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The nature of the “failed” ferroelectric transition in SrTiO3 has been a

long-standing puzzle in condensed matter physics [1, 2, 3, 4]. A compelling

explanation is the competition between ferroelectricity and an instability with

a mesoscopic modulation of the polarization[5, 6, 7, 8]. These polarization

density waves, which should become especially strong near the quantum critical

point[2, 6], break local inversion symmetry and are difficult to probe with

conventional x-ray scattering methods. Here we combine a femtosecond x-

ray free electron laser (XFEL) with THz coherent control methods to probe

inversion symmetry breaking at finite momenta[9] and visualize the instability

of the polarization on nanometer lengthscales in SrTiO3. We find polar-acoustic

collective modes that are soft particularly at the tens of nanometer lengthscale.

These precursor collective excitations provide evidence for the conjectured

mesoscopic modulated phase in SrTiO3 [8, 6].

SrTiO3 exhibits typical characteristics of an incipient ferroelectric (FE) material,
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such as an increase in the dielectric constant [10] and a polar mode softening [11] upon

cooling. However, quantum fluctuations at low temperatures prevent long-range polar

order in this material, rendering it a quintessential example of a quantum paraelectric [1].

Nevertheless, SrTiO3 exhibits mesoscopic fluctuations of the FE polarization and develops

polar nanoregions at low temperatures, which have a significant impact on the properties of

the material[12, 13, 14, 15]. A FE phase in SrTiO3 is readily obtained by various methods

such as strain [16, 17], calcium substitution [18] or oxygen isotope substitution [19]. More

recently, FE features have been induced by driving vibrational modes using ultrafast THz

and mid-infrared pulses[20, 21, 22]. These properties of SrTiO3 indicate its close proximity

to a FE instability at low temperatures.

The FE instability is well-established and is associated with the softening of an optical

polar mode at zero wavevector. However, several susceptibility and neutron scatter-

ing measurements have led to speculation that fluctuating polar-acoustic modes with

finite wavevectors strongly affect the quantum paraelectric regime at low temperature

[5, 23, 2, 6, 7]. These results may indicate the existence of another structural instability in

SrTiO3 that is different from the homogeneous FE state, with strong lattice fluctuations

on the nanometer lengthscale, potentially heralding a novel phase with spatially modu-

lated polarization [6, 5, 8]. However, the crucial element of this putative polar-acoustic

regime– the mesoscopic polar characteristics of SrTiO3– could not be determined by these

measurements and had to be indirectly inferred from models.

Here we probe the mesoscopic polar dynamics of SrTiO3 at nanometer lengthscales

and femtosecond timescales using ultrafast hard x-ray diffraction and diffuse scattering

[9] at the Linac Coherent Light Source (LCLS)[24]. To induce the transient states[20]

we use single-cycle pulses of THz radiation resonant with the soft modes of SrTiO3 in

the quantum paraelectric regime, as illustrated in Fig 1a (see Methods for details). To
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characterize the polar properties of the transient lattice distortions we devised a scheme

to switch reproducibly between opposite polarities of the generated THz field. Related

methods have demonstrated the ability to manipulate ferroic orders [25]. In this work we

show that when combined with diffuse x-ray scattering, this method is an incisive probe

of polar modes and inversion symmetry (see Fig 1a) breaking at the nanoscale.

In Fig. 1b we show the equilibrium x-ray intensity around the (3, 3, 3) Bragg peak

along the [0, 0, 1] direction (pseudo cubic notation), at a temperature of T = 20 K. Below

T = 105 K, SrTiO3 adopts a tetragonal structure whose twin domains can be identified in

the scattering [26, 27] (see supplementary information). Here we focus on domains that

have their c-axis oriented in the direction of the sample normal, [0, 0, 1]. The reciprocal

space map in the inset of Fig. 1b shows that the intensity is characterized by strong

directional scattering along the sample normal, which represents heterogeneity in the

lattice mostly in the [0, 0, 1] direction.

Fig. 1c shows the differential x-ray intensity ∆I(t)/I0 as a function of pump-probe delay

at different representative wavevectors along the [0, 0, 1] direction, where ∆I(t) = I(t)− I0

and I0 is the x-ray intensity before the THz excitation. Most of the signal is localized

in the range ξ = 0.03− 0.06 reciprocal lattice units (rlu), corresponding to lengthscales

of 10-20 nm, while the ξ = 0 signal at the Bragg peak (gray line) does not show an

appreciable dynamic response. This is surprising since the strongest resonance to the

spatially uniform incident field is expected to be from the transverse optical (TO) mode at

ξ = 0[20]. The lack of signal at long wavelengths (gray line) means that we do not observe

a strong uniform response of the system as a whole. Furthermore, momentum conservation

forbids direct THz excitation at high wavevectors in a homogeneous sample. Thus these

signals arise from inhomogeneous excitation by the pump, which can only occur through

pre-existing inhomogeneities in the sample. The 10-20 nm lengthscale is not determined
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Figure 1: Ultrafast hard x-ray scattering under strong THz excitation. (a)
Schematic illustration of the experimental setup. Pulses with a spectrum centered at
0.5 THz were produced by optical rectification of 100 fs near-IR pulses centered at 800
nm. Two LiNbO3 crystals with FE polarizations pointing in opposite directions enable
swapping the polarity of the emitted radiation by vertically translating the LiNbO3 prisms
into the incident near IR beam. The THz pulse is focused on to the SrTiO3 sample using
a parabolic mirror and is colinear with the X-ray probe pulse with photon energy of 10
keV. The inset of (a) shows an illustration of the polar displacement of the Ti atom upon
excitation with fields of opposite polarity. (b) Integrated intensity around the (3 3 3)
Bragg peak at a temperature of T = 20 K. The inset shows a section of reciprocal space
around the (3,3,3) peak. (c) Relative change in intensity (∆I(t)/I0) for representative
wavevectors along the [0 0 1] direction indicated by the color coded dots in (b). The
wavevectors are labeled next to each trace.
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by the attenuation length of the THz radiation, which is on the order of 500 nm, but as

we discuss below, coincides with wavevectors at which the TA and TO modes are most

strongly coupled[7, 28, 23].

To characterize these THz-induced excitations, we devised a scheme to invert the

polarity of the generated THz field by switching between two LiNbO3 prisms, mounted

with their ferroelectric polarizations pointing in opposite directions as shown in Fig. 1a.

Fig 2a shows the electro-optic sampling traces of the two THz pulses generated by this

setup, which are inverted and otherwise nearly identical. In Fig. 2b we show ∆I(t)/I0

following excitation by the two THz waveforms, integrated over wavevectors ξ = 0.03−0.04

rlu, using the same colors as Fig. 2a to reference the corresponding field polarity. For

better comparison, Fig. 2c presents the same data with one of the traces flipped, which

shows that ∆I(t) inverts when the THz field is inverted, directly revealing that these

oscillations originate from polar collective modes. These polar modes break both local

inversion and translational symmetry (conservation of the crystal momentum) as they

evolve on their natural timescales, and enable direct dipole coupling to the long-wavelength

THz radiation. We associate this inhomogeneity with polar nanoregions which play an

important role in the quantum paraelectric phase of SrTiO3 [12, 13, 14].

Further insight into the nature of these excitations can be gained by identifying how

the different frequency components of the oscillating signals disperse with wavevector. The

color map in Fig. 3a represents the absolute value of the Fourier transform of ∆I(t)/I0

for different wavevectors along the [0, 0, 1] direction. We observe two dispersive modes

around 0.4 and 1 THz, which we assign to the transverse acoustic (TA) and transverse

optical (TO) branches, respectively [28, 23, 7]. The spectral intensity is strongest in the

TA branch, which plays a prominent role in the polar response reported in Figs. 2b-c.

In Fig. 3b we show the dispersion relation at 20 K (blue) and 50 K (red) obtained from
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Figure 2: Odd symmetry of the ultrafast response. (a) Electro-optic sampling
measurement of the THz pulse profile. Purple (green) trace represents the THz pulse
generated by the upper (lower) LiNbO3 crystal. The effect of internal reflection inside
the EOS crystal were removed by a standard procedure[29]. (b) Dynamics of ∆I/I0
following THz excitation, integrated between 0.03 and 0.04 rlu, where the purple and green
traces represent the response following the THz generated by the upper and lower LiNbO3

crystals, respectively. (c) Same as (b) but with the signal for the lower crystal inverted.
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our measurements (Fig. 3a). The black dashed line shows the linear dispersion of the

TA branch measured by Brillouin scattering [30] extrapolated to high wavevectors. The

TO branch in Fig. 3b shows softening with decreasing temperature characteristic of

the incipient FE[7, 11]. Notably, the acoustic dispersion deviates from the extrapolated

speed of sound at ξ > 0.03 rlu at 20 K. A similar anomaly has been observed by neutron

scattering in equilibrium[28, 23, 7] and was associated with some form of coupling between

the TO and TA branches. Comparing with Fig 3a, it is clear that ξ > 0.03 rlu is also where

the TA branch exhibits the strongest response to the pump and hence the strongest polar

character. These results suggest a common physical origin for the frequency softening of

the acoustic modes and their strong polar character observed here.

Our measurements offer a deeper understanding of the interplay between strain and

polarization in SrTiO3. In particular these results provide a robust characterization of their

coupling and enable building a new map of the precursor fluctuations of incipient orders as

presented in Fig. 4. The fact that both the TA and TO signals invert with field polarity and

that the signal is linear with the field strength (see supplementary information) imposes

strong constraints on the possible form of strain-polarization coupling. For example,

electrostrictive coupling is quadratic in the ferroelectric polarization[17] and would give

rise to nonlinearity and harmonics in the oscillatory signals and to a non-inverting response,

none of which are observed here. Instead, our observations indicate that the coupling must

be bilinear in strain and polarization. In a paraelectric system, symmetry constrains this

coupling to be flexoelectric, that is between the ferroelectric polarization and the gradients

of the strain [31, 32, 33, 34, 15]. Flexoelectricity explains our main observations: (1) the

odd symmetry of both modes upon inversion, (2) the linearity of both TA and TO with

field strength, and (3) the softening to the acoustic branch at finite wavevectors.

We summarize these results qualitatively in Fig 4a, showing an illustration of the disper-
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sion relation at different temperatures, taking into account the flexoelectric coupling[31, 32,

8]. The TO branch softens considerably at zone center upon cooling[35], and corresponds to

the order parameter of the incipient ferroelectric phase. Simultaneously, coupling between

the TO and TA branches causes the softening of the TA branch around the wavevector k∗,

and an increase of its polar character.

In Fig 4b we show a schematic phase diagram of SrTiO3 [2, 6, 5, 8] as a function of

temperature and the flexoelectric coefficient that governs the TO-TA coupling strength.

The diagram illustrates that the quantum paraelectric regime separates a homogeneous

FE phase, where the zone-center TO mode softens to zero frequency, from a putative

polar-acoustic regime[6] where the acoustic branch softens at k∗ and enhances strongly

the polarization and strain modulation at this wavevector. While the soft TO mode is a

precursor of the spatially homogeneous ferroelectric phase (light blue in Fig. 4b), the polar-

acoustic modes observed here are the precursors of a possible modulated polar-acoustic

phase (orange in Fig. 4b)[8, 6].

Our measurements unveil the local polar excitations in SrTiO3 which shape its quantum

critical behavior and can foster unconventional superconductivity[36]. These polarization

density waves, which arise from a flexoelectric interaction, provide direct evidence of

a modulated polar instability in SrTiO3 which may suppress ferroelectricity[8]. More

generally, nanoscale instabilities often herald exotic and sought-after phases in materials

with complex phase diagrams. Our results show that time-resolved measurements with

access to finite wavevectors can reveal new instabilities that are key to unlocking and

controlling novel phases of complex materials.
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Methods

Experimental details

Single crystal SrTiO3 was commercially obtained from MTI Corp. The 10× 10× 0.5 mm3

sample was Verneuil-grown, with two sided epi-polished (001) surfaces. Measurements were

taken at sample temperatures of 20 K and 50K in the cryogenic compatible vacuum chamber

at the x-ray pump probe (XPP) end station at Linac Coherent Light Source (LCLS) [37].

The sample was mounted inside a vacuum compatible chamber with translation and

rotation motions required to reach the desired x-ray diffraction and scattering conditions.

A dedicated copper mount was fabricated for this purpose, pre-tilting the sample by 10◦,

allowing us to reach the (3,3,3) diffraction peak at 10.4 keV and measure the scattering

around it. The crystal was cooled by a helium flow cryostat. The cold finger was connected

with flexible copper braids to the dedicated mount and the temperature was measured by

a diode fixed close to the sample position.

