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ABSTRACT 108 

Background: Schizophrenia is a highly heritable disorder characterized by increased cortical 109 

thinning throughout the lifespan. Studies have reported a shared genetic basis between 110 

schizophrenia and cortical thickness. However, no genes whose expression is related to 111 

abnormal cortical thinning in schizophrenia have been identified. 112 

Methods: We conducted linear mixed models to estimate the rates of accelerated cortical 113 

thinning across 68 regions from the Desikan-Killiany atlas in individuals with schizophrenia 114 

compared to healthy controls from a large longitudinal sample (NCases = 169 and NControls = 298, 115 

aged 16-70 years). We studied the correlation between gene expression data from the Allen 116 

Human Brain Atlas and accelerated thinning estimates across cortical regions. We finally 117 

explored the functional and genetic underpinnings of the genes most contributing to 118 

accelerated thinning. 119 

Results: We described a global pattern of accelerated cortical thinning in individuals with 120 

schizophrenia compared to healthy controls. Genes underexpressed in cortical regions 121 

exhibiting this accelerated thinning were downregulated in several psychiatric disorders and 122 

were enriched for both common and rare disrupting variation for schizophrenia and 123 

neurodevelopmental disorders. In contrast, none of these enrichments were observed for 124 

baseline cross-sectional cortical thickness differences.  125 

Conclusions: Our findings suggest that accelerated cortical thinning, rather than cortical 126 

thickness alone, serves as an informative phenotype for neurodevelopmental disruptions in 127 

schizophrenia. We highlight the genetic and transcriptomic correlates of this accelerated 128 

cortical thinning, emphasizing the need for future longitudinal studies to elucidate the role of 129 

genetic variation and the temporal-spatial dynamics of gene expression in brain development 130 

and aging in schizophrenia. 131 

 132 
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 140 

INTRODUCTION 141 

Schizophrenia (SZ) is a complex and heterogeneous disorder with variable clinical and 142 

neurobiological phenotypic expression (1,2). From the genetic perspective, SZ is a highly 143 

heritable and polygenic disorder (3,4), influenced by the cumulative effects of common genetic 144 

variants (5,6) as well as rare structural (7,8) and protein-truncating mutations (9,10) distributed 145 

across the genome. This genetic variation predominantly impacts genes associated with 146 

neuronal and synaptic functions  (6,9,11). Furthermore, substantial genetic and transcriptomic 147 

overlap with other mental disorders has been established (12,13).  148 

Magnetic resonance imaging (MRI) studies have consistently reported deficits in cortical 149 

thickness (CT) in cross-sectional analyses (14). While some longitudinal studies have 150 

observed increased rates of cortical thinning over time in multiple brain regions among 151 

subjects with SZ (15,16), others have reported no progressive cortical changes in SZ patients 152 

(17,18), or have limited such changes to patient subgroups with worse functional outcomes 153 

(19). Some of these studies have correlated cortical thinning with clinical severity (20,21) and 154 

cognitive impairments associated with SZ (16,22).  155 

Heritability analyses have recently reported a shared genetic basis between SZ and brain 156 

anatomy, including CT (23,24). The genetic basis of longitudinal changes in regional cortical 157 

volumes among typically developing individuals (i.e., individuals without neurological or 158 

psychiatric disorders or controls) has been also studied, with heritability (h2) estimates ranging 159 

from 16 to 42% (25). Intriguingly, the genetic contribution to these longitudinal cortical 160 

volumetric changes appears to be distinct, showing minimal overlap with the genetic 161 
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contribution to the interindividual variability of cross-sectional (i.e. static) regional cortical 162 

volumes (25). The ENIGMA Plasticity working group's recent genome-wide association study 163 

(GWAS), the largest of its kind, encompassed approximately 15,000 healthy individuals across 164 

various ages. This pivotal study aimed to identify the common genetic variation that 165 

predisposes individuals to longitudinal brain structure changes. The study revealed a 166 

significant correlation between cortical thinning and common genetic variation that 167 

predisposes to SZ in the general population (26). Also, genes implicated in 168 

neurodevelopmental disorders, astrocytic metabolic processes during neurodevelopment, and 169 

aging-related neuronal and synaptic changes have been related with longitudinal brain 170 

changes. (27,28).  171 

At the transcriptome level, a high conservation of gene expression across individuals and 172 

cortical regions has been reported (29,30). By integrating CT and brain gene expression 173 

profiles (31), Romero-García et al identified gene expression correlates of CT differences in 174 

autism spectrum disorders (ASD). Genes associated with CT abnormalities were enriched for 175 

processes related to synaptic transmission (31).  176 

Collectively, these findings point to a genetic contribution to longitudinal change in CT in 177 

several mental disorders, but, to date, no genes have been identified whose expression is 178 

related to abnormal cortical thinning in SZ. Here we aimed to study the differences in the 179 

cortical thinning profiles observed in SZ patients and healthy controls (HC) using data from 180 

Utrecht Schizophrenia project and the GROUP consortium, to explore the correlation structure 181 

between these cortical thinning differences and gene expression across brain cortex using 182 

data from Allen Human Brain Atlas (AHBA), and to study the biological underpinnings of the 183 

genes contributing to this correlation with a comprehensive analytical pipeline (Figure 1, 184 

Supplemental Information (SI)).  185 

 186 

MATERIALS AND METHODS 187 
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Participants 188 

Participants comprised 169 participants with schizophrenia (SZ) and 298 healthy controls 189 

(HC), aged 16-70 years (Utrecht, The Netherlands). Exclusion criteria included an IQ below 190 

80, medical or neurological conditions and history of head trauma. Only SZ participants with 191 

DSM-IV diagnosis of a non-affective psychotic disorder and HC without lifetime mental 192 

disorders were included. The final dataset consisted of participants with a minimum of two 193 

MRI scans, totaling 168 SZ (22% females) and 293 HC (43% females), yielding 922 scans 194 

post-quality control, with sex distribution mirroring the broader dataset. Genotyped data from 195 

an independent cohort from CIBERSAM (Spain) comprising 1,927 DSM-IV diagnosed SZ 196 

spectrum individuals (65% males) and 1,561 HC (55% males), was used for polygenic score 197 

(PGS) predictions. Further information can be found in (16,32,33) and in SI.  198 

 199 

Imaging processing  200 

All participants had their baseline and follow-up MRI scan on a Philips 1.5T scanner. 201 

Anatomical CT information for each individual was obtained through the FreeSurfer analysis 202 

suite (34,35) across 68 cortical regions from Desikan-Killiany atlas (36). Accelerated cortical 203 

thinning (ACT) in SZ and CT differences at baseline (BCTD) between SZ and HC were studied 204 

using linear mixed models (LMM) and linear regression models, respectively. All analyses 205 

were performed in R and Matlab (v2018a). Detailed information about the image acquisition 206 

protocols, processing pipeline and sensitivity analyses performed are fully described in SI. 207 

 208 

Biological correlates of accelerated cortical thinning in SZ 209 

Partial least squares regression (PLSR) models were performed to study the relationships 210 

between standardized estimates of ACT (βage*diagnosis) and brain anatomically patterned gene 211 

expression matrix (20,647 genes x 68 cortical regions). We used brain gene expression data 212 
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from the Allen Human Brain Atlas (AHBA; https://human.brain-map.org/ (29,30). We used 213 

permutation testing based on 10,000 spherical rotations of the cortical regions (pspin) and 214 

assessed whether the first PLS component explained more variance than expected by chance 215 

(38). PLS weights for each gene were z-transformed (based on standard errors obtained from 216 

bootstrapping) and FDR-adjusted (37). Genes positively and negatively weighted on the first 217 

PLS component (pFDR < 0.05) were named PLS+ and PLS- genes, respectively. Additional 218 

PLSR analyses performed to explore the gene expression correlates with regional BCTD 219 

estimates. The method is based on the one described by Romero-Garcia et al. (39) (described 220 

in SI).  221 

We used Metascape (40) to calculate Gene Ontology (GO) enrichments and hierarchical 222 

functional for PLS genes using a background gene list of 15,209 consistently brain-expressed 223 

genes (41,42). Overrepresentation of PLS genes in synaptic GO terms from SynGO database 224 

v1.1(43) was also tested.Transcriptional profiling of PLS genes across 13 adult brain regions 225 

from Genotype-Tissue Expression project (GTEx v8) (44) and across 7 developmental 226 

timepoints from Brainspan (30) was performed with FUMA (https://fuma.ctglab.nl/ (45). Up or 227 

downregulation across each GTEx brain region was assessed with one-sample t-tests. 228 

Differences in prenatal vs postnatal gene expression values were assessed with two sample 229 

t-tests. Furthermore, overrepresentation of PLS genes across cell-type specific genes (46) 230 

was assessed by resampling procedure (real overlap against 10,000 simulations). See SI for 231 

a detailed methodological description. 232 

 233 

Genetic relationship between ACT and SZ and other related disorders 234 

We studied the overrepresentation of PLS genes among differentially expressed genes (DEG) 235 

in SZ and related psychiatric disorders (47) by a resampling procedure, comparing real 236 

enrichment against enrichment distribution from 10,000 randomly selected brain-expressed 237 

gene lists. We assessed enrichment of PLS gene sets in common predisposing variation for 238 
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SZ and other related disorders with MAGMA v1.10 (48) (GWAS data described in Supp Data 239 

4). Additionally, we calculated gene set-based polygenic scores (PGS) in a Spanish case-240 

control sample (Cibersam Consortium(49); NSZ = 1,927; NHC = 1,561) using data from the latest 241 

SZ GWAS (6). SZ-PGS were calculated for PLS- and PLS+ gene sets with PRSet function in 242 

PRSice v2.3.5, following developer’s recommendations, and significance was evaluated using 243 

logistic regression. Furthermore, we used logistic models to assess the overrepresentation of 244 

PLS genes among genes impacted by rare disruptive variation in SZ and neurodevelopmental 245 

disorders. Significance was determined through 10,000 random permutations of PLS 246 

genes.Corrected-pFDR < 0.05 was considered in any case. See SI for comprehensive 247 

methodological information. 248 

 249 

RESULTS 250 

Accelerated cortical thinning trajectories in SZ. 251 

We assessed whether the average cortical thinning in the SZ group (N = 168) was different 252 

from that in the HC group (N = 293) by regressing the effect of the age*diagnosis interaction 253 

on longitudinal CT measures across 68 brain regions with linear mixed models (see Methods). 254 

Positive values of βage*diagnosis represent brain regions with greater cortical thinning in SZ (SZ 255 

patients coded as “0”) in comparison with the less pronounced thinning observed in HC (HC 256 

coded as “1”). Overall, we describe significantly accelerated cortical thinning (ACT) in the SZ 257 

group relative to the HC group (Figure 2A) for both the right and left cortex (standardized 258 

estimates for right cortex: β = 0.108, p = 0.041, and left cortex: β = 0.103, p = 0.050; SI). 259 

Although none of the brain regions reached statistical significance at the individual level, most 260 

of the 68 brain regions showed a positive ACT estimate (61 out of 68; one sample-t test = 261 

11.442, p = 2.066 x 10-17; Figure 2B; Supp Data 1), reflecting widespread ACT in SZ patients 262 

relative to HC. Sensitivity analyses revealed unbiased consistency of the results (SI). 263 

 264 
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Association between cortical gene expression and ACT in SZ 265 

We used PLS regression to identify the correlation structure between ACT in SZ and 266 

anatomically patterned brain gene expression (NGenes = 20,647), using data from the AHBA 267 

(Figure 2C). The first PLS component (PLS1) explained 41.54% of the variance in the regional 268 

estimates of ACT in SZ, which was higher than expected by chance (pspin = 0.0023, 10,000 269 

spherical rotation permutations).  270 

Regional PLS1 scores (sum of the regional gene expression scores weighted by PLS1) were 271 

positively correlated with regional ACT estimates (r = 0.50, p = 1.2 x 10-5; Figure 2C). Genes 272 

significantly weighted on PLS1 (either positively or negatively) were associated with ACT in 273 

SZ in terms of their regional patterns of gene expression (Figure 2D-F), so that genes with 274 

positive and negative PLS1 weights are overexpressed and underexpressed in those brain 275 

regions with stronger ACT in SZ, respectively. After FDR-adjusting, a total of 1,373 genes 276 

were associated with regional ACT in SZ (pFDR < 0.05; -3.97 < Z < 3.97; 677 positively 277 

correlated (PLS+ genes) and 696 negatively correlated (PLS- genes); See Supp Data 2 for a 278 

complete list of PLS genes).  279 

 280 

Biological signatures of genes related to ACT in SZ. 281 

PLS- genes were overrepresented for ionic transport terms (GO0098662: inorganic cation 282 

transmembrane transport, pFDR = 1.4 x 10-7), densely connected through protein-protein 283 

interactions (PPI) networks and enriched for both presynaptic (pFDR = 8.53 x 10-3) and 284 

postsynaptic (pFDR = 0.043) membrane potential terms (Figure 3A). Across PLS+ genes, we 285 

found PPI networks enriched for the G-Protein Coupled Receptors’ (GPCR) signaling pathway 286 

