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We report on the observation of negative electronic compressibility in twisted bilayer graphene
for Fermi energies close to insulating states. To observe this negative compressibility, we take
advantage of naturally occurring twist angle domains that emerge during the fabrication of the
samples, leading to the formation of charge islands. We accurately measure their capacitance using
Coulomb oscillations, from which we infer the compressibility of the electron gas. Notably, we not
only observe the negative electronic compressibility near correlated insulating states at integer filling,
but also prominently near the band insulating state at full filling, located at the edges of both the
flat- and remote bands. Furthermore, the individual twist angle domains yield a well-defined carrier
density, enabling us to quantify the strength of electronic interactions and verify the theoretical
prediction that the inverse negative capacitance contribution is proportional to the average distance
between the charge carriers. A detailed analysis of our findings suggests that Wigner crystallization
is the most likely explanation for the observed negative electronic compressibility.

I. INTRODUCTION

Twisting two layers of graphene creates a moiré su-
percell with enlarged periodicity [1–4], leading to band
insulating states at full filling (ν = ±4, where ν rep-
resents the filling factor denoting the number of charge
carriers per supercell) [5] and flattening of the electronic
bands [2, 4]. Near the so-called magic angle of ≈ 1.1◦,
the ratio of Coulomb repulsion to kinetic energy becomes
maximized [6], giving rise to correlated insulating states
at fractional fillings and integer values of ν [7–10]. When
the carrier density is slightly tuned away from these in-
teger filling factors, strongly interacting itinerant charge
carriers emerge. The interaction strength of charge carri-
ers is characterized by a dimensionless parameter known
as the Wigner-Seitz radius rs [11, 12], given by:

rs =
1√
π

a

aB
=

am∗e2

4π3/2ε0ε′rℏ2
. (1)

Here, a = 1/
√
n is the average distance between charge

carriers, n the charge carrier density, aB the (effective)
Bohr radius, ε0 the vacuum permittivity, ε′r the effective
relative dielectric constant of the material, ℏ the reduced
Planck constant, m∗ the charge carrier effective mass and
e the elementary charge. Near an energy gap, the low
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carrier density (and large a) together with a large m∗

of itinerant charge carriers results in a large value of rs.
This high rs is likely crucial for the formation of strongly
correlated electronic phases in twisted bilayer graphene
(tBLG), such as the superconducting phases adjacent to
the correlated insulating states, the origin of which re-
mains not fully understood [8, 13–18]. However, pre-
cise measurements near these gaps pose challenges due
to variations in the twist angle across the sample, which
have been identified as a significant source of disorder
in tBLG [6, 9, 14, 19–21]. These variations give rise to
twist-angle domains within the sample, characterized by
relatively uniform twist angles but abrupt transitions at
the boundaries [22, 23]. Since the twist angle dictates
the position of moiré-induced energy gaps, their locations
vary within the sample, complicating efforts to maintain
a uniform itinerant charge carrier density and rs across
the sample geometry.

In this study, we capitalize on the twist angle variations
to isolate single twist angle domains, accurately quan-
tify their charging energy, and extract the interaction
strength between itinerant charge carriers. To achieve
this, we utilize tBLG heterostructures with varying sizes
and geometries, as described in Section II. We demon-
strate that the inherent twist angle variations induce elec-
trostatic confinement near the insulating states of tBLG
(Section III). These confined regions function as charge
islands, and we precisely measure their capacitance us-
ing Coulomb oscillations. An in-depth analysis of this
capacitance reveals a negative electronic compressibility
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FIG. 1. (a) Schematic cross-section of a tBLG device, including an illustration of the moiré lattice forming between the two
graphene layers (bottom left) and the resulting stacking order (bottom right). Here, θ denotes the twist angle between the
layers and λ the moiré wavelength. (b) Illustration of the constricted Hall-bar device D1, with the width of the constrictions
labeled. (c) Optical microscopy image of device D1. (d) 4-point resistance as a function of gate voltage Vg and bulk filling
factor ν at two temperatures (T ), highlighting the fragile superconducting region (SC). (e) 4-point resistance as a function of
gate voltage Vg and temperature of the 750-nm-wide constriction, measured with the contacts highlighted by arrows in panel
(c). Band insulators (BI), correlated insulators (CI) and a fragile superconducting dome (SC) are visible.

near both the band insulating states in the remote and
flat bands, as well as near the correlated insulating states
(Section IV). By fitting a model to the data, we find that
the negative capacitance contribution is proportional to
the square root of the charge carrier density, consistent
with expectations for correlated carriers. Furthermore,
as the compressibility of the charge island remains unaf-
fected by magnetic fields and is consistent among differ-
ent bands, we propose that the observed negative com-
pressibility is best explained by the formation of a Wigner
crystal (Section V). Thus, our technique provides insights
into the intriguing properties of itinerant charge carriers
in tBLG when the Fermi energy approaches the moiré-
induced energy gaps.

II. SAMPLES AND SETUP

This study includes a total of six tBLG devices with
different twist angles and geometries. The tBLG is cre-
ated using either the ”tear-and-stack” [5] or the ”cut-and-
stack” technique [24], generating a moiré pattern with

periodicity λ, as illustrated in Fig. 1(a). The tBLG is
encapsulated in hexagonal boron nitride (hBN), which
serves as an atomically flat protective layer with elec-
trical insulation [25]. To maintain a uniform electric
field and minimize electrostatic potential disorder, we
utilize a graphite gate, promoting atomically flat inter-
faces [26, 27]. For low-resistance one-dimensional con-
tacts, we employ selective reactive ion etching and met-
allization techniques [28–30]. The resulting device struc-
ture is depicted in Fig. 1(a), and an example device is
shown in Figs. 1(b)–1(c). Further details on the fabrica-
tion process and devices are available in Appendix A4.

In the main part of this work, we mainly show ex-
emplary results from a specific device labeled D1, which
incorporates a Hall-bar structure with constrictions, as
shown in Figs. 1(b)–1(c). These constrictions allow us
to differentiate between edge and bulk confinement (see
Supplemental Material S2 [31]). Within this device, we
have implemented constrictions of varying widths: 750
nm, 500 nm, 350 nm, and 200 nm, denoted as C1, C2,
C3, and C4, respectively.

To confirm the nature of the 750-nm-wide constriction
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FIG. 2. Two-point conductance G as a function of gate volt-
age Vg over the entire gate voltage range. Zoom-ins close to
the band insulating states reveal high-frequency conductance
oscillations.

C1 (Device D1) as tBLG, we analyze the temperature-
dependence of the resistance shown in Figs. 1(d)–1(e). In
this measurement, we can distinctly identify the band in-
sulators (BI) positioned around the filling factor ν = ±4.
By pinpointing their precise locations in gate voltage
and utilizing the gate lever arm, we can approximate the
twist angle as θ ≈ 1.02◦ (see Appendix A4). Moreover,
in the vicinity of integer fillings of the partially occu-
pied flat bands, we observe resistance peaks correspond-
ing to fractional fillings ν = −2, 1, 2, 3. These resistive
features align with expectations for correlated insulating
(CI) states [8, 32]. Close to ν = −2.7, the resistance
exhibits a significant reduction with decreasing temper-
ature, although it remains finite. This behavior indi-
cates the presence of a fragile superconducting state [33]
in the sample, as evidenced in the Supplemental Mate-
rial S1 [31]. Furthermore, magnetotransport measure-
ments (Supplemental Material S1 [31]) uncover the exis-
tence of Chern insulators featuring identical topological
invariants to those reported in other studies of tBLG near
the magic angle [24, 34–38]. Consequently, we can con-
clude that our tBLG sample distinctly exhibits correlated
phases akin to those observed in prior investigations near
the magic angle [8, 15–18, 32].

Gate voltage Vg (V)

 V
b 

(m
V)

0.7
0.8
0.9
1.0
1.1
1.2

 G
 (µ

S)

-3.55

-3.53-3.54-3.55-3.56

-3.545-3.555

-0.5

0.5

0

1.0
1.5
2.0
2.5

G (µS)

(a)

(b)

FIG. 3. (a) Exemplary 2-point conductance (G) trace close
to the band insulators or constriction C1. (b) Conductance
as a function of gate voltage and bias voltage Vb in a small
gate voltage range.

III. CHARGE ISLANDS REVEALED BY
COULOMB OSCILLATIONS

Each experiment which now follows, consists of two-
point conductance measurements where we increment the
gate voltage in small steps to reveal high-frequency con-
ductance oscillations. In Fig. 2, we show a conductance
(G) trace obtained with 0.1 mV gate voltage steps mea-
sured across constriction C1. The charge neutrality point
(CNP) at a filling factor of ν = 0, and band insulators
(BI) near full filling at ν = ±4 are prominently visible
within the trace. A zoom-in of the traces reveals regu-
lar high-frequency conductance oscillations at the transi-
tion towards the insulating states of our tBLG samples.
These oscillations are observed in all our tBLG samples
that show moiré induced energy gaps (see Supplemental
Material S2, S4, S5, S7 [31]).

