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Quantum gas microscopes have revolutionized quantum simulations with ultracold atoms, allowing
to measure local observables and snapshots of quantum states. However, measurements so far
were mostly carried out in the occupation basis. Here, we demonstrate how all kinetic operators,
such as kinetic energy or current operators, can be measured and manipulated with single bond
resolution. Beyond simple expectation values of these observables, the single-shot measurements
allow to access full counting statistics and complex correlation functions. Our work paves the way for
the implementation of efficient quantum state tomography and hybrid quantum computing protocols
for itinerant particles on a lattice. In addition, we demonstrate how site-resolved programmable
potentials enable a spatially-selective, parallel readout in different bases as well as the engineering
of arbitrary initial states.

Analog quantum simulators offer a promising route
towards practical quantum advantage, being robust in
the measured observables and against small imperfec-
tions [1–4]. Among those, neutral atoms in optical lat-
tices are ideal candidates for simulating a large vari-
ety of condensed matter models [5, 6], providing ac-
cess to single-atom and single-site resolved detection of
(non-local) correlation functions and counting statistics
through quantum gas microscopy (QGM) [7–9]. How-
ever, most measurements in these platforms so far were
carried out in the occupation basis, limiting the range
of state-preparation and read-out protocols that can be
implemented. A measurement of the current operator
would for example aid in the study of non-equilibrium
dynamics by allowing to probe information scrambling
through bond-resolved local currents and off-diagonal
correlations [10, 11], as well as in the simulation of inter-
acting topological phases that host equilibrium currents
and current vortices [12, 13]. Furthermore, a measure-
ment in a complete basis would enable the implemen-
tation of Hamiltonian learning, which is a promising ap-
proach for benchmarking analog quantum simulators [14–
17].

In this Letter, we demonstrate how – in addition to
the density – the kinetic energy and the current opera-
tors, or any linear combination of the two (kinetic oper-
ators), can be measured and controlled with local reso-
lution using optical superlattices. Optical superlattices
enable parallel high-fidelity nearest-neighbor manipula-
tions, which have been used to generate a large number
of entangled atom pairs based on superexchange inter-
actions as well as scalable entanglement [18–21]. Here,
we use superlattices to project a many-body system on
a two-dimensional (2D) lattice onto isolated double wells
(DWs), as depicted in Fig. 1a. The sites of the DW form a
two-level system, where tunnel coupling J and a potential
energy difference ∆ can be interpreted as Pauli-X and Z
operations (Fig. 1b). This has been used in an earlier ex-
periment to measure a spatially-averaged current opera-
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Figure 1. Programmable rotations using double-well
potentials. (a) A system evolving under a lattice Hamil-

tonian Ĥmod with coherent tunneling is projected onto iso-
lated double wells (DWs), which are created using a bichro-
matic optical superlattice. Simultaneously in all DWs, a pro-
grammable operation is applied according to ĤDW [defined in
the main text and panel (b)] to locally rotate the measurement
basis. The occupation in the DWs is then frozen and read out
with local resolution. (b) Atomic operations in a DW poten-
tial, forming a two-level system out of the states |L⟩ and |R⟩.
A symmetric, coupled DW with coupling strength J realizes
an X rotation (left). A strongly tilted DW with tilt ∆ imple-
ments a Z rotation (right). (c) The rotations are used to map

the current ĵ and the kinetic energy operator T̂ onto density
imbalance ∆n̂ for local read-out. With this, all components
of the Bloch vector S = (σ̂x, σ̂y, σ̂z) are experimentally acces-
sible.

tor [22]. In this work we extend these ideas and combine
them with local resolution and manipulation techniques.
We further demonstrate arbitrary rotations in the DWs
by combining X and Z operations (Fig. 1c). This is
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used to measure the current and kinetic-energy operator
with local resolution and in a single experimental realiza-
tion, providing access to correlations and counting statis-
tics [23]. We further apply site-resolved programmable
potentials to perform spatially-selective basis rotations
as well as coherent manipulations to engineer states with
flexible density and phase patterns, including states with
local coherent superpositions. Our technique is directly
applicable to interacting quantum systems given that in-
teractions can be switched off during the DW manipula-
tions [24, 25].

Experimental scheme. We create an optical super-
lattice potential by superimposing two standing waves
differing by a factor of two in wavelength, which re-
sults in a potential of the form Vsl(x) = Vs cos2 (ksx) +
Vl cos2 (klx+ ϕsl/2) [26]. Here Vs(l) is the lattice depth,
ks(l) = π/as(l) the wave vector of the short(long)-
period lattice [with as(l) being the lattice constant of the
short(long)-period lattice, where as = 383.5 nm = al/2]
and ϕsl the superlattice phase. This realizes a periodic ar-
ray of tunable DWs (see Fig. 1b). For a deep long-period
lattice, the inter-DW coupling is negligible and the states
|L⟩ and |R⟩ in each DW form a two-level system with

the Hamiltonian ĤDW = −Jσ̂x − ∆
2 σ̂z, where J is the

coupling matrix element between the two wells, ∆ is the
energy difference between the states and σ̂i (i = {x, y, z})
are the Pauli operators. For symmetric DWs (∆ = 0),
an X rotation is realized (Fig. 1b, left), while a strongly
tilted, decoupled DW (∆ ≫ J) implements a Z rotation
(Fig. 1b, right).

