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Algorithmic matching is a pervasive mechanism in our social lives and is becoming a major medium through

which people find romantic partners and potential spouses. However, romantic matching markets pose a

principal-agent problem with the potential for moral hazard. The agent’s (or system’s) interest is to maximize

the use of the matching website, while the principal’s (or user’s) interest is to find the best possible match.

This creates a conflict of interest: the optimal matching of users may not be aligned with the platform’s goal of

maximizing engagement, as it could lead to long-term relationships and fewer users using the site over time.

Here, we borrow the notion of price of anarchy from game theory to quantify the decrease in social efficiency

of online algorithmic matching sites where engagement is in tension with user utility. We derive theoretical

bounds on the price of anarchy and show that it can be bounded by a constant that does not depend on the

number of users in the system. This suggests that as online matching sites grow, their potential benefits scale

up without sacrificing social efficiency. Further, we conducted experiments with human subjects in a matching

market and compared the social welfare achieved by an optimal matching service against a self-interested

matching algorithm. We show that introducing competition among matching sites aligns the self-interested

behavior of platform designers with their users and increases social efficiency.
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1 INTRODUCTION

With the rise of online dating over the past decade, the pool of potential partners has grown from
a few thousand people you might meet in your daily life to millions of people. Space and time
constraints to meet a partner through your existing social circles are no longer a limitation with
online dating sites; you can potentially be matched with any user in any part of the world. Online
dating has enormous potential to ameliorate what for many people is a time-consuming and often
frustrating activity. “Online dating is pervasive, and has fundamentally altered both the romantic
acquaintance process and the process of compatibility matching” [9]. Indeed, 11% of American
adults and 38% of those currently single and looking for a partner have used online dating sites or
mobile dating apps [30]. In short, online dating is changing the way we find romantic partners [27].

The vast amount of people using dating services poses a challenging problem for service
providers. There are millions of potential matches—too many for a single user to search
exhaustively—so the system must decide on which potential matches to display to the user in order
to present a manageable subset. This means that online dating sites must use an algorithm to curate
what is presented to users, based on the large amount of data the system collects from them. For
example, OkCupid claims1 that their algorithm matches people using “match percentages,” which
basically quantifies how much users have in common. However, none of these algorithms are fully
disclosed.

In the early 1970s, Herbert Simon presaged that wealth of information would create attention
scarcity and thus become a new kind of currency [28]. Indeed, we see technology companies
competing for people’s attention, clicks, and loyalty. This notion, coined the “attention economy”
[8, 11], is more relevant than ever and is considered one of the most important determinants of
business success. In e-commerce, for example, more emphasis is often placed on users’ future visits
and purchases than on maximizing their long-term satisfaction [12, 21, 29]. The economic theory
of “planned obsolescence” predicts that oligopolists will profit from producing goods with shorter
durability to induce consumers to purchase more frequently [4]. There is evidence of planned ob-
solescence in the textbook market [17], where publishers introduce new editions to decrease the
value of old ones. In online dating sites, an example of planned obsolescence could be that matches
with shorter expected “durability” are deliberately suggested, and better matches are subsequently
introduced to reduce the “value” of the old matches, all in the hope of increasing the rate at which
users return to the site. This raises the following question:

How would the social efficiency of online matching sites be affected if system designers maximized

the likelihood of users returning to the site?

Put differently, since the business model of most online dating services is heavily dependent
on the number of users they have [26], this creates a fundamental conflict of interest: optimally

matching users may lead to long-term couples and fewer singles using the site, which is detrimental to

the business. Thus, a self-interested dating service provider maximizing its revenue will have as one
of its goals maximizing user engagement, which may not always align with the goal of maximizing
user utility [19]. As such, while dating sites offer users access to an unprecedented number of
potential mates, they also pose a principal-agent problem with a potential moral hazard (e.g., [1])
because the agent (the system designer) has access to more information than the principal (the
user) and different goals.

Driven by these observations, this article aims to quantify the social welfare loss that users
might experience from a dating site that maximizes engagement instead of user utility. In doing
so, we take a first step toward quantifying the maximum social welfare loss that could result from

1https://theblog.okcupid.com
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online dating sites acting selfishly. In particular, we model the centralized matching as a classical
weighted matching on bipartite graphs [22]—with the novel difference that self-interested behavior
is represented by a different objective function than the classical objective of maximizing the sum
of weights. Namely, the goal of dating sites is to maximize the number of users remaining in the
system according to a Markov decision process. To our knowledge, this is the first attempt to model
the detrimental effects of selfish (centralized) matching.

2 RESULTS

2.1 Algorithmic Matching Model

Matching in dating sites is an inherently online problem since there is not complete information
about the arriving users in the system in advance, but it is obtained incrementally. In contrast, we
first consider an offline version of the matching problem, where all users are known in advance
and are in the system from the beginning. The online matching problem is analyzed in Section 2.4.

From the perspective of a social designer, the problem of finding partners for everyone to max-
imize social welfare is modeled as a weighted matching on bipartite graphs, where weights repre-
sent how well two users are matched. We assume that users’ preferences are known.

Formally, let M := [m] and W := [n] be two finite sets of m “men” and n “women,” re-
spectively. Each user i ∈ M ∪ W is characterized by a vector of d dimensions: χ (i ) ∈ Rd

+ if

i ∈ M and κ (i ) ∈ Rd
+ if i ∈ W . This vector representation is very general and characterizes each

user through a set of d relevant features, such as age, personality traits, film preferences, and so

forth. Let wMi j := wM (χ (i ),κ (j )) ∈ [0, 1] be a measure of how well user i matches user j, and let

wWi j := wW (χ (i ),κ (j )) ∈ [0, 1] be a measure of how well user j matches user i . Note that users’

preferences are not symmetric.
For the offline model, assume that all elements in W and M are known to the system. The

system decides the (partial) distribution x := (xi j : i ∈ M, j ∈ W ), where xi j is the probability
that an element i ∈ M is assigned to j ∈ W . Define the satisfaction or utility of i ∈ M as

ui :=
∑

j ∈W wMi j xi j ∈ [0, 1] and of j ∈ W as uj :=
∑

i ∈M wWi j xi j ∈ [0, 1].

A social welfare maximizing system (from the users’ point of view) would assign a distribution x

to maximize the utility of all users:
∑

i ∈M ui +
∑

j ∈W uj . That is, it attempts to solve the following
optimization problem:

z∗sw (w) :=max
x

∑
i ∈M ui +

∑
j ∈W uj (Osw (w))

s.t. ui :=
∑

j w
M
i j xi j , for all i ∈ M (1)

uj :=
∑

i w
W
i j xi j , for all j ∈ W (2)∑

j ∈W xi j ≤ 1, for all i ∈ M, (3)∑
i ∈M xi j ≤ 1, for all j ∈ W, (4)

xi j ≥ 0, for all i ∈ M and j ∈ W . (5)

Since we are working on bipartite graphs, it is well known that this linear program will yield inte-
ger solutions when the constraint matrix is totally unimodular [15]. In other words, there always
exists an optimal integer solution to the social welfare maximizing matching problem where every
element i ∈ W is matched with only one element j ∈ M or is not matched at all.

