synthetic higher
setting as well. It therefore remains to show the converse, i.e., that any given
generalized Moens family satisfies 1 and 2.

Let B be a lex Rezk type with terminal element z : B. From the (proof of)
generalized Moens’ Theorem we obtain a fibered equivalence

P̃ ≃B P z ↓ ω′,

for a given generalized Moens family P : B → U . Let u : a→B b be an arrow in B.
The transport functors are given by

u!(f : x→P z ω
′(a)) = ω′(u) ◦ f : x→P b ω

′(b),

u∗(g : x→P z ω
′(b)) = ω′(u)∗g : y ×ω′(b) ω

′(a)→P b ω
′(b).
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We first verify Condition 1. A pullback in P z ↓ ω′(a) ≃ P z/ω′(a) is given by
pullback in P z fibered over ω′(a). The action of u! on this diagram is given by
postcomposing with ω′(u) : ω′(a)→ ω′(b):

• •

• •

ω′(a) ω′(b)

⌟

This, in turn, constitutes a pullback in P z/ω′(b) ≃ P z ↓ ω′(b) again, as desired.
We now turn to Condition 2. As for the unit, consider the following induced

decomposition diagram:

x x′ x

y y′ y

ω′(a) ω′(a) ω′(b)

ηf

ω′(u)

f◦ω′(u)

αα

⌟

⌟

f
ηg

g g◦ω′(u)

⌟

In the right-hand prism diagram, the front and back squares are pullbacks by con-
struction, therefore the top one is, too. Since the composite square on the top is
a pullback as well, so is the top square of the left-hand prism. This proves the
condition.

Analogously, the counit square appears in the following decomposition where the
back and front composite squares are pullbacks:

x′ x′ x

y′ y′ y

ω′(a) ω′(b) ω′(b)

εf

α

ω′(u)∗f

ω′(u)

gω′(u)∗g

⌟

f
εg

⌟

We only need to argue that the top square of the right-hand prism is a pullback,
but this is clear since the composite square is a pullback, and it factors as indicated
over the identities. □
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