Local site-resolved densities ⟨n̂L,R⟩ are directly acces-

sible in experiments. Here, n̂i = â†i âi is the bosonic

number operator and â†i the bosonic creation operator
for the state i (i = {L,R}), respectively. A measurement
in the Z-basis then corresponds to probing the density
difference within one DW, i.e., ∆n̂ = n̂L − n̂R = σ̂z. In
contrast, the local current between the two wells can be
defined for a Hubbard model with real-valued tunneling

J as ĵ = iJ
(
â†RâL − â†LâR

)
= Jσ̂y [22, 23], requiring a

measurement in the Y basis. Similarly, a measurement
in the X basis gives the expectation value of the kinetic

energy operator T̂ = −J
(
â†RâL + â†LâR

)
= −Jσ̂x.

To measure the kinetic operators experimentally, we
use the DW dynamics to map them onto density imbal-
ance ∆n̂. As illustrated in Fig. 1c, the current can be
mapped onto the density via an Xπ/2 rotation, and the
kinetic energy by concatenating a Zπ/2 rotation with an
Xπ/2 rotation (cf. also Fig. 2e). In particular, the den-
sity difference after an Xπ/2 rotation can be written as

⟨∆n̂⟩ = −⟨ĵ⟩/J , and after a (Zπ/2, Xπ/2) sequence as

⟨∆n̂⟩ = −⟨T̂ ⟩/J (see SM for a derivation). This realizes
a single-shot readout of the density, kinetic energy and
current with local resolution.

Results. The experimental sequence starts by loading
ultracold cesium atoms into a 2D optical lattice potential
that consists of a superlattice in the x direction as well

as a single-color lattice in the y direction, leading to an
array of DWs along x (see SM and Refs. [27, 28] for
details). We prepare a product state where all DWs are
initialized with one particle in |L⟩, which has a maximum
imbalance I = (nL − nR)/(nL + nR) of typically 0.93(4)
(see SM for details on the initial-state quality). Both
short lattices (x, y) are at a depth of 45Er,s and the long
lattice in x is at a depth of 45Er,l [Er,s(l) = h2/(8ma2s(l))

is the recoil energy of the short(long) lattice, h is Planck’s
constant and m is the atomic mass of cesium].

We implement an X rotation by setting the super-
lattice phase to zero (symmetric DWs), quenching the
short lattice depth along x to 12Er in 200 µs and let-
ting the state evolve for a controllable duration. This
leads to high-contrast imbalance oscillations as shown
in Fig. 2a. From the fit we determine a tunnel
coupling of J = h× 484.3(5) Hz, corresponding to a π
time of tπ = 449(3) µs, and a 1/e decay constant of
τ = 57(13) ms. Using the decay envelope we estimate
the fidelity of a single Xπ pulse as F = 99.2(2) % (see SM
for details). This fidelity is mostly limited by spatially-
inhomogeneous potential energy variations which detune
the DWs locally and modify the oscillation frequency ac-
cording to f =

√
4J2 + ∆2/h.

Next, we demonstrate Z rotations using a Ramsey se-
quence. After an Xπ/2 pulse, we jump the superlattice
phase away from the symmetric configuration, causing
the Bloch vector to rotate on the equator as the super-
position of |L⟩ and |R⟩ time-evolves in the tilted DW
potential (cf. Fig. 1b). This evolution is probed using a
secondXπ/2 pulse, yielding oscillations that reveal the ro-
tation of the state vector along the equator (Fig. 2b). The
oscillations correspond to a tilt of ∆ = h× 2.406(5) kHz,
and exhibit a damping that is consistent with an on-site
white noise disorder of amplitude W = h× 49(2) Hz (see
SM for details). The envelope can also be approximated
by a single exponential, giving a T ∗

2 time of 6(1) ms (1/e
decay).

Here, dephasing occurs faster compared to X rota-
tions, as local potential variations modify the tilt linearly,
in contrast to the quadratic correction for X rotations.
To cancel the dephasing due to static potential disor-
der, we employ a spin-echo sequence as shown in Fig. 2c.
We determine a T2 time of 113(10) ms (Fig. 2d), corre-
sponding to around 270 interaction times at the previ-
ously measured ∆. The T2 time is more than an order of
magnitude larger than the T ∗

2 decay of the Ramsey signal
and confirms that the dephasing is dominated by static
potential inhomogeneities (see SM for an estimation of
the dynamic disorder).

We use the rotations introduced above to perform
a global measurement in all three Pauli bases. As
an example, we prepare equatorial states of the form
(|L⟩ + eiφ |R⟩)/