Modeling Self-interested Behavior. Next, we introduce the concept of “user engagement” into the
matching problem. The objective function of a self-interested designer of a matching service is
to maximize this value. User engagement refers to the extent to which a user actively uses and
participates in the matching system.

ACM Transactions on Economics and Computation, Vol. 12, No. 1, Article 2. Publication date: March 2024.
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Fig. 1. Markov process with two states si,1 and si,2, representing the states of being in and out of the system,
for user i having received utility u.

We use a Markov decision process [24] to model the user engagement with the system (i.e., match-
ing service). The model has two states: si,1 and si,2, representing the states of being in and out of
the system for user i , respectively. The actions of the system are to determine what utility to give
to the user. The Markov chain is depicted in Figure 1. At state si,1 there is an infinite set of actions,
each corresponding to a utility u ∈ [0, 1]. The user moves to state si,2 with probability 1, where he
or she stays there with probability 1 − qi (u) (either for a successful relationship or for a complete
dissatisfaction with the matching service) or returns to the system (state si,1) with probabilityqi (u)
after receiving utility u.

Let qi (u) be the probability that user i ∈ M∪W will return to the system after receiving utility
u. We will make the natural assumptions2 that qi (u) satisfies:

(A1) qi (0) = qi (1) = 0;
(A2) qi (u) is twice differentiable in u ∈ [0, 1];
(A3) qi (u) is strictly concave in u ∈ [0, 1].

The intuition behind these assumptions is that users who are dissatisfied with the service (i.e.,
receive a low utility) are less likely to return, and in the extreme case of receiving zero utility, the
user will never return to the system. On the other hand, users who are paired with good matches,
such as a long-term relationship in the dating context, have less incentive to search for a new
partner. In the extreme case of receiving the maximum utility of one (i.e., a perfect match), the
user will never return to the system. Figure 2 (left) shows a family of functions satisfying these
assumptions.

The limiting probability of a Markov model represents the long-term behavior of the system. In
the context of the online dating model, the limiting probability of the Markov model represents the
long-term probability of a user being in or out of the matching service. For k ∈ {1, 2}, let πi,k (u)
be the limiting probability that the user will be in state si,k , given that the decision made by the
system yields the user utility u. Then we have

πi,1 (u) = πi,2 (u)qi (u), πi,1 (u) + πi,2 (u) = 1,

which gives

πi,1 (u) =
qi (u)

1 + qi (u)
and πi,2 (u) =

1

1 + qi (u)
. (6)

Observation 1. πi,1 (u) satisfies (A1), (A2), and (A3) (with qi replaced by πi,1).

Proof. (A1) and (A2) are immediate from Equation (6). To see that πi,1 (u) is concave inu ∈ [0, 1],
note that its second derivative is given by

π ′′i,1 (u) =
(1 + qi (u))q′′i (u) − 2(q′i (u))2

(1 + qi (u))3
,

which is strictly negative for u ∈ [0, 1] due to the strict concavity assumption on qi (·). �

2Some of these assumptions can be relaxed, but we will not do so here to keep the presentation simple.

ACM Transactions on Economics and Computation, Vol. 12, No. 1, Article 2. Publication date: March 2024.
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The system would selfishly allocate users to maximize the expected number of users returning to

the system s (u; q) :=
∑

i πi,1 (ui ). That is, the selfish central designer attempts to solve the following
optimization problem:

z∗s (w; q) :=max
x

∑
i ∈M

πi,1 (ui ) +
∑

j ∈W
πj,1 (uj ) (Os (w; q))

s.t. ui :=
∑

j w
M
i j xi j , for all i ∈ M

uj :=
∑

i w
W
i j xi j , for all j ∈ W∑

j ∈W xi j ≤ 1, for all i ∈ M,∑
i ∈M xi j ≤ 1, for all j ∈ W,

xi j ≥ 0, for all i ∈ M and j ∈ W .

In the offline case, both problems (Osw (w)) and (Os (w; q)) are subject to the same set of con-
straints (Equations (1)–(5)) and can be solved optimally in polynomial time via linear program-
ming and convex programming, respectively. Next, we quantify the loss of efficiency in the system
caused by the selfish behavior of the central designer with the notion of price of anarchy (PoA)

[20].

Definition 1 (Price of Anarchy). Let u∗sw and u∗s (q) be the optimal solutions of the problem for
the social welfare maximizing system (Osw (w)) and the selfish system (Os (w; q)), respectively.3

Define the price of anarchy PoA = PoA(q) ∈ [0, 1] as the ratio of the worst possible selfish
matching to the social optimum. Formally,

PoA(q) := min
w≥0

f (u∗s (q))

f (u∗sw )
,

where f (u) :=
∑

i ui .

2.2 Bounds on the Price of Anarchy

In this section, we present our main theoretical result, which states that the price of anarchy can be
bounded by a constant that depends only on the functions qi . This result has two implications: (1)
as online dating sites grow, their potential benefits scale without sacrificing social efficiency; (2) the
loss of social utility is primarily caused by users’ actions, and thus can be improved by modifying
users’ behavior. In other words, the system’s ability to exploit users is limited by their own actions.
This idea is further explored in the next section by modeling user behavior in a competitive market
instead of in a monopoly. It should be noted that no platform can ever have a monopoly in the
dating space, as there will always be alternative ways to meet in person.

Formally, we show that for any vector of probability functions q = (q1, . . . ,qm ) satisfying (A1)
through (A3), the price of anarchy (PoA(q)) can be bounded by a constant that depends only on
the functions qi but not on the number of usersm.

Theorem 1. LetH (q) := maxi ∈M∪W{q′i (0)} > 0, and c > 0 be the unique solution of the equation

c =
H (q)

2
· L(q, c ), (7)

where L(q, c ) = mini ∈M∪W ui (c ), and where for i ∈ M ∪W , ui (c ) ∈ [0, 1] is the unique positive

solution of the equation

c = π ′i,1 (u). (8)

3Note that u∗s is unique by the strict concavity of s (u; q).
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Then,

PoA(q) ≥ L(q, c )/2.