(R-HSA-500792: GPCR ligand binding, pFDR = 1 x 10-23) (See Supp Data 2 for complete 287 

results). 288 
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Across 13 adult brain regions from GTEx v8 data, both PLS- and PLS+ were enriched in genes 289 

highly expressed in cortical tissue (PLS- genes: normalized gene expression (95%CI) = 0.39 290 

(0.29;0.49), pFDR = 2.35 x 10-12; PLS+ genes: normalized gene expression (95%CI) = 0.27 291 

(0.16;0.38), pFDR = 7.98 x 10-6; Figure 3B). However, we also observed clear differences 292 

between both gene sets across the rest of brain regions. For instance, while only PLS- genes 293 

were upregulated in the cerebellum (gene expression (95%CI) = 0.81 (0.7;0.92), pFDR = 1.86 294 

x 10-37), only PLS+ genes were upregulated in the hypothalamus (gene expression (95%CI) = 295 

0.25 (0.15;0.35), pFDR = 5.64 x 10-6). Furthermore, different gene expression trajectories across 296 

7 human brain developmental stages from Brainspan were observed for PLS- and PLS+ 297 

genes. Higher gene expression at postnatal vs prenatal stages was observed only for PLS- 298 

(two sample-t = -2.80, p = 0.009) (Figure 3C). See Supp Data 3 for complete results. 299 

We explored the overrepresentation of PLS genes across genes enriched in seven canonical 300 

brain cell types (50,51): excitatory neurons, inhibitory neurons, microglia, endothelial cells, 301 

oligodendrocytes, astrocytes, and oligodendrocyte precursors (OPCs). PLS- genes were 302 

enriched in genes highly expressed in both excitatory (OR = 3.14; pFDR = 5.1 x 10-4) and 303 

inhibitory (OR = 2.96; pFDR = 5.1 x 10-4) neuronal cell types, while PLS+ genes were 304 

overrepresented in astrocyte-related genes (OR = 3.30; pFDR = 5.1 x 10-4) ( Figure 3D-E; Supp 305 

Data 3). 306 

 307 

Relationship between ACT and gene expression profiles in SZ and related psychiatric 308 

disorders 309 

Given the correlation structure between cortical gene expression and ACT in SZ, we explored 310 

the enrichment of PLS genes in genes dysregulated in SZ and other psychiatric disorders 311 

(Figure 4A) from post-mortem studies (47). Genes upregulated in SZ were enriched for PLS+ 312 

genes (OR(CI95%) = 3.25 (2.53;4.16); pFDR < 0.00001) while genes downregulated in SZ were 313 

enriched for PLS- genes (OR(CI95%) = 2.38 (1.94;2.92); pFDR < 0.00001), suggesting 314 
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contribution of brain cortical gene expression patterns towards steeper cortical thinning in SZ. 315 

This association was also found when using independent RNAseq data from the PsychEncode 316 

Consortium (47,52) (Figure 4A).  317 

Moreover, these enrichments were extended to genes dysregulated in bipolar disorder (BD), 318 

autism spectrum disorders (ASD), or alcohol abuse disorder (AAD), consistent with the shared 319 

transcriptomic profiles across the psychiatric spectrum (47) (Figure 4A). However, while 320 

enrichments across genes dysregulated in ASD and BD were due to a set of genes that 321 

significantly overlap with genes dysregulated in SZ, the enrichment in AAD genes was found 322 

to be independent of SZ related genes (Supp table 3, supp figure 4). Also, no enrichments 323 

were found for major depression (MDD) either across PLS- or PLS+ genes, establishing a 324 

clear difference in relation to the significant gene expression correlation across both disorders 325 

at the genome wide level (47). See Supp Data 3 for complete results. 326 

 327 

Association of common and rare genetic predisposing variation with ACT in SZ 328 

We then explored the enrichment of PLS- and PLS+ gene sets for genetic risk variation to SZ 329 

and other psychiatric disorders or traits. Regarding common predisposing variation for SZ and 330 

related phenotypes, PLS- genes were described to be significantly enriched in SZ (MAGMA 331 

OR(CI95%) = 1.16 (1.05;1.29); pFDR = 0.048; Figure 4B). By performing polygenic score 332 

(PGS) predictions on an independent Spanish case-control cohort (NSZ = 1,927, NHC = 1,561; 333 

See Methods), we confirmed the genetic contribution to SZ from PLS- (competitive-p = 334 

0.0099; Figure 4C). Interestingly, no significant enrichments for predisposing variation to 335 

cortical thinning and other longitudinal brain morphology measures in the neurotypical 336 

population were found. 337 

Furthermore, in relation to rare risk genetic variation (53), PLS- genes were enriched for 32 338 

genes harboring protein truncating variants (PTVs) that confer risk to SZ (4 PLS- genes out of 339 

32 SZ genes: GRIN2A, NR3C2, RB1CC1 and PREP; OR(CI95%) = 3.39 (1.16;9.89); pperm = 340 
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0.01; Figure 4D). This pattern of enrichment across rare coding variation was also observed 341 

for neurodevelopmental disorders. Using recent data derived from whole exome sequencing 342 

(WES) studies (54), we found that PLS- genes were enriched for genes harboring de novo 343 

PTVs in subjects with developmental disorders (DD) (34 PLS- genes out of 477 DD genes; 344 

OR(CI95%) = 1.75 (1.22;2.52); pperm = 0.002; Figure 4D; Supp Data 4), thus suggesting that 345 

the impact of early neurodevelopment on the onset of SZ might phenotypically manifest as 346 

age-related CT decline.  347 

PLS+ genes showed no enrichment for common or rare genetic predisposing variation to SZ 348 

and other phenotypes. Furthermore, no significant enrichments for predisposing variation to 349 

height, used as a brain-unrelated phenotype, were found, thus reinforcing the specificity of the 350 

association identified with schizophrenia. 351 

 352 

Differences between longitudinal and cross-sectional cortical thickness comparison in 353 

SZ 354 

To assess whether our results were driven uniquely by diagnostic differences in the dynamic 355 

change of CT and not by diagnostic differences in static CT we assessed the main effect of 356 

diagnosis at baseline for the same regions. We found greater CT in HC relative to SZ in most 357 

brain regions (55 out of 68; one sample-t = 87.32, p = 2.71 x 10-9; Figure 5; See Supp Data 358 

5 for a detailed description of each region). However, we found no correlation between 359 

baseline CT differences (BCTD; βdiagnosis) and ACT (βage*diagnosis) estimates (r = 0.025, p = 0.838, 360 

Supp Data 1), thus suggesting anatomical differences between cross-sectional and 361 

longitudinal profiles of cortical abnormalities in SZ (Figure 5). 362 

For the BCTD model, the first PLS component explained 32% of variance in the response 363 

variable (p = 0.052, 10,000 permutations). After FDR-adjustment, a total of 1,035 genes were 364 

associated with regional BCTD in SZ (342 positively correlated (BCTD-PLS+ genes) and 693 365 
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negatively correlated (BCTD-PLS- genes)). No significant overlap was found between ACT-366 

PLS and BCTD-PLS significant genes (either PLS- or PLS+; Figure 5).  367 

BCTD-PLS+ genes were strongly enriched in synaptic markers and upregulated in most brain 368 

tissues and cell-types. However, no enrichment across either common or rare risk variation to 369 

SZ and related traits was found (Supp Data 5).  370 

 371 

DISCUSSION 372 

In this study, using a large longitudinal sample, we described a general pattern of accelerated 373 

cortical thinning (ACT) in SZ patients compared to HC across the lifespan. Using PLS 374 

regression, we reported that gene expression across 68 cortical brain regions is correlated 375 

with age-related cortical thinning observed in SZ patients relative to HC. We described a PLS 376 

component (PLS1) that explains a significant proportion (41.54%) of variance for ACT in SZ 377 

and identified the genes positively (PLS+) and negatively (PLS-) weighted on PLS1. PLS+ 378 

genes, which refer to genes overexpressed across cortical regions showing ACT in SZ 379 

patients, are enriched for G protein-coupled receptors’ signaling and neurodegeneration, 380 

overrepresented in astrocyte-related genes, and upregulated in SZ, BD, and ASD. PLS- 381 

genes, underexpressed across cortical regions showing ACT in SZ, are enriched for ionic 382 

transport and synaptic functionality, upregulated in postnatal brain developmental stages and 383 

in the cerebellum, overrepresented in neuronal cell types and downregulated in SZ, BD, ASD, 384 

and AAD. Moreover, we described enrichment of PLS- genes for both predisposing common 385 

and rare disrupting variation for SZ. To the best of our knowledge, the association between 386 

ACT and risk genetic variation has not been described before in SZ.  387 

We found that participants with SZ showed reduced CT compared to HC and progressive 388 

cortical thinning, consistent with results from previous studies (14). This supports that 389 

progressive cortical thinning may constitute a core phenotype of SZ (15,16), which has been 390 

associated with both positive (55) and negative symptomatology (21,56), that may even 391 
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precede psychosis onset (15,57). Nevertheless, our findings diverge from other studies that 392 

have documented the absence of ACT in SZ (17,18,58). A plausible explanation for these 393 

conflicting results may be the underlying clinical heterogeneity, as delineated in certain studies 394 

(19). In fact, a recent study has reported steeper cortical thinning as a factor to differentiate 395 

clinical high risk subjects who transition to psychosis from those who do not (59).  396 

Our study underscores the critical role of 592 PLS+ and 624 PLS- genes in ACT in SZ, with 397 

PLS- genes notably enriched in neuronal, synaptic, and ionic channel functions, aligning with 398 

GWAS (6,11) and whole exome sequencing (WES) (10,53,60) findings in SZ. Among these, 399 

potassium channels emerged as a significant enrichment, previously linked to deficits of white 400 

and gray matter in SZ (61–64). Ion channel alterations, impacting neuronal activity and brain 401 

homeostasis, may contribute to cortical thinning and neurodegeneration, often seen in aging 402 

brains (65). For instance, the CACNA1C gene's rs1006737 A allele, associated with SZ (6), 403 

has been implicated in age-related cortical thinning in bipolar disorder (BD) (66), illustrating 404 

potential pleiotropic genetic influences on psychiatric conditions by ACT. Additionally, PLS- 405 

genes show heightened expression in the cerebellum, consistent with recent SZ research 406 

highlighting cerebellar dysfunction associated with neurological soft signs and negative 407 

symptoms of SZ (67,68) and with studies describing genetic enrichment of cerebellum related 408 

genes in SZ (6,69,70). In line with our findings, other studies have also reported that patients 409 

with SZ who had more neurological signs at baseline had greater gray matter loss in the brain 410 

during a 2-year follow-up (71). Our findings also reveal significant enrichment of PLS+ genes 411 

in astrocytic markers, G protein-coupled receptor (GPCR) signaling, and neurodegeneration 412 

pathways, emphasizing GPCRs' role in disease mechanisms and therapeutic targets (72), 413 

given their relevance in antipsychotic drug action (73). Moreover, GPCRs signaling pathway 414 

has been described to be enriched for genes related to neuroanatomical variation in psychosis 415 

(42). 416 

PLS- and PLS+ genes were found to be downregulated and upregulated, respectively, in SZ, 417 

thus supporting that gene expression dysregulation in the disorder may underlie ACT. A similar 418 
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pattern was observed for differentially expressed genes in BD, ASD and AAD. Analyzing these 419 

enrichments further, however, we described that the overlaps observed between PLS genes 420 

and genes dysregulated in SZ, BD and ASD were due to sets of genes shared across 421 

disorders, unlike what was observed in the enrichments with AAD, which were due to 422 

independent genes. These results are in line with the shared transcriptional profiles across 423 

SZ, BD and ASD (47,74). However, despite a high significant transcriptional correlation 424 

previously reported between MDD and SZ (47), no enrichment was found for differentially 425 

expressed genes in MDD. This suggests that the differences at the transcriptional or genetic 426 

level may be partially responsible for the discrepancies in the cortical thinning patterns 427 

observed in SZ and MDD. 428 

Moreover, we report PLS- genes’ enrichment for common predisposing variation to SZ, but 429 

not to other psychiatric disorders. To ensure the robustness of our association from MAGMA 430 