√
2 by concatenating a Xπ/2 pulse and

a Z pulse of variable duration to tune the equato-
rial angle φ. We then measure the density (σ̂z), the
current operator (σ̂y) and the kinetic energy operator
(σ̂x) (see Fig. 2e). The result of this is shown in
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Figure 2. Global double-well operations and rotations of the measurement basis. (a) X rotation starting with the
DWs initialized in |L⟩. Vs denotes the depth of the short lattice, which sets the tunnel coupling J inside the well, and ϕsl is the
superlattice phase. The solid line is a fit to an exponentially damped sine, yielding an imbalance oscillation corresponding to a
tunnel coupling of J = h× 484.3(5)Hz. The data has been evaluated in a region of interest (ROI) spanning 28× 32 sites, and
the error bars are the standard error of the mean (s.e.m.) over 6 repetitions for each data point. (b) Z rotations and Ramsey
sequence. A Z rotation is achieved by jumping the superlattice phase to around 0.1 rad away from the symmetric point. The
solid line is a fit to a numerical model accounting for on-site potential disorder (see SM for details). The evaluation ROI was
16× 30, and the error bars are the s.e.m. over 4 repetitions. (c) Spin-echo sequence. Example trace for tint = 30ms, recorded
by varying the time offset ∆t in the second Z rotation. The solid line is a fit of a sine with a Gaussian envelope function. The
evaluation ROI was 40 × 40 sites, and each data point is averaged over 5 repetitions. (d) Measurement of the T2 time using
the spin-echo sequence. For each data point, the imbalance contrast was evaluated by varying the pulse offset and fitting the
resulting imbalance oscillation. The solid line is an exponential fit excluding the first point, from which we determine a T2 time
of 113(10)ms (defined as the time where the contrast has decreased to a fraction of 1/e of the first data point). The error bars
are the standard errors of the fit, other evaluation details as in panel (c). (e) Scheme to determine density, current and kinetic
energy for the states lying on the equator of the Bloch sphere. (f) Measurement result as a function of the equatorial angle
φ. The solid lines for the current (yellow) and the kinetic energy (purple) are fits to a sine. The solid line for the density is

a fit to a constant function. The gray data points show the length of the Bloch vector |S| =
√

⟨σ̂x⟩2 + ⟨σ̂y⟩2 + ⟨σ̂z⟩2, which is

0.81(6) on average (solid gray line). The zero of the horizontal axis has been calibrated on the first minimum of the σ̂y trace.
The evaluation ROI was 18× 36 sites, and the error bars are the s.e.m. over 3 repetitions.

Fig. 2f. As expected for equatorial states, ⟨σ̂z⟩ is zero
and time-independent, while both the expectation val-
ues for the current and the kinetic energy show high-
contrast oscillations with a relative phase shift of π/2.
We also determine the length of the Bloch vector as

|S| =
√
⟨σ̂x⟩2 + ⟨σ̂y⟩2 + ⟨σ̂z⟩2, yielding an average length

of 0.81(6). This value is expected to be predominantly
limited by the preparation of the equatorial states.

The operations above allow to measure the entire sys-
tem in the same basis. In addition, using local control,
we can simultaneously measure different parts of the sys-
tem in different bases. This can for example be used to
enhance the measurement sensitivity for metrology ap-
plications [29], as well as to access non-trivial correlators
between current and kinetic energy. In particular, we em-
ploy a digital micromirror device (DMD) to project pro-
grammable repulsive potentials and locally tilt selected
DWs. As an example, we perform global X rotations
and simultaneously tilt every other DW, as illustrated
in Fig. 3a. The tilted DWs can be seen oscillating at a
higher frequency and at a smaller amplitude, as expected

from detuned Rabi oscillations. The maximum possible
tilt is limited by the available power of the DMD light
as well as the resolution, where the latter causes light
to spill over into adjacent sites and reduce the differen-
tial tilt. A spatially-resolved evaluation reveals that this
manipulation is also possible in a parallel fashion across
extended regions of the system (see panel on right-hand
side of Fig. 3a).

A second application lies in programming local Z rota-
tions using DMD-imprinted tilts. We leverage these for a
Ramsey-like sequence as shown in Fig. 3b. In particular,
we locally apply Zπ rotations on every other DW, im-
printing a π relative phase into the local initial state.
Scanning the duration of the first X pulse results in
strong out-of-phase oscillations with a fitted phase shift
of Φ = 1.04(2)π. This can immediately be used to realize
a simultaneous measurement of current and kinetic en-
ergy in different locations using a local Zπ/2 rotation, or
more generally for constructing spatially more complex
observables.

Besides changing the measurement basis, the local ro-
tations can also be used for the precise coherent engineer-
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Figure 3. Local programmable double-well operations. (a) Locally detuned X rotations. Using a digital micromirror
device (DMD), we project a repulsive potential that locally tilts every other DW in a one-dimensional (1D) superlattice
potential. The DMD mask consists of bright stripes with a width of 0.6 as, which is broadened by the point-spread function to
∼ 1 − 2 as. The solid lines are fits to a sine, yielding a differential tilt of ∆ = h × 797(13)Hz. Evaluation ROI: 24 × 24 sites,
and the spatially-resolved plot is averaged over the perpendicular direction. Error bars show the s.e.m. over 3 repetitions, and
are sometimes smaller than the marker size. (b) Local Z rotations, implemented by tilting every other DW along a 1D chain.
The Z pulse area was chosen to be around π, which is visualized by scanning the duration of the first X pulse, resulting in
out-of-phase imbalance oscillations. The solid lines are fits to a sine, yielding a relative phase shift of 1.04(2)π. Evaluation
details as in (a). (c) State engineering using locally-detuned DW oscillations with the programmed mask shown on the left.
The panel on the right shows a single fluorescence image of the resulting |110011...⟩ state. (d) Averaged occupation for the
state in (c), computed from 30 repetitions. (e) State engineering in two spatial dimensions (mask on the left), resulting in a
checkerboard-like state of 4× 2 site blocks. The panel on the right shows a single fluorescence image. (f) Averaged occupation
for the state in (e), computed from 30 repetitions.