A. Dependence on bias voltage

To identify the origin of the conductance oscillations,
we perform gate-dependent bias spectroscopy measure-
ments, as illustrated in Fig. 3. The combined influence
of bias and gate voltage forms a diamond-shaped region
where the conductance is suppressed [Fig. 3(b)], a clear
manifestation of the Coulomb blockade effect [39]. In the
Coulomb blockade regime, transport is impeded by elec-
trostatic repulsion within a region that confines charge
carriers. If the bias potential eVb is larger than the charg-
ing energy Ec = e2/CΣ, where CΣ is the total capacitance
of the charge island, the Coulomb blockade is lifted [40].
Due to the similarity in magnitude between the AC lockin
excitation (100 µV root mean square) and the step size in
bias and gate voltage, the sharp features of the Coulomb
diamonds appear blurred. Nevertheless, we can extract
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FIG. 4. Magnetic field dependence of the oscillations. (a)
Gradient of the voltage drop (measured in the 4-point con-
figuration) as a function of gate voltage and magnetic field.
(b) Power spectral density of the oscillations in panel (a) as
a function of magnetic field.

the bias voltage (Vb) required to lift the blockade, which
is eVb ≈ ±0.31 meV, as indicated by the dashed lines in
Fig. 3(b).

The spacing between two Coulomb resonances on the
gate-voltage axis is determined by two energy scales: the
electrostatic charging energy and the quantum level spac-
ing. The remarkable regularity of the measured Coulomb
oscillations (Fig. 2) suggests that the charging energy
dominates over the quantum level spacing. Therefore,
the distance ∆Vg between the Coulomb resonances is
given by ∆Vg = e/C where C represents the capaci-
tance between the charge island and the graphite back
gate [40, 41]. From Fig. 3, we extract a periodicity of the
oscillations e∆Vg ≈ 0.61 meV. From this analysis, we can
conclude that C ≈ CΣ/2, suggesting that half of the to-
tal capacitance of the charge island arises from coupling
to charge carriers in the source/drain leads.

B. Magnetic field dependence of the oscillations

Next, we explore the behavior of the Coulomb oscilla-
tions under a perpendicular magnetic field B. We con-
duct measurements by sweeping the gate voltage in a

narrow window while incrementally increasing the mag-
netic field. We observe a significant shift in Coulomb
resonance positions [Fig. 4(a)], while the spacing be-
tween them appears unaffected by the magnetic field. A
fast Fourier transform (FFT) at each magnetic field re-
veals two distinct primary frequency components, with
higher harmonics arising from the non-sinusoidal shape
of the Coulomb resonance [Fig. 4(b)]. The power spec-
tra’s evolution with magnetic field displays a pronounced
change in peak amplitude: the frequency component near
1600 V−1 decreases, and the component near 1100 V−1

becomes more prominent. As neither component fully
disappears (which is evidenced by the phase coherence
of both frequency components in the full magnetic field
range, see Appendix A1), they must originate from two
distinct confined regions within the sample. The constant
spacing further confirms that the charging energy dom-
inates over the quantum level spacing in the Coulomb
blockade effect. If the quantum level spacing were more
significant, the single-particle energies would evolve dif-
ferently due to the lifting of spin- and valley degeneracy
with the magnetic field [42, 43].
The position of the oscillations in Fig. 4(a) exhibits

periodicity in 1/B. This behavior, recently been demon-
strated in bilayer graphene quantum dots [44], can be
explained by a classical electrostatic shift induced by den-
sity of states oscillations near the confined region. When
the Fermi energy matches a Landau level, the density of
states in the surrounding area increases, exerting a clas-
sical electrostatic force that shifts the energy levels inside
the confined regions. Since an extremum in Fig. 4(a) sig-
nifies a constant electron density inside the confined re-
gion, the change in charge density must occur outside the
confined region. Therefore, these measurements provide
valuable information about the Fermi surface of the car-
riers in the source/drain leads that couple to the charge
island [44], further discussed in Appendix A1.

C. Origin of the Coulomb oscillations

The presence of Coulomb oscillations requires an en-
ergy gap for charge confinement, such as a band gap,
and spatial variations in the position of this gap rela-
tive to the Fermi level to create a confining potential
for charge carriers. In Supplemental Material S2 [31],
we investigate the Coulomb oscillations as a function of
constriction width on device D1, finding a clear trend of
Coulomb oscillations vanishing with decreasing sample
width. This suggests that their origin lies in bulk char-
acteristics rather than edge effects. Furthermore, the en-
capsulation of tBLG with hBN and the use of graphite
gating should strongly suppress the effects of charge im-
purities and other potential disorder [27]. Therefore, we
propose that the confinements arise due to variations in
the twist angle across the sample geometry [6, 9, 14, 19–
21], leading to the formation of twist angle domains over
the sample [22, 23], as illustrated in Fig. 5(a). Local
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FIG. 5. Schematic illustration of twist angle variations and
resulting bandstructure variations over the sample geometry.
(a) Illustration of the formation of twist angle domains over
the sample geometry, the local variation of the bandstructure
is drawn on the right hand side. (b) The Fermi level increases,
and in this example the areas with a small twist angle will
become insulating since the Fermi level is in their band gap,
while other areas remain conducting. (c) Further increasing
the Fermi level results in the formation of confinements, where
the energy levels are quantized.

variations in the twist angle result in local changes in the
energy gap offset relative to the Fermi level [see the po-
tential landscape on the right-hand side of Fig. 5]. There-
fore, as the Fermi level approaches the band gap, certain
domains become insulating earlier than others [Fig. 5(b)].
Close to the insulating state, individual domains may re-
main conducting while the surrounding area has already
become insulating [Fig. 5(c)]. This scenario leads to indi-
vidual charge islands and the observation of conductance
oscillations as a function of gate voltage.

However, this leaves the question of how these charge
islands are accessible in the transport experiment. An
in-depth analysis of the quantum oscillation frequency
in Appendix A1 reveals that the carriers tunneling in
and out of the confinement exhibit a complete absence of
moiré-induced energy gaps. This observation points to-
ward an important role of the boundaries between twist
angle domains. Within these boundaries, strong disorder
may be present on the length scale of the moiré superlat-
tice. Consequently, locally, the moiré-induced gap may
vanish, leaving charge carriers which tunnel in and out
of the confinement. Since these boundaries are expected
to appear over the entire sample geometry, we propose
that they form a network that allows to probe the local

charge confinement in electronic transport experiments.

IV. NEGATIVE ELECTRONIC
COMPRESSIBILITY

Next, we study the spacing of the Coulomb oscilla-
tions ∆Vg to determine the capacitance of the charge
islands. Since ∆Vg = e/C, the oscillation frequency
fg can be expressed as fg = C/e, directly proportional
to the back gate capacitance of the charge island. To
facilitate the analysis, we convert conductance traces
to the frequency domain by calculating power spectra
Pω = |F{dG/dVg}|2, where F represents the Fourier
transform (for more details, see Appendix A4). The re-
sulting gate-voltage-dependent power spectra, presented
in Fig. 6(a) for device C1, reveal multiple distinct fre-
quency components near the insulating states (labeled as
C1.1 to C1.4), each corresponding to a single charge is-
land. While the oscillation period remains regular within
small gate voltage ranges (< 10 mV), a continuous fre-
quency tuning is evident on larger voltage scales. Across
all tBLG devices in this study, we consistently observe an
increase in frequency (and capacitance) as the Fermi level
approaches the moiré-induced energy gap, representing a
central result of our work (additional examples are pre-
sented in Supplemental Material S2, S4, S5, S7 [31]).
To elucidate the observed change in capacitance, we

first consider the geometric capacitance Cg of the charge
island within a parallel-plate capacitor model, given by
Cg = ε0εrA/d, where A is the area of the island, and d
is the distance between the tBLG and the graphite gate.
Based on the twist angle domain model outlined in Sec-
tion III C and Fig. 5, we anticipate that A and Cg should
remain constant as a function of gate voltage if the charge
island consists of a single domain. However, if the charge
island comprises multiple domains, we expect to observe
a step-wise reduction of A and the capacitance. Alterna-
tively, if the confinement arises from other types of po-
tential disorder [45], we anticipate a continuous reduction
of the area A, as more of the surrounding area should be-
come insulating when the Fermi level enters the bandgap
in the surrounding bulk. Given that these scenarios are
inconsistent with our observations, we can conclude that
the observed increase in capacitance is indicative of a
negative compressibility of the charge carriers.