GSEA, common predisposing variation enrichment was replicated by gene set based-PGS 431 

predictions. Unlike our study, previous works reporting genes whose expression was 432 

correlated with other brain morphology measures across psychiatric disorders did not show 433 

enrichment for genetic predisposing variation (42,51,75). Interestingly, we found no 434 

association between genetic variation to longitudinal changes in brain morphology in 435 

neurotypical population, including CT decline (26), and genes related with ACT in SZ (Supp 436 

Data 4), thus suggesting that the genetic mechanisms for the accelerated cortical decline in 437 

SZ may differ from those underlying cortical decline across the lifespan in the general 438 

population. In fact, none of the 6 genome-wide significant genes related with structural brain 439 

changes across lifespan (26) overlapped with any of PLS- or PLS+ genes described here. 440 

Rare disrupting variation conferring risk to SZ and neurodevelopmental disorders was also 441 

enriched for PLS- genes, highlighting the described genetic overlap at this type of rare genetic 442 

variation between SZ and neurodevelopmental pathologies (53,76,77). In this sense, rare 443 

genetic variation conferring risk to SZ has been described to be associated with alterations in 444 

cortical thickness and cortical thinning trajectories in people with SZ (78,79). 445 
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We have also assessed the functional characteristics of genes significantly correlated with 446 

baseline CT differences in SZ compared to HC. Intriguingly, the 342 BCTD-PLS+ genes 447 

described, which denote genes overexpressed across cortical regions showing decreased 448 

baseline CT in SZ patients relative to HC, displayed notable functional relevance. These genes 449 

were upregulated across most brain tissues, exhibited a strong enrichment for synaptic 450 

markers and were overrepresented among neuronal, oligodendrocyte, and astrocyte-specific 451 

genes. Nonetheless, BCTD-PLS+ genes did not exhibit differential expression in any 452 

psychiatric disorder nor were they enriched for predisposing genetic variation to SZ and 453 

related phenotypes. This underscores the notion that longitudinal instead of baseline 454 

differences in CT may hold greater significance in improving our understanding of the genetic 455 

underpinnings of SZ. 456 

Our study acknowledges several limitations. The use of 1.5 T rather than 3 T MRI may limit 457 

statistical power. Despite software updates, the absence of detailed information on these 458 

updates leaves potential effects on statistical power unaddressed. However, the mixed 459 

scanning of patients and controls likely minimizes any group effects on cortical thickness 460 

changes. Moreover, Our reliance on gene expression data from healthy donors limits 461 

inferences about CT changes and gene expression in SZ. Additionally, gene expression varies 462 

with age (80,81) and may be influenced by the course of illness and treatment (82). Post-463 

mortem brain samples, despite their value, face limitations like accessibility, susceptibility to 464 

degradation, and complex interpretation due to reverse causality and pleiotropic effects (83). 465 

Moreover, insufficient statistical power may have precluded identification of associations. 466 

Future studies in larger cohorts are warranted to gain enough statistical power to identify 467 

specific brain regions of interest. Furthermore, our data are not suited to reliably extrapolate 468 

these rates of cortical thinning beyond the age scan interval used in the study. In this sense, 469 

a recent meta-analysis reported a progressively increasing rate of cortical thinning over age 470 

in SZ patients (84). Therefore, our results may not be extrapolated to younger or first episode 471 

psychosis subpopulations. In addition, the use of other approaches to model the non-linear 472 
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relationships between CT and age could improve knowledge of this issue. Finally, although no 473 

direct link was found between genetic predisposition and baseline cortical deficits in SZ, this 474 

may partially be due to the limited variance explained (32%) by the PLS component related to 475 

baseline thickness. Further studies with comparable variance are needed to explore the 476 

relationship between a broader set of genes and SZ. 477 

In conclusion, our results suggest that PLS- and PLS+ genes may contribute to the ACT 478 

pattern observed in SZ, with PLS- genes harboring both rare and common predisposing 479 

variation to SZ that may influence this particular acceleration in cortical decline. Taken 480 

together, our data demonstrate that accelerated cortical thinning, rather than cortical thickness 481 

per se, may be used as an informative phenotype of neurodevelopmental disruptions in SZ, 482 

with clear genetic and transcriptomic correlates. Future longitudinal studies using larger 483 

cohorts and deep clinical and neurobiological phenotyping are needed to clarify the role of 484 

genetic variation and the temporo-spatial dynamics of gene expression in brain development 485 

in SZ and other neurodevelopmental disorders. 486 
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FIGURE AND TABLE LEGENDS 777 

 778 

Figure 1. Overall workflow of the study. Differences in longitudinal change in cortical thickness (CT) 779 

between schizophrenia (SZ) and healthy controls (HC) were studied across the 68 brain cortical regions 780 

of the Freesurfer’s Desikan-Killiany atlas in 168 SZ patients and 293 HC. A) The differential cortical 781 

thinning pattern in SZ vs HC was estimated by linear mixed models (lme4 R package) across the 68 782 

cortical regions, in which we modeled the effect of the age*diagnosis interaction on CT. Age, sex, and 783 

scanner (as fixed effects) and participant identification (as a random effect) were entered as covariates. 784 

We observed accelerated cortical thinning (ACT) in SZ patients relative to HC. B) Partial least squares 785 

regression (PLSR) was used to study whether gene expression was associated with regional ACT 786 

standardized estimates (βage*diagnosis). We used brain gene expression data provided by the Allen 787 

Institute for Brain Science (AIBS) of the adult human brain (https://human.brain-map.org/). C) Genes 788 

positively and negatively weighted on the first PLS component (pFDR < 0.05) (PLS+ and PLS- genes, 789 

respectively) were studied for pathway enrichment, transcriptional profiling across the human brain, and 790 

predisposing genetic variation enrichment. All independent analyses were corrected for multiple testing. 791 

 792 

Figure 2. Accelerated cortical thinning (ACT) described in schizophrenia from longitudinal case-793 

control data. A) Cortical thinning (CT) measures from the left and right brain hemisphere in SZ patients 794 

(red dots) and HC (blue dots). B) Difference in CT change rate between SZ and HC across the 68 brain 795 

regions of the Freesurfer’s Desikan-Killiany atlas. Linear mixed models (LMM) with age*diagnosis 796 

interaction, age, diagnosis (SZ = 0; HC = 1), sex, and scanner variables (as fixed effects) and participant 797 

identification (as a random effect) were performed. Standardized betas for the interaction term 798 

(βage*diagnosis) were used to determine differences in cortical thinning rates in SZ compared to HC per 799 

region. Regions shown in red represent greater cortical thinning in SZ compared to HC, describing a 800 

widespread pattern of ACT in SZ. C) Pipeline for the estimation of gene expression weights on PLS1. 801 

The most strongly weighted genes (positively - red, and negatively - blue) are displayed. D) Brain 802 

cortical map of regional PLS1 scores across the 68 brain cortical regions, estimated as the regional 803 

sum of the 20,647 gene expression values weighted by PLS1. E) Genes positively weighted on PLS1 804 

(e.g., LY6H) are positively correlated with regional ACT in SZ, while genes negatively weighted on PLS1 805 

(e.g., LYPD5) are negatively correlated with regional ACT in SZ. F) Scatterplot of regional PLS1 across 806 
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the 68 brain cortical regions vs standardized βage*diagnosis (ACT estimates). Pearson correlation is 807 

displayed. 808 

 809 

Figure 3. Functional and transcriptional profiling of genes related to ACT in SZ. A) The first 3 810 

clusters among PLS- and PLS+ genes, based on protein-protein interaction (PPI) from physical 811 

interactions (STRING and BioGrid) in Metascape, are displayed. The most enriched pathways across 812 

each cluster are represented. The size of the circle represents the number of genes involved in a given 813 

term. See Methods and Supplementary Data 2 for a complete description. B) Up and down-regulation 814 

of PLS- and PLS+ genes across GTEx v8 brain regions. The average normalized gene expression 815 

across PLS- and PLS+ genes is shown. “*” represents significantly higher or lower gene expression 816 

compared to background genes assessed by one-sample t test. C) Up and down-regulation of PLS- 817 

and PLS+ genes across 7 developmental stages from Brainspan. The average normalized gene 818 

expression across PLS- and PLS+ genes is shown. “*” represents significant differences in prenatal vs 819 

postnatal gene expression values (two sample t-test). D) Enrichment of PLS- and PLS+ genes across 820 

7 canonical brain cell-types (excitatory neurons, inhibitory neurons, microglia, endothelial cells, 821 

oligodendrocytes, astrocytes, and oligodendrocyte precursors (OPCs))(51). Enrichment OR from 822 

Fisher’s exact tests are represented. “*” represents FDR-corrected significant enrichment after a 823 

resampling procedure to test enrichment of PLS gene sets in cell-type specific genes by comparing 824 

each gene set against 10,000 randomly selected gene lists selected from background genes. All 825 

analyses were performed using brain expressed genes (15,209) as background(41). E) Regional gene 826 

expression maps of significant cell types from enrichment analysis. Gene expression maps of 827 

excitatory/inhibitory neuronal and astrocytic genes overlapping with PLS- and PLS+ genes, 828 

respectively, are represented. ACG = Anterior cingulate cortex, AMY = Amygdala, CB = Cerebellum, 829 

CB.HEM = Cerebellum hemisphere, CBG = Caudate basal ganglia, CTX = Brain cortex, FCTX = Frontal 830 

cortex, HYPOT = Hypothalamus, HIPPOC = Hippocampus, NAC.BG = Nucleus accumbens basal 831 

ganglia, P.BG = Putamen basal ganglia, S.NIG = Substantia nigra, SC = Spinal cord cervical; Astro = 832 

Astrocytes, Endo = Endothelial, Micro = Microglia, Neuro-Ex = Excitatory neurons, Neuro-In = Inhibitory 833 

neurons, Oligo = Oligodendrocytes, OPC = Oligodendrocyte precursor cells. 834 

 835 
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Figure 4. Enrichment of differentially expressed genes (DEG) and predisposing variation to 836 

psychiatric disorders across genes related with ACT in SZ. A) Overrepresentation of PLS+ and 837 

PLS- gene sets across genes previously described to be up- and downregulated (p < 0.05) in SZ and 838 

other disorders (47) (i.e., bipolar disorder (BD), major depression (MDD), autism spectrum disorders 839 

(ASD), alcohol abuse disorder (AAD), and inflammatory bowel disease (IBD)). DEG in SZ from RNA-840 

seq data were also used. “*” represents FDR-corrected significant enrichment after a resampling 841 

procedure to test enrichment of PLS gene sets (OR) in DEG genes by comparing against 10,000 842 

randomly selected gene lists selected from brain-expressed background genes (N =15,209). B) 843 

Enrichment of PLS- and PLS+ genes in predisposing common variation from SZ and related 844 

disorders/traits. Enrichment was assessed with MAGMA v1.10 using a one-tailed competitive test, with 845 

brain-expressed genes (N =15,209) as background genes. Genetic variation within gene boundaries of 846 

35 kb upstream and 10 kb downstream of the gene bodies was included. Summary data used for 847 

analyses is described in Supp Data 4. C) Gene-set based SZ-polygenic score (PGS) predictions in an 848 

independent SZ-HC case-control sample (NSZ = 1,927, NHC = 1,561). Liability-based R2 (%) explained 849 

by PGS comprising common variation across PLS- and PLS+ genes was compared against a 850 

distribution of 10,000 R2s from PGS predictions using the same number of randomly selected genes 851 

from brain-expressed background genes (N =15,209). D) Enrichment of PLS- and PLS+ genes in rare 852 

disruptive variation from SZ and ASD whole exome sequencing (WES) studies. Overrepresentation of 853 

PLS genes across 32 SZ-risk genes with pFDR < 0.05 (Singh et al., 2022), and 185, 477, and 635 risk 854 

genes (TADA-pFDR < 0.05) for ASD, developmental disorder (DD), and Neurodevelopmental disorder 855 

(NDD, considering ASD and DD together) was evaluated with logistic regression models using gene 856 

length as a covariate. Data used for analyses is described in Supp Data 4. Only brain-expressed 857 

background genes (N =15,209) were used. ADHD = Attention deficit and hyperactivity disorder, OCD = 858 

obsessive compulsive disorder, TS = Tourette syndrome, ALC = Alcohol use disorder, CUD = Cannabis 859 

use disorder, NEUR = Neuroticism, COG = Cognition, EA = Educational attainment, CROSS = 860 

Psychiatric cross disorder.  861 

 862 

Figure 5. Differences between ACT and BCTD. A) Difference in CT change rate (ACT) and in baseline 863 

CT (BCTD) between SZ and HC across the 68 brain regions of the Freesurfer’s Desikan-Killiany atlas. 864 
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For ACT, linear mixed models (LMM) with age*diagnosis interaction, age, diagnosis (SZ = 0; HC = 1), 865 

sex, and scanner variables (as fixed effects) and participant identification (as a random effect) were 866 

fitted. Standardized betas for the interaction term (βage*diagnosis) were used to determine differences in 867 

cortical thinning rate in SZ compared to HC per region. For BCTD, linear regression models with 868 

diagnosis, age, sex, and scanner variables were fitted. Standardized betas for diagnosis (βdiagnosis) were 869 

used to evaluate baseline CT in SZ compared to HC per region, using cross-sectional data from the 870 

initial visit only. Regions shown in red represent greater cortical thinning or baseline CT in SZ compared 871 

to HC. B) Overlap across PLS+ and PLS- significant genes from both ACT and BCTD analyses was 872 

studied using a resampling procedure to test if the real overlap observed was higher than expected by 873 

comparing real overlap in each case against simulated overlap after 10,000 random permutations. The 874 

number of real overlapped genes (dashed lines) and from random permutations (violin plots) is 875 

displayed. C) Number of overlapped and non-overlapped genes between PLS, PLS- and PLS+ genes 876 

from ACT and BCTD models. See Supp Data 4 for detailed information. 877 
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CONCLUSIONS

INTRODUCTION
- Genetic factors play a significant role in 

changes in cortical thickness (CT), with 
studies reporting high heritability for most 
brain regions [1]. 


- Schizophrenia (SZ) is a highly heritable 
disorder associated with accelerated 
cortical thinning (ACT) across the 
lifespan [2]. Regional progressive cortical 
th inning after onset of psychot ic 
symptoms has been systematically 
described [3]. 


- We used partial least squares (PLS) 
regression to test the hypothesis that this 
ACT phenotype in SZ was correlated with 
anatomically patterned gene expression 
using data from the Allen Human Brain 
Atlas (AHBA).


- We studied functional enrichment, 
transcriptomic signatures and genetic risk 
variation of ACT as observed in SZ 
compared to healthy controls (HC).
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MRI data GROUP consortium (Utrecht, The Netherlands) 

- ACT was calculated for 68 
regions of Freesurfer’s 
Desikan-Killiany atlas by 
l i nea r m i xed mode l s 
(LMM).

- βage*diagnosis were used to 
determine regional ACT in 
SZ.

- βdiagnosis were used to 
compare with baseline 
model

* p<0.05

Parcellation into D-K atlas 
(68 brain regions)

Longitudinal  
Cortical thickness data

CT ⇢ diag + age + age*diagnosis + 
sex + scanner +1/ID

- There is a clear pattern of ACT in SZ (right cortex: β = -0.108, p = 
0.041, and left cortex: β = -0.103, p = 0.050; 63/68 brain regions)

- No relation with CT baseline differences SZ-HC (r = -0.06; p=0.47)
- PLS1 explains 41.4% of variance (higher than expected by chance p 

=  0.0023, 10,000 permutations)
- 1373 genes were significantly associated with regional ACT in SZ 

(pFDR < 0.05; 594 PLS+ genes, 624 PLS- genes)
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Partial Least Square Regression (PLSR)

PLSR was used to evaluate  
correlation between ACT in SZ 
and anatomically patterned gene 
expression using data from the 
Allen Human Brain Atlas (AHBA)
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- Developmental transcriptome (Brainspan) 
- Adult brain expression (GTEx v8) 
- 7 Cell-type specific expression [4]

- Common variation (Magma v1.08) 
- ASD/SZ Rare LOF variation (SCHEMA/ASC)  
- Differentially expressed genes [5]

- Functional enrichment (GO,KEGG) 
- Protein-protein interaction (PPI)
(Metascape)

Biological characterisation

Imaging data (Cortical thickness)METHODS

CONCLUSIONS

INTRODUCTION
- Genetic factors play a significant role in 

changes in cortical thickness (CT), with 
studies reporting high heritability for most 
brain regions [3,4]. 


- Schizophrenia (SZ) is a highly heritable 
disorder associated with accelerated 
cortical thinning (ACT) across the 
lifespan [1,2]. Regional progressive 
cortical thinning after onset of psychotic 
symptoms has been systematically 
described [5]. 


- We used partial least squares (PLS) 
regression to test the hypothesis that this 
ACT phenotype in SZ was correlated with 
anatomically patterned gene expression 
using data from the Allen Human Brain 
Atlas (AHBA).


- We studied functional enrichment, 
transcriptomic signatures and genetic risk 
variation of ACT as observed in SZ 
compared to healthy controls (HC).
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MRI data GROUP consortium (Utrecht, The Netherlands) 

- ACT was calculated for 68 
regions of Freesurfer’s 
Desikan-Killiany atlas by 
l i nea r m i xed mode l s 
(LMM).

- βage*diagnosis were used to 
determine regional ACT in 
SZ. 

* p<0.05

Parcellation into D-K atlas 
(68 brain regions)

Longitudinal  
Cortical thickness data

CT ⇢ diag + age + age*diagnosis + 
sex + scanner +1/ID

- There is a clear patter of ACT in SZ (63/68 brain regions)
- No relation with CT baseline differences SZ-HC (r = -0.06; p=0.47)
- PLS1 explains 41.4% of variance (higher than expected by chance 

p = 0.0023, 10000 permutations)
- 1373 genes were significantly associated with regional ACT in SZ 

(pFDR < 0.05; 600 PLS+ genes, 654 PLS- genes)
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- Developmental transcriptome (Brainspan) 
- Adult brain expression (GTEx v8) 
- 7 Cell-type specific expression (ref)

- Common variation (Magma v1.5) 
- ASD/SZ Rare LOF variation (Log regression) 
- Differentially expressed genes (ref)

- Functional enrichment (GO,KEGG) 
- Protein-protein interaction (PPI)
(Metascape v)

Biological characterisation

Imaging data (Cortical thickness)METHODS

ATF4

MRPL45

KCNA2

AMD1

MRPL47

KCNA1

DNAJC25

MRPS30

GRPEL2

MRPL33

NDUFAF5

MRPL58

PPP2R2D

CCNI

ECSIT

CCNO

LEMD3

CDK14

DNAJC16

NAP1L3

PPARGC1A

NAP1L2

CPLX1

CCNE1

MTRF1

CCNB1

RABGEF1

FGF17

SCN4B MID2

PPFIA4

SCN2B
UBE2D3

SYN3

SCN1B
CPSF1

NCOA3

SCN1A
CSTF2T

UGP2

ANK3

PPP1CB

SNAP25

ANK1

KIF15

RPS6KA3

TAS2R50

KIF25

PSMD12

OXGR1

KIF5A

PPP3CA

PENK

PDE7A

NDUFS1

NPY2R

PDE4A

NDUFC1

KNG1

ENTPD3

ITPR1

HTR1F

EIF4E1B

IRS1

GALR1

DOK3

HSPE1

MRPL16

OGDHL

FLT3

SRPRADPP8

FGF9

KCNS2

RET

ESRRG

KCNC3

MKNK2

ESRRA

KCNC1

ACSL3

ARNTL

KCNA5

EIF4A2

AR

KCNA3

ATF4

MRPL45

KCNA2

AMD1

MRPL47

KCNA1

DNAJC25

MRPS30

GRPEL2

MRPL33

NDUFAF5

MRPL58

PPP2R2D

CCNI

ECSIT

CCNO

LEMD3

CDK14

DNAJC16

NAP1L3

PPARGC1A

NAP1L2

CPLX1

CCNE1

MTRF1

CCNB1

RABGEF1

FGF17

SCN4B MID2

PPFIA4

SCN2B
UBE2D3

SYN3

SCN1B
CPSF1

NCOA3

SCN1A
CSTF2T

UGP2

ANK3

PPP1CB

SNAP25

ANK1

KIF15

RPS6KA3

TAS2R50

KIF25

PSMD12

OXGR1

KIF5A

PPP3CA

PENK

PDE7A

NDUFS1

NPY2R

PDE4A

NDUFC1

KNG1

ENTPD3

ITPR1

HTR1F

EIF4E1B

IRS1

GALR1

DOK3

HSPE1

MRPL16

OGDHL

FLT3

SRPRADPP8

FGF9

KCNS2

RET

ESRRG

KCNC3

MKNK2

ESRRA

KCNC1

ACSL3

ARNTL

KCNA5

EIF4A2

AR

KCNA3

org
ani

zat
ion

org
ani

zat
ion

presynaptic

presynaptic

po
sts

yn
ap

tic

po
sts

yn
ap

tic

signaling
signaling

metabolism

metabolism

transport
transport

-log10 Q-value
too few genes
not significant
2
3
4
5
6

ATF4

MRPL45

KCNA2

AMD1

MRPL47

KCNA1

DNAJC25

MRPS30

GRPEL2

MRPL33

NDUFAF5

MRPL58

PPP2R2D

CCNI

ECSIT

CCNO

LEMD3

CDK14

DNAJC16

NAP1L3

PPARGC1A

NAP1L2

CPLX1

CCNE1

MTRF1

CCNB1

RABGEF1

FGF17

SCN4B MID2

PPFIA4

SCN2B
UBE2D3

SYN3

SCN1B
CPSF1

NCOA3

SCN1A
CSTF2T

UGP2

ANK3

PPP1CB

SNAP25

ANK1

KIF15

RPS6KA3

TAS2R50

KIF25

PSMD12

OXGR1

KIF5A

PPP3CA

PENK

PDE7A

NDUFS1

NPY2R

PDE4A

NDUFC1

KNG1

ENTPD3

ITPR1

HTR1F

EIF4E1B

IRS1

GALR1

DOK3

HSPE1

MRPL16

OGDHL

FLT3

SRPRADPP8

FGF9

KCNS2

RET

ESRRG

KCNC3

MKNK2

ESRRA

KCNC1

ACSL3

ARNTL

KCNA5

EIF4A2

AR

KCNA3

Regulation of translation  
(-logQ = 4.2)

Serotonin Release Cycle (-logQ = 7.6)

Dopamine Release Cycle (-logQ = 7.4)

Voltage gated Potassium 
 channels (-logQ = 17.0)

SynGO

MAPK3

RHOC

PRKCG

TUBB

PRKCD

DNAH2

TMEM17

UTP20
RHBDD2

PPIB
UFL1

MSN

CORO1A
HSD17B10

WDR1

H2AC7

KLK10

FKBP1A

PRIM2

ENO1

CHMP1A

DNAH6

MOV10

DNAH5

CD99

ARHGDIA
FTH1BIRC3

ACTG1

GNG8

SHISA9

GNB4

CNIH2

GNG2

CACNG3

CXCR4

GRID2

SSTR1

TTYH1

SST

GLRA2

PTGER3

GABRB1

OPRM1

GABRA5

OPRK1

SUFU

NPY

PSME1

HTR1A

DRAXIN

PSMD8

GNG4

WNT4

GLI1

GNB2

WNT10B

TUBB8

CORT

GPT2

TUBA3DCNR1

PHGDH

YWHAZ

C5

ALDH9A1

TUBB2A

PTGER4

GJA1

org
ani

zat
ion

org
ani

zat
ion

presynaptic

presynaptic

po
sts

yn
ap

tic

po
sts

yn
ap

tic

signaling
signaling

metabolism

metabolism

transport
transport

-log10 Q-value
too few genes
not significant
2
3
4
5
6

Pathways of neurodegeneration 
 (-logQ = 4.8)

leukocyte migration  
(logQ = 3.7)

MAPK3

RHOC

PRKCG

TUBB

PRKCD

DNAH2

TMEM17

UTP20
RHBDD2

PPIB
UFL1

MSN

CORO1A
HSD17B10

WDR1

H2AC7

KLK10

FKBP1A

PRIM2

ENO1

CHMP1A

DNAH6

MOV10

DNAH5

CD99

ARHGDIA
FTH1BIRC3

ACTG1

GNG8

SHISA9

GNB4

CNIH2

GNG2

CACNG3

CXCR4

GRID2

SSTR1

TTYH1

SST

GLRA2

PTGER3

GABRB1

OPRM1

GABRA5

OPRK1

SUFU

NPY

PSME1

HTR1A

DRAXIN

PSMD8

GNG4

WNT4

GLI1

GNB2

WNT10B

TUBB8

CORT

GPT2

TUBA3DCNR1

PHGDH

YWHAZ

C5

ALDH9A1

TUBB2A

PTGER4

GJA1

GPCR ligand binding  
(-logQ = 27.3)

SynGO

AMY
ACC

CAU

C.HEM
CEREB

CTX
F.C

TX
HIPPO

HYPOT
NAC

PUT
S.COR

NIG
RA

U
PR

EG
U

LA
TI

O
N

D
O

W
N

RE
G

U
LA

TI
O

N

1.0

0.5

0.0

ADULT GENE EXPRESSION (GTEx BRAIN) 

ASTRO
ENDO

MIC
RO

NEURO

EXC - N
EUR

IN
 - N

EUR
OLIG

O
OPC

Av
er

ag
e 

ge
ne

 e
xp

re
ss

io
n 

(N
or

m
al

is
ed

 T
PM

)
O

R 
(9

5%
 C

I) 
Fi

sh
er

 e
xa

ct
 te

st

1

2

3

4

0.8 0.9 1.0 1.1 1.2 1.3

SZ

BD

MDD

ASD

ADHD

OCD

TS

ALC

CUD

NEUR

COG

EA

CROSS

Disorder

OR(CI95%) MAGMA enrichment

gene_set
PLS−

PLS+

Common predisposing variation enrichment

SZ

BD

MDD

ASD

ADHD

OCD

TS

ALC

CUD

NEUR

COG

CROSS

EA

0.8 0.9 1.0 1.1 1.2 1.3

DEVELOPMENTAL GENE EXPRESSION  
(Brainspan) 

CELL-TYPE GENE EXPRESSION

* *

*
*

*
* * *

0.0

0.5

1.0

Amygdala

Anterior_cin
gulate_corte

x

Caudate_basal_ganglia

Cerebellar_Hemisp
here

Cerebellum
Corte

x

Frontal_Corte
x

Hippocampus

Hypothalamus

Nucle
us_accu

mbens_basal_ganglia

Putamen_basal_ganglia

Spinal_cord

Substa
ntia_nigra

Brain tissue

Av
er

ag
e g

en
e e

xp
re

ss
ion

 (N
or

ma
liz

ed
 T

PM
)

GENES
PLS_NEG

PLS_POS

Gene expression (PLS− genes) across GTEx Brain tissues

PLS+ genes

PLS- genes

0.0

0.5

1.0

Amygdala

Anterior_cin
gulate_corte

x

Caudate_basal_ganglia

Cerebellar_Hemisp
here

Cerebellum
Corte

x

Frontal_Corte
x

Hippocampus

Hypothalamus

Nucle
us_accu

mbens_basal_ganglia

Putamen_basal_ganglia

Spinal_cord

Substa
ntia_nigra

Brain tissue

Av
er

ag
e g

en
e e

xp
re

ss
ion

 (N
or

ma
liz

ed
 T

PM
)

GENES
PLS_NEG

PLS_POS

Gene expression (PLS− genes) across GTEx Brain tissues

PLS+ genes
PLS- genes

PLS_NEG PLS_POS

Early prenatal

Mid prenatal

Late prenatal
Infancy

Childhood

Adolescence

Adulthood

Early prenatal

Mid prenatal

Late prenatal
Infancy

Childhood

Adolescence

Adulthood

−0.50

−0.25

0.00

0.25

0.50

Developmental stage

No
rma

lize
d R

PK
M

GENES
PLS_NEG

PLS_POS

Gene expression trajectories PLS genes

PLS_NEG PLS_POS

Early prenatal

Mid prenatal

Late prenatal
Infancy

Childhood

Adolescence

Adulthood

Early prenatal

Mid prenatal

Late prenatal
Infancy

Childhood

Adolescence

Adulthood

−0.50

−0.25

0.00

0.25

0.50

Developmental stage

No
rma

lize
d R

PK
M

GENES
PLS_NEG

PLS_POS

Gene expression trajectories PLS genes
PLS_NEG PLS_POS

Early prenatal

Mid prenatal

Late prenatal
Infancy

Childhood

Adolescence

Adulthood

Early prenatal

Mid prenatal

Late prenatal
Infancy

Childhood

Adolescence

Adulthood

−0.50

−0.25

0.00

0.25

0.50

Developmental stage

Nor
ma

lize
d R

PK
M

GENES
PLS_NEG

PLS_POS

Gene expression trajectories PLS genes

Earl
y p

ren
ata

l

Mid pren
ata

l

Late
 pren

ata
l

Infan
cy

Child
hood

Adoles
ce

nce

Adulth
ood

-0.5

-0.25

0.0

0.25

-0.5

-0.25

0.0

0.25

P = 0.008

PLS- genes

PLS+ genes

DIFFERENTIAL GENE EXPRESSION 

SCZ SCZ(RNA−seq) BD MDD ASD AAD IBD

NEG

POS

−logP

0.5

1.0

1.5

0.00

0.05

0.10
Correlation

Correlation log2FC − Beta PLS

PLS- 
Genes

PLS+ 
Genes

SZ SZ  

(RNA-se
q)

BD
MDD

ASD
ALC

IBD

* *

*

SCZ SCZ(RNA−seq) BD MDD ASD AAD IBD

NEG

POS

−logP

0.5

1.0

1.5

0.00

0.05

0.10
Correlation

Correlation log2FC − Beta PLS

-logP

1.5

1.0
0.5

PLS-   
In-Neur genes 

cell-type specific gene expression maps

PLS+  
Astro genes 

COMMON GENETIC VARIATION (MAGMA)

Correlation: logFC(disorder) - PLS gene weights

PLS weights for each gene were z-transformed (based on 
standard errors obtained from bootstrapping) and FDR-
adjusted

βage*diagnosis  

(68 brain regions)

GENE SET ENRICHMENT ANALYSES

presynaptic membrane potential  
(-logQ = 3.6)

* * **

*

*

* * *

*

*

Glutathione transport

-logP = 5.4


(GO:0034635)

Synaptic signaling

-logP = 21.4


(GO:0099536)

0.0

0.5

1.0

Amygdala

Anterior_cin
gulate_corte

x

Caudate_basal_ganglia

Cerebellar_Hemisp
here

Cerebellum
Corte

x

Frontal_Corte
x

Hippocampus

Hypothalamus

Nucle
us_accu

mbens_basal_ganglia

Putamen_basal_ganglia

Spinal_cord

Substa
ntia_nigra

Brain tissue

Av
er

ag
e g

en
e e

xp
re

ss
ion

 (N
or

ma
liz

ed
 T

PM
)

GENES
PLS_NEG

PLS_POS

Gene expression (PLS− genes) across GTEx Brain tissues

PLS+ genes
PLS- genes

genes Disorder OR (95%CI) P_perm
PLS- ASD 0,85 (0,11-6,43) 0,46
PLS+ ASD 0,66 (0,09-4,98) 0,79
PLS- SCZ 1,4 (1,02-1,92) 0,03
PLS+ SCZ 0,85 (0,57-1,27) 0,79

RARE GENETIC VARIATION 

* FDR-p < 0.05

PLS- genes

PLS+ genes

OR (95%CI)

Av
er

ag
e 

ge
ne

 e
xp

re
ss

io
n 

(N
or

m
al

is
ed

 R
PK

M
)

CT ⇢ diag + age +  sex + scanner +1/ID

CONCLUSIONS

INTRODUCTION
- Genetic factors play a significant role in 

changes in cortical thickness (CT), with 
studies reporting high heritability for most 
brain regions [1]. 


- Schizophrenia (SZ) is a highly heritable 
disorder associated with accelerated 
cortical thinning (ACT) across the 
lifespan [2]. Regional progressive cortical 
th inning after onset of psychot ic 
symptoms has been systematically 
described [3]. 


- We used partial least squares (PLS) 
regression to test the hypothesis that this 
ACT phenotype in SZ was correlated with 
anatomically patterned gene expression 
using data from the Allen Human Brain 
Atlas (AHBA).


- We studied functional enrichment, 
transcriptomic signatures and genetic risk 
variation of ACT as observed in SZ 
compared to healthy controls (HC).
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MRI data GROUP consortium (Utrecht, The Netherlands) 

- ACT was calculated for 68 
regions of Freesurfer’s 
Desikan-Killiany atlas by 
l i nea r m i xed mode l s 
(LMM).

- βage*diagnosis were used to 
determine regional ACT in 
SZ.

- βdiagnosis were used to 
compare with baseline 
model

* p<0.05

Parcellation into D-K atlas 
(68 brain regions)

Longitudinal  
Cortical thickness data

CT ⇢ diag + age + age*diagnosis + 
sex + scanner +1/ID

- There is a clear pattern of ACT in SZ (right cortex: β = -0.108, p = 
0.041, and left cortex: β = -0.103, p = 0.050; 63/68 brain regions)

- No relation with CT baseline differences SZ-HC (r = -0.06; p=0.47)
- PLS1 explains 41.4% of variance (higher than expected by chance p 

=  0.0023, 10,000 permutations)
- 1373 genes were significantly associated with regional ACT in SZ 

(pFDR < 0.05; 594 PLS+ genes, 624 PLS- genes)
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Partial Least Square Regression (PLSR)

PLSR was used to evaluate  
correlation between ACT in SZ 
and anatomically patterned gene 
expression using data from the 
Allen Human Brain Atlas (AHBA)
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- Developmental transcriptome (Brainspan) 
- Adult brain expression (GTEx v8) 
- 7 Cell-type specific expression [4]

- Common variation (Magma v1.08) 
- ASD/SZ Rare LOF variation (SCHEMA/ASC)  
- Differentially expressed genes [5]

- Functional enrichment (GO,KEGG) 
- Protein-protein interaction (PPI)
(Metascape)

Biological characterisation

Imaging data (Cortical thickness)METHODS

CONCLUSIONS

INTRODUCTION
- Genetic factors play a significant role in 

changes in cortical thickness (CT), with 
studies reporting high heritability for most 
brain regions [3,4]. 


- Schizophrenia (SZ) is a highly heritable 
disorder associated with accelerated 
cortical thinning (ACT) across the 
lifespan [1,2]. Regional progressive 
cortical thinning after onset of psychotic 
symptoms has been systematically 
described [5]. 


- We used partial least squares (PLS) 
regression to test the hypothesis that this 
ACT phenotype in SZ was correlated with 
anatomically patterned gene expression 
using data from the Allen Human Brain 
Atlas (AHBA).


- We studied functional enrichment, 
transcriptomic signatures and genetic risk 
variation of ACT as observed in SZ 
compared to healthy controls (HC).
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MRI data GROUP consortium (Utrecht, The Netherlands) 

- ACT was calculated for 68 
regions of Freesurfer’s 
Desikan-Killiany atlas by 
l i nea r m i xed mode l s 
(LMM).

- βage*diagnosis were used to 
determine regional ACT in 
SZ. 

* p<0.05

Parcellation into D-K atlas 
(68 brain regions)

Longitudinal  
Cortical thickness data

CT ⇢ diag + age + age*diagnosis + 
sex + scanner +1/ID

- There is a clear patter of ACT in SZ (63/68 brain regions)
- No relation with CT baseline differences SZ-HC (r = -0.06; p=0.47)
- PLS1 explains 41.4% of variance (higher than expected by chance 

p = 0.0023, 10000 permutations)
- 1373 genes were significantly associated with regional ACT in SZ 

(pFDR < 0.05; 600 PLS+ genes, 654 PLS- genes)
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PLSR was used to evaluate  
correlation between ACT in SZ 
and anatomically patterned gene 
expression using data from the 
Allen Human Brain Atlas (AHBA)
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- Developmental transcriptome (Brainspan) 
- Adult brain expression (GTEx v8) 
- 7 Cell-type specific expression (ref)

- Common variation (Magma v1.5) 
- ASD/SZ Rare LOF variation (Log regression) 
- Differentially expressed genes (ref)

- Functional enrichment (GO,KEGG) 
- Protein-protein interaction (PPI)
(Metascape v)

Biological characterisation

Imaging data (Cortical thickness)METHODS
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PLS- ASD 0,85 (0,11-6,43) 0,46
PLS+ ASD 0,66 (0,09-4,98) 0,79
PLS- SCZ 1,4 (1,02-1,92) 0,03
PLS+ SCZ 0,85 (0,57-1,27) 0,79

RARE GENETIC VARIATION 

* FDR-p < 0.05
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CONCLUSIONS

INTRODUCTION
- Genetic factors play a significant role in 

changes in cortical thickness (CT), with 
studies reporting high heritability for most 
brain regions [1]. 


- Schizophrenia (SZ) is a highly heritable 
disorder associated with accelerated 
cortical thinning (ACT) across the 
lifespan [2]. Regional progressive cortical 
th inning after onset of psychot ic 
symptoms has been systematically 
described [3]. 


- We used partial least squares (PLS) 
regression to test the hypothesis that this 
ACT phenotype in SZ was correlated with 
anatomically patterned gene expression 
using data from the Allen Human Brain 
Atlas (AHBA).


- We studied functional enrichment, 
transcriptomic signatures and genetic risk 
variation of ACT as observed in SZ 
compared to healthy controls (HC).
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Gene expression (PLS− genes) across GTEx Brain tissues

MRI data GROUP consortium (Utrecht, The Netherlands) 

- ACT was calculated for 68 
regions of Freesurfer’s 
Desikan-Killiany atlas by 
l i nea r m i xed mode l s 
(LMM).

- βage*diagnosis were used to 
determine regional ACT in 
SZ.

- βdiagnosis were used to 
compare with baseline 
model

* p<0.05

Parcellation into D-K atlas 
(68 brain regions)

Longitudinal  
Cortical thickness data

CT ⇢ diag + age + age*diagnosis + 
sex + scanner +1/ID

- There is a clear pattern of ACT in SZ (right cortex: β = -0.108, p = 
0.041, and left cortex: β = -0.103, p = 0.050; 63/68 brain regions)

- No relation with CT baseline differences SZ-HC (r = -0.06; p=0.47)
- PLS1 explains 41.4% of variance (higher than expected by chance p 

=  0.0023, 10,000 permutations)
- 1373 genes were significantly associated with regional ACT in SZ 

(pFDR < 0.05; 594 PLS+ genes, 624 PLS- genes)
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Partial Least Square Regression (PLSR)

PLSR was used to evaluate  
correlation between ACT in SZ 
and anatomically patterned gene 
expression using data from the 
Allen Human Brain Atlas (AHBA)
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- Developmental transcriptome (Brainspan) 
- Adult brain expression (GTEx v8) 
- 7 Cell-type specific expression [4]

- Common variation (Magma v1.08) 
- ASD/SZ Rare LOF variation (SCHEMA/ASC)  
- Differentially expressed genes [5]

- Functional enrichment (GO,KEGG) 
- Protein-protein interaction (PPI)
(Metascape)

Biological characterisation

Imaging data (Cortical thickness)METHODS

CONCLUSIONS

INTRODUCTION
- Genetic factors play a significant role in 

changes in cortical thickness (CT), with 
studies reporting high heritability for most 
brain regions [3,4]. 


- Schizophrenia (SZ) is a highly heritable 
disorder associated with accelerated 
cortical thinning (ACT) across the 
lifespan [1,2]. Regional progressive 
cortical thinning after onset of psychotic 
symptoms has been systematically 
described [5]. 


- We used partial least squares (PLS) 
regression to test the hypothesis that this 
ACT phenotype in SZ was correlated with 
anatomically patterned gene expression 
using data from the Allen Human Brain 
Atlas (AHBA).


- We studied functional enrichment, 
transcriptomic signatures and genetic risk 
variation of ACT as observed in SZ 
compared to healthy controls (HC).
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MRI data GROUP consortium (Utrecht, The Netherlands) 

- ACT was calculated for 68 
regions of Freesurfer’s 
Desikan-Killiany atlas by 
l i nea r m i xed mode l s 
(LMM).

- βage*diagnosis were used to 
determine regional ACT in 
SZ. 

* p<0.05

Parcellation into D-K atlas 
(68 brain regions)

Longitudinal  
Cortical thickness data

CT ⇢ diag + age + age*diagnosis + 
sex + scanner +1/ID

- There is a clear patter of ACT in SZ (63/68 brain regions)
- No relation with CT baseline differences SZ-HC (r = -0.06; p=0.47)
- PLS1 explains 41.4% of variance (higher than expected by chance 

p = 0.0023, 10000 permutations)
- 1373 genes were significantly associated with regional ACT in SZ 

(pFDR < 0.05; 600 PLS+ genes, 654 PLS- genes)
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Partial Least Square Regression (PLSR)

PLSR was used to evaluate  
correlation between ACT in SZ 
and anatomically patterned gene 
expression using data from the 
Allen Human Brain Atlas (AHBA)
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- Developmental transcriptome (Brainspan) 
- Adult brain expression (GTEx v8) 
- 7 Cell-type specific expression (ref)

- Common variation (Magma v1.5) 
- ASD/SZ Rare LOF variation (Log regression) 
- Differentially expressed genes (ref)

- Functional enrichment (GO,KEGG) 
- Protein-protein interaction (PPI)
(Metascape v)

Biological characterisation

Imaging data (Cortical thickness)METHODS

ATF4

MRPL45

KCNA2

AMD1

MRPL47

KCNA1

DNAJC25

MRPS30

GRPEL2

MRPL33

NDUFAF5

MRPL58

PPP2R2D

CCNI

ECSIT

CCNO

LEMD3

CDK14

DNAJC16

NAP1L3

PPARGC1A

NAP1L2

CPLX1

CCNE1

MTRF1

CCNB1

RABGEF1

FGF17

SCN4B MID2

PPFIA4

SCN2B
UBE2D3

SYN3

SCN1B
CPSF1

NCOA3

SCN1A
CSTF2T

UGP2

ANK3

PPP1CB

SNAP25

ANK1

KIF15

RPS6KA3

TAS2R50

KIF25

PSMD12

OXGR1

KIF5A

PPP3CA

PENK

PDE7A

NDUFS1

NPY2R

PDE4A

NDUFC1

KNG1

ENTPD3

ITPR1

HTR1F

EIF4E1B

IRS1

GALR1

DOK3

HSPE1

MRPL16

OGDHL

FLT3

SRPRADPP8

FGF9

KCNS2

RET

ESRRG

KCNC3

MKNK2

ESRRA

KCNC1

ACSL3

ARNTL

KCNA5

EIF4A2

AR

KCNA3

ATF4

MRPL45

KCNA2

AMD1

MRPL47

KCNA1

DNAJC25

MRPS30

GRPEL2

MRPL33

NDUFAF5

MRPL58

PPP2R2D

CCNI

ECSIT

CCNO

LEMD3

CDK14

DNAJC16

NAP1L3

PPARGC1A

NAP1L2

CPLX1

CCNE1

MTRF1

CCNB1

RABGEF1

FGF17

SCN4B MID2

PPFIA4

SCN2B
UBE2D3

SYN3

SCN1B
CPSF1

NCOA3

SCN1A
CSTF2T

UGP2

ANK3

PPP1CB

SNAP25

ANK1

KIF15

RPS6KA3

TAS2R50

KIF25

PSMD12

OXGR1

KIF5A

PPP3CA

PENK

PDE7A

NDUFS1

NPY2R

PDE4A

NDUFC1

KNG1

ENTPD3

ITPR1

HTR1F

EIF4E1B

IRS1

GALR1

DOK3

HSPE1

MRPL16

OGDHL

FLT3

SRPRADPP8

FGF9

KCNS2

RET

ESRRG

KCNC3

MKNK2

ESRRA

KCNC1

ACSL3

ARNTL

KCNA5

EIF4A2

AR

KCNA3

organiza
tio

n

organiza
tio

n

presynaptic

presynaptic

po
sts

yn
ap

tic

po
sts

yn
ap

tic

signaling
signaling

metabolism

metabolism

transport
transport

-log10 Q-value
too few genes
not significant
2
3
4
5
6

ATF4

MRPL45

KCNA2

AMD1

MRPL47

KCNA1

DNAJC25

MRPS30

GRPEL2

MRPL33

NDUFAF5

MRPL58

PPP2R2D

CCNI

ECSIT

CCNO

LEMD3

CDK14

DNAJC16

NAP1L3

PPARGC1A

NAP1L2

CPLX1

CCNE1

MTRF1

CCNB1

RABGEF1

FGF17

SCN4B MID2

PPFIA4

SCN2B
UBE2D3

SYN3

SCN1B
CPSF1

NCOA3

SCN1A
CSTF2T

UGP2

ANK3

PPP1CB

SNAP25

ANK1

KIF15

RPS6KA3

TAS2R50

KIF25

PSMD12

OXGR1

KIF5A

PPP3CA

PENK

PDE7A

NDUFS1

NPY2R

PDE4A

NDUFC1

KNG1

ENTPD3

ITPR1

HTR1F

EIF4E1B

IRS1

GALR1

DOK3

HSPE1

MRPL16

OGDHL

FLT3

SRPRADPP8

FGF9

KCNS2

RET

ESRRG

KCNC3

MKNK2

ESRRA

KCNC1

ACSL3

ARNTL

KCNA5

EIF4A2

AR

KCNA3

Regulation of translation  
(-logQ = 4.2)

Serotonin Release Cycle (-logQ = 7.6)

Dopamine Release Cycle (-logQ = 7.4)

Voltage gated Potassium 
 channels (-logQ = 17.0)

SynGO

MAPK3

RHOC

PRKCG

TUBB

PRKCD

DNAH2

TMEM17

UTP20
RHBDD2

PPIB
UFL1

MSN

CORO1A
HSD17B10

WDR1

H2AC7

KLK10

FKBP1A

PRIM2

ENO1

CHMP1A

DNAH6

MOV10

DNAH5

CD99

ARHGDIA
FTH1BIRC3

ACTG1

GNG8

SHISA9

GNB4

CNIH2

GNG2

CACNG3

CXCR4

GRID2

SSTR1

TTYH1

SST

GLRA2

PTGER3

GABRB1

OPRM1

GABRA5

OPRK1

SUFU

NPY

PSME1

HTR1A

DRAXIN

PSMD8

GNG4

WNT4

GLI1

GNB2

WNT10B

TUBB8

CORT

GPT2

TUBA3DCNR1

PHGDH

YWHAZ

C5

ALDH9A1

TUBB2A

PTGER4

GJA1

organiza
tio

n

organiza
tio

n

presynaptic

presynaptic

po
sts

yn
ap

tic

po
sts

yn
ap

tic

signaling
signaling

metabolism

metabolism

transport
transport

-log10 Q-value
too few genes
not significant
2
3
4
5
6

Pathways of neurodegeneration 
 (-logQ = 4.8)

leukocyte migration  
(logQ = 3.7)

MAPK3

RHOC

PRKCG

TUBB

PRKCD

DNAH2

TMEM17

UTP20
RHBDD2

PPIB
UFL1

MSN

CORO1A
HSD17B10

WDR1

H2AC7

KLK10

FKBP1A

PRIM2

ENO1

CHMP1A

DNAH6

MOV10

DNAH5

CD99

ARHGDIA
FTH1BIRC3

ACTG1

GNG8

SHISA9

GNB4

CNIH2

GNG2

CACNG3

CXCR4

GRID2

SSTR1

TTYH1

SST

GLRA2

PTGER3

GABRB1

OPRM1

GABRA5

OPRK1

SUFU

NPY

PSME1

HTR1A

DRAXIN

PSMD8

GNG4

WNT4

GLI1

GNB2

WNT10B

TUBB8

CORT

GPT2

TUBA3DCNR1

PHGDH

YWHAZ

C5

ALDH9A1

TUBB2A

PTGER4

GJA1

GPCR ligand binding  
(-logQ = 27.3)

SynGO

AMY
ACC

CAU
C.HEM

CEREB
CTX

F.C
TX

HIPPO

HYPOT
NAC

PUT
S.COR

NIGRA

UP
RE

GU
LA

TI
ON

DO
W

NR
EG

UL
AT

IO
N

1.0

0.5

0.0

ADULT GENE EXPRESSION (GTEx BRAIN) 

ASTRO
ENDO

MICRO

NEURO

EXC - N
EUR

IN - N
EUR

OLIGO
OPC

Av
er

ag
e 

ge
ne

 e
xp

re
ss

io
n 

(N
or

m
al

ise
d 

TP
M

)
OR

 (9
5%

 C
I) 

Fi
sh

er
 e

xa
ct

 te
st

1

2

3

4

0.8 0.9 1.0 1.1 1.2 1.3

SZ

BD

MDD

ASD

ADHD

OCD

TS

ALC

CUD

NEUR

COG

EA

CROSS

Disorder

OR(CI95%) MAGMA enrichment

gene_set
PLS−

PLS+

Common predisposing variation enrichment

SZ

BD

MDD

ASD

ADHD

OCD

TS

ALC

CUD

NEUR

COG

CROSS

EA

0.8 0.9 1.0 1.1 1.2 1.3

DEVELOPMENTAL GENE EXPRESSION  
(Brainspan) 

CELL-TYPE GENE EXPRESSION

* *

*
*

*
* * *

0.0

0.5

1.0

Amygdala

Anterior_cin
gulate_cortex

Caudate_basal_ganglia

Cerebellar_Hemisp
here

Cerebellum
Cortex

Frontal_Cortex

Hippocampus

Hypothalamus

Nucle
us_accu

mbens_basal_ganglia

Putamen_basal_ganglia

Spinal_cord

Substa
ntia_nigra

Brain tissue

Av
era

ge
 ge

ne
 ex

pre
ss

ion
 (N

orm
ali

ze
d T

PM
)