ing of complex spatially-structured states. As an exam-
ple, we use locally-detuned X rotations, where the im-
printed tilt is chosen such that a minimum in the detuned
DW imbalance coincides with a maximum in the bare
DWs (e.g. around tX = 1.3 ms in Fig. 3a, see SM for de-
tails on the sequence). Sitting at this point, we can coher-
ently transfer the initial |101010...⟩ state into |110011...⟩.
In Fig. 3c, this is demonstrated using a DMD mask that
is translationally invariant in the direction perpendicular
to the DWs. The averaged occupation (Fig. 3d) indicates
a filling of 86(4) % in the occupied, and 7(2) % in the
empty stripes. Within the error bar, the quality of the
engineered state is equal to the initial state, suggesting
a high preparation fidelity (see SM for the initial-state
quality). Similarly, we can choose a DMD mask that has
an alternating pattern in the direction perpendicular to
the DWs. This realizes a checkerboard-like state made
up of 4 × 2 site blocks (Fig. 3e,f) with similarly high av-
erage fillings of 84(5) % in the occupied, and 8(3) % in
the empty blocks. The attainable preparation fidelities
are mostly limited by the resolution of the DMD projec-
tion system as well as a correct alignment of the projected
mask relative to the lattice. Note that we achieve consid-
erable differential tilts and transfer fidelities despite our
particularly small lattice spacing of as = 383.5 nm. At
a larger lattice spacing or with a better resolution, this
scheme can be expected to allow for even more robust
high-fidelity operations.

Lastly, we would like to highlight that the single-shot
and locally-resolved nature of the presented measure-
ments furthermore enable the extraction of correlation
functions. This is crucial, for example when spatial fea-
tures are not stationary between individual shots. An
illustrative example for this is found in laser-assisted tun-
neling schemes that are used to engineer artificial gauge
fields with complex-valued tunnel couplings [30–32]. In
our experiment, we employ a running-wave modulation
that induces tunnel couplings with a complex phase fac-
tor increasing by about π/2 per bond in both spatial di-
rections (see Fig. 4a). The ground states of isolated DWs

subject to this modulation is |ψ⟩ = (|L⟩ + eiφ |R⟩)/
√

2,
where φ is the local bond phase. In this state, the sys-
tem has a homogeneous, constant density without any
dependency on time and space, hindering a measurement
of the local phase in the Z basis. The expectation value
of the current operator for this state is ⟨ĵ⟩/J = sinφ,
indicating that a current measurement can be performed
to reveal this spatially-varying phase pattern. However,
due to the running-wave, the global phase of this pat-
tern varies randomly between experimental realizations,
washing out any signal in the averaged current opera-
tor (Fig. 4b). Instead, we can detect the phase pat-
tern by evaluating the connected 2D current-current cor-
relation function Cc

x,y = ⟨ĵi,j ĵi+x,j+y⟩ − ⟨ĵi,j⟩⟨ĵi+x,j+y⟩,
where ĵi,j denotes the current on the DW at location
(i, j) in the 2D lattice.
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Figure 4. Resolving spatially-varying complex tun-
nel couplings using current-current correlations. (a)
Scheme to generate spatially-varying tunnel coupling phases
using a running-wave modulation created from the interfer-
ence of two laser beams with wave vectors k1,2. The geo-
metric arrangement results in a π/2 advancing phase pat-
tern. The local phase φ between sites can be revealed us-
ing a current measurement, as the local current is given by
⟨ĵ⟩/J = sinφ. The color coding on the bonds illustrates
the expected current-current-correlations. Due to the pro-
jection onto isolated DWs, only every second phase in the x
direction is accessible (light shading). (b) Averaged current
signal, computed from 50 realizations. Due to the random
phase offset φ0 of the running wave in every shot, the aver-
age current is featureless. (c) 2D connected current-current
correlator revealing the underlying phase pattern. Experi-
mental data from 50 averages (left), fit to a theoretical model
(middle) and fit residuals (right). The fit yields an amplitude
of A = 0.777(3), a common-mode angle between the laser-
assisted tunneling beams and the lattice of θc = 1.802(3) ◦ as
well as a relative angle deviation from 90 ◦ of θr = −0.558(8) ◦,
where the uncertainties are understood as the standard errors
of the fit (see SM for details on the fit).

Fig. 4c shows the experimentally measured 2D corre-
lation function (left panel), which, focusing on small dis-
tances (dx,y ≲ 4), matches our expectation given the
phase pattern in Fig. 4a. For larger distances, we find
Moiré fringes, which arise from a slight angular misalign-
ment between the lattice base vectors and the running-
wave modulation beams away from π/2. As can be seen
in Fig. 4c (middle and right panel), we find excellent
agreement with a theoretical model that accounts for
relative angles (see SM for further details on the fitting
model). The measured correlator amplitude is around
78% of the ideal value, which we believe to be mostly
limited by a non-adiabatic ground state preparation.