Proof. First, note that the solutions in Equation (7) and (8) are well defined, since the strict

concavity of qi (u) in [0, 1] implies that the function π ′i,1 (u) =
q′

i
(u )

(1+qi (u ))2 is strictly decreasing in

[0, 1], which in turn implies that the function L(q, c ) is also strictly decreasing in c ∈ [0,H (q)]. It
follows that the right-hand side of Equation (7) is strictly decreasing in c ∈ [0,H (q)] and takes a
positive value when c = 0 and a value of 0 when c = H (q), implying that the root c in Equation (7)
exists.

Fix any optimal solutions (u∗, x∗) and (û, x̂) for problems (Osw (w)) and (Os (w; q)), respectively.
Then our to goal is to lower-bound ∑

i ∈M ûi +
∑

j ∈W ûj∑
i ∈M u∗i +

∑
j ∈W u∗j

. (9)

Fix c > 0 as given by Equation (7), and let SM (c ) := {i ∈ M : π ′i,1 (ûi ) > c} and SW (c ) :=

{j ∈ W : π ′j,1 (ûj ) > c}. If one tries to bound the ratio directly by using the simple (local) lower

bound mini
ûi

u∗
i

, one runs into the difficulty that some of the ûi s could be very close to zero (though

not exactly zero, since the function s (u; q) is strictly concave). To overcome this, we use the local
bound only for users not in S (c ) := SM (c )∪SW (c ), while for users in S (c ) we use a global bound
derived from the Karush-Kuhn-Tucker (KKT) optimality conditions [33]. This is formalized in
the following two claims.

Claim 1. Suppose that i ∈ M \ SM (c ) ∪W \ SW (c ); then ûi ≥ L(q,c )
2 (u∗i + ûi ).

Proof. Immediately from the definitions, since π ′i,1 (ûi ) ≤ c , this implies, due to the concavity
of qi , that

ûi ≥ ui (c ) ≥ L(q, c ) ≥ L(q, c ) (u∗i + ûi )/2.

The last inequality follows from the definition of the utilities, which are bounded by 1, i.e., ui ∈
[0, 1]. �

Claim 2.

∑
i ∈M

u∗i +
∑

j ∈W
u∗j ≤ 1

c
�
�
∑

i ∈SM (c )
j ∈W

π ′i,1 (ûi )wi j x̂i j +
∑

j ∈SW (c )
i ∈M

π ′j,1 (ûi )wi j x̂i j
�
�
+

∑
i ∈M\SM (c )

(
ûi + u

∗
i

)
+

∑
j ∈W\SW (c )

(
ûj + u

∗
j

)
(10)

Proof. Consider problem (Os (w; q)). By the KKT (necessary) conditions for optimality (which

are also sufficient since the functions πi,1 (·) are concave by Observation (1)), there exists β̂i ≥ 0,
σ̂j ≥ 0, and μ̂i j ≥ 0, for i ∈ M and j ∈ W , such that Equations (1) through (5) hold for (u, x) =

ACM Transactions on Economics and Computation, Vol. 12, No. 1, Article 2. Publication date: March 2024.
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(û, x̂), and

−π ′i,1 (ûi )wMi j − π
′
j,1 (ûj )w

W
i j + β̂i + σ̂j = μ̂i j , for all i ∈ M and j ∈ W, (11)

μ̂i j x̂i j = 0, for all i ∈ M and j ∈ W, (12)

β̂i
��
�

∑
j ∈W

x̂i j − 1
��
�
= 0, for all i ∈ M, (13)

σ̂j
��
�

∑
i ∈M

x̂i j − 1
��
�
= 0, for all j ∈ W . (14)

Note that Equations (11) through (14) imply that∑
i ∈M, j ∈W

π ′i,1 (ûi )wMi j x̂i j +
∑

j ∈W, i ∈M
π ′j,1 (ûj )w

W
i j x̂i j =

∑
i ∈M

β̂i +
∑

j ∈W
σ̂j , (15)

β̂i + σ̂j ≥ π ′i,1 (ûi )wMi j + π
′
j,1 (ûj )w

W
i j , for all i ∈ M and j ∈ W . (16)

Let us next define the following optimization problem:

z∗
s̃w

(w) :=max
x

∑
i ∈SM (c )

∑
j ∈SW (c )

(wMi j +w
W
i j )xi j (Os̃w (w))

s.t. Constraints (1)–(5).

Let (ũ, x̃) be an optimal solution to problem Os̃w (w). Clearly, by the feasibility of x∗,∑
i ∈SM (c )

∑
j ∈SW (c )

(wMi j +w
W
i j )x∗i j ≤

∑
i ∈SM (c )

∑
j ∈SW (c )

(wMi j +w
W
i j )x̃i j .

Thus, ∑
i ∈M

u∗i +
∑

j ∈W
u∗j =

∑
i ∈M

∑
j ∈W

(wMi j +w
W
i j )x∗i j

≤
∑

i ∈SM (c )

∑
j ∈SW (c )

(wMi j +w
W
i j )x̃i j +

∑
i ∈M\SM (c )

u∗i +
∑

j ∈W\SW (c )

u∗j . (17)

Let us write the dual for LP Os̃w (w) (in the variables β := (βi : i ∈ SM (c )) and σ := (σ : j ∈
SW (c )):

z∗
s̃w

(w) :=min
β,σ

∑
i ∈SM (c )

βi +
∑

j ∈SW (c )

σj (Ds̃w (w))

s.t. βi + σj ≥ wMi j +w
W
i j , for all i ∈ SM (c ) and j ∈ SW (c ), (18)

βi ≥ 0, σj ≥ 0, for all i ∈ SM (c ) and j ∈ SW (c ). (19)

From Equation (16), we have for i ∈ SM (c ) and j ∈ SW (c ): β̂i +σ̂j ≥ c · (wMi j +w
W
i j ). Thus, the pair

of vectors (β ′,σ ′) := ((
β̂i

c
: i ∈ SM (c )), (

σ̂j

c
: j ∈ SW (c ))) are feasible for the dual LP Ds̃w (w). It

ACM Transactions on Economics and Computation, Vol. 12, No. 1, Article 2. Publication date: March 2024.
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follows that∑
i ∈SM (c )
j ∈SW (c )

(wMi j +w
W
i j )x̃i j = z∗

s̃w
(w) (by LP duality)

≤ 1

c
��
�

∑
i ∈SM (c )

β̂i +
∑

j ∈SW (c )

σ̂j
��
�

(by the feasibility of (β ′,σ ′) for (Ds̃w (w)))

≤ 1

c

����
�

∑
i ∈M
j ∈W

π ′i,1 (ûi )wMi j x̂i j +
∑

j ∈W
i ∈M

π ′j,1 (ûj )w
W
i j x̂i j

����
�

(by Equation (15))

≤ 1

c
�
�
∑

i ∈SM (c )
j ∈W

π ′i,1 (ûi )wMi j x̂i j +
∑

j ∈SW (c )
i ∈M

π ′j,1 (ûi )wWi j x̂i j+

c
∑

i ∈M\SM (c )
j ∈W

wMi j x̂i j + c
∑

j ∈W\SW (c )
i ∈M

wMi j x̂i j
�
�

(by definition of SW (c ),SM (c ))

=
1

c
�
�
∑

i ∈SM (c )
j ∈W

π ′i,1 (ûi )wMi j x̂i j +
∑

j ∈SW (c )
i ∈M

π ′j,1 (ûi )wWi j x̂i j+

c
∑

i ∈M\SM (c )

ûi + c
∑

j ∈W\SW (c )

ûj
�
�

(by feasibility of x̂ for (Osw (w))).

(20)

Using Equation (20) in Equation (17), we arrive at the claim. �

Using the above two claims, we get

∑
i∈M ûi +

∑
j∈W ûj∑

i∈M u∗
i
+
∑

j∈W u∗
j

≥

≥

∑
i∈SM (c )

j∈W
wM

i j
x̂i j +

∑
j∈SW (c )

i∈M
wW

i j
x̂i j +

∑
i∈M\SM (c ) ûi +

∑
j∈W\SW (c ) ûj

1
c

∑
i∈SM (c )

j∈W
π ′

i,1 (ûi )wM
i j

x̂i j +
1
c

∑
j∈SW (c )

i∈M
π ′

j,1 (ûi )wW
i j

x̂i j +
∑

i∈M\SM (c ) (ûi + u∗
i

) +
∑

j∈W\SW (c ) (ûj + u∗
j
)

≥ min
⎧⎪⎨⎪⎩

c · min
i∈SM (c )

1

π ′
i,1 (ûi )

, c · min
j∈SW (c )

1

π ′
j,1 (ûj )

, min
i∈M\SM (c )

ûi

ûi + u∗
i

, min
j∈W\SW (c )

ûj

ûj + u∗
j

⎫⎪⎬⎪⎭
≥ min

⎧⎪⎨⎪⎩
c

maxi∈SM (c ) π ′
i,1 (0)

,
c

maxj∈SW (c ) π ′
j,1 (0)

,
L(q, c )

2
,

L(q, c )

2

⎫⎪⎬⎪⎭
(21)

≥ min

{
c

H (q)
,

c

H (q)
,

L(q, c )

2
,

L(q, c )

2

}
=

L(q, c )

2
, (22)

where Equation (21) follows from the concavity of qi and Claim 1; Equation (22) follows from
Equation (7). The theorem follows. �

The following example illustrates an application of the theorem.

Example 1. Suppose that qi (u) := u (1 −u) (1−α ) for all i ∈ M ∪W , which satisfies assumptions
(A1) through (A3) for 0 ≤ α < 1. Figure 2 (left) shows the probabilities for different αs. As α
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Fig. 2. Left: The figure shows probability functions qi (u) := u (1 − u) (1−α ) for different αs. Right: The price
of anarchy as a function of α .

increases, the user’s probability of returning to the system is maximized with a higher utility.
Next, we find the price of anarchy. We have that

π ′i,1 (u) =
q′i (u)

(1 + qi (u))2
=

(1 − u) (−α ) (αu − 2u + 1)

(1 + u (1 − u) (1−α ) )2
.

Let u be the unique solution of Equation (8): c = π ′i,1 (u). We also have that H (q) = q′i (0) = 1, and

c is chosen to satisfy Equation (7), which means that c = u/2. Thus, we have to find the unique
solution in (0, 1) for the equation: u/2 = π ′i,1 (u). Finally, the PoA is given by L(q, c )/2, where

L(q, c ) = mini ∈M∪W ui (c ) = u.
For α = 0, the above equation becomes, u/2 = (1 − 2u)/((1 − u)u + 1)2, whose unique solution

is u = 0.363, which implies that PoA(q) ≥ 0.1815. Figure 2 (right) shows the PoA results for all αs
in (0, 1). Intuitively, as α increases, so does the PoA, because the peak of q (u) is closer to 1.

2.3 The Invisible-hand Effect

So far, we have considered the monopolistic case where users have only one platform in the mar-
ket to get matched. One might expect that a competitive market, in which users are free to choose
among competing dating sites, would benefit users’ utility. Next, we examine the effect of compe-
tition among dating sites. To do so, we assume that a user can only be on one site at a time and
that the probability of the user remaining on a dating site is proportional to the utility that the
user has previously received from that site. That is, users who have received better service from
the system in the past are more likely to return in the future.

Formally, the conditional probability that a user will return to the same dating site having pre-
viously received a utility u, given that he or she wants to date again, is Pr(return|dates again) = u.
The probability of dating again is defined as Pr(dates again) = q(u). Thus,

Pr(return) = Pr(return|dates again) Pr(dates again) = u · q(u).

Similarly, if a user wants to date again, he or she will consider a competing dating site with a
probability of 1 − u.

We extend the Markov decision process defined earlier to model the competitive situation for
user i as a three-state Markov process. The first state represents matchmaking with the dating
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Fig. 3. Markov process with three states si,1, si,2, and si,3, representing the states of actively dating in the
system, not seeking a partner, and being out of the system (or in the competition), respectively, for user i
having received utility u.

system; the second represents being on the system but not matchmaking; the third represents
leaving the system to join a competing dating site. We assume that once a user leaves, there is
a small probability ϵ that he or she will return. ϵ > 0 ensures that the Markov chain is ergodic
(i.e., any state can be reached from any other state) and thus has a stationary distribution. The
stationary distribution of a Markov chain is a probability distribution representing the proportion
of time spent in each state in the long run. The Markov chain is shown in Figure 3.

From state si,1, the user moves with probability 1 to state si,2, where he or she stays with prob-
ability 1 − qi (u) (for either a successful relationship or complete dissatisfaction with the system)
or returns to the system (state si,1) with probability qi (u) · u (note that without competition this
probability was qi (u)). The user can also move from state si,2 to state si,3 (for a user switching to
the competition) with probability qi (u) (1 − u), where he or she stays there with probability 1 − ϵ
(ϵ being smaller as the competition is higher) or returns to the system with probability ϵ . Then,
the limiting probability in each state is given by

πi,1 (u) =πi,2 (u)qi (u) · u + πi,3 (u)ϵ,

πi,2 (u) =πi,1 (u) + πi,2 (u) (1 − qi (u)),

πi,3 (u) =πi,2 (u)qi (u) · (1 − u) + πi,3 (u) (1 − ϵ ),

1 =πi,1 (u) + πi,2 (u) + πi,3 (u),

which yields

πi,1 (u, ϵ ) =
q(u)

1 + qi (u) +
qi (u )

ϵ
(1 − u)

. (23)

Note that πi,1 (u) is not necessarily a concave function, and thus, the result from Theorem 1 cannot
be applied directly. Importantly, however, we show in the following lemma that as competition
increases, the self-interested behavior of system designers converges to maximize the social utility
of users.

Lemma 1. Let πi,1 (u, ϵ ), defined in Equation (23), be the stationary distribution of state 1, rep-

resenting being in the system under the Markov chain with competition. Then, for all i ∈ M,

argmaxu πi,1 (u, ϵ ) = 1, as ϵ → 0.

Proof. To derive the above result, we show that the global optimumu∗ of πi,1 (u, ϵ ) is the unique
solution satisfying

π ′i,1 (u∗, ϵ ) =
q′i (u∗) +

q2
i
(u∗ )
ϵ(

1 + qi (u∗) +
qi (u∗ )

ϵ
(1 − u∗)

)2 = 0,
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Fig. 4. The figure shows the empirical price of anarchy for the probability function qi (u) := u (1 − u) for
different ϵs. The empirical price of anarchy is obtained as the minimum utility ratio between the selfish and
the social welfare optimal matching, over several instances, randomizing the preference weights.

or equivalently,

ϵ = −
q2

i (u∗)

q′i (u∗)
. (24)

Since ϵ > 0, Equation (24) holds only if q′i (u∗) < 0. This in turn means that u∗ ∈ [u ′, 1], where u ′ is

the solution toq′i (u ′) = 0. It follows from the concavity ofq that−q2
i
(u )

q′
i
(u ) is decreasing in the interval

u ∈ [u ′, 1]. Therefore, u∗ must be unique. Furthermore, since ϵ → 0, we have that q2
i (u∗) → 0, or

equivalently, u∗ → 1. �

Example 2. We can extend Example 1, with qi (u) := u (1−u), to the competitive case. The direct
application of Theorem 1 is not possible, since πi,1 (u) is not a concave function for all values of
epsilon ∈ [0, 1]. Figure 4 shows the empirical PoA for the probability function qi (u) := u (1 − u).
The empirical PoA is obtained as the minimum utility ratio between the selfish and social welfare
maximizing matching, over several instances, randomizing the preference weights. That is, for
each instance, we generate a set of random weights w sampled from a Beta distribution (with
parameters (2, 2)). We then solve the optimal matchingOsw (w) and the selfish matchingOs (w; q)
and obtain the ratio of their utilities.

2.4 Bounds on PoA in the Online Model

In this section, we will focus on an online extension of the matching problem. In the online model,
elements inM∪W are not now known in advance but arrive sequentially and must be matched
upon arrival. Inspired by the notion of competitive ratio, we are interested in quantifying the
efficiency of assignments for the online selfish matching problem (Os (w; q)) with respect to as-
signments for the offline social welfare maximizing matching problem (Osw (w)).

Our model is a special case of the online bipartite matching problem with edge weights. Most
work focuses on one-sided online problems, where one set of nodes (out of the two) is known in
advance and the other set is revealed online. In the unweighted version, the greedy algorithm is
known to have a competitive ratio of 0.5. When edge weights are considered and nodes arrive in
an adversarial order, any algorithm can be arbitrarily bad without any additional assumptions [7].
However, with the addition of the "free disposal" assumption, where multiple arriving nodes can be
assigned to the same node but only the maximum weight is considered, the greedy algorithm has a
competitive ratio of 0.5 [7]. For the two-sided online matching problem, where both sets of nodes
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arrived online, when fractional matches are allowed, the greedy algorithm has a competitive ratio
of 0.5 [34], and no online algorithm can improve a competitive ratio of approximately 0.63 [16].

The question of whether it is possible to design a weighted online bipartite matching algorithm
that outperforms the greedy competitive ratio of 1/2 has remained an intriguing open problem.
For that reason, we will focus on the simple and practical online greedy algorithm. The greedy
algorithm is a simple and efficient algorithm that can be applied to a wide range of optimization
problems with minimal effort in implementation and interpretation. In practice, the greedy algo-
rithm is often used as a heuristic or as an initial solution that can be further refined by other
methods [2].

Definition 2 (Online Greedy Selfish Matching). Upon arrival of an element k ∈ M ∪ W , the
algorithm decides a partial match fork based on all previously revealed elements. LetM′ := [m′] ⊆
M andW′ := [n′] ⊆ W be the revealed elements at a given step. When an element k ∈ M ∪W
arrives, if k ∈ M, the system decides the (partial) distribution xk := (xk j : j ∈ W′,

∑
j ∈W′ xk j ≤

1). Otherwise, if k ∈ W , the (partial) distribution is xk := (xik : i ∈ M′,
∑

i ∈M′ xik ≤ 1). Upon
arrival of element k ∈ M, the algorithm maximizes the retention rate of k : πk,1 (uk ) (defined in
Equation (6)), and the retention of all elements potentially matched to k :

∑
j ∈W′ πj,1 (uj ). That is,

the greedy algorithm solves

max
xi

πk,1 (uk ) +
∑

j ∈W′

πj,1 (uj ) (25)

s.t. uk :=
∑

j ∈W′

wM
k j
xk j , (26)

uj :=
∑

i ∈M′
wWi j xi j , for all j ∈ W′, (27)

∑
j ∈W′

xk j ≤ 1, (28)

∑
i ∈M′

xi j ≤ 1, for all j ∈ W′, (29)

xk j ≥ 0, for all j ∈ W′. (30)

For the arrival of element k ∈ W , the greedy algorithm is analogous.

Note that the difference of this problem with respect to the offline model comes from restricting
the set of constraints to specify the availability of elements M′ ∪ W′ and to maximize the en-
gagement of element k and the revealed potential matches of k . Also, note that by allowing partial
matches, an element can be partially matched to newly arriving elements.

Next, we analyze the PoA of the greedy policy for the selfish (probabilistic) matching problem.
We extend the definition of the price of anarchy for the online model as follows.

Definition 3 (Price of Anarchy for the Online Model). LetA be an online matching algorithm for
solving the selfish online matching problem (Os (w; q)) and (uAs ; q) be the objective value of the
online strategy. Let f (u) :=

∑
i ui and u∗sw ∈ argmax{ f (u) : u satisfies Equations (1)–(5)}. That is,

u∗sw is the social optimum for the offline model. Define the price of anarchy PoAA = PoAA (q) ∈
[0, 1] (from the users’ point of view), with respect to algorithm A, as

PoAA (q) := min
w≥0

f (uAs )

f (u∗sw )
.
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Theorem 2. Let A be the greedy policy for the selfish (probabilistic) matching problem. Then

PoAA (q) ≥ L(q, c )/2,

where L(q, c ) is defined as in Theorem 1.

Proof. By the KKT (necessary) conditions for optimality, there exists β̂i, j ≥ 0, σ̂i, j ≥ 0, and
μ̂i j ≥ 0, for i ∈ M and j ∈ W , such that Equations (26) through (30) hold for (u, x) = (û, x̂), and

−π ′i,1 (ûi )wMi j − π
′
j,1 (ûj )w

W
i j + β̂i + σ̂i, j = μ̂i j , for all i ∈ M and j ∈ W, (31)

μ̂i j x̂i j = 0, for all i ∈ M and j ∈ W, (32)

β̂i, j
��
�

∑
k≤j

x̂i j − 1
��
�
= 0, for all i ∈ M and j ∈ W, (33)

σ̂i, j
��
�

∑
k≤i

x̂k j − 1
��
�
= 0, for all i ∈ M and j ∈ W . (34)

For any j ∈ W , taking the sum of the constraints in Equation (34) over i ∈ M gives

∑
i ∈M

σ̂i, j x̂i j =
∑
i ∈M

σ̂i, j
�
�
1 −
∑
k<i

x̂k j
�
�
≥ σ1, j ,

which implies that

∑
i ∈M, j ∈W

σ̂i, j x̂i j ≥
∑

j ∈W
σ1, j .

In the same way, taking the sum of the constraints in Equation (33) over j ∈ W gives

∑
i ∈M, j ∈W

β̂i, j x̂i j ≥
∑
i ∈M

βi,1.

From these two formulas, together with Equations (28), (29), and (31) through (34), it follows that

∑
i ∈M, j ∈W

π ′i,1 (ûi )wMi j x̂i j +
∑

j ∈W, i ∈M,

π ′j,1 (ûj )w
W
i j x̂i j ≥

∑
i ∈M

β̂i,1 +
∑

j ∈W
σ̂1, j , (35)

β̂i,1 + σ̂1, j ≥ π ′i,1 (ûi )wMi j + π
′
j,1 (ûj )w

W
i j , for all i ∈ M and j ∈ W . (36)

From Equation (36), we have for i ∈ SM (c ) and j ∈ SW (c ): β̂i,1 + σ̂1, j ≥ c · (wMi j + w
W
i j ). Thus,

the pair of vectors (β ′,σ ′) := ((
β̂i,1

c
: i ∈ SM (c )), (

σ̂1, j

c
: j ∈ SW (c )) are feasible for the dual LP

Osw (w̃). As such, the result follows from Equations (20), (17), and (22). �

Analogous to the offline matching model, Theorem 2 states that in the online matching model,
the price of anarchy is bounded by a function of q representing the behavior of users. The next
section tests the results with an experimental study on human subjects.
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Fig. 5. An illustration of the experimental study, showing participants’ initial assignments and the three
options available in each of the 10 rounds of the experiment.

3 EXPERIMENTAL STUDY

Our theoretical results provide bounds on the price of anarchy, which is defined as the worst-case
ratio of selfish matching to the social optimum. We showed that even in a monopolistic setting, the
price of anarchy can be bounded by a constant that does not depend on the number of users, only
on the implicit expectations of users about the system. However, our theoretical results are con-
strained by the functional form q(u) that dictates user behavior, which in practice can vary from
user to user and even change over time (although we expect the overall behavior to follow assump-
tions (A1)–(A3) on average). To complement our analytical results, we designed a human subject
experiment to test our results without making any modeling assumptions about user behavior. In
our experiment, q(u) is learned empirically from the participants’ past choices.

Our experiment is designed to evaluate two hypotheses derived from the theoretical analysis
of the model. First, we want to test that the PoA depends only on the user’s decisions about how
to interact with the matching system, and not directly on the distribution of matching weights.
Specifically, we want to examine the empirical relationship between the probability that the user
returns to the system to request a new match after being matched and receiving a utility u (i.e.,
q(u)) and the PoA. Second, we want to validate whether q(u) satisfies assumptions (A1) to (A3).

3.1 Experimental Design

In a series of experiments, we compared the social welfare achieved by the social welfare maxi-
mizing matching algorithm against the selfish matching algorithm. We operationalized the algo-
rithmic matching market as a multi-armed bandit problem, where the system selects matches and
then participants decide whether to accept the match or request a new match. Figure 5 provides a
high-level illustration of the experiment. More specifically, participants arrive at the market and
are assigned to a slot machine that gives them a stochastic payoff. Participants play for 10 rounds,
and at each round, they choose between three options: (1) continue with the assigned slot ma-
chine, (2) request to be assigned to a new slot machine, or (3) take the risk-free outside option and
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Fig. 6. Distribution of payoffs. The top distributions correspond to the payoff distribution of all user-slot
pairs for each study. The bottom distributions show the realized payoffs experienced by participants. That
is, it corresponds to the payoff distribution of user-slot pairs that were matched. The vertical dashed lines
represent the mean of the distribution. The universal distributions correspond to the realized payoffs of a
matching algorithm that randomly assigns users to slots. Note that for the selfish algorithm, there is a shift
to the left compared to the universal payoffs (slightly decreasing the mean), whereas for the social welfare
maximizing algorithm, the shift is to the right with a significant increase in the mean. Study A features
a scarce market with a right-skewed Beta distribution of payoffs β (1, 2); Study B has a symmetric Beta
distribution β (2, 2); and Study C represents a non-scarce market with a left-skewed Beta distribution β (2, 1).

exit the game. To make this analogy more concrete, the payoffs capture going out on a date with
someone and observing the value of their match; option (1) would represent having multiple dates
with the same match and engaging in a long-term relationship; option (2) represents going back
to the dating site to find a new match; and finally, option (3) would be users either moving to an-
other dating site or stopping using online dating altogether. We contextualized the experiment as
an “interplanetary mining game,” where slot machines are represented as planets that participants
mine for a monetary reward. The advantage of this design is that we have prior knowledge of the
users’ preferences, which allows us to compute the optimal match. Figure 9 in the appendix shows
screenshots of the experiment.

The algorithm used to match players takes two forms. The social welfare maximizing matching
algorithm assigns users to slot machines to maximize the sum of the social utilities of all users.
The selfish matching algorithm assigns users to slot machines to maximize the number of users
requesting to be re-matched to the system. At each round, participants can choose to stop being
matched by the algorithm and accept an outside payment of 6 cents for each round remaining to
be played, or the user can choose to continue playing in the hope of making a larger profit.

One of the advantages of this experimental design is that the central designer has perfect in-
formation about the expected payoffs, which allows us to quantify the impact of the matching
algorithms without having to deal with the challenges of inferring and predicting user prefer-
ences, which is beyond the scope of this article. The interested reader is referred to Hitsch et al.
[14] for a paper on estimating mate preferences from an online dating service.

We conducted three studies with groups of participants playing simultaneously, recruited using
Amazon Mechanical Turk and filtered for English speakers and good past performance on Mturk.
Each study differed only in how the payoffs wi j were distributed. Study A represents a scarce
market, where few slot machines have high payoffs, following a right-skewed Beta distribution
β (1, 2); Study B has payoffs following a symmetric Beta distribution β (2, 2); and Study C represents
a non-scarce market where most slots have high payoffs, following a left-skewed Beta distribution
β (2, 1). Figure 6 shows the distribution for each study. The distribution of payoffs also corresponds
to what the payoffs would look like if the matching algorithm randomly assigned users to slots.
Table 1 shows a summary of the users and parameters in each of the three studies.
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Table 1. Summary of Participants for Each Experiment

Participants Instances
Players per

group
Outside payoff

Distribution

of payoffs

Study A 113 20 3 6 cents β (1, 2)
Study B 87 17 3 6 cents β (2, 2)
Study C 87 14 3 6 cents β (2, 1)

Each instance of a game consists of participants that are evenly randomized between two exper-
imental conditions: the social welfare maximizing matching algorithm and the selfish matching
algorithm. Initially, each player i ∈ [n] is assigned a mean payoff wi j = pj + ϵi for each of the
j ∈ [m] slot machines, where pi is a realization of a Beta distributed variable, and ϵi is a realization
of a normally distributed variable with a mean of zero. Thus, the rewards from the machines are
correlated across participants, implying that there is competition for high-yielding slot machines.
To compare across the experimental conditions, the mean payoffs of players and slot machines
are the same across the two matching conditions; e.g., the first participant assigned to the social
welfare maximizing condition has the same mean payoff per slot machine j ∈ [m] as the first par-
ticipant assigned to the selfish condition. The number of participants per condition is n = 3 and
they play for 10 rounds. To ensure that a participant is not assigned to the same slot more than
once, we choosem = 13 slot machines.

The game is played in real time (or synchronously) with other players, so each slot machine
can only be assigned to one player at a time in one of the experimental conditions. This means
that if a participant decides to remain in that slot in the next round, that slot will not be available
to other participants. If the participant decides to switch from a slot machine, then he or she will
never be assigned to the same slot again. To continue our analogy with dating services, the above
represents the case where users only date one partner at a time, the partner does not date anyone
else, and some users are more universally appealing than others.

The rewards of the slots are stochastic, and their mean payoffs are known in advance to the
central designer, but not to the participants. Formally, when player i is assigned to slot j, he
or she receives a payoff following a normal distribution with mean wi j = pj + ϵi (and variance
set to 3). Hence, users need repeated interactions to estimate the underlying reward of a slot
machine.

The social welfare maximizing matching algorithm is given by solving problem Osw (w), where
w are the mean payoffs. However, to solve the selfish matching problemOs (w; q), we need to learn
the probability qk

i (u) that a user i who has received utility u will return to the system in round k .
In the context of our experiment, this is the probability of a user requesting to be re-matched by
the system. Given that individual data is sparse, we assume that users are homogeneous for the
experiment, i.e., ∀i, j,k, qk

i (u)= qk
j (u). Thus, for ease of notation, we can drop the user index i in

q(u) and start round 1 with a prior probability q1 (u) = u (1−u) satisfying assumptions (A1) to (A3).
We then update the probability based on the past choices of the participants as follows:

qk+1 (u) = αqk (u) + (1 − α ) fk (u), (37)

where fk (u) is the fraction of participants who, having received a payoff u at round k , requested
to be reassigned. In other words, fk (u) is the empirical probability of switching, defined as the
fraction of participants who requested a rematch from the system after receiving a payoff of u in
round k . The parameter α = 0.15 controls the learning rate of the update rule. This update rule
is based on a common strategy, the Delta rule [31], for estimating the probability in a dynamic
environment.
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Fig. 7. Figures a–c: In each sub-figure, the left plot shows the mean overall payment received by partici-
pants; the right plot shows the mean payoffs received per round (standard error bars are calculated over the
mean per group). Figures d–f: In each sub-figure, the left plot shows the mean overall engagement rate of
participants; the right plot shows the engagement rate per round, where engagement rate is defined as the
percentage of users who request to be re-matched.

3.2 Experimental Results

Figure 7 shows the mean payments and engagement rates of the participants in each study. The
engagement rate is defined as the percentage of users who request to be re-matched. Regarding
the payments, the social welfare maximizing matching algorithm achieves an overall higher utility
than the selfish algorithm. This difference is at most twice the utility achieved by the selfish algo-
rithm, and it decreases across studies as the market becomes less scarce. Naturally, in the social
welfare maximizing algorithm, payoffs decrease over time because, by definition, each assignment
maximizes social welfare. Thus, any subsequent changes in assignments can only decrease the
overall utility, but not necessarily decrease the payment of an individual participant. The lower
histograms in Figure 6 show the distribution or realized payoffs that users received in each ex-
perimental condition. Compared to the underlying distribution, the social welfare maximizing al-
gorithm can transform the distribution of payoffs, increasing the mean payoff and shifting the
distribution to the right in all three studies. On the other hand, the selfish algorithm performs
worse than the underlying distribution and is therefore inferior to random matching.

Focusing on engagement rates, defined as the percentage of users requesting to be re-matched,
we find that the selfish algorithm (whose objective function is to maximize engagement) yields at
least 50% higher rates than the social welfare maximizing matching (see Figure 7). At the same time,
the selfish algorithm does not induce any significant change in the rate of users taking the outside
option (i.e., drop rates) compared to the social welfare maximizing algorithm; see Figure 13 in the
appendix. Drop rates are slightly higher for the social welfare maximizing algorithm; however, the
difference is statistically insignificant. Overall, the selfish algorithm increases engagement rates
without increasing the drop rates.

Figure 8(b) shows the average ratio of total utility over pairs of instances with the same initial
conditions. The error bars depict the maximum and minimum values. Thus, the PoA is represented
by the minimum value of each study, which is the worst empirical ratio. Note that for some rounds
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Fig. 8. Left: Probability of switching for each study. Distribution of the fraction of participants who received
a payoff u in round i that requested to be reassigned. Right: Average price of anarchy for the three different
studies. The plot shows the mean ratio of total utility between the social welfare maximizing algorithm and
the selfish algorithm, controlling for initial conditions. The error bars depict the maximum and minimum
levels. The minimum level represents the PoA, which is the worst ratio of each study.

the maximum was greater than 1, meaning that in some cases the selfish algorithm outperformed
the social welfare maximizing algorithm. Figure 8(a) shows the empirical distribution of switching
q(u) for the different studies. We can observe that the concavity assumption is not satisfied empir-
ically. Contrasting these empirical results with the analytical results shown in Figure 2, the theory
suggests that the increase in the PoA in Study C is driven by the higher probability of switching
for larger payoffs (11 − 20 cents).