GENES
PLS_NEG

PLS_POS

Gene expression (PLS− genes) across GTEx Brain tissues

PLS+ genes

PLS- genes

0.0

0.5

1.0

Amygdala

Anterior_cin
gulate_cortex

Caudate_basal_ganglia

Cerebellar_Hemisp
here

Cerebellum
Cortex

Frontal_Cortex

Hippocampus

Hypothalamus

Nucle
us_accu

mbens_basal_ganglia

Putamen_basal_ganglia

Spinal_cord

Substa
ntia_nigra

Brain tissue

Av
era

ge
 ge

ne
 ex

pre
ss

ion
 (N

orm
ali

ze
d T

PM
)

GENES
PLS_NEG

PLS_POS

Gene expression (PLS− genes) across GTEx Brain tissues

PLS+ genes
PLS- genes

PLS_NEG PLS_POS

Early prenatal

Mid prenatal

Late prenatal
Infancy

Childhood

Adolescence

Adulthood

Early prenatal

Mid prenatal

Late prenatal
Infancy

Childhood

Adolescence

Adulthood

−0.50

−0.25

0.00

0.25

0.50

Developmental stage

Nor
ma

lize
d R

PKM GENES
PLS_NEG

PLS_POS

Gene expression trajectories PLS genes

PLS_NEG PLS_POS

Early prenatal

Mid prenatal

Late prenatal
Infancy

Childhood

Adolescence

Adulthood

Early prenatal

Mid prenatal

Late prenatal
Infancy

Childhood

Adolescence

Adulthood

−0.50

−0.25

0.00

0.25

0.50

Developmental stage

Nor
mal

ized
 RP

KM

GENES
PLS_NEG

PLS_POS

Gene expression trajectories PLS genes
PLS_NEG PLS_POS

Early prenatal

Mid prenatal

Late prenatal
Infancy

Childhood

Adolescence
Adulthood

Early prenatal

Mid prenatal

Late prenatal
Infancy

Childhood

Adolescence
Adulthood

−0.50

−0.25

0.00

0.25

0.50

Developmental stage

Nor
mal

ized
 RP

KM

GENES
PLS_NEG

PLS_POS

Gene expression trajectories PLS genes

Early
 prenatal

Mid prenatal

Late prenatal

Infancy

Child
hood

Adolesc
ence

Adulth
ood

-0.5

-0.25

0.0

0.25

-0.5

-0.25

0.0

0.25

P = 0.008

PLS- genes

PLS+ genes

DIFFERENTIAL GENE EXPRESSION 

SCZ SCZ(RNA−seq) BD MDD ASD AAD IBD

NEG

POS

−logP

0.5

1.0

1.5

0.00

0.05

0.10
Correlation

Correlation log2FC − Beta PLS

PLS- 
Genes

PLS+ 
Genes

SZ SZ  

(RNA-se
q)

BD
MDD

ASD
ALC

IBD

* *

*

SCZ SCZ(RNA−seq) BD MDD ASD AAD IBD

NEG

POS

−logP

0.5

1.0

1.5

0.00

0.05

0.10
Correlation

Correlation log2FC − Beta PLS

-logP

1.5

1.0
0.5

PLS-   
In-Neur genes 

cell-type specific gene expression maps

PLS+  
Astro genes 

COMMON GENETIC VARIATION (MAGMA)

Correlation: logFC(disorder) - PLS gene weights

PLS weights for each gene were z-transformed (based on 
standard errors obtained from bootstrapping) and FDR-
adjusted

βage*diagnosis  

(68 brain regions)

GENE SET ENRICHMENT ANALYSES

presynaptic membrane potential  
(-logQ = 3.6)

* * **

*

*

* * *

*

*

Glutathione transport

-logP = 5.4


(GO:0034635)

Synaptic signaling

-logP = 21.4


(GO:0099536)

0.0

0.5

1.0

Amygdala

Anterior_cin
gulate_cortex

Caudate_basal_ganglia

Cerebellar_Hemisp
here

Cerebellum
Cortex

Frontal_Cortex

Hippocampus

Hypothalamus

Nucle
us_accu

mbens_basal_ganglia

Putamen_basal_ganglia

Spinal_cord

Substa
ntia_nigra

Brain tissue

Av
era

ge
 ge

ne
 ex

pre
ss

ion
 (N

orm
ali

ze
d T

PM
)

GENES
PLS_NEG

PLS_POS

Gene expression (PLS− genes) across GTEx Brain tissues

PLS+ genes
PLS- genes

genes Disorder OR (95%CI) P_perm
PLS- ASD 0,85 (0,11-6,43) 0,46
PLS+ ASD 0,66 (0,09-4,98) 0,79
PLS- SCZ 1,4 (1,02-1,92) 0,03
PLS+ SCZ 0,85 (0,57-1,27) 0,79

RARE GENETIC VARIATION 

* FDR-p < 0.05

PLS- genes

PLS+ genes

OR (95%CI)

Av
er

ag
e 

ge
ne

 e
xp

re
ss

io
n 

(N
or

m
al

ise
d 

RP
KM

)

CT ⇢ diag + age +  sex + scanner +1/ID

Gene expression (20,647 genes)

68
 b

ra
in

 re
gi

on
s

AC
T 

es
tim

at
es

PLSR

GENE Z-score
LY6H 7.054
BAIAP3 6.874
NTSR1 6.858
KCNN3 6.788
CENPVL1 6.784

… …
FASTKD1 -6.535
SEMA7A -6.741
GRIN2A -6.755
CDS1 -6.787
LYPD5 -7.079

0.00

0.05

0.10

−2 0 2
LY6H gene expression

AC
T(

ag
e*

di
ag

no
si

s)

0.00

0.05

0.10

−2 −1 0 1 2
LYPD5 gene expression

AC
T(

ag
e*

di
ag

no
si

s)

AC
T 

es
tim

at
es

LY6H gene expression LYPD5 gene expression

AC
T 

es
tim

at
es

C)

E)

D) PLS1 - weighted gene expression map

0.00

0.05

0.10

−1
.0

−0
.5 0.0 0.5 1.0

PLS1

AC
T(
ag
e*
di
ag
no
si
s)

F)

Regional PLS1 scores

Re
gi

on
al

 A
C

T 
es

tim
at

es

Longitudinal cortical thinning trajectories Regional ACT in SZ 
(Standardized LMM Betas)

Regional ACT in SZ 
(Standardized LMM Betas)