Conclusion. We have demonstrated how optical super-

lattices can be used to greatly enhance the capabilities
of quantum gas microscopes through the measurement
of the current and kinetic energy operators with local
resolution and within a single experimental realization.
This will enable the implementation of efficient quantum
state tomography schemes [33–37], as well as measure-
ments of the total energy of a quantum state and Hamil-
tonian learning [14–17]. Furthermore, this enables to per-
form band structure spectroscopy to directly measure the
(many-body) energy spectrum [38, 39]. The presented
scheme can also find application in realizing hybrid quan-
tum computing approaches with neutral atoms such as
e.g. variational quantum algorithms [40–44]. For this,
particularly high fidelities of the rotations are important,
which can be achieved for example using composite pulse
sequences that cancel different inhomogeneities [45–47].
The locally realized current measurements will also al-
low to detect exotic many-body states with trivial signa-
tures in density observables, such as strongly-interacting
topological phases with equilibrium currents and quan-
tum Hall states [12, 13, 23].

Lastly, the possibility to perform local manipulations
can be used to engineer states for the study of for ex-
ample thermalization under constrained dynamics such
as Hilbert space fragmentation [48], lattice gauge theo-
ries [6, 49], as well as to perform pair-wise entangling
gates for quantum simulation [21].
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I. INITIAL STATE PREPARATION

Our experiment begins by loading a BEC of 133Cs
atoms into a single plane of a large-spacing vertical lat-
tice as described in Refs. [1–3]. Radial confinement
is provided by a blue-detuned box potential, which we
project onto the sample using a digital micromirror de-
vice (DMD) that is illuminated with incoherent light
from a multi-mode laser diode (λ = 525 nm). To lower
the temperature further, we perform forced optical evap-
oration by exponentially decreasing the depth of the ver-
tical lattice.

The initial states for the experiments presented in the
main text are created by preparing a unity-filling Mott-
insulating (MI) state in a 2D horizontal optical lattice.
The x axis is made with long-lattice light of wavelength
λl = 1534 nm, and the y axis with short-lattice light at
λs = 767 nm. We ramp from the initial superfluid to the
MI state using a two-step sigmoid ramp with a total ramp
duration of 400 ms. The final lattice depth is 45Er,s(l) in

the short(long) lattice, where Er,s(l) = h2/(8ma2s(l)) is

the recoil energy of the short(long) lattice, h is Planck’s
constant and m is the atomic mass of cesium. During the
lattice potential ramp, we increase the magnetic field to
31.5 G, tuning the scattering length from around 280 a0
to approximately 500 a0. After this, the short lattice po-
tential in the x direction is increased over 50 ms to 45Er,s

in presence of a finite superlattice phase offset (∼ π/15),
realizing tilted double wells. Due to the tilt, all atoms lo-
calize in the lower wells, denoted as |L⟩. This enables an
initial-state preparation with a typical filling of 88(4)%
in the occupied rows and 6(3)% in the empty rows at
an average imbalance of 0.88(6), counting all sites in a
region spanning 30 × 36 sites. When post-selecting on
double-wells with exactly one atom, we obtain a filling
of 97(2)% in the occupied rows and 3(2)% in the empty
rows at an average imbalance of 0.93(4).

II. DETECTION

For fluorescence imaging of 133Cs atoms in optical lat-
tices, optical molasses on the D2 transition is applied,
and the scattered photons are collected by a high numeri-
cal aperature (NA = 0.8) objective lens. To pin the atoms
during the imaging, we abruptly ramp up the optical lat-
tice depth to around 500 µK. We obtain a fluorescence

image using an sCMOS camera with an exposure time
of 400 ms. The lattice spacing is more than two times
smaller than the resolution of the imaging system and in
order to reconstruct the lattice occupations we employ
an unsupervised deep learning algorithm that has been
trained directly on our experimental images [1].

III. SUPERLATTICE PHASE

Our square superlattice consists of retro-reflected
bichromatic optical lattices with wavelengths of 767 nm
and 1534 nm. To control the superlattice phase, we uti-
lize a beat note between the 767 nm laser and frequency-
doubled light from the 1534 nm laser. This beat note is
locked to a variable frequency offset using a phase-locked
loop (Vescent D2-135), which feeds back on the frequency
of the 1534 nm laser using a piezo actuator.

A crucial ingredient to implement Z rotations is the
possibility to suddenly (much faster than the dephasing
time, i.e., < 1 ms) change from symmetric double wells
(∆ = 0) to tilted double wells (∆ ≫ 0). Since the feed-
back loop bandwidth itself is relatively small with a rate
of around δ∆/δT = (h × 150 Hz/1 ms) for the lattice
depths used in Fig. 2 of the main text, we make use of
the feed-forward input of our loop controller to imple-
ment jumps faster than the feedback bandwidth. Here,
an analog signal is summed onto the feedback servo out-
put, allowing changes that are limited only by the actua-
tor bandwidth. We calibrate the necessary feed-forward
voltage by doing a slow ramp to a final tilt without any
feed-forward and recording the resulting change in the
servo output voltage.

