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We perform a new general-relativistic viscous-radiation hydrodynamics simulation for supernova-
like explosion associated with stellar core collapse of rotating massive stars to a system of a black
hole and a massive torus paying particular attention to large-mass progenitor stars with the zero-
age main-sequence mass of MZAMS = 20, 35, and 45M⊙ of Ref. [1]. Assuming that a black hole is
formed in a short timescale after the onset of the stellar collapse, the new simulations are started
from initial data of a spinning black hole and infalling matter that self-consistently satisfy the
constraint equations of general relativity. It is found that with a reasonable size of the viscous
parameter, the supernova-like explosion is driven by the viscous heating effect in the torus around
the black hole irrespective of the progenitor mass. The typical explosion energy and ejecta mass for
the large-mass cases (MZAMS = 35 and 45M⊙) are ∼ 1052 erg and ∼ 5M⊙, respectively, with

56Ni
mass larger than 0.15M⊙. These are consistent with the observational data of stripped-envelope and
high-energy supernovae such as broad-lined type Ic supernovae. This indicates that rotating stellar
collapses of massive stars to a black hole surrounded by a massive torus can be a central engine for
high-energy supernovae. By artificially varying the angular velocity of the initial data, we explore
the dependence of the explosion energy and ejecta mass on the initial angular momentum and find
that the large explosion energy ∼ 1052 erg and large 56Ni mass ≥ 0.15M⊙ are possible only when a
large-mass compact torus with mass ≳ 1M⊙ is formed.

I. INTRODUCTION

Gravitational-wave observations by advanced LIGO
and advanced Virgo have shown that stellar-mass black
holes with a wide mass range between ∼ 3M⊙ and
∼ 100M⊙ are commonplace in the universe [2, 3]. It is
natural to consider that a majority of these black holes
are formed from core collapse of massive stars. In partic-
ular for large black-hole mass, MBH ≳ 20M⊙, the black
holes are likely to be formed shortly after the stellar core
collapse with a short proto-neutron star stage or directly
during the stellar core collapse. However, it is still not
very clear how these black holes are formed. One way to
understand the formation process of the black holes is to
detect electromagnetic signals emitted during the forma-
tion and subsequent evolution processes such as gamma-
ray bursts [4, 5]. However, the observational information
of the stellar center is limited because the formed black
hole is hidden by the dense matter surrounding it. There-
fore, to understand the formation and evolution processes
of the black holes during the stellar core collapse, theo-
retical studies play a crucial role.

A numerical-relativity simulation incorporating the
relevant physics such as neutrino transfer, equation of
state for high-density matter, and angular-momentum
transport is the chosen way to theoretically understand
the formation and evolution processes of stellar-mass
black holes. In our previous paper [6], we performed
numerical-relativity simulations with approximate neu-
trino transfer and shear viscous hydrodynamics employ-
ing relatively low-mass (9 and 20M⊙), compact, rotating

progenitor stars derived by stellar evolution calculations
of Ref. [1]. We showed that these stars collapse to a black
hole shortly after the formation of a proto-neutron star
and subsequently the black holes grow due to the mass
accretion from the infalling envelope. In the long-term
(several seconds) evolution, an accretion disk is devel-
oped due to the centrifugal force of late-time infalling
matter. The disk subsequently becomes a geometrically
thick torus by the effects of viscous heating, viscous an-
gular momentum transport, and shock heating. During
an early stage in which the neutrino cooling efficiency
and the ram pressure by the infalling matter are high,
the outflow of the matter from the torus is prohibited.
However, in a later stage, the neutrino cooling efficiency
and the ram pressure become low enough to induce the
mass outflow from the system, leading to a supernova-like
explosion for the entire progenitor star (see also Ref. [7]
for a related work).

The previous work [6] also showed that the explosion
energy may be larger than that of the typical supernovae
if the progenitor stars are rapidly rotating and a high
mass-infall rate onto the torus is achieved. In such a
case, a compact and massive (≳ 1M⊙) disk/torus can be
formed around a black hole and the viscous and shock
heating on the disk/torus can provide a large amount
of the thermal energy, which can be the source for an
energetic explosion. The viscous heating rate in a disk
is written approximately as Ėν ∼ νMtorusΩ

2 with the
torus mass Mtorus, angular velocity Ω, and shear viscous
coefficient ν. In the alpha viscous prescription [8], ν is
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written as

ν = ανcsH, (1)

where αν is the so-called alpha parameter, cs is the sound
velocity, and H is the scale height of the torus approxi-
mately written as H = cs/Ω. Then, the viscous heating
rate is

Ėν ∼ 4× 1052 erg/s
( αν

0.03

)(
Mtorus

M⊙

)
×

(
cs

109 cm/s

)2 (
MBH

10M⊙

)−1/2 (
R

10MBH

)−3/2

,(2)

where we used Ω ≈
√
MBH/R3 with MBH and R being

the black hole mass and cylindrical radius of the torus.
Here, the viscosity is supposed to be induced effectively
by magnetohydrodynamics turbulence; see e.g., Refs [9–
15], which shows αν = O(10−2). In the presence of mat-
ter infall onto the disk/torus, strong shear layers are also
formed at the shock surfaces outside the disk/torus, and
hence, the viscous heating can be even more enhanced.

The timescale of the viscous heating in the disk/torus
is written as

tν :=
R2

ανcsH

≈ 4.7 s
( αν

0.03

)−1
(

cs
109 cm/s

)−2

×
(
MBH

10M⊙

)1/2 (
R

10MBH

)1/2

, (3)

and thus, the total dissipated energy is approximately

Ėνtν ∼ MtorusMBH

R

≈ 1.8× 1053 erg

(
Mtorus

M⊙

)(
10MBH

R

)
. (4)

Hence, if a fraction of the energy released by the viscous
heating contributes to the outflow of the matter, it is
possