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Yumeng Xu ,1 Maria Rosselló-Sastre ,2 Shubhanshu Tiwari ,1 Michael Ebersold ,3
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In this study, we investigate the role of the non-linear memory effect in gravitational wave (GW)
parameter estimation, particularly we explore its capability to break the degeneracy between lumi-
nosity distance and inclination angle in binary coalescence events. Motivated by the rapid growth
in GW detections and the increasing sensitivity of GW observatories enhancing the precision of cos-
mological and astrophysical measurements is crucial. We propose leveraging the non-linear memory
effect — a subtle, persistent feature in the GW signal resulting from the cumulative impact of
emitted gravitational waves — as a novel approach to enhance parameter estimation accuracy.
Through a comprehensive series of injection studies, encompassing both reduced and full parame-
ter spaces, we evaluate the effectiveness of non-linear memory in various scenarios for aligned-spin
systems. Our findings demonstrate the significant potential of non-linear memory in resolving the
inclination-distance degeneracy, particularly for events with high signal-to-noise ratios (SNR > 60)
for the current generation of detectors and in the context of future detector sensitivities such as
the planned LIGO A♯ upgrade. The results also suggest that excluding non-linear memory from
parameter estimation could introduce significant systematics in future LIGO A♯ detections. This
observation will hold even greater weight for next-generation detectors, highlighting the impor-
tance of including non-linear memory in GW models for achieving high-accuracy measurements for
gravitational wave (GW) astronomy.

I. INTRODUCTION

Having observed nearly 100 gravitational wave events
in recent years, and anticipating a multifold increase in
detections during the current O4 run, gravitational wave
detections open a new era for cosmology and astrophysics
[1, 2]. Many cosmological and astrophysical inferences
that can be made from these GW detections rely on ac-
curate measurements of the luminosity distance and in-
clination of the binary. Such inferences include constrain-
ing the Hubble constant through methodologies that in-
volve the parameter estimation of luminosity distance
from gravitational waves, which has the potential to solve
the Hubble tension[3–7]. However, it is difficult to accu-
rately measure the parameter of luminosity distance due
to the degeneracy with the inclination angle, which is a
common issue in the parameter estimation [8–10]. Fur-
ther, the difficulty in obtaining a precise measurement of
the inclination angle due to the degeneracy also hinders
our understanding of Gamma-ray bursts [11, 12].

One way to solve this degeneracy problem is by utiliz-
ing higher-order modes [13]. While these modes are typ-
ically weak for symmetric mass ratio systems, they can
be significant in asymmetric systems that involve a large
black hole and a smaller counterpart. For binary systems
that are undergoing precession, the changing inclination

angle encodes more information in the waveform, break-
ing the degeneracy [14]. Additionally, for binary neutron
stars which contain matter effects, the love relation can
be employed to further break the degeneracy [15].

However, in many of the LIGO-Virgo compact binary
coalescence (CBC) events, the binaries do not have a high
mass ratio, precession, or matter effect [1]. As a result,
we propose a complementary approach to tackle this issue
for binary systems that are symmetric in mass and non-
precessing, using the non-linear memory effect. The non-
linear memory effect is a permanent spacetime displace-
ment phenomenon that can be interpreted as a gravita-
tional wave component generated by the emission of grav-
itational waves itself [16]. This effect is not an isolated
phenomenon but a crucial element within the broader
framework of gravitational wave physics. It stands as one
of the pivotal aspects of the ’infrared triangle,’ a concep-
tual model that intricately links gravitational-wave mem-
ory with BMS supertranslations and soft theorems, as
explored in depth by Strominger [17]. This interconnec-
tion underscores the fundamental nature of gravitational
wave memory in understanding the underlying princi-
ples of gravitational wave emissions and their implica-
tions for theoretical physics. In this work, we limit our-
selves to the so-called displacement memory as it is the
dominant memory effect which is available for the grav-
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itational waves detectors. Other sub-dominant memory
effects such as spin memory[18, 19] and center-of-mass
memory [20] are left for future investigations.

Non-linear memory can be utilized to distinguish neu-
tron star-black hole (NSBH) mergers from binary black
hole (BBH) mergers for a certain part of the parameter
space [21]. While in the presence of matter effect, the
non-linear memory effect also shows the ability to distin-
guish binary neutron star (BNS) from BBH and NSBH
[22].

The morphology of the non-linear memory is influenced
by various factors such as the total mass, mass ratio, and
inclination. Predominantly residing in the (2,0) mode for
non-precessing systems or the corresponding mode in the
co-precessing frame for precessing binaries, the memory
effect varies based on the orientation of the system –
maximized in edge-on and minimized for face-on systems
[23, 24]. This characteristic could serve as a potent tool
for disentangling the inclination-distance degeneracy.

Despite its potential, the non-linear memory effect is
typically weak and has not been found in the past LIGO-
Virgo runs [25, 26]. The prospects of detection of non-
linear memory from multiple events with LIGO-Virgo-
KAGRA are discussed here [27]. There are a few works
to set the detection limit for memory in Einstein Tele-
scope and space-based gravitational wave detectors [28–
31]. Here we aim to investigate how non-linear memory
will affect the parameter estimation results through a
campaign of injection studies, and understand the pa-
rameter range where the inclusion of the memory effect
in parameter estimation is necessary for ground-based
detectors. We also aspire to understand if failing to con-
sider the memory effect in parameter estimation could
lead to systematics. In this work, we have studied the bi-
nary systems with aligned spins as generic spins can lead
to complex features making it more challenging to study
non-linear memory in isolation. Moreover, the non-linear
memory peaks at equal mass systems where the effect of
spin-precession is expected to be minimal.

This paper is organized as follows. In Section II, we
provide a brief explanation of the non-linear memory ef-
fect, including its properties. In Section III, we briefly in-
troduce the methods for parameter estimation, the wave-
form model, and the statistics used in this work. Finally,
in Section IV, we present our results obtained from the
injection studies including the injections with reduced
priors and full priors, as well as using the future LIGO-A♯

upgraded sensitivity, and a selected real event detected
by the LVK collaboration.

II. NONLINEAR MEMORY

The non-linear memory component of gravitational
waves can be calculated from the oscillatory modes hlm

of gravitational waves for each spherical harmonic −2Y
lm

using the equation [32]

hℓm
mem =

R

c

√
(ℓ− 2)!

(ℓ+ 2)!

∞∑
ℓ′=2

∞∑
ℓ′′=2

ℓ′∑
m′=−ℓ′

ℓ′′∑
m′′=−ℓ′′

×Gℓℓ′ℓ′′

mm′m′′

∫ TR

−∞
dtḣℓ′m′ ˙̄hℓ′′m′′

,

(1)

where R denotes the luminosity distance, c represents the
speed of light, and TR refers to the retarded time. The
term ḣℓm is the time derivative of the strain, with the
overbar indicating its complex conjugate. The coefficient
Gℓℓ′′

mm′m′′ is defined as follows:

Gℓℓ′′

mm′m′′ =

∫
dΩ′

−2Ȳ
ℓm (Ω′)Y ℓ′m′

−2 (Ω′)−2 Ȳ
ℓ′′m′′

(Ω′)

= (−1)m+m′

√
(2ℓ+ 1) (2ℓ′ + 1) (2ℓ′′ + 1)

4π

×
(

ℓ ℓ′ ℓ′′

0 2 −2

)(
ℓ ℓ′ ℓ′′

−m m′ −m′′

)
.

(2)
The above matrices represent the Wigner 3-j symbols,
and −2Ȳ

ℓm is the complex conjugate of −2Y
ℓm.

In equation (1), we can see that the memory is a result
of combinations of all (l,m) modes. However, it should
be noted that each combination contributes with a dif-
ferent amplitude due to the differences in the amplitude
and phase of each mode, as well as the varying factor
Gℓℓ′′

mm′m′′ in equation (2). The amplitude contributions
of each combination are displayed in Fig. 2. It is evident
that the (2, 2) × (2, 2) combination is from 8 times to
several orders of magnitude higher than the other modes.
Considering the non-linear memory is already around two
orders lower than the dominant (2, 2) mode, we can safely
ignore the contribution from other modes to reduce the
computational time significantly.
Non-linear memory contributions alone exhibit charac-

teristics similar to step functions. They increase mono-
tonically and slowly with the compact binary getting
closer, then sharply rise at merger, and finally induce a
permanent amplitude shift. After a merger event, mem-
ory appears as a flat line, indicating its nearly zero fre-
quency as shown in the orange line of the inset in Fig. 1.
Ground-based detectors, which are sensitive to tens to
a few thousand Hz, cannot detect this “0 Hz” perma-
nent displacement directly, necessitating the application
of a high-pass filter to the waveform as shown in the
deep blue line in the inset of Fig. 1. The plus polar-
ization waveform contains only (2,±2) oscillatory modes
with/without non-linear memory in (2, 0) are shown in
Fig. 1 with red and green respectively.
Fig. 3 shows the SNR relative fraction of the plus polar-

ization of non-linear memory contribution and the domi-
nant (2,2) oscillatory mode for different aligned spin and
mass ratios. We see that the non-linear memory has a
much higher SNR relative fraction with respect to the
dominant (2,2) mode for a symmetric mass ratio system.
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FIG. 1. The waveforms shown in the main plot are the plus
polarization of gravitational waves (2,±2) oscillatory modes
with and without their corresponding non-linear memory con-
tribution to (2,0) modes. The inset shows the non-linear
memory separately in orange and the same signal after a high
pass at 10 Hz in dark blue, showing its nearly oscillatory be-
havior.
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FIG. 2. The amplitude of memory contribution for different
(l,m) mode combinations to (2, 0) mode. The blue points
show the non-linear memory with positive amplitude while
the red points show the ones with negative amplitude. The
contribution from (2, 2) mode is shown in the star symbol.

This property makes non-linear memory a complemen-
tary method for constraining the distance of a gravita-
tional wave source for systems when higher-order modes
are negligible, such as systems with a symmetric mass
ratio.
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FIG. 3. The SNR relative fraction of the real part of non-
linear memory contribution in (2,0) mode and dominant (2,2)
mode in different aligned spin s1z and mass ratio q. Here
we have used the zero-detuned high-power LIGO noise power
spectral density (PSD) as a representative of the current gen-
eration of ground-based detectors.

III. METHODOLOGY

A. Bayes parameter estimation

In this study, the parameters we are exploring are
highly degenerate, which cannot be accurately repre-
sented by the Fisher matrix. Therefore, we have opted
to use Bayes inference. This method can be summarized
by the following simplified equation [33]:

P (parameter|data)︸ ︷︷ ︸
posterior

∝ P (data|parameter)︸ ︷︷ ︸
likelihood

×P (parameter)︸ ︷︷ ︸
prior

,

The posterior is the probability of parameters with the
given data, which is proportional to the likelihood times
the prior. The likelihood is evaluated with the data and
waveform model. In this case, we utilize the IMRPhenomT
[34] waveform model with memory contribution as it is
both computationally efficient and sufficiently accurate
for our purposes. More details about this model can be
found in the following section. To thoroughly study the
effect of non-linear memory with limited computational
resources, we first apply a simple prior that samples only
inclination, distance, polarization, and phase parameters
and keeps other parameters as delta functions. Then
we open all other parameters apart from the non-aligned
spins for a more complete and realistic study.
The software we are using for this study is

parallel-bilby [35, 36] with the dynesty [37] sampler,
which allows us to run the parameter estimation in par-
allel and significantly reduce the run time.
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For the injected signal, we use NRHybSur3dq8 CCE
waveform model, which is the most complete waveform
model containing both the oscillatory and non-linear
memory component of (2,0) mode derived from numer-
ical relativity [38]. In this study, we only use the (2,2)
mode and (2,0) mode from NRHybSur3dq8 CCE. The gen-
erated waveforms are injected into both zero-noise and
colored Gaussian noise with selected sensitivity curves for
ground-based detectors. Explorations with zero noise can
be seen as the average of all noise realizations and help
us understand the intrinsic degeneracies present, while
by introducing colored noise, we can gain insight into
the impact of noise on such a weak signature.

In order to calculate memory accurately from our
waveform model, we need to integrate the oscillatory
modes precisely. This requires a high sample rate to
reduce the error in the integration. However, a higher
sample rate can significantly slow down waveform gener-
ation. Therefore, we use a different sample rate for each
different total mass.

B. Aligned spin waveform model with memory

To calculate the memory contribution using equations
(1) and (2), we require a time-domain waveform model to
perform the time integral. We have selected IMRPhenomT
as our baseline model. This model is fast and accurate,
making it an ideal choice for our needs. Since the contri-
bution of other modes to memory is much smaller than
that of the (2, 2) mode (See Fig. 2), we can discard them
in the integral to reduce computational cost. Then equa-
tion (1) and (2) reduces to

h20
mem =

R

c

1√
24

∑
m′=−2,2

G222
0m′m′

∫ TR

−∞
dtḣ2m′ ˙̄h2m′

. (3)

From this equation, the non-linear memory can be cal-
culated by taking the derivative of (2,±2) oscillatory
modes from IMRPhenomT and performing the integral over
time. The gravitational wave strain can then be calcu-
lated by inserting the memory contribution to the (2, 0)
mode together with the oscillatory (2,±2) modes in [39],

h (ι, ϕ0) =

∞∑
ℓ=2

ℓ∑
m=−ℓ

hℓm −2Y
ℓm (ι, ϕ0) . (4)

Fig. 4 compares the computational performance of var-
ious waveform models as a function of total masses. It
is observed that the NRHybSur3dq8 CCE model takes a
few to ten times longer to perform compared to the
IMRPhenomT meme model. Due to this significant differ-
ence, the NRHybSur3dq8 CCE model is less practical for
systematic PE study. Hence, we have chosen to use the
IMRPhenomT meme model for this exploration.
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FIG. 4. Comparison of computational performance of
IMRPhenomT, IMRPhenomT with non-linear memory (labelled as
IMRPhenomT meme) and NRHybSur3dq8 CCE. The timing data is
averaged over 500 runs for each total mass.

C. Relative fractional improvement

To quantify the relative improvement of the measure-
ment for the luminosity distance to the source, we in-
troduce the relative fractional improvement inspired by
[15],

∆DL = 100%×
[
1− (δDL)mem

(δDL)nomem

]
, (5)

where (δDL)mem represents the 1-σ credible interval of lu-
minosity distance posterior using the non-linear memory
waveform model. (δDL)nomem is the corresponding value
obtained using the waveform without non-linear memory.
A better constraint on distance in the posterior will give
a higher ∆DL. However, this is insufficient to show if
the recovered distances are close to the injected values.
Thus, we will also use the mean-squared error (MSE) of
the 1−σ luminosity distance posterior versus the injected
value together with ∆DL to quantify the improvement.
We define a quantity ∆MSE in the same way,

∆MSE = 100%×
[
1− MSEmem

MSEnomem

]
, (6)

where

MSE =
1

n

n∑
i=1

(
Di

L − D̂L

)
. (7)

Here D̂L is the injected true value of luminosity distance.

D. (2,0) mode SNR

To quantify the detectability of memory, we proposed
a new quantity memory SNR ρ20 inspired by [40], we can
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define it as

ρ20 = ρ+22α20R
+
20, (8)

where ρ+22 is the SNR of (2, 2) mode plus polarization and

R+
20 =

sin2 ι

1 + cos2 ι
, (9)

α20 =
σ20

σ+
22

, (10)

while the sensitivity of the detector to the (l,m) har-
monic, σlm, is given by

σlm =

√
(h̃lm|h̃lm). (11)

The orthogonal component of non-linear memory con-
tribution with dominant 22 multipole is given by

ρ⊥20 = ρ20
√
1−O(h20, h22)2, (12)

where O(h20, h22) is the overlap of the modes (2,0) and
(2,2).

IV. RESULTS

We present a series of injection studies to investigate
the effectiveness of non-linear memory in breaking the de-
generacy of distance and inclination with a reduced prior,
using LIGO-Virgo O5 sensitivity [41]. We then vary all
the priors for the non-precessing system to explore the
improvement in a more realistic situation. Finally, we
discuss the potential improvement that non-linear mem-
ory can bring to the distance constraint for the future
LIGO A♯.

A. Degeneracy breaking for reduced prior

To explore the ability to break the degeneracy of incli-
nation and distance with non-linear memory, we first use
a reduced prior which only varies 3 parameters (inclina-
tion ι, luminosity distance DL, and phase ϕ) while keep-
ing other parameters as a delta function for the injected
parameters. This approach allows us to understand bet-
ter how including the non-linear memory effect impacts
the measurement of inclination and distance alone, with-
out the need to account for additional parameters. Addi-
tionally, it reduces the computational burden of the anal-
ysis, enabling us to explore a broader parameter space,
including variations in mass ratio.

We first inject 25 sets of parameters with 5 distances
(300, 400, 600, 900, and 1200 Mpc) and 5 inclination
angles (evenly-spaced values in the range of 0 to π/2).
The mass ratio is set to 1 and the spins are set to 0. The
total mass is 40 M⊙.

In Fig. 5, we can see the posteriors of two different in-
jection distances, 300 Mpc and 1200 Mpc, in violin plots.
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FIG. 5. The upper and lower panels of the violin plots show
the luminosity distance from 300 Mpc and 1200 Mpc injec-
tion and reduced prior, respectively. The blue posteriors are
obtained using a waveform model with non-linear memory,
while the orange ones are from the recovery with IMRPhe-
nomT waveform model. The quartile lines of credible inter-
vals are represented by the dashed lines in the violin plot.

These plots demonstrate the enhancement of distance
measurement using non-linear memory for high (around
100 at 300 Mpc) and low SNR (around 20 at 1200 Mpc).
The upper panel of the plots represents the high SNR
case, injected at 300 Mpc, where we can observe that the
luminosity distance constraint is much better for face-on
and edge-on systems. Additionally, for all inclination an-
gles, the constraint peaks at the injected distance. On
the other hand, for the low SNR case, injected at 1200
Mpc, the improvement is not as obvious, but the quar-
tiles represented by the dashed line in the violin plots
still show that the recoveries with a non-linear memory
model provide better recovery of the injected value.

To quantify the relative fractional improvement of the
luminosity distance measurement, we plot the ∆DL and
∆MSE in Fig. 6a and 6b. From Fig. 6a, we can see
that the highest improvement is from the closer distance
and the face-on system, rather than the edge-on system,
where the non-linear memory amplitude is highest, as we
might expect. This can be explained by the SNR contour
plot overlaid on the ∆DL contour, which shows the im-
provement on the ∆DL following the SNR increase. The
relative improvement on the width of the 90% credible
interval only provides information about the constraint,
but it can’t show the accuracy of the posterior. There-
fore, we have also calculated the MSE and plotted the
relative fractional improvement of MSE defined in Eq.
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FIG. 6. Panel (a) and (b) show the relative fractional improvement of luminosity distance ∆DL and ∆MSE with reduced
prior. 25 injections were performed at 5 luminosity distances and 5 inclination angles. The contour color represents the relative
improvement of the luminosity distance dL (defined in Eq. (5) and (6)). The yellow lines represent the SNR contour of the
injected signal. Panel (c) shows the ∆MSE with reduced prior of varying mass ratio. The results align with what we see in the
SNR plot in Fig 3, that higher mass ratio q leads to less gain in measuring the distance from introducing non-linear memory.

(6) in Fig. 6b. We observe that even though the SNR at
the same distance for the edge-on system is lower than
that of the face-on system, due to the maximization of
non-linear memory, the ∆MSE is good for both systems.

In addition to the inclination-distance grid injections,
we also performed 25 injections with varying mass ra-
tios and inclination, of non-linear memory. The injected
masses are all set to 40 M⊙ and spins are set to 0. Here,
we choose to fix the SNR to 60 instead of injecting them
at the same distance. We also open the mass ratio in the
priors for these parameter estimation runs. The results
of ∆MSE of luminosity distance are plotted in Fig. 6c.
We see that the improvement of distance constraint fol-
lows what we expect. The more asymmetric mass ratio a
binary black hole system has, the worse the improvement
in the constraint.

B. Full parameter recovery

In the case of performing PE on a real signal, we won’t
be able to know the other parameters such as total mass
and mass ratio in prior. Therefore, we performed another
Bayes inference exploration with full priors for aligned-
spin binary black holes.

We injected the same 25 sets of parameters with varied
distances and inclinations as the previously reduced prior
section. The contour plot of ∆MSE is shown in Fig. 7a.
Compared with the same contour plot in Fig. 6b, we can
notice that with more parameters open for sampling in
the prior, the improvement of the mean-squared error
drops for the low SNR scenarios. For the high SNR cases,
taken to be, when SNR is greater than 60, the ∆MSE
shows a similar amount of improvement. We can also
notice that in the contour plot near inclination π/4 and
distance DL around 1200 Mpc give worse MSE than the
posteriors from the recovery without memory below SNR

30. This can be attributed to the very low (but not neg-
ligible) SNR available in the injection for the (2,0) mode
which makes the posterior broader when sampling with
memory. Also, the contribution from the weak oscillatory
part of the (2,0) which is not available in the sampling
model, can lead to further worsening of the posterior.
This feature is resolved for the edge-on system (inclina-
tion of π/2) as the (2,0) mode will have more SNR.

In Fig. 7b, we picked two data points from the in-
jections, which are the edge-on (ι = π/2) and face-on
(ι = 0 or π) system in the luminosity distance DL = 300
Mpc. The contour plots from using the non-linear mem-
ory model are shown in the left panels in blue and the cor-
responding ones without non-linear memory are shown in
the right panel in orange. We see that for the edge-on
system, the posterior from using the non-linear memory
waveform is constrained well around the injected value,
while for the waveform model without non-linear mem-
ory, the recovered values are totally off. For the face-on
system, both waveform models peak near the injected
value. However, using non-linear memory can signifi-
cantly reduce the bimodality, enable us to distinguish
a face-on system and an edge-on system, and give also
much better constraint on the distance.

These results give us hints that for low SNR (SNR <
60), adopting non-linear memory in the parameter esti-
mation won’t gain too much improvement but will have
a higher cost on the computing resources with adding
additional mode. For the high SNR events, ignoring the
non-linear memory effect will introduce significant sys-
tematics in the distance-inclination measurement. The
ρ⊥20 of the injections is greater than 2 for the ones with
a luminosity distance greater than 460 Mpc. It is cor-
responding to SNR 60 when the inclination is π/4. For
current detectors, it is not likely to have such a high
SNR and close-distance event. Thus in the next section,
we will continue the exploration with the proposed LIGO
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FIG. 7. Panel (a) shows the relative fractional improvement of MSE (∆MSE defined in (6)) with full aligned spin prior. 25
injections are performed with 5 luminosity distances and 5 inclination angles (evenly distributed from 0 to π/2). The yellow lines
are the SNR contour of the injected signal. Panel (b) displays selected contour plots depicting the inclination and luminosity
distance from the full parameter injections. The blue contours show the posteriors using the non-linear memory waveforms,
while the orange contours in the same row show the corresponding ones without. The red dots in the plots indicate the injected
values.

A♯ sensitivity curve [42].

C. Case of LIGO A♯

From the exploration in the previous sections, we see
that to break the degeneracy between inclination and
luminosity distance, a high SNR greater than 60 is re-
quired. This means that for LIGO O5 sensitivities the
distance should be closer than 300 - 600 Mpc, depend-
ing on the total mass and inclination angle. These kinds
of close events are very few seen in O3 [1]. Therefore,
we continue our exploration with the future upgrade of
LIGO A♯ [43]. Using the sensitivity curve of A♯ is not
simply equivalent to increasing the SNR of the overall sig-
nal, since the A♯ will also increase the sensitivity in the
low frequency more, where most of the energy of memory
lives.

We performed similar injection sets for parameters as
in the previous section. Due to the limited computational
resources, we reduced the injection parameter space to
15 sets, with 3 inclination angles (0, π/4, and π/2) for
5 different distances. The injected distance started from
400 Mpc because the sensitivity of A♯ is much higher.
The SNR below a distance of 400 Mpc is too high, which
will cost too much time to finish.

The ∆MSE are plotted in Fig. 8a. This graph displays
the improvement of MSE up to 90%. Even at around
1 Gpc, ∆MSE can get around 10% - 20% of improve-
ment. This means at that sensitivity, ignoring the non-
linear memory effect will introduce significant systemat-
ics in the distance measurement for most of the signif-
icant events. This is estimated to affect nearly 30% of
events reported in the GWTC-3 catalogue [1] assuming

they were detected by LIGO-A♯, taking the mean mea-
sured distance as the “true” distance to the source.

We also plotted the comparison of inclination-distance
posteriors for 2 select injection sets in both O5 and A♯

sensitivity curve in Fig. 8b and 8c. Fig. 8b shows the
inclination-distance contour for the edge-on system at
600 Mpc. We can see that under A♯ sensitivity, the dis-
tance peaks at the injected value. Although the result
using O5 sensitivity shows improvement in the MSE com-
pared to the model without non-linear memory Fig. 7a,
it is still largely unconstraint.

Fig. 8c shows the inclination-distance contour for the
edge-on system at 400 Mpc. For the O5 sensitivity, the
SNR is around 50 at this distance. This comparable low
SNR provides an improvement in the distance measure-
ment seen from 7a, but still not enough to get rid of the
bimodality. However, for A♯ the SNR is 90, and both
inclination and distance are nicely peaked at the injected
values.

To conclude, for LIGO A♯, we will need memory to re-
solve distance-inclination degeneracy since we anticipate
that the majority of events will have an SNR greater
than 60, based on estimates using the GWTC-3 cata-
logue. Besides, for LIGO A♯, the ρ⊥20 > 2 when the
distance is closer than 900 Mpc for total mass 40 M⊙
binaries. For the same system at a distance of 600 Mpc,
the ρ⊥20 is around 3. For now, events below a distance
of 600 Mpc account for 12% of our total events in the
GWTC-3 catalogue taking the mean measured distance,
and those below 900 Mpc account for 24%.
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FIG. 8. Panel (a) shows Relative fractional improvement of MSE (∆MSE) for full aligned-spin prior, with A♯ sensitivity curve.
15 injections are performed with 5 luminosity distances and 3 inclination angles (0, π/4, and π/2). The yellow lines are the SNR
contour of the injected signal. Panel (b) and (c) show contour plots of select results with LIGO O5 and LIGO A♯ sensitivity
curves at the same distance (DL = 400/600 Mpc) and inclination (ι = π/2) in the same plot. The dashed lines indicate the
injected values.
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FIG. 9. Panel (a) shows the contour plot of inclination and distance posterior of the PE result from GW191204 171526, with both
IMRPhenomT meme and IMRPhenomT. Panel (b) shows the ρ⊥20 computed from the posterior samples of PE with IMRPhenomT meme.

D. A test on real data

Although we do not expect non-linear memory to have
any impact on detections made during the third observ-
ing run of LIGO-Virgo-KAGRA, we would still like to
perform an analysis on a real event as a proof of con-
cept and robustness check. We have selected the event
GW191204 171526 from GWTC-3 [1], which has a total
mass of 20 M⊙ and an SNR of 17.4. This event was cho-
sen because it has the highest SNR among the low total
mass events (M < 40M⊙), and its mass ratio is around
1.5. We used the same prior as the public parameter es-
timation results [44] except for setting the non-aligned

spin to 0. We analyzed the data with both IMRPhenomT
and IMRPhenomT meme.

The contour plot of inclination and distance posteriors
of the two runs are plotted in Fig. 9a. As expected, we
can see that the inclusion of non-linear memory has no
impact on the parameter estimation.

We also computed the ρ⊥20 defined in equation (12)
in Fig. 9b from the posterior samples of the PE with
IMRPhenomT meme. We see that the 90% of the credible
interval of ρ⊥20 is below 1.9, which shows the strength of
the non-linear memory in (2, 0) mode is not sufficient for
this event to affect the PE results.
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V. CONCLUSIONS

In the presented study, we have conducted a detailed
investigation into the utility of non-linear memory for
improving parameter estimation within the context of
gravitational wave astronomy, specifically focusing on its
ability to resolve degeneracy in larger parameter spaces
using Bayes inference injection methods. Initial assess-
ments with a reduced prior setup were expanded to full-
parameter recovery for aligned-spin systems, enabling
a comprehensive evaluation of the impact of non-linear
memory on enhancing the measurement of luminosity
distance and inclination angle — key parameters for the
accurate cosmological or astrophysical studies. The in-
clusion of non-linear memory has been shown to offer no-
table improvements in distance constraints, which is of
significant importance for future observations with the
upgraded LIGO A♯.
Our findings indicate that non-linear memory is par-

ticularly effective in breaking the degeneracy between in-
clination and luminosity distance in high signal-to-noise
ratio (SNR > 60) cases. The benefit of incorporating
non-linear memory is more apparent at closer distances
and for non-precessing and symmetric mass systems with
higher SNRs. We also note that the (4,4) mode will
have similar properties for the symmetric mass system
but the inlication angle properties of the (4,4) mode are
not as different from the (2,2) mode. The inclusion of
(4,4) mode with (2,0) mode will overall improve the in-
clination angle measurement even for the intermediate
values of inclinations as well which is not the case with
just (2,0) mode as it improves mostly in the edge-on and
face-on systems. The analysis suggests that neglecting
non-linear memory effects in high SNR scenarios could
lead to systematics in the estimated values of distance
and inclination angles.

Further exploration into the implications of LIGO A♯’s
upgraded sensitivity demonstrates the potential for en-
hanced parameter estimation accuracy, particularly due
to its increased sensitivity at lower frequencies, where
non-linear memory effects are more pronounced. The
study suggests that with the A♯ sensitivity, omitting non-
linear memory from the analysis could result in signifi-
cant systematics in distance measurements for detectable
events, even at distances up to about 1 Gpc. This is ex-
pected to affect almost 30% of the events in the GWTC-
3 catalog based on mean measured distance assuming
they were detected by LIGO-A♯. This enhancement is
attributed not only to the higher SNR provided by A♯

but also to its improved low-frequency sensitivity, crucial
for capturing the entirety of non-linear memory effects.

We also applied our methodology to a real gravita-
tional wave event, GW191204 171526. Despite knowing
that its SNR is not high enough to have a significant
contribution of non-linear memory in providing better
constraints for the accuracy of parameters. We perform
the analysis as a proof of concept. The outcome of the
analysis is in alignment with the expectations, confirm-

ing that non-linear memory’s impact is subdued in lower-
SNR events without significant changes in the measure-
ment accuracy of other parameters.
In summary, this research highlights the role of non-

linear memory in refining the precision of gravitational
wave parameter estimation. As we advance toward the
LIGO A♯ phase and third-generation detectors, integrat-
ing non-linear memory into parameter estimation frame-
works will be essential for the accurate localization and
characterization of gravitational wave sources. This ef-
fort will contribute to the ongoing development of gravi-
tational wave astronomy, enhancing our ability to analyze
and interpret the signals from these cosmic phenomena.
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