IV. π/2-PULSE CALIBRATION

The pulse duration for an Xπ/2 pulse is calibrated us-
ing bare double-well oscillations as shown in Fig. 2a of
the main text. Due to the finite ramp durations, during
which some of the dynamics already take place, it is cru-
cial to calibrate the pulse duration with both ramps in
place (as illustrated in the left hand side of the Figure).
Here, each lattice depth ramp takes 200 µs. We set the
pulse duration to the duration for which the imbalance
vanishes. Additionally, we verify this by concatenating
two individual Xπ/2 pulses, where the resulting imbal-
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ance has to match the maximum imbalance of roughly
one. The Xπ pulse duration is calibrated equivalently,
where the duration is given by the one that inverts the
imbalance. Due to the finite duration of the ramps, we
find that the duration of an Xπ/2 and an Xπ pulse do
not differ exactly by a factor of two and hence have to
be independently calibrated.
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Figure S1. Xπ pulse fidelity estimation through tunnel
oscillation decay. Bare double-well oscillations for longer
overall hold times compared to Fig. 2a of the main text. The
solid line is a fit to an exponentially-damped sine, and the
dashed lines are the exponential envelopes. The fit describes
the decay of the imbalance contrast well, and we use the fitted
decay constant of τ = 57(13)ms to estimate the fidelity of a
single π pulse. The data has been evaluated in a ROI spanning
28 × 32 sites, spatially averaging over all DWs. In addition,
each data point has been averaged over several realizations (20
for the shorter pulse durations, 5 for the longer ones), and the
error bars denote the standard error of the mean (s.e.m.). If
invisible, they are smaller than the marker size.

V. CALIBRATION OF STATE PREPARATION
ERRORS

Due to finite temperature and imperfect initial state
preparation, not all double wells are initialized in |L⟩.
There is a small fraction of double wells in |R⟩ as well
as double wells with zero or two atoms. For the data
analysis, we remove the latter cases by post-selecting on
double wells with exactly one atom. Here, it is crucial
to identify the location of the double wells and choose
the correct of the two possibilities to partition into DWs.
We decide this by analyzing the intra-double well cor-
relations CLR = ⟨n̂Ln̂R⟩ − ⟨n̂L⟩ ⟨n̂R⟩ as well as the frac-
tion of removed double wells. For the wrong partition-
ing, we find uncorrelated wells (CLR ≈ 0) and a large
fraction of removed samples, while the correct cutting
gives a negative correlation (CLR ≈ −0.15) as expected
and a typical fraction of removed DWs on the order of
10%. The wrongly-occupied DWs are not taken into ac-
count when computing average quantities. After these
post-processing steps, any remaining errors stem from
double-wells that are wrongly initialized in |R⟩ as well as
detection infidelities.

VI. Xπ PULSE FIDELITY ESTIMATION

To estimate the fidelity of an Xπ pulse, we record
X rotations for many periods in order to extract a de-
cay envelope. As shown in Fig. S1, the decay is well-
described by a single exponential with a fitted decay
constant of τ = 57(13) ms. We then define the fidelity
as the ratio between the initial imbalance and the im-
balance after a single Xπ pulse, which yields a fidelity
of F = 99.2(2) %. This fidelity is evaluated on a large
region spanning 28× 32 sites, which is sensitive to large-
scale potential inhomogeneities. By diminishing the size
of the ROI for evaluation, even higher fidelities can in
general be obtained.

VII. DISORDER ESTIMATION USING SLOW
GLOBAL X ROTATIONS

We estimate the on-site potential disorder in our sys-
tem using global X rotations at a low tunnel coupling.
The results are shown in Fig. S2, where we recorded
global X rotations for three different tunnel couplings.
For a smaller tunnel coupling, the oscillations dephase
faster and become more localized toward the initial state,
which is quantified by a non-zero late-time imbalance.
From this steady-state imbalance offset, we can extract
an estimate for the on-site potential disorder strength W
as

W/J =

√
6 ⟨I⟩ /I0

1 − ⟨I⟩ /I0
, (S1)

which can be derived from the single-particle dynamics
in isolated DWs assuming a white-noise on-site disorder
sampled from [−W,W ]. Here, ⟨I⟩ is the steady-state
and I0 the initial imbalance, respectively. We find W =
h× 100(5) Hz, which is in good agreement with previous
measurements in our experimental setup [2].

VIII. BENCHMARKING OF THE GLOBAL
RAMSEY AND SPIN-ECHO MEASUREMENTS

A. Global Ramsey measurement

The damping of imbalance oscillations during a global
Ramsey measurement (Fig. 2b) can be attributed to the
ensemble dephasing due to random on-site potential dis-
order that locally changes the frequency at which a state
evolves on the equator. To get an estimate for the mag-
nitude of the on-site disorder, we assume that the on-
site potential δ is randomly sampled from [−W,W ] (i.e.
a white-noise disorder). This means that a single dou-
ble well can have – in addition to the global tilt – a
tilt between −2W and 2W . In our model we simulate
the time evolution of an ensemble of 10,000 double wells,
each occupied by a single particle only. The number of
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Figure S2. Disorder estimation using global X rota-
tions. Global X rotations for three different, low-magnitude
tunnel couplings. From these, we can estimate the disorder
amplitude through Eq. (S1). The solid green curves in the
individual X rotation traces are fits to exponentially-damped
sines, and the horizontal gray lines are the extracted late-
time imbalance offsets. In the bottom panel we plot the com-
puted disorder amplitude against the fitted tunnel coupling
for each trace. We extract an average disorder amplitude of
W = h × 100(5)Hz (gray line is the average value, shaded
area is the 1σ-deviation). This data has been evaluated in a
ROI of 36× 40 sites size. Error bars denote the s.e.m.

double wells that are initially in |L⟩ and |R⟩ is set to
match the imbalance extracted from the X rotation data
I(t = 0) = 0.91 (see Fig. 2b). We then fit the exper-
imental data using this model with the disorder ampli-
tude W , global tilt during the Z rotation ∆, and a small
time offset of the imbalance oscillations as free fit pa-
rameters. The fit and the data are shown in Fig. 2b of
the main text, and we find W = h× 49(2) Hz, global tilt
∆ = h × 2.406(5) kHz and time offset 0.349(5) ms. The
value of the on-site disorder is smaller than the value es-
timated using tunnel oscillations (see SM Section VII.)
since we perform the global Ramsey measurement in a
smaller ROI with smaller on-site disorder.