Intense THz fields were generated by optical rectification of 120 fs, near IR pulses

centered at 800 nm in LiNbO3 using the tilted-pulse-front technique[38, 39, 40, 41]. To

generate THz fields with inverted polarities two LiNbO3 prisms were mounted vertically

one on top of the other outside the vacuum chamber, with their FE polarizations pointing

in opposite directions. A motorized vertical translation stage was used to switch between

the prisms in the 800 nm beam-path. The temporal profile of the two inverted fields at the

sample position was measured using electro-optic sampling in a 100 µm GaP crystal (Fig.

2a). Intensity and polarization of the THz pulses were controlled by a pair of wire-grid

polarizers. An off-axis parabolic mirror placed inside the chamber was used to focus the

pulses into a ∼ 1 mm diameter spot on the sample position.

The lattice dynamics was probed by diffraction and scattering of 50 fs, 10.4 keV hard

12



x ray pulses focused to a 300 µm diameter spot. A small hole in the THz focusing mirror

for transporting the x-rays allowed colinear propagation of the x-ray and THz pulses,

which impinged on the sample at an angle of ~30◦. The scattered photons were recorded

through a Kapton window by a Jungfrau area detector positioned outside the chamber

300 mm from the sample. To match the pumped and probed volumes, while maximizing

the pump fluence, we implemented a grazing exit geometry. The exit angle was set to ~1◦

with respect to the sample surface such that the detected x ray photons originate from a

region < 1 µm into the sample, comparable to the penetration depth of the THz pulse in

SrTiO3 at low temperatures.
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[41] Hoffmann, M. C. & Fülöp, J. A. Intense ultrashort terahertz pulses: Generation and

applications. Journal of Physics D: Applied Physics 44, 083001 (2011).

[42] Kiat, J. M. & Roisnel, T. Rietveld analysis of strontium titanate in the Müller state.

Journal of Physics: Condensed Matter 8, 3471–3475 (1996).

Acknowledgments

We acknowledge insightful discussions with Benôıt Fauqué, Gian Guzmán-Verri and Peter
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Identifying Twin Domains

Upon cooling below the structural phase transition at T = 105K, an antiferrodistortive

(AFD) instability induces a low-symmetry tetragonal phase in SrTiO3 [26, 27]. The

distortion can develop along any of the three equivalent cubic crystallographic directions,

leading to the formation of three potential twin domains. As a result, the Bragg reflections

separate into three distinct peaks, originating from the different domains illuminated by

our x-ray probe. In Fig. S1a we show the detector image of the x-ray scattering, with

the sample oriented close to the nominal (3,3,3) reflection. Two distinct features appear

in the image, marked by a red square and a green square. In Fig. S1b we present the

integrated intensity of these features versus the angle of one of the sample rotation motors

exhibiting three distinct peaks corresponding to the three different orientational domains.

To identify the orientation of the twin responsible for each peak we use the measured

SrTiO3 lattice constants [42], distinguishing between the three twins by directing the long

axis along the three crystallographic directions and calculating the (3,3,3) Bragg reflection

for each orientation. We compare the diffraction direction and sample orientation of the

calculated reflections to those of the experimental peaks in Fig. S1b. Peak 1 is identified

with a domain where the long axis is oriented perpendicular to the surface normal of the

sample and parallel to the THz polarization, peak 2 with a domain where the long axis is

oriented perpendicular to the surface normal and perpendicular to the THz polarization

and peak 3 with a domain where the long axis is parallel to the surface normal. In the

main text we focus on twin 3, which has the strongest signal.
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Figure S1: Twin domains in the angle scan of the (3,3,3) Bragg peak. (a) Part
of the detector image showing x-ray scattering close to the (3,3,3) Bragg condition. The
red and green squares indicate the integration regions for the plots in (b). The sample
orientation for this image corresponds to peak 2 in (b). (b) The red and green circles
are the integrated intensity in the red and green squares shown in (a) respectively. The
intensity is plotted versus the angle of one of the rotation motors which control the sample
orientation.

23



Fluence Dependence
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Figure S2: Fluence dependence of the high wavevector signal. The blue circles
represent the amplitude of the signal versus THz field strength. The broken red line is a
linear fit of the data with a zero intercept.
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