Figures 10, 11, and 12 in the appendix show the empirical distribution of switching fk (u) for the
different rounds and algorithms in Studies A, B, and C, respectively. As can be seen, the switching
rates of participants who received payoffs below 6 cents are surprisingly high, given that they
could choose the risk-free outside option of 6 cents. In addition, we observe a decreasing trend in
switching rates for high payments (16–20 cents) as the number of rounds advances. Taken together,
these results suggest that participants are risk takers, but their propensity to take risks decreases
in the final rounds of the game.

Overall, our main findings are as follows: As the markets become less scarce, the social wel-
fare loss generated by the selfish matching algorithm decreases, while the gain in engagement
rates across studies remains constant. At the same time, the selfish algorithm does not induce any
significant change in the rate of users taking the outside option compared to the social welfare
maximizing algorithm (see Figure 13 in the appendix). In the scarcer case (Study A), the mean util-
ity of users under the selfish algorithm was precisely what they could have received as an outside
payment had they decided not to play. This is a surprising outcome, given that the matching algo-
rithm is agnostic about the outside payment and its value. Rather, the algorithm in Equation (37)
learns to maximize the probability that a user will click again based on the implicit feedback pro-
vided by the users’ actions. Through this feedback loop, the algorithm self-regulates the system to
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keep payments close to, but above, the baseline to keep engagement high at a minimal cost to the
system. This suggests that users’ implicit expectations of their potential utility, both in and out of
the system, drive the selfish matching algorithm to perform in different ways.

4 DISCUSSION

Millions of people use dating websites worldwide. While these algorithmic matching sites offer
users access to an unprecedented number of potential partners, these sites are not altruistic, but
rather self-interested, driven by economic incentives. A fundamental conflict of interest arises as
the optimal matching of users may result in long-term couples and a decrease in the number of
singles using the site. Consequently, to maximize the likelihood of users returning to the site, the
service providers are incentivized to use algorithms that suggest matches that lead to short-lived
relationships. Indeed, a recent study suggests that online couples are less likely to marry than of-
fline couples [23]; however, conditional on being married, online married couples are slightly less
likely to have their marriage result in a break-up [5]. These incentives go beyond online dating
and also apply to repeated oligopolistic seller-buyer interactions, from laptops and phones to sub-
scription apps and software providers. In these cases, the online platform can match users in a
mediocre way so that they are likely to return to the service when their match is not optimal.

Our results shed new light on how the self-interested behavior of online dating sites impacts
the social welfare of their users. We introduce and study a model based on the classical matching
problem on graphs to represent the self-interested behavior of dating sites. We quantify the social
efficiency of dating sites using the notion of price of anarchy to capture how much the system
degrades users’ utility due to the self-interested behavior of the system. We establish theoretical
bounds on the price of anarchy that are independent of the number of users, regardless of whether
the system knows all users in advance or whether they arrive sequentially (see Section 2.4). Fur-
thermore, we experimentally test our model and create a matching market with human subjects
to compare the social welfare achieved by an optimal matching service with a selfish matching
algorithm.

Closely related to our question is the concern about inefficiencies that may arise due to user
behavior on online dating platforms. Motivated by group fairness considerations in online bipar-
tite matching, Esmaeili et al. [6] propose a matching algorithm with fair guarantees on both sides
of the market. Another study proposes a two-sided matching market in which strategic users on
both sides can screen potential partners. The authors characterize the equilibria as a function of the
screening costs that users on both sides of the market incur when searching for matches and show
that simple interventions such as blocking one of the sides from screening, leading to a one-sided
searching, can improve the social welfare [18]. There is empirical evidence of such asymmetries in
screening for partners; for example, women are much more selective than men on Tinder [32]. Em-
pirical studies in online dating sites have found that both women and men have a strong preference
for similarity along many attributes, yet they tend to pursue more desirable partners [3, 14]. Using
the estimated mate preferences based on a particular online dating site, one study shows that the
online dating site achieves near-optimal matching compared to the optimal matching predicted
by the Gale-Shapley algorithm in a two-sided market [13]. Freedman et al. [10] propose a method-
ology for estimating the weights of participant profiles in a kidney exchange matching problem
based on human-elicited value judgments. In the context of recommendation systems that match
users to content providers, recent work has focused on modeling and optimizing users’ long-term
utility, as opposed to the standard myopic matching that maximizes user engagement [21, 35].

We recognize that our findings are subject to several limitations, and future studies may extend
these results in useful ways. First, while we study offline and online centralized matching, we
leave for future work extensions to a dynamic environment where preferences may change over
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time. Second, one can extend the complete information setting from the perspective of the central
designer to account for uncertainty about users’ preferences. Third, future work can explore more
realistic or complex user interactions with the platform, as well as models of user behavior, by
relaxing some of the assumptions required for analytically tractable purposes. Fourth, our goal
was to present a stylized and simplified model to capture online dating in a general sense, not to
model any specific platform. Lastly, the experiments conducted with human subjects are limited
in scope and may not fully capture the complexity and diversity of real-world two-sided matching
markets. Replicating the study in more diverse contexts could provide further insights into the
mechanisms of user behavior in algorithmic matching systems.

This study is a step toward understanding the impact of algorithms on society and opens several
problems and challenges. Further studies on how machines shape human behavior and vice versa
are crucial for the design of AI for society [25]. Our daily lives are increasingly being affected
by black-box systems, and we advocate the need for more regulation of these systems. It is our
responsibility as researchers to understand, quantify, and inform policymakers about the possible—
intentional or otherwise—side effects of algorithms.
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Data Availability

The data and code that support the findings of this study are available at https://github.com/
aabeliuk/Algorithmic-Matching-Exp.

APPENDIX

A EXPERIMENTAL STUDY
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Fig. 9. Screenshots of the experiments shown to participants.
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Fig. 10. Probability of switching for Study A. Distribution of the fraction of participants who received a
payoff u in round i that requested to be reassigned.

Fig. 11. Probability of switching for Study B. Distribution of the fraction of participants who received a
payoff u in round i that requested to be reassigned. Blank columns correspond to no user receiving a payoff
in that corresponding range.
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Fig. 12. Probability of switching for Study C. Distribution of the fraction of participants who received a
payoff u in round i that requested to be reassigned. Blank columns correspond to no user receiving a payoff
in that corresponding range.

Fig. 13. Drop rate. The drop rate is defined as the percentage of users who take the outside payment and
thus leave the system. Error bars depict the standard error of the mean.
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