A. Models for the negative capacitance
contribution

To investigate the negative compressibility contribut-
ing to the observed increase in capacitance, we consider
two scenarios where negative compressibility can arise.
First, we consider the exchange interaction in an elec-
tron gas, where the reduced likelihood of finding charge
carriers with the same spin at the same position cre-
ates an ”exchange hole” due to the opposite background
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charge [12, 46, 47]. The resulting negative interaction
energy Ei,X is given by:

Ei,X = −4

3

e2An3/2

√
2πε0ε′r

[
(1 + ξ)3/2 + (1− ξ)3/2

]
, (2)

where ξ represents the polarization of magnetic moments,
ranging from 0 (unpolarized) to 1 (fully polarized). Sec-
ondly, we consider the case of a Wigner crystal, where
charge carriers minimize their potential energy by form-
ing a solid phase with a triangular lattice [48]. The result-
ing negative interaction energy Ei,W is given by [48–53]:

Ei,W = −ηT e
2An3/2

8πε0ε′r
, (3)

where ηT = 3.92 is a numerical constant associated with
the triangular lattice.

In both scenarios, the negative interaction energy Ei

leads to a negative (thermodynamic) electronic compress-
ibility κ, expressed as κ−1 = dµ/dn = (1/A)(d2Ei/dn

2),
where µ is the electrochemical potential. The nega-
tive compressibility contributes to a negative capacitance

contribution Ci, where C−1
i = κ−1/(Ae2), increasing the

total capacitance C beyond the geometric contribution
Cg according to the relation [52, 54–56]:

C−1 = C−1
g + C−1

i = C−1
g +

1

A2e2
d2Ei

dn2
. (4)

Since the carrier density dependence of both interaction
energies is the same [Eqs. (2)–(3)], we can use Eq. 4 to
obtain a general model for the capacitance, including the
effect of correlated itinerant charge carriers:

1

C
=

d

ε0εrA
− S

ε0ε′rA
√

|n|
, (5)

where the dimensionless parameter S characterizes the
strength of the correlation, which can be experimentally
determined through fitting. The expressions and values
for S for the different theoretical scenarios can be found
in Table I. To fit Eq. 5 to our data, we express the carrier
density as |n| = α|Vg − V0|, where Vg is the gate voltage,
V0 is the gate voltage where the itinerant charge carrier
density is zero, and α is the lever arm. We determine α
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TABLE I. Expressions for the S in different correlated elec-
tron models compared to the experimental value. The abbre-
viation WC denotes the Wigner crystal scenario, while HF
denotes the Hartree-Fock model in the exchange scenario.

S Value

WC
3ηT
32π

0.12

HF, unpolarized
2√
2π

0.80

HF, polarized
2.828√

2π
1.13

Experiment - 0.84± 0.26

from the Landau levels that emerge in magnetotransport
(see Supplemental Material S1 [31]).

B. Determining the strength of the interaction

Figure 6(b) shows the power spectrum of constriction
C1 close to the band gap at ν = −4. We identify and de-
termine the maxima of two frequency components and fit
Eq. (5) to extract S. The resulting excellent fit demon-
strates that the n−1/2 dependence in our model pro-
vides a good description of the gate-voltage-dependent
frequency observed in the experiments. We perform this
analysis on 12 frequency components from five different
samples that are close to the magic angle: constrictions
C1, C2 and C3 on Device D1; and Devices D2 and D3.
The obtained values of S are summarized in Fig. 6(c) and
the complete fitting results are presented in the Supple-
mental Material S3 [31]. The mean value of S is found to
be µ(S) = 0.84 with a standard deviation of σ(S) = 0.26.
Three outliers in Fig. 6(c) were excluded from calculat-
ing the mean value due to relatively large uncertainty
bounds resulting from the fitting procedure.

C. Analysis with a fixed strength of the interaction

Next, we refine our model by fixing the parameter S
to the mean value of S = 0.84, i.e., we account for all
our data from devices close to the magic angle (the con-
strictions C1, C2, C3 and devices D2, D3) and band gap
transitions using one single, fixed value of S. This al-
lows us to fit the subset of frequency components that
occur within a narrow gate voltage range, expanding our
dataset to include 18 frequency components. Note that
in this refined model, both the vertical offset and steep-
ness of the curve are solely determined by the size of the
confinement A, while V0 determines the horizontal posi-
tion. The fitting results are presented in Figure 7, where
the vertical axis represents the inverse capacitance 1/C,
and the horizontal axis represents the average distance

between the charge carriers a = α
√
|V − V0|. Each fre-

quency component is labeled using the format ”xx.y”,
where ”xx” is the constriction or device number, and
”y” is the number of the frequency component. Accord-
ing to Eq. (5), the resulting maxima should fall along the
straight line determined by the fit. Remarkably, using a
fixed value of S provides excellent fits to all the data,
regardless of the filling factor or the band where the fre-
quency component is observed. The remaining plots of
the frequency components, including the fits and the fit-
ted values of A and V0, are presented in the Supplemental
Material S3 [31].
It is noteworthy that we also find periodic Coulomb

oscillations that are well-described by Eq. (5) close to
the insulating states that form at fractional superlattice
fillings [Fig. 7(c)]. These include components D2.4 found
near ν = 2, D3.2 near ν = −2 and D3.3 near ν = 3. The
latter findings clearly demonstrate that a single-particle
band gap is not necessary for confined regions to arise in
the sample; instead, the charge gap arising from the cor-
related insulating states is sufficient. The fact that they
are well-described by Eq. (5), assuming a zero itinerant
charge carrier density at V0 in the partially filled band,
is also in-line with the opening of a correlation-induced
energy gap near the integer fillings of the superlattice.

D. Size and twist angle of the charge islands

Within this subsection, we delve deeper into the re-
sults of our modeling and fitting analysis to evaluate their
alignment with the scenario we proposed in Section III
involving twist angle domains. By comparing V0 to the
voltage where we pinpoint the center of the band gap in
the bulk, we can estimate the deviation of the twist angle.
We do this for constriction C1, and find that components
C1.1, C1.2, C1.3, C1.4 deviate −0.023◦, 0.016◦, 0.011◦

and −0.003◦ respectively from the bulk value of 1.022◦.
These twist angle variations are in-line with observations
in the literature [23]. This shows that minute twist an-
gle variations of only a few percent from the average bulk
value suffice to produce the confinements observed in this
work.
Figure 8 displays the empirical cumulative distribu-

tion function (CDF) of the sizes (
√
A) of the 18 charge

islands extracted from our fits on all frequency compo-
nents. These sizes are consistent with the dimensions of
our samples and similar to the experimental twist angle
maps obtained by Uri et al. [23]. A notable difference

is that we find no substantially smaller (
√
A < 125 nm)

or larger (
√
A > 425 nm) areas in our experiments. We

note that small areas are usually embedded into a larger
twist angle domain that exhibits more uniformity, caus-
ing twist angle boundaries that can couple to the charge
island to be absent [23]. On the other hand, large do-
mains are less likely to form a detectable charge island,
since the large circumference makes it less probable that
the entire surrounding region is insulating at the same
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time. Considering these factors, our size distribution
aligns reasonably well with the literature, validating our
model and the obtained value of S ≈ 0.84.

V. NATURE OF THE CORRELATED STATE

Our work provides compelling evidence for a neg-
ative capacitance contribution within confined regions
of tBLG. However, the nature of the correlated state
remains uncertain. The analysis has established the
1/
√

|n| dependence of the inverse capacitance, consistent
with both an exchange contribution or a Wigner crystal
phase. Despite the experimental value of S ≈ 0.84 (Ta-
ble I) closely resembling that associated with exchange
contributions in an unpolarized electron gas (S = 0.80),
several experimental observations raise doubts:

(1) The observation of regular Coulomb oscillations
suggests that the spin- or valley degree of freedom is not
significant for the addition energy in the confined region.

(2) Substantial changes in the polarization of magnetic
moments with magnetic field, including the disappear-
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ance of correlated insulating phases at high magnetic
fields (see Supplemental Material S1 [31]), indicate that
the Zeeman energy exceeds the exchange-induced energy
gap. At a magnetic field of 9 T, the Zeeman energy
in the order of 1 meV should dominate over other spin
contributions, leading to a fully polarized electron gas.
Consequently, if the electron gas is not polarized at zero
field, the change in polarization between 0 T and 9 T
would lead to a frequency increase. For example, we
would expect a frequency increase of 72% as ξ → 1 for
the 1100 V−1 component in Fig. 4(b). Instead, an indica-
tion of a change in the Coulomb oscillation frequency is
observed in none of our measurements, additional exam-
ples are included in the Supplemental Material S9 [31].

(3) If the charge carriers are fully out-of-plane polar-
ized at B = 0 T, no change in the Coulomb oscillation
frequency is anticipated in the exchange scenario. How-
ever, no manifestation of such ferromagnetism such as an
anomalous Hall effect [57] is observed, nor do we observe
hysteresis when sweeping the magnetic field from -9 to
9 T and vice versa (see Supplemental Material S8 [31]).

(4) The carrier density dependence of the polarization
of magnetic moments in the fluid phase is expected to
be strong [14], potentially leading to significant devia-
tions from the observed 1/

√
n-dependence of the inverse

capacitance in the exchange scenario.

(5) Describing frequency components with the same
value of S regardless of whether they are found near a
correlated or band insulator is unexpected in the case of
exchange contributions, according to theoretical simula-
tions [58], because the spin/valley polarization varies for
each energy gap that opens in tBLG [14].

(6) Theoretical models that take short-range interac-
tions into account indicate that strong negative contribu-
tions to the capacitance are not anticipated close to the
band insulating states at ν = ±4 [58].

The absence of clear signatures expected in the ex-
change scenario and the consistent value of S across dif-
ferent bands suggests that a Wigner crystal phase may
provide a better explanation for the observed negative
compressibility. The exchange energy in a Wigner crys-
tal follows a scaling law of the form EX ∝ exp−γ

√
rs [59,

60], where γ is of the order 1. As a consequence, the in-
teraction energy of a Wigner crystal does not rely on
the polarization ξ, providing an explanation for the six
observations listed above. The higher value of S than ex-
pected for a Wigner crystal may be related to the average
distance a being in the same order to the moiré wave-
length λ, causing a fraction of charge carriers to obtain
even lower energy states within the non-uniform poten-
tial landscape provided by the moiré lattice. Importantly,
as shown in the Appendix A2, this effect also leads to
the same 1/C ∝ 1/

√
n dependence, consistent with the

experimental findings. Further investigations, consider-
ing additional factors and refinements to the model, may
provide a more detailed understanding of the presently
observed correlated state in tBLG.

VI. CONCLUSIONS

This study demonstrates a negative electronic com-
pressibility in confined regions of tBLG. The observed
dependence of the inverse capacitance on the charge car-
rier density, characterized by 1/C ∝ 1/

√
n, aligns with

the presence of strongly correlated itinerant charge car-
riers. The magnetic field dependence and the similarity
of the correlation strength parameter S across different
bands suggest a limited role of exchange contributions,
pointing towards Wigner crystallization as a likely expla-
nation for the observed negative compressibility. These
findings highlight the role of naturally occurring electro-
static confinements in tBLG, which enable precise inves-
tigation of the ground state energy of correlated states
in this material.
Our research reveals two distinct phenomena rooted

in the moiré physics of tBLG. The first phenomenon in-
volves electrostatic confinements arising from variations
in the twist angle. This effect hinges solely on the pres-
ence of moiré-induced energy gaps, while the flatness of
the band is not important. Therefore, this phenomenon
is not exclusive to samples near the magic angle, as ev-
idenced in tBLG samples far from this angle (Supple-
mental Material S4, S6 [31]). The second phenomenon
is the manifestation of negative compressibility within
these confinements. In this case, the band flattening in
tBLG plays a crucial role, since rs is required to be large.
This gains support from control experiments, particularly
one conducted on a sample where the twisted bilayer has
relaxed. In this case, we observe the absence of moiré
minigaps, while the charging spectrum of a confinement
in this sample shows no negative compressibility (Sup-
plemental Material S6 [31]). Furthermore, we extend our
investigation to samples with twist angles significantly
deviating from the magic angle (θ ∼ 0.65◦ in Supple-
mental Material S5 and θ > 1.29◦ in Supplemental Ma-
terial S7 [31]). While these samples do exhibit an increase
in frequency as the Fermi level approaches an energy gap,
their evolution with gate voltage deviates from the trend
specified in Eq. (5). In these instances, the parameter
rs may not be sufficiently large to induce negative com-
pressibility in the full gate voltage range where the con-
finement is formed, a factor that can be attributed to the
reduced band flattening compared to the magic angle.
While it is commonly believed that correlated effects

are not significant in the remote bands due to the ab-
sence of correlated insulating states [61], our observa-
tion of negative compressibility in these bands [Fig. 7(b)]
challenges this notion. An analysis of the band struc-
ture, including a Hartree-Fock correction, suggests that
the observed negative compressibility may be attributed
to a significant correlation-induced flattening of the band
when the filling factor exceeds |ν| = 4 (see Appendix A3).
The size of a typical charge island, as illustrated in

Fig. 8, is notably larger than the moiré wavelength (λ =
13.8 nm for a 1.02◦ twist angle). This suggests that the
periodicity of the moiré potential remains a crucial factor
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within the charge island, and the negative compressibility
is not solely a consequence of electrostatic confinement.
Our experimental evidence strongly supports this idea,
revealing a significant suppression of the kinetic energies
of carriers within the confinement compared to single-
layer or Bernal-stacked bilayer graphene. In essence, we
have demonstrated how moiré-induced confinement can
offer quantitative insights into the interaction energies of
correlated effects in tBLG by accurately measuring the
local charging energy. This is the principal achievement
of our work and has significant implications for under-
standing and manipulating correlated phases in moiré
materials.

The source data and Matlab code underlying this
paper are available at Ref. [62] upon publication of this
manuscript.
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Appendix A1: Fermi surface area extracted from the
quantum oscillations

The electrostatically-induced shifts in the position of
the Coulomb resonances provides important clues about
the transport characteristics between the metal leads and
the confined regions. We plot the phase of the Coulomb
oscillations (which is proportional to the Coulomb res-
onance position) obtained from the FFT analysis of
the two prominent frequency components [Fig. 4(b)] in
Fig. A1(a). This reveals a quantum oscillation that is
periodic in 1/B, and the quantum oscillation frequency
can be extracted from an additional FFT analysis of the
phase [inset of Fig. A1(a)]. By monitoring the phase of
the oscillations at different gate voltages, we can extract
the quantum oscillation frequency and plot these as red
squares in Figs. A1(b)–A1(c). Since these quantum oscil-
lations have the same microscopic origin as the Subnikov-
de Haas (SdH) oscillations observed in the sample’s bulk
magnetoresistance (see Supplemental Material S1 [31]),
we also add the SdH frequency as a comparison [blue
dots in Fig. A1(b)]. The quantum oscillation frequencies
obtained from the Coulomb oscillations form a straight
line that intersects the charge neutrality point at zero
magnetic field in Fig. A1(c). In contrast, the SdH fre-
quency intersects with fractional superlattice fillings at
zero magnetic field due to the Dirac revival effect in
tBLG, which reconstructs the Fermi surface area at frac-
tional fillings [14]. We observe the same disparity in a
second device, labeled D4, which is presented in the Sup-
plemental Material S7 [31]. At higher gate voltages, we
note that the lever arm of the gate decreases, which ex-
plains why the quantum oscillation frequency from the
Coulomb oscillations exhibits a more gradual slope [red
dashed lines in Figs. A1(b)–A1(c)] compared to the SdH
frequency component emerging from the charge neutral-
ity point [blue lines in Fig. A1(b)].

The Onsager relation establishes a direct proportion-
ality between the frequency of quantum oscillations and
the extremal Fermi surface area in momentum space [64].
In proximity to an energy gap, it logically follows that
both the Fermi surface area should approach 0 nm−2

and the frequency of quantum oscillations approaches
0 T. Therefore, the fact that the quantum oscillation fre-
quency forms a linear relationship emanating from the
charge neutrality point (CNP) is evidence for the absence
of moiré-induced energy gaps for the charge carriers that
are involved in the tunneling processes in- and out of the
charge islands.
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Appendix A2: Ground state energy of a Wigner
crystal in a moiré superlattice

In this Appendix we show that a periodic moiré poten-
tial may lead to a lowering of the ground state energy of
a Wigner crystal. Due to the periodic moiré potential, a
fraction of charge carriers in the triangular Wigner lat-
tice can obtain an even lower energy within the potential,
lowering the ground state energy even further than com-
pared to a uniform background. If we assume a potential
with minima ∆E, we can write this additional interaction
energy contribution as:

Emoiré = −An∆ER, (A1)

where R represents the effective fraction of charge car-
riers that are in the optimal position to profit from
the moiré potential. For simplicity, we assume that
R = amoiré/a (where amoiré is the size of the moiré su-
percell) such that R = 1 if amoiré = a. Since 1/a =

√
n,

the moiré energy contribution becomes:

Emoiré = −An3/2∆Eamoiré, (A2)

this leads to an additional capacitance contribution:

1

Cmoiré
= −3∆Eamoiré

4e2A
√
n

. (A3)

with the same dependency on area and density as the
interaction energy for a uniform background.

To estimate how much the ground state energy is low-
ered, we compare to a tight-binding model of the moiré
superstructure [65]. For small twist angles, the local ro-
tation between unit cells in the top and bottom layers can
be neglected in favor of only considering a rigid displace-
ment vector d(r) between the unrotated top and bottom
layer. In the small angle approximation, d(r) can then
be explicitly written as d(r) ≈ −θẑ × r. All displace-
ments d(r) lie within the unit cell of the pristine lattice.