Greater cortical  
thinning  

in HC

Greater cortical  
thinning  

in SZ

r = 0.50  
p = 1.2 x 10-5

SZ SZ
HCHC

Jo
urn

al 
Pre-

pro
of



ATF4

MRPL45

KCNA2

AMD1

MRPL47

KCNA1

DNAJC25

MRPS30

GRPEL2

MRPL33

NDUFAF5

MRPL58

PPP2R2D

CCNI

ECSIT

CCNO

LEMD3

CDK14

DNAJC16

NAP1L3

PPARGC1A

NAP1L2

CPLX1

CCNE1

MTRF1

CCNB1

RABGEF1

FGF17

SCN4B MID2

PPFIA4

SCN2B
UBE2D3

SYN3

SCN1B
CPSF1

NCOA3

SCN1A
CSTF2T

UGP2

ANK3

PPP1CB

SNAP25

ANK1

KIF15

RPS6KA3

TAS2R50

KIF25

PSMD12

OXGR1

KIF5A

PPP3CA

PENK

PDE7A

NDUFS1

NPY2R

PDE4A

NDUFC1

KNG1

ENTPD3

ITPR1

HTR1F

EIF4E1B

IRS1

GALR1

DOK3

HSPE1

MRPL16

OGDHL

FLT3

SRPRADPP8

FGF9

KCNS2

RET

ESRRG

KCNC3

MKNK2

ESRRA

KCNC1

ACSL3

ARNTL

KCNA5

EIF4A2

AR

KCNA3

ATF4

MRPL45

KCNA2

AMD1

MRPL47

KCNA1

DNAJC25

MRPS30

GRPEL2

MRPL33

NDUFAF5

MRPL58

PPP2R2D

CCNI

ECSIT

CCNO

LEMD3

CDK14

DNAJC16

NAP1L3

PPARGC1A

NAP1L2

CPLX1

CCNE1

MTRF1

CCNB1

RABGEF1

FGF17

SCN4B MID2

PPFIA4

SCN2B
UBE2D3

SYN3

SCN1B
CPSF1

NCOA3

SCN1A
CSTF2T

UGP2

ANK3

PPP1CB

SNAP25

ANK1

KIF15

RPS6KA3

TAS2R50

KIF25

PSMD12

OXGR1

KIF5A

PPP3CA

PENK

PDE7A

NDUFS1

NPY2R

PDE4A

NDUFC1

KNG1

ENTPD3

ITPR1

HTR1F

EIF4E1B

IRS1

GALR1

DOK3

HSPE1

MRPL16

OGDHL

FLT3

SRPRADPP8

FGF9

KCNS2

RET

ESRRG

KCNC3

MKNK2

ESRRA

KCNC1

ACSL3

ARNTL

KCNA5

EIF4A2

AR

KCNA3

ATF4

MRPL45

KCNA2

AMD1

MRPL47

KCNA1

DNAJC25

MRPS30

GRPEL2

MRPL33

NDUFAF5

MRPL58

PPP2R2D

CCNI

ECSIT

CCNO

LEMD3

CDK14

DNAJC16

NAP1L3

PPARGC1A

NAP1L2

CPLX1

CCNE1

MTRF1

CCNB1

RABGEF1

FGF17

SCN4B MID2

PPFIA4

SCN2B
UBE2D3

SYN3

SCN1B
CPSF1

NCOA3

SCN1A
CSTF2T

UGP2

ANK3

PPP1CB

SNAP25

ANK1

KIF15

RPS6KA3

TAS2R50

KIF25

PSMD12

OXGR1

KIF5A

PPP3CA

PENK

PDE7A

NDUFS1

NPY2R

PDE4A

NDUFC1

KNG1

ENTPD3

ITPR1

HTR1F

EIF4E1B

IRS1

GALR1

DOK3

HSPE1

MRPL16

OGDHL

FLT3

SRPRADPP8

FGF9

KCNS2

RET

ESRRG

KCNC3

MKNK2

ESRRA

KCNC1

ACSL3

ARNTL

KCNA5

EIF4A2

AR

KCNA3

PTGER4GJA1

MAPK3

RHOC

PRKCG

TUBB

PRKCD

DNAH2

TMEM17

UTP20
RHBDD2

PPIB
UFL1

MSN

CORO1A
HSD17B10

WDR1

H2AC7

KLK10

FKBP1A

PRIM2

ENO1

CHMP1A

DNAH6

MOV10

DNAH5

CD99

ARHGDIA
FTH1BIRC3

ACTG1

GNG8

SHISA9

GNB4

CNIH2

GNG2

CACNG3

CXCR4

GRID2

SSTR1

TTYH1

SST

GLRA2

PTGER3

GABRB1

OPRM1

GABRA5

OPRK1

SUFU

NPY

PSME1

HTR1A

DRAXIN

PSMD8

GNG4

WNT4

GLI1

GNB2

WNT10B

TUBB8

CORT

GPT2

TUBA3D

CNR1

PHGDH

YWHAZ

C5

ALDH9A1

TUBB2A

org
an

iza
tio

n

org
an

iza
tio

n

presynaptic

presynaptic

po
sts

yn
ap

tic

po
sts

yn
ap

tic

signaling
signaling

metabolism

metabolism

transport
transport

-log10 Q-value
too few genes
not significant
2
3
4
5
6

org
an

iza
tio

n

org
an

iza
tio

n

presynaptic

presynaptic

po
sts

yn
ap

tic

po
sts

yn
ap

tic

signaling
signaling

metabolism

metabolism

transport
transport

-log10 Q-value
too few genes
not significant
2
3
4
5
6

PLS_NEG PLS_POS

Earl
y p

ren
ata

l

Mid 
pre

na
tal

La
te 

pre
na

tal

Inf
an

cy

Child
ho

od

Ado
les

ce
nc

e

Adu
lth

oo
d

Earl
y p

ren
ata

l

Mid 
pre

na
tal

La
te 

pre
na

tal

Inf
an

cy

Child
ho

od

Ado
les

ce
nc

e

Adu
lth

oo
d

−0.50

−0.25

0.00

0.25

0.50

Developmental stage

N
or

m
al

ize
d 

R
PK

M

GENES
PLS_NEG

PLS_POS

Gene expression trajectories PLS genes

PTGER4GJA1

MAPK3

RHOC

PRKCG

TUBB

PRKCD

DNAH2

TMEM17

UTP20
RHBDD2

PPIB
UFL1

MSN

CORO1A
HSD17B10

WDR1

H2AC7

KLK10

FKBP1A

PRIM2

ENO1

CHMP1A

DNAH6

MOV10

DNAH5

CD99

ARHGDIA
FTH1BIRC3

ACTG1

GNG8

SHISA9

GNB4

CNIH2

GNG2

CACNG3

CXCR4

GRID2

SSTR1

TTYH1

SST

GLRA2

PTGER3

GABRB1

OPRM1

GABRA5

OPRK1

SUFU

NPY

PSME1

HTR1A

DRAXIN

PSMD8

GNG4

WNT4

GLI1

GNB2

WNT10B

TUBB8

CORT

GPT2

TUBA3D

CNR1

PHGDH

YWHAZ

C5

ALDH9A1

TUBB2A
PTGER4GJA1

MAPK3

RHOC

PRKCG

TUBB

PRKCD

DNAH2

TMEM17

UTP20
RHBDD2

PPIB
UFL1

MSN

CORO1A
HSD17B10

WDR1

H2AC7

KLK10

FKBP1A

PRIM2

ENO1

CHMP1A

DNAH6

MOV10

DNAH5

CD99

ARHGDIA
FTH1BIRC3

ACTG1

GNG8

SHISA9

GNB4

CNIH2

GNG2

CACNG3

CXCR4

GRID2

SSTR1

TTYH1

SST

GLRA2

PTGER3

GABRB1

OPRM1

GABRA5

OPRK1

SUFU

NPY

PSME1

HTR1A

DRAXIN

PSMD8

GNG4

WNT4

GLI1

GNB2

WNT10B

TUBB8

CORT

GPT2

TUBA3D

CNR1

PHGDH

YWHAZ

C5

ALDH9A1

TUBB2A

Excitatory neurons

SynGO:Regulation of postsynaptic
membrane potential

SynGO:Regulation of presynaptic membrane
potential

SynGO:Process in the presynapse

GO:Potassium ion transmembrane transport

Reactome:Potassium Channels

Reactome:Voltage gated Potassium
channels

GO:Regulation of cellular macromolecule
biosynthetic process

GO:Regulation of cellular amide
metabolic process

GO:Regulation of translation

Reactome:PI3K Cascade

Reactome:Dopamine Neurotransmitter
Release Cycle

Reactome:Serotonin Neurotransmitter
Release Cycle

2 4 6 8 10 12
−logQ

fc
t_
in
or
de
r(
G
O
_n
ew
)

Module

M1

M2

M3

SynGO

N_GO

100

200

300

400

GO:Regulation of cytoskeleton
organization

GO:Leukocyte migration

GO:Organelle assembly

GO:Cilium or flagellum−dependent cell
motility

GO:Cilium−dependent cell motility

KEGG:Pathways of neurodegeneration −
multiple diseases

Reactome:Signaling by GPCR

Reactome:G alpha (i) signalling events

Reactome:GPCR ligand binding

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
−logQ

fc
t_
in
or
de
r(
G
O
_n
ew
)

N_GO

200

400

600

Module

M1

M2

M3

SynGO:Regulation of postsynaptic
membrane potential

SynGO:Regulation of presynaptic membrane
potential

SynGO:Process in the presynapse

GO:Potassium ion transmembrane transport

Reactome:Potassium Channels

Reactome:Voltage gated Potassium
channels

GO:Regulation of cellular macromolecule
biosynthetic process

GO:Regulation of cellular amide
metabolic process

GO:Regulation of translation

Reactome:PI3K Cascade

Reactome:Dopamine Neurotransmitter
Release Cycle

Reactome:Serotonin Neurotransmitter
Release Cycle

2 4 6 8 10 12
−logQ

fc
t_
in
or
de
r(
G
O
_n
ew
)

Module

M1

M2

M3

SynGO

N_GO

100

200

300

400# 
ge

ne
s

SynGO:Regulation of postsynaptic
membrane potential

SynGO:Regulation of presynaptic membrane
potential

SynGO:Process in the presynapse

GO:Potassium ion transmembrane transport

Reactome:Potassium Channels

Reactome:Voltage gated Potassium
channels

GO:Regulation of cellular macromolecule
biosynthetic process

GO:Regulation of cellular amide
metabolic process

GO:Regulation of translation

Reactome:PI3K Cascade

Reactome:Dopamine Neurotransmitter
Release Cycle

Reactome:Serotonin Neurotransmitter
Release Cycle

2 4 6 8 10 12
−logQ

fc
t_
in
or
de
r(
G
O
_n
ew
)

Module

M1

M2

M3

SynGO

N_GO

100

200

300

400

PP
I M

od
ul

e 
/ S

yn
G

O

MCODE PPI networks Functional enrichment (PPI networks) SynGO Biological Processes
PL

S-
 g

en
es

PL
S+

 g
en

es
A)

B) Gene expression across brain regions (GTEx v8)

0.0

0.5

1.0

ACG
AMY CB

CB.HEM
CBG

CTX
F.C

TX

HYPOT

HYPPOC

NAC.BG
P.BG

S.NIG SC

Brain tissue

Av
er

ag
e 

ge
ne

 e
xp

re
ss

io
n 

(N
or

m
al

iz
ed

 T
PM

)

GENES

PLS_NEG

PLS_POS

Gene expression (PLS− genes) across GTEx Brain tissues

Gene expression across brain developmental stages (BrainSpan)

Av
er

ag
e 

ge
ne

 e
xp

re
ss

io
n 

(n
or

m
al

iz
ed

 T
PM

)

Av
er

ag
e 

ge
ne

 e
xp

re
ss

io
n 

(n
or

m
al

iz
ed

 R
PK

M
)

*

* *

*

*

* *

*

*

* *

* * *
*

* p = 9.3e-3

C)

D)

1

2

3

4

Astr
o

End
o

Micr
o

Neu
ro.

Ex

Neu
ro.

In
Oligo OPC

Cell type

O
R

(9
5%

C
I) 

Fi
sh

er
 e

xa
ct

 te
st

PLS

PLS_DOWN

PLS_UP

Brain Cell−type enrichments

Enrichment in brain cell type gene expression E)

Inhibitory neurons Astrocytes

Cell type - regional gene expression maps

* **

GTEx brain tissue
Brain developmental stage 

Brain Cell type (Seidlitz et al., 2021)

org
an

iza
tio

n

org
an

iza
tio

n

presynaptic

presynaptic

po
sts

yn
ap

tic

po
sts

yn
ap

tic

signaling
signaling

metabolism

metabolism

transport
transport

-log10 Q-value
too few genes
not significant
2
3
4
5
6

-log10Q

0.0

0.5

1.0

ACG
AMY CB

CB.HEM
CBG

CTX
F.C

TX

HYPOT

HYPPOC

NAC.BG
P.BG

S.NIG SC

Brain tissue

Av
er

ag
e 

ge
ne

 e
xp

re
ss

io
n 

(N
or

m
al

iz
ed

 T
PM

)

GENES

PLS_NEG

PLS_POS

Gene expression (PLS− genes) across GTEx Brain tissues

PLS- genes

PLS+ genes

HIPPOC

Jo
urn

al 
Pre-

pro
of



0.0

2.5

5.0

7.5

10.0

SCZ
ASD DD

NDD

Disorder

OR
(C

I9
5%

) L
og

 re
gr

es
sio

n

genes
PLS−

PLS+

Rare disrupting variation enrichment

0.0

2.5

5.0

7.5

10.0

SCZ
ASD DD

NDD

Disorder

O
R

(C
I9

5%
) L

og
 re

gr
es

si
on

genes
PLS−

PLS+

Rare disrupting variation enrichment

0.0

2.5

5.0

7.5

10.0

SCZ
ASD DD

NDD

Disorder

O
R

(C
I9

5%
) L

og
 re

gr
es

si
on

genes
PLS−

PLS+

Rare disrupting variation enrichment

0.0

2.5

5.0

7.5

10.0

SCZ
ASD DD

NDD

Disorder

O
R

(C
I9

5%
) L

og
 re

gr
es

si
on

genes
PLS−

PLS+

Rare disrupting variation enrichment

0.0

2.5

5.0

7.5

10.0

SCZ
ASD DD

NDD

Disorder

O
R

(C
I9

5%
) L

og
 re

gr
es

si
on

genes
PLS−

PLS+

Rare disrupting variation enrichment

0.0

2.5

5.0

7.5

10.0

SCZ
ASD DD

NDD

Disorder

O
R

(C
I9

5%
) L

og
 re

gr
es

si
on

genes
PLS−

PLS+

Rare disrupting variation enrichment

0.0

2.5

5.0

7.5

10.0

SCZ
ASD DD

NDD

Disorder

O
R

(C
I9

5%
) L

og
 re

gr
es

si
on

genes
PLS−

PLS+

Rare disrupting variation enrichment

C)

D)

CROSS

EA

COG

NEUR

CUD

ALC

TS

OCD

ADHD

ASD

MDD

BD

SZ

0.8 0.9 1.0 1.1 1.2 1.3

OR(CI95%) MAGMA enrichment

D
is

or
de

r gene_set
PLS−

PLS+

Common predisposing variation enrichment

0

1

2

3

PLS
−

PLS
+

ACT gene sets

PR
S:

 p
se

ud
o−

R
2

genes
PLS−
PLS+

*

* *

* pFDR < 0.05

downreg upreg

SCZ

SCZ (R
NA−

se
q) BD

MDD
ASD

AAD IBD
SCZ

SCZ (R
NA−

se
q) BD

MDD
ASD

AAD IBD

3

2

1

0

1

2

3

ACT gene sets

O
R

(C
I9

5%
)

PLS_GENES_ACT
PLS−
PLS+

0

1

2

3

PLS
−

PLS
+

ACT gene sets
PR

S:
 p

se
ud

o−
R

2

genes
PLS−
PLS+

* * *
*

*

*
* *

*

downreg upreg

SCZ

SCZ (R
NA−

se
q) BD

MDD
ASD

AAD IBD
SCZ

SCZ (R
NA−

se
q) BD

MDD
ASD

AAD IBD

3

2

1

0

1

2

3

4

ACT gene sets

O
R

(C
I9

5%
)

PLS_GENES_ACT
PLS−
PLS+

A)

Disorder

PLS-based polygenic score (PGS) predictions

PLS-gene sets’ enrichment for psychiatric differentially expressed genes 

Downregulated genes Upregulated genes

SZ

SZ

SZ

SZ

SZ

Di
so

rd
er

 / 
tra

it

HEIGHT

CROSS

EA

COG

NEUR

CUD

ALC

TS

OCD

ADHD

ASD

MDD

BD

SZ

0.8 0.9 1.0 1.1 1.2 1.3

OR(CI95%) MAGMA enrichment

D
is

or
de

r gene_set
PLS−

PLS+

Common predisposing variation enrichment

*

B)
PLS- genes PLS+ genes

Pcomp = 0.009

*

Pcomp = 0.137

PLS- genes PLS+ genes

Pcomp = 0.009

*

Pcomp = 0.137

Jo
urn

al 
Pre-

pro
of



B)

A)
Regional ACT in SZ vs HC 
(Standardized LMM Betas)

Greater cortical  
thinning  

in HC

Greater cortical  
thinning  

in SZ

Regional BCTD in SZ vs HC 
(Standardized linear regression Betas)

0

25

50

75

100

ACT_B
CTD

ACT_B
CTD_n

eg

ACT_B
CTD_p

os

ACT − BCTD

N
 g

en
es

 o
ve

rla
p

genes
ACT_BCTD
ACT_BCTD_neg
ACT_BCTD_pos

1,211 91317

621 6213

581 29313

C)

P = 0.999

P = 0.999

P = 0.124

(N = 17)

(N = 3) (N = 13)

# 
ov

er
la

pp
ed

 g
en

es
 (p

er
m

ut
at

io
ns

)

(ACT/BCTD) PLS genesets

0

25

50

75

100

ACT_B
CTD

ACT_B
CTD_n

eg

ACT_B
CTD_p

os

ACT − BCTD

N
 g

en
es

 o
ve

rla
p

genes
ACT_BCTD
ACT_BCTD_neg
ACT_BCTD_pos

ACT-PLS ∩ BCTD-PLS 

ACT-PLS- ∩ BCTD-PLS-

ACT-PLS+ ∩ BCTD-PLS+

Greater cortical  
thickness  

in HC

Greater cortical  
thickness  

in SZ

ACT BCTD

PLS genes

PLS- genes

PLS+ genes

Jo
urn

al 
Pre-

pro
of