B. Spin-echo measurement

To model the spin-echo measurement (Fig. 2c) we fol-
low the same numerical approach as for the global Ram-
sey measurement, simulating time evolution of 5,000 dou-
ble wells and directly fitting the experimentally-measured
data with the numerical model. The number of double
wells that are initially in |L⟩ and |R⟩ is fixed by fitting
the experimentally-measured spin-echo imbalance oscil-
lations with a simple sine fit with Gaussian envelope and
reproducing the fitted amplitude 0.663(1). The free fit
parameters in this case are the on-site disorder ampli-
tude W , global tilt ∆ and a small time offset. A stronger
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Figure S3. Spin-echo measurement and the T2 time.
Simulated spin echo contrast as a function of the interaction
time tint. In order to explain the finite T2 time, we assume
additional on-site potential disorder that changes in time on
a slow timescale (modelled by additional white-noise disor-
der sampled from [−Wdyn,Wdyn] in the second Z pulse of
the spin-echo sequence). Initial-state imbalance is chosen to
match the measured contrast at t ≈ 0. Each solid line in this
Figure corresponds to a different dynamical disorder ampli-
tude Wdyn and is calculated using 20,000 double well samples.
As expected for a spin-echo sequence, we see that in absence
of additional dynamical disorder the contrast does not de-
crease with the total interaction time. There is a good agree-
ment between the experimentally measured contrast and the
simulation for a dynamical disorder amplitude Wdyn of only
h× 4− 6Hz.

on-site disorder leads to stronger ensamble dephasing
and shorter period of rephasing during the spin-echo se-
quence. The fitted disorder amplitude W = h× 53(2) Hz
is consistent with value obtained from the global Ramsey
measurement.

In order to explain the measured T2 time (Fig. 2d),
we assume that our on-site disorder is not entirely static
but has some time-dependence. To estimate the mag-
nitude of the time-dependent on-site disorder contribu-
tion, we add a disorder randomly sampled from interval
[−Wdyn,Wdyn] to the second Z pulse of the spin-echo se-
quence. Using 20,000 double well samples and the same
method as for the experimental data to extract the T2
time (see caption of Fig. 2d), we find that a dynami-
cal contribution to the on-site disorder with magnitude
Wdyn ≈ h× 4 − 6 Hz can explain the observed data (see
Fig. S3).

IX. SEQUENCE AND CALIBRATION OF THE
MASK ALIGNMENT FOR LOCAL

MANIPULATION

We use a digital micromirror device (DMD, Texas In-
struments DLP6500, interface by bbs Bild- und Licht-
systeme GmbH) illuminated by laser light coming from
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Figure S4. Scan of the mask offset relative to the lat-
tice. Imbalance in the even and odd DWs as a function of the
shift of the mask relative to the lattice, varied over one full pe-
riod of the mask along the direction of the double wells. The
underlying sequence is based on locally-detuned double-well
oscillations, where the pulse duration is fixed corresponding
to a π pulse in the bare double wells. The scan shows four
optimal points (i.e. where the imbalance difference between
even and odd DWs is the largest), corresponding to the mask
being aligned with either of the four lattice sites. The zoom-
in plots show the alignment of the mask with respect to the
double-well structure for three selected points.

a multimode laser diode (λ = 525 nm and spectral width
of several nanometers) to project programmable light po-
tentials. Apart from projecting a blue-detuned box po-
tential, we can also locally tilt selected double wells. Do-
ing this with high fidelity and homogeneity across larger
system sizes requires a good alignment between the mask
and the lattice. We fix rotation and spatial scaling using
an affine transformation that maps pixels on the DMD to
lattice sites in the recorded images, which we calibrate by
projecting tweezers using the DMD and observing where
the tweezers lie in the lattice. However, this method does
not capture a shift of the mask with respect to the lattice,
which, as a consequence, needs to be regularly calibrated
as the lattice drifts relative to the objective (on the scale
of 30 minutes to hours depending on drifts of environ-
mental quantities). The calibration is necessary in the
direction along the double wells when the mask is trans-
lationally invariant in the perpendicular direction (e.g.
Fig. 3c,d of the main text), or in both perpendicular di-
rections for 2D manipulations (e.g. Fig. 3e,f of the main
text).

To calibrate the shift, we use locally detuned tunnel
oscillations and fix the pulse duration to the first maxi-
mum in the bare double wells (e.g. around 0.4 ms in the
blue trace of Fig. 3a of the main text). In particular, af-
ter preparing the initial state with all DWs initialized in
|L⟩, we change the mask that is shown on the DMD from
the box potential used during evaporation to the local
tilt mask. The dynamics are then initiated by rapidly
lowering the short lattice in x to a depth of 12Er,s over

200 µs, and at the same time the power of the light that
illuminates the DMD is raised to the power that corre-
sponds to the target local tilt. We then wait for a given
amount of time (i.e. around 0.4 ms for the mask calibra-
tion) and afterwards freeze by raising the short lattice
back to 45Er,s and lowering the DMD illumination light
to zero (200 µs ramp duration).