Consequently, one can map each local configuration at a
point r of the moiré supercell to a rigid displacement d(r)
in so-called configuration space mapped on the unit cell
of the pristine lattice. Following the model we have out-
lined in [65], we map out tight-binding parametrizations
in configuration space using a 10 × 10 grid in configu-
ration space. We use a continuum elasticity model first
suggested by Nam et al. [66] to calculate the effects of
lattice reconstruction in tBLG. From our parametriza-
tion we extract the variations in on-site potential at a
twist angle of ≈ 1 degrees, yielding ∆E ≈ 14 meV and
amoiré = 14 nm. From this analysis, we find that the new
correlation strength parameter S = 0.16, or an increase
of 33% compared to the Wigner crystal with a uniform
charge background. This result gives an idea of the order
of magnitude of the correction, but is likely an underes-
timation of the correction for two reasons. First, the
interaction with the positive background is not included,
and will also result in an additional contribution due to
the non-uniform charges of the underlying lattice. Sec-
ond, we do not include effects of elasticity in the Wigner
crystal, the Wigner lattice will likely deform to ensure a
higher fraction is in the optimal position.

Appendix A3: Suppression of kinetic energy in
remote bands

The atomic and electronic structure of tBLG is cap-
tured within an atomistic modeling approach [3, 67, 68]
that relies on commensurate moiré unit cells with twist
angle

cos θ =
n2 + 4nm+m2

2 (n2 + nm+m2)
, (A1)

where m,n ∈ N. For the simulations, we use (n,m) =
(32, 33) corresponding to a twist angle of θ = 1.018◦ with
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of long-ranged electron-electron interactions. Hartree cor-
rections render the bandstructure of tBLG filling-dependent,
which leads to a pinning of the van Hove singularitiy to the
Fermi energy EF and additional band flattening at the tip of
the remote valence and conduction bands.

N = 12′676 carbon atoms per moiré unit cell. The posi-
tions of the carbon atoms are relaxed using classical force
fields as outlined in Ref. [69]. The electronic structure is
modeled by a Slater-Koster tight-binding model of the
carbon pz-orbitals using the parametrization adopted in
Ref. [67]. Near the magic-angle, long-ranged Coulomb
interactions were shown to significantly renormalize the
single-particle flat bands of tBLG [70–73] if the system
is filled with electrons (holes), which can be captured
within a self-consistent Hartree theory. Ref. [71] demon-
strated that within atomistic modeling approaches, the
Hartree potential can effectively be parameterized by an
on-site term of the form

V H(r) = V0ν
∑
j

cos(Gj · r), (A2)

where ν denotes the electronic filling ν = −4 . . . 4 of the
flat bands with respect to charge neutrality (ν = 0) and
Gj are the three non-equivalent moiré reciprocal lattice
vectors that differ by rotations around 120◦. The value
of the Hartree potential V0 was found to be V0 = 5 meV
for the unscreened Coulomb interaction [71, 74].

The (filling-dependent) bandstructure of 1.018◦ tBLG
along the high symmetry path K −Γ−M −K ′ is shown
in Fig. A2. At half-filling, the systems features a set
of flat bands that are well separated from the remote

valence and conduction bands by a well-defined energy
gap. Filling the flat bands of tBLG with electrons (up-
per panel) or holes (lower panel), shifts the energies at
the K,K ′ points to higher (lower) energies due to the
Hartree potential. Therefore, the flattest sections of the
bands follow the Fermi energy EF , which leads to a pin-
ning of the van Hove singularities [73]. Furthermore, the
Hartree potential affects the flatness of the tip of the
valence (conduction) band manifold as indicated by the
dashed line at filling factor ν = ±4.1. This effect re-
duces the kinetic energy of charge carriers at the edge of
the remote band, which may account for the prominent
observation of a negative compressibility in this regime.

Appendix A4: Methods

1. Samples

Exfoliation: The flakes used for fabrication were me-
chanically exfoliated onto a silicon wafer with 90 nm thick
thermally grown silicon dioxide [75]. Graphite flakes
(”graphenium”) where obtained from NGS Naturgraphit
GmbH.
Stacking: Device D1 was fabricated using the stack-

and-tear method [5]. For Device D1, we used polyvinyl
alcohol (PVA) and polydimethylsiloxane (PDMS), and
the stacking of the flakes was performed using the pa-
rameters described in Ref. [21]. For samples D2, D3, D5
and D6 we used a polybisphenol A carbonate (PC) stamp
on top of a PDMS stamp [28]. In addition, the single-
layer graphene flakes of these devices were pre-cut using
a laser. Device D4 was produced using a poly bisphenol
a carbonate (PC) stamp on PDMS [28].
For each sample, the thicknesses of the flakes are mea-

sured in tapping mode atomic force microscopy and the
results are shown in Table A1.

TABLE A1. Thicknesses of the flakes used in each sample.
Each thickness was determined by measuring the step-height
at the edge of the flake after fabrication in an atomic force
microscope. The uncertainty on each thickness is 1 nm.

Sample Bottom hBN (nm) Top hBN (nm) Graphite (nm)
D1 29 32 8
D2 32 24 5
D3 32 26 4
D4 35 37 10
D5 31 22 2
D6 22 22 3

Laser cutting: Laser cutting was performed using a
focused supercontinuum laser, coupled into an optical mi-
croscope setup. The output of the laser was spectrally fil-
tered to contain wavelengths of 400-550 nm, which max-
imises the ratio of absorption in graphene compared to
the absorption in Si for the used oxide thickness of 90 nm.
The pulse duration on the sample is estimated to be few
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10s of picoseconds. The laser has a maximum repeti-
tion rate of 20 kHz, but is typically operated at 4 kHz.
The power can be varied using absorption filters, with
a higher power increasing the width of the cut. Typi-
cal pulse energies used for laser cutting are 4 nJ, focused
down to a submicrometer spotsize, equivalent to a max-
imum intensity of approximately 2× 1010 W/cm2.
Fabrication: For fabrication, we used a 50K/950K

polymethyl methacrylate (PMMA) double-layer as our
resist system (Allresist 631.09 and 679.04 both spin-
coated at 4000 rpm and baked at 150◦ for 3 minutes
per layer, with a mixture of 3 parts isopropylalcohol
and 1 part water as a developer) and e-beam lithogra-
phy (Vistec EBPG5200+, 100 keV, clearance dose of 500
µC/cm2). The Hall-bar device was fabricated by first
patterning holes into the top hBN layer. These holes
were etched in a reactive ion etcher by first using a short
oxygen plasma step (Oxford PL 100 / ICP at 20 W RF
power, 40 sccm, as low pressure as possible ∼ 8 µbar
for ∼5 s) to remove contamination, followed by a CF4

plasma etch (10 W, 40 sccm, low pressure), which sig-
nificantly slows down at the graphene layer [29]. The
duration of the CF4 plasma step was adjusted to the top
hBN thickness to prevent over-etching into the bottom
hBN layer. This was followed by another brief oxygen
plasma step to remove the graphene, after which chrome
and gold were deposited using e-beam evaparation, fol-
lowed by a lift-off in warm acetone (without sonication).
This results in a clean one-dimensional edge contact to
the tBLG [28]. Subsequently, the Cr/Au metal contacts
and bond pads were patterned and evaporated using the
same lift-off process.

For device D4, the fabrication was performed using
a two-step process, where first the device geometry was
structured using the CF4 plasma, and the electrodes were
deposited in the second step. The contact resistances in
this process are significantly higher than in the other de-
vices, and this fabrication approach was was not pursued
further.

2. Twist angle determination

Device D1 To determine the twist angle in the 750 nm
constriction (C1), we extract the superlattice filling ns =
2.43 × 1012 ± 0.04 × 1012 cm−2 from the Landau fan
(Supplemental Material S1 [31]), and use the equation

ns = 8θ2/
√
3a2l [8] (where al = 0.246 nm is the lat-

tice constant of graphene) to find the twist angle in
θ = 1.022◦. For the remaining constrictions, we used
the position of the band insulating features to determine
the twist angle and find twist angles of 1.07◦, 0.97◦ and
0.91◦ for constrictions C2, C3 and C4, respectively.
Device D2 consists of a 1 µm-wide Hall bar geometry

with a twist angle estimated from the Landau fan to be
0.97◦. Additionally, we found an additional alignment
between one of the graphene layers and the hBN, with a
twist angle of ∼ 0.7◦. We found no effects from this addi-

tional alignment on the charging spectra studied in this
work. An optical image of this device, the conductance
traces and power spectra of this device are presented in
the Supplemental Material S4 [31].

Device D3 is a similar 1 µm-wide Hall bar geome-
try without constrictions. The device broke down during
the Landau fan measurement, therefore we could only ex-
tract the lever arm of the back gate, but not the position
of the additional Landau fan. From the position of the
insulating states, we are nevertheless able to estimate the
twist angle to be 1.14◦. An optical image of this device,
the conductance traces and power spectra of this device
are also presented in the Supplemental Material S4 [31].

Device D4 due to high contact resistances, it was not
possible to extract the lever arm or the twist angle from
magnetotransport experiments. Therefore, the twist an-
gle was estimated using a parallel-plate capacitor model
and the position of the insulating states. We estimate
the twist angle to vary between 1.29◦ and 1.45◦ on this
sample. Sample imaging and measurement results are
presented in Supplemental Material S7 [31].

Device D5 on this device, we did not obtain a clear
additional Landau fan, but the lever arm could be esti-
mated from the charge neutrality point. The twist angle
was estimated from the position of high resistance fea-
tures found in transport measurements, which occur at
ν = ±8 in the low-twist-angle regime of this device [8].
We find a twist angle of 0.65◦, and the results on this
device are presented in Supplemental Material S5 [31].

Device D6 This device incorporated an additional
WSe2 (HQ graphene) into the stack which was picked
up after picking up the tBLG. The tBLG graphene was
relaxed back to near-Bernal stacking, since no evidence
of moiré induced satellite peaks was found. This device
serves as a control sample, which is presented in the Sup-
plemental Material S6 [31].

3. Experimental setup

Electrical characterization of all samples was per-
formed in a 3He/4He wet dilution refrigerator (Oxford
KelvinoxMX400) with a base temperature of 32.5 mK.
All electrical wiring is directly connected to the sample
with only a 1 kOhm pre-resistor in the BNC connector
box used to connect to the instruments. The home-build
amplifiers and IV converters are each placed in a shielded
box outside the refrigerator. The total resistance be-
tween the BNC connector box to the sample holder is
1.24 kΩ for each line at room temperature. An out-of-
plane magnetic field is applied with a superconducting
magnet mounted in the liquid helium bath. We locate
the sample inside the coil of the magnet while avoiding
magnetic materials in the insert to ensure a uniform mag-
netic field.
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4. Data aquisition and analysis

Measurement of temperature-dependent re-
sistance: The temperature-dependent resistance in
Figs. 1(d)–1(e) was measured using a homebuild IV-
converter with a gain of 10 × 106 connected to two side
contacts. This IV converter also applied a symmetric
AC bias voltage to these contacts with an amplitude of
100 µV (RMS) through a 1/10,000 voltage divider. The
excitation signal was supplied by a Stanford SR830 lockin
amplifier operating at 69.6 Hz and this apparatus also de-
tected the signal from the IV converter. On the opposite
side-contact pair, a differential amplifier with a gain of
1000 is connected to measure the voltage drop and this
signal is measured with a second lockin amplifier. A volt-
age source (Yokogawa 7651) was connected to the gate
through a 1 MΩ resistor. The measurement was per-
formed during the condensing of the mixture, circulating
of the mixture and cooldown to base temperature of the
dilution refrigerator. During this procedure the gate volt-
age was constantly swept and at each data point the tem-
perature on the mixing chamber plate is recorded. Dur-
ing the cooldown procedure the mixing chamber rapidly
cools once the condensed mixture enters, therefore reli-
able measurements of the temperature between ∼ 2.5 K
and ∼ 4.5 K were not possible. The resulting data is
plotted on a meshed grid with interpolation using the
Matlab ’pcolor’ function.

2-point conductance measurements: The conduc-
tance traces used to construct the power spectra are ob-
tained by a 2-point measurement of the conductance us-
ing the homebuild IV converter and an AC bias of 100
µV RMS at a frequency of 69.6 Hz. The voltage source
for the gate (Yokogawa 7651) was set to a range of 10 V,
giving a resolution of 100 µV, and this is supplied to the
system through a twisted-shielded cable with a low-pass
filter with a cut-off frequency of 1.6 kHz to reduce output
noise. The resolution of 100 µV is also the step size at
which the gate voltage is swept, resulting in a Nyquist
frequency of 5000 V−1. For the bias spectroscopy data
in Fig. 3, an additional voltage source was used to apply
a symmetric DC bias.

Determination of the power spectra: To calculate
the power spectra Pω, we first perform a windowed auto-

correlation on the gradient of the conductance with the
Matlab function corrgram [76]. We use a window of 200
samples, with an maximum lag of 200 points and overlap
between the windows of 90%. Note, that with this win-
dow we can only resolve frequency components fg > 50
V−1. We then calculate the Fourier transform of the au-
tocorrelation function using the Matlab implementation
’ezfft’ [77]. By the convolution theorem this approach is
equivalent to calculating |F{dG/dVg}|2.

Fitting to the power spectra: To fit Eq. (5) to our
data, we find the maxima in the power spectra at each
gate voltage. Due to the limited frequency resolution,
this can lead to multiple gate voltage values having the
same capacitance in Fig. 7, but this is not a problem for
the least squares fitting procedure. We then load this
into the curve fitting tool ’cftool’ in Matlab. We then
manually select the correct maxima that belong to a sin-
gle frequency component, and fit Eq. (5). cftool auto-
matically calculates the 95% confidence interval, which
defines the error in the fitting results presented in this
work. We find the hBN thickness d from AFM scanning
the stack before fabrication, their values are shown in Ta-
ble A1 under the column: ”bottom hBN”. The lever arm
α is extracted during the extraction of the twist angle,
as described above.

Magnetic field dependence: For Figs. 4(b) the fast
Fourier transform was calculated at each magnetic field
using the standard FFT implementation in Matlab. This
fast Fourier transform gives a complex number, of which
the angle can be calculated to obtain the phase. The
resulting phase was unwrapped to obtain the continuous
signal shown in Fig. A1(a). To find the frequency of the
phase in 1/B as shown in the insert of Fig. A1(a), the
phase signal was interpolated using a spline interpolation
on a grid that is equally spaced in 1/B. After this, the
FFT can be calculated to find the quantum oscillation
frequency. The resulting frequencies are shown as red
squares in Figs. A1(b)–A1(c). The same interpolation
approach is taken on the magnetoresistance data (pre-
sented in Supplemental Material S1 [31]). After this, we
find the maxima at each B-field and manually select the
correct frequency components, which are shown as blue
dots in Fig. A1(b).
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43 (2021).

[25] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang,
S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L.
Shepard, and J. Hone, Boron nitride substrates for high-
quality graphene electronics, Nat. Nanotechnol. 5, 722
(2010).

[26] R. Ribeiro-Palau, S. Chen, Y. Zeng, K. Watan-
abe, T. Taniguchi, J. Hone, and C. R. Dean, High-
Quality Electrostatically Defined Hall Bars in Monolayer
Graphene, Nano Lett. 19, 2583 (2019).

[27] E. Icking, L. Banszerus, F. Wörtche, F. Volmer,
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SUPPLEMENTAL MATERIAL

S1: ADDITIONAL BULK TRANSPORT DATA ON THE 750 NM CONSTRICTION

S1.1: Fragile superconductivity in the 750 nm constriction
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FIG. S1. Observation of fragile superconductivity in constriction C1. (a) Temperature dependence of the 4-point resistance,
showing correlated insulators (CI), band insulators (BI) and the fragile superconducting dome (SC). (b) DC voltage drop and
(c) differential resistance measured over the 750 nm constriction as a function of DC current. (d) Temperature dependence of
the resistance at a filling factor ν = −2.7. Red solid line is a guide to the eye.

In Figs. 1(d)-1(e) of the main text we show the 4-point resistance measured in constriction C1 as a function of
temperature. Besides band insulators (BI) and correlated insulators (CI), we find a region with low resistance near
ν = −2.7 at low temperatures, resembling a superconducting dome that is often observed in magic angle tBLG. To
investigate this further, we measured the voltage-current characteristic at a backgate voltage of -2.43 V and base
temperature. Figure S1 shows the DC voltage drop [Fig. S1(a)] and differential resistance [Fig. S1(b)] as a function
of DC current. DC signals were simultaneously obtained with AC signals (to obtain the differential resistance) using
standard lockin techniques at a frequency of 19.11 Hz. We observe a plateau in the voltage drop around zero DC
current and two maxima in the differential resistance. Both are characteristic features of superconductivity, however, a
400 Ω resistance remains. The temperature-dependence of the differential resistance shows a characteristic drop as the
temperature decreases, below which it shows a plateau at a finite resistance [Fig. S1(c)]. Therefore, we conclude that
we do not observe robust superconductivity as often observed in tBLG [33], but rather a fragile superconducting dome.
This may be attributed to a resistance in series to a superconducting region in the 750 nm constriction. Alternatively,
the rather large voltage offset of the differential amplifier of 0.2 mV [Fig. S1(a)] might also be responsible for breaking
the superconducting state, if this is indeed an offset on the input of the amplifier.

S1.2: Chern insulators in the 750 nm constriction

Figure S2 shows the longitudinal (Rxx) and transverse (Rxy) resistance as a function of normalized density and flux.
These normalized quantities were found by calculating the supercell area from the superlattice density. This directly
gives the normalized density, which is equivalent to the number of charge carriers per supercell. The flux through one
supercell is normalized with respect to the flux quantum.

As shown in Fig. S2(c) we observe a series of Chern insulators, whose topological invariants are (s, t), where s is the
slope and t is the offset. These states are only included in Fig. S2(c) if Rxy = 1/s [h/e2]. They have been observed
with the same topological invariants in other works in tBLG near the magic angle [24, 34–38] and arise from the
energy spectrum of the circular orbits of the charge carriers in the periodic potential of the moiré superlattice.
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ν = nAuc and normalized flux Φ/Φ0. (b) Transverse resistance in units of h/e2. (c) Wannier diagram of observed Chern
insulators
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S2: DEPENDENCE OF THE COULOMB OSCILLATIONS ON THE SAMPLE WIDTH
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FIG. S3. (a),(b) 2-point conductance traces over the full gate voltage range for the 350 and 200 nm wide constriction,
respectively. The band insulators (BI) are highlighted by red shaded regions. (c)–(d) Power spectra Pω as a function of gate
voltage for the 350 and 200 nm wide constriction, respectively. (e) The highest discernible periodic oscillation frequency as a
function of constriction width. (f-i) Examplary conductance traces in a 20 mV window for the 200, 350, 500 and 750 nm wide
constriction, respectively.

To elucidate the location on the sample where these confinements are formed, we analyze conductance traces taken
over each constriction in device D1. Two example traces on the 200 nm and 350 nm wide constriction are shown in
Figs. S3(a), S3(b), respectively. To qualitatively evaluate the frequency content within each constriction, we examine
the power spectra of each in Figs. 2(b), S3(c), S3(d) (for the 500 nm wide constriction, see section S4), identifying
the highest confidently discernible periodic oscillation frequency in each case. This analysis reveals a diminishing
trend of high-frequency contributions with decreasing sample width, as visually depicted in Figs. S3(e). Specifically,
at a sample width of 200 nm, no high-frequency Coulomb oscillations are evident [Fig. S3(c)], whereas at a width
of 350 nm, distinct periodic components are still observable up to 2058 V−1 [Fig. S3(d)]. To further illustrate the
frequency content within each constriction, we present exemplary traces of the conductance within a 20 mV gate
voltage span (close to the maximum in frequency), showcased in Figs. S3(f)–(i).
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S3: FITTING RESULTS TO DETERMINE S

TABLE S1. Fitting results on the frequency components with S as a fitting parameter.

Component Near filling
√
A V0 S R2

C1.1 -4 307.4 ± 12.0 -3.909 ± 0.047 1.09± 0.13 0.986
C1.2 -4 126.2 ± 10.7 - 3.559 ± 0.118 0.90± 0.30 0.911
C1.3 +4 341.8 ± 24.3 3.600 ± 0.040 0.57± 0.17 0.987
C1.4 +4 162.7 ± 12.5 3.834 ± 0.016 0.48± 0.12 0.950
C2.1 -4 259.6 ± 31.0 -3.605 ± 0.378 2.09± 0.60 0.974
C2.5 +4 153.9 ± 13.0 3.797 ± 0.021 0.62± 0.13 0.946
C3.2 -4 342.1 ± 44.5 -4.166 ± 0.102 0.69± 0.35 0.985
D2.1 -4 119.0 ± 12.7 -4.653 ± 0.052 1.21± 0.23 0.977
D2.2 -4 201.0 ± 22.4 -3.968 ± 0.075 0.92± 0.30 0.943
D2.3 -4 231.5 ± 70.5 -5.431 ± 0.861 2.70± 1.49 0.963
D2.4 +2 301.9 ± 7.9 2.758 ± 0.070 1.05± 0.16 0.978
D3.3 +3 216.7 ± 34.0 4.276 ± 0.244 2.50± 0.36 0.974
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S4: REMAINING PLOTS OF THE OBSERVED FREQUENCY COMPONENTS AND FITS WITH S = 0.84

Figure S4 shows the frequency components found near the band insulators on the electron side in sample C1.
Component C1.3 is interesting, because the capacitance is lower than expected from our model at low densities.
While the cause is unknown, it may be related to the large average distance a exceeding the thickness of the hBN
d, causing a significant change in the dielectric screening. It could also be the combined effect of two distinct charge
islands with similar sizes, but different V0. These deviations are not observed in any other frequency component.
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FIG. S4. Frequency components observed on the electron-side in the 750-nm-wide constriction (C1) on sample D1 and fits
using Eq. (5).

Figure S5(a) shows the 2 point conductance G as a function of gate voltage over the 500 nm constriction (C2) in
device 1. The band insulators are found at different gate voltages than for the 750 nm constriction. This may be
attributed to a slight change in twist angle. From the shift in the position of the band insulator we estimate the twist
angle to be ∼ 1.07◦. We observe several frequency components near the band insulating features in Fig. S5(b). In
Figs. S5(c)–S5(f) we identify 5 components that fit well to Eq. (5).

Figure S6 shows the fits for the 350 nm wide constriction (C3) on device 1. In this region, the twist angle is found
to be lower than for the 750 nm constriction. Based on the position of the band insulators, we estimate the twist
angle in this region to be ∼ 0.97◦.

Figure S7(a) shows an optical image of sample D2, which consists of a 1 µm-wide Hall bar with an estimated
twist angle of 0.97◦. In the experiment, we measured the conductance along the total length of the device, us-
ing the two contacts indicated by black arrows in Fig. S7(a). We find the frequency components near ν = −4
[Figs. S7(e), S7(f), S7(h), S7(i)] and near ν = 2 [Figs. S7(g), S7(j)] on this sample. Near the band insulator at
ν = −4, initially we find two components denoted D2.1 and D2.2 as shown in Figs. S7(c), S7(e), S7(h). To break the
insulating state somewhat, we repeated the measurements with an additional 0.5 mV DC bias applied to the sample
[Figs. S7(d), S7(f), S7(i)]. This reveals an additional frequency component D2.3 in a region that was previously
masked by the insulating state.

Sample D3 consists of a Hall bar structure, however only in one of the contacts the graphene was found to be twisted
[bottom contact indicated by a black arrow in Fig. S8(a)], while in the remainder of the sample no moiré-induced
satellites are found. When measuring the 2-point conductance [Fig. S8(b)], we find the band insulators and correlated
insulators at fractional fillings. Near the band insulators, we find two distinct frequency components near ν = −4
[Figs. S8(d), S8(g)]. We fit only to one component D3.1 [Fig. S8(c)], because the other component is not fully captured
in the gate voltage trace which makes it difficult to find V0 from the fit. During the Landau fan measurement to
extract the density, the sample broke, meaning that only data between 7 and 9 T could be used to estimate the lever
arm.

In sample D3, the conductance oscillations are prominently visible in a 4-point measurement if this contact is used
as a voltage probe due to the oscillating contact resistance. Due to the larger amplitude, this 4-point measurement is
used to detect the oscillations in Fig. S8.

In Table S2 we summarize the fitting results of all the frequency components found near the band insulators.
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FIG. S5. Frequency components observed in the 500 nm constriction (C2). (a) 2-point conductance as a function of gate
voltage. (b) Power spectrum as a function of gate voltage and gate-voltage-frequency over the whole gate voltage range. (c)
Power spectrum close to the band insulator on the hole-side and (e) fit to 3 frequency components. (d) Power spectrum close
to the band insulator on the electron side and (f) fit to two frequency components.
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FIG. S7. Conductance oscillations observed in device D2. This sample consists of a simple Hall-bar structure (no constrictions)
and tBLG with an estimated twist angle of 0.97◦. (a) Optical microscopy image of the device, the two contacts highlighted by
black arrows are used for the conductance measurement. (b) Two-point conductance as a function of gate voltage, highlighting
the band insulators (BI) and correlated insulators (CI). (c) Power spectrum as a function of gate voltage and frequency without
a DC bias applied and (d) with a 0.5 mV DC bias applied. (e) Zoom-in of the Power spectrum as a function of gate voltage and
capacitance near the band insulator on the hole-side and (h) including fits to two frequency components. (f) Power spectrum
near the band insulator on the hole side with a 0.5 mV bias and (i) fit to an additional frequency component. (g) Power
spectrum near half-filling on the hole side and (j) fit to the frequency component.
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FIG. S8. Conductance oscillations observed in sample D3 with an estimated twist angle of 1.14◦. (a) Optical image of the
device, showing the two contacts used for 2-point characterization. (b) 2-point conductance as a function of gate voltage. The
band insulator (BI), correlated insulators (CI) and charge neutrality point (CNP) are highlighted. (c) Power spectrum obtained
from a 4-point measurement (the oscillations are more prominently visible due to oscillations of the contact resistance). (b)
Zoom-in near the band insulator on the hole side and (g) fit to the frequency component. (e) Zoom-in near half-filling on the
hole side and (h) fit to the component. (f) Zoom-in near 3/4 filling on the electron side and (i) fit to the frequency component.
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TABLE S2. Summary of the fitting parameters for all frequency components with a fixed value of S = 0.84.

Component Twist angle θ Lever arm α (m−2 V−1) Filling factor Band V0 (V)
√
A (nm) R2

C1.1

1.02◦
4.96× 1015

-4 Flat -3.819 ± 0.003 333.3 ± 1.1 0.983
C1.2 -4 Flat -3.536 ± 0.009 128.3 ± 0.9 0.911
C1.3

5.33× 1015
4 Flat 3.668 ± 0.004 308.3 ± 2.1 0.983

C1.4 4 Remote 3.771 ± 0.005 132.3 ± 2.4 0.929
C2.1

1.07◦
4.96× 1015

-4 Remote -4.265 ± 0.008 336.9 ± 1.3 0.958
C2.2 -4 Flat -3.897 ± 0.012 301.7 ± 2.8 0.939
C2.3 -4 Flat -3.845 ± 0.007 313.4 ± 3.7 0.980
C2.4

5.33× 1015
4 Flat 3.709 ± 0.006 269.3 ± 2.1 0.936

C2.5 4 Remote 3.759 ± 0.004 136.2 ± 2.1 0.940
C3.1

0.97◦ 4.96× 1015
-4 Remote -4.219 ± 0.012 347.1 ± 2.7 0.947

C3.2 -4 Flat -4.211 ± 0.005 325.3 ± 2.0 0.985
D2.1

0.97◦ 5.148× 1015

-4 Flat -4.580 ± 0.002 142.6 ± 1.7 0.967
D2.2 -4 Flat -3.945 ± 0.005 207.7 ± 1.8 0.943
D2.3 -4 Flat -4.578 ± 0.009 336.5 ± 1.9 0.940
D2.4 2 Flat 2.671 ± 0.006 312.6 ± 0.8 0.976
D3.1

1.14◦ 5.509× 1015
-4 Flat -5.444 ± 0.006 263.2 ± 1.1 0.945

D3.2 -2 Flat -3.101 ± 0.015 430.6 ± 2.8 0.900
D3.3 3 Flat 3.889 ± 0.004 299.4 ± 1.8 0.952
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S5: OBSERVATION OF CONDUCTANCE OSCILLATIONS NEAR ν = ±8 IN A 0.65◦ TWISTED SAMPLE

In Fig. S9 we show conductance oscillations in sample D5. This sample has an estimated twist angle of 0.65◦, where
the insulating features appear at ν = ±8 [8]. On both electron and hole side, we find an oscillating component with
a low amplitude (note that the colorbar scale in Fig. S9(b) is lower than for the other power spectra presented in
this work). It is clear that the frequency of these components increase as a function of gate voltage, and that their
frequency increases when the Fermi level approaches ν = 8. This may indicate that spatially correlated charge carriers
are important in this system as well. We could, however, not obtain a good fit from Eq. (8). Possibly, this could
indicate that the area A of the confinement is changing, or the interaction energy diminishes faster with increasing
carrier density due to the smaller Wigner-Seitz radius.
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FIG. S9. Conductance oscillations observed in sample D5 with an estimated twist angle of 0.65◦. (a) Two-point conductance as
a function of gate voltage. At this twist angle, the insulating states are found near ν = 8 [8], which we identify near Vg = ±4.5
V. (b) Power spectrum as a function of frequency and gate voltage: Note that the colour scale is a factor 10 lower than in
all the other power spectra presented in this work. The inset shows an optical image of the device and the contacts used for
2-point characterization. (c) Bias-dependence of the gradient of the conductance. The typical Coulomb diamond structure is
more difficult to discover due to the very high frequency and low amplitude, nevertheless the amplitude diminishes at roughly
0.2 mV, while the period of the high-frequency oscillation is 0.4 mV, which is consistent with Coulomb oscillations.
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S6: COULOMB OSCILLATIONS IN A RELAXED SAMPLE

Figure S10(a) shows an optical image of device D6. During fabrication, this device was twisted at 1.3◦, but the device
relaxed back to Bernal stacking, which is evidenced by the absence of satellite peaks in Fig. S10(b). Furthermore,
a top-gate was integrated in the device. An additional WSe2 was incorporated into the stack, which breaks the
inversion symmetry of the bilayer graphene and opens a bandgap. Despite the absence of moiré physics, we observe
high-frequency Coulomb oscillations near the charge neutrality point [Figs. S10(c)-S10(d)]. Since the oscillations
remain unchanged as a function of top-gate voltage, they likely emerge from a contact region that is only affected
by the backgate [see Fig S10(a)]. Since the frequency, and therefore the charging energy, is similar in value to the
frequency components in the main part of this work, this sample can serve as a control experiment. From Fig. S10(d),
it is clear that the frequency remains constant as a function of gate voltage. This is in stark contrast to our observation
on devices which show moiré satellite peaks, where the frequency increases at low carrier densities. This experiment
therefore demonstrates that the band flattening in tBLG is crucial to observe a negative capacitance contribution.
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FIG. S10. Coulomb oscillations in a sample without moiré physics. (a) Optical image of device D6. The blue dotted line
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in panel (a) as a function of backgate and topgate voltage. (c) Two-point conductance as a function of backgate voltage at a
fixed topgate voltage. (d) Power spectrum as a function of backgate voltage near the charge neutrality point.
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S7: OBSERVATION OF COULOMB OSCILLATIONS IN SAMPLE D4

In Fig. S11(a) we show an atomic force microscopy map of sample D4, which consists of ring structures. Sample
D4 showed significantly higher contact resistances than the other sample due to a different fabrication approach.
Nevertheless, insulating states are resolved as shown in the 2-point conductance traces in Fig. S11(b). We observe
insulating states that point to tBLG in three regions of the device. We estimate the twist angle from the hBN thickness
(35.0 nm) and a parallel plate capacitor model, since the large contact resistances prevented us from making a more
accurate estimation from magnetoresistance measurements.
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FIG. S11. 2-point conductance on sample D4. (a) Atomic force microscope image of sample D4, showing the tBLG sample in
ring-shaped structures. (b) 2-point conductance measured between different contact pairs and the estimated twist angle.

In Fig. S12 we show the conductance oscillations observed in the 3 regions with insulating states. This sample
also features Coulomb oscillations with perfect periodicity, suggesting that the charging energy also overcomes the
quantum level spacing.

In sample D4 we were able to reproduce the magnetic field dependence of the oscillations, as outlined in the main
text. In Fig. S13 we show that the phase of the oscillations tunes in an identical manner due to the quantum oscillation
of the density of states in the region surrounding the confined region. In this case, we also find that the frequency is
proportional to the gate voltage, which was also observed on constriction C1.
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S8: COULOMB OSCILLATIONS IN REVERSED MAGNETIC FIELD

Figs. S14(a)–S14(d) present Coulomb blockade oscillations obtained from device D4, specifically from the section
labeled ”Ring 3”. In this instance, the twist angle deviates somewhat from the magic angle, estimated at 1.29◦,
and the frequency components do not align well with Eq. 5. Nonetheless, the noticeable increase in frequency as
we approach the insulating states hints at a considerable negative contribution to capacitance even in this scenario
(Fig. S12). Examining the frequency content of the signal in Figs. S14(e)–S14(f), we observe no significant alteration
in oscillation frequency concerning changes in the magnetic field or when reversing the magnetic field direction.
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S9: MAGNETIC FIELD DEPENDENCE OF THE NEGATIVE CAPACITANCE CONTRIBUTION

In this section we present a more detailed investigation of the Coulomb oscillations associated with the frequency
component C1.3 under the influence of an out-of-plane magnetic field. In Fig. S15(a), S15(c), and S15(e), we sweep
the gate voltage within a narrow range around specific values [Vg = 3.4 V, 3.52 V, and 3.161 V as indicated in
Fig. 2(f)] while incrementally increasing the magnetic field. Once again, we clearly observe quantum oscillations,
evident as shifts in peak positions. Furthermore, the separation between the peaks, corresponding to the frequency of
the Coulomb oscillations, remains entirely consistent despite the increase in magnetic field strength. This stability is
further affirmed by the power spectra depicted in Figs. S15(b), S15(d), and S15(f), where the frequency component
C1.3 is clearly identifiable in each spectrum (indicated by an arrow). It is important to note that while the amplitude
of the oscillations may vary, we do not observe a continuous shift in the frequency, which would suggest a change
in the polarization of the electron gas. Instead, frequency components appear or disappear as a function of the
magnetic field. This phenomenon can be attributed to multiple charge island being present on the samples, wherein
the prominence of the Coulomb blockade changes with the magnetic field. However, in Fig. S15(b) and S15(f), the
component C1.3 appears both at 0 T and 9 T, demonstrating that the frequency of an individual charge island remains
constant.
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