We then scan the shift, optimizing on a maximum
imbalance difference between bare and detuned double
wells. An exemplary scan of the shift over one full period
of the mask (4 lattice sites) is shown in Fig. S4. There
are four optimal points within one period, corresponding
to an alignment of the mask with each one of the four dif-
ferent wells. Which one can in principle be chosen freely
according to the application, and to keep the mask offset
calibrated it is sufficient to record a few points around
the chosen optimum and use them for centering.

The shift scan can in principle also be used to extract
information about the resolution of the DMD imaging
system. In particular, the edge steepness as well as the
width of the different regions in the mask scan (e.g. the
minimum in the odd DW trace around zero offset) di-
rectly depends on the resolution. It is difficult to quan-
tify an exact number for our case, as the different align-
ment possibilities have a varying width and edge steep-
ness. However, to observe the broad minimum in the
odd DW trace around zero offset the resolution needs to
be comparable to around one short-lattice spacing as or
better.

X. DERIVATION OF THE DOUBLE-WELL
DYNAMICS

To derive the dynamics after projecting into isolated
DWs without making any assumptions on the (many-
body) state before projection, we time-evolve the number
operator under the DW Hamiltonian using the Heisen-
berg equations of motion.

For an X rotation, the DW Hamiltonian reads
ĤDW = −Jσ̂x. Under this Hamiltonian, the number dif-
ference operator evolves according to

n̂R(t) − n̂L(t) = [n̂R(0) − n̂L(0)] cos (2Jt/ℏ) (S2)

+ i
(
â†RâL − â†LâR

)
sin (2Jt/ℏ) . (S3)

Choosing an evolution time of t̃ = h/(8J), i.e., a π/2
pulse, causes the term proportional to the initial density
difference to drop out, and we obtain:

n̂R(t̃) − n̂L(t̃) = i
(
â†RâL − â†LâR

)
, (S4)

which is exactly the current operator

ĵ = iJ
(
â†RâL − â†LâR

)
. (S5)
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Similarly, we can compute the time evolution of the lad-
der operators under a Z rotation, described by the Hamil-
tonian ĤDW = −∆

2 σ̂z. We find

â†R(t) = â†R(0)ei∆t/ℏ (S6)

â†L(t) = â†L(0), (S7)

and, in particular, for a Zπ/2 rotation

â†R(t̃) = iâ†R(0), â†L(t̃) = â†L(0). (S8)

We insert this result into Eq. (S4), which represents a
(Zπ/2, Xπ/2) pulse sequence, and find

n̂R(t̃) − n̂L(t̃) = −
(
â†RâL + â†LâR

)
. (S9)

As postulated, this corresponds to the local kinetic en-

ergy operator T̂ = −J
(
â†RâL + â†LâR

)
.

XI. LASER-ASSISTED TUNNELING

We implement a laser-assisted tunneling scheme using
a pair of nearly perpendicular 1534 nm laser beams on top
of the superlattice potential as originally implemented
in Ref. [4]. The superlattice phase is tuned to realize
tilted double wells with a large energy offset ∆ ≫ J , such
that bare tunneling is inhibited. The frequency difference
of the two 1534 nm lasers is set to satisfy the Raman
condition, ω1 − ω2 = ∆/ℏ, which induces laser-assisted
tunneling. This scheme realizes a tunnel coupling with a
spatially-dependent phase.

We fit the experimentally recorded 2D correlation pat-
tern in Fig. 4 of the main text to the expected correlation
pattern that is parameterized by an amplitude as well as
two angles. The location of a lattice site with 2D index
(m,n) can be written as

R = masex + nasey, (S10)

where as is the lattice constant of the short-period lattice
and ex,y are the unit vectors along the two axes. Addi-
tionally, we express the wave vectors of the running-wave
modulation beams as

k1 = kR [cos (θc − θr) ex + sin (θc − θr) ey] (S11)

k2 = kR [− sin (θc + θr) ex + cos (θc + θr) ey] , (S12)

where kR = π/(2as) is the magnitude of the running-
wave wave vector, θc is a common-mode angle and θr a
relative angle between the running-wave beams. This al-
lows us to capture angular deviations from optimal align-
ment in the fit. The phase distribution ϕ(m,n) is then
given by

ϕ(m,n) = (k1 − k2) ·R + ϕ0, (S13)

where ϕ0 is a global phase offset that is random within
[0, 2π) in every shot. We fit the experimentally measured
2D correlator to the 2D connected correlator of the sine
of Eq. (S13) multiplied with an amplitude factor. Addi-
tionally, we exclude the auto-correlator for the fit, as it
is significantly stronger in the experiment, owing to an
imperfect state preparation. The fit to the experimental
data (see Fig. 4c of the main text) yields an amplitude of
A = 0.777(3), a common-mode angle of θc = 1.802(3) ◦

as well as a relative angle of θr = −0.558(8) ◦, where
the uncertainties are the standard errors of the fit. This
method enables a very precise determination of the rela-
tive angles θr and θc and, in turn, to optimize the beam
pointing and homogenize the phase distribution. Note
however that the flux per plaquette is not significantly
affected by the Moiré pattern, as it depends only on the
phase difference between adjacent bonds in the y direc-
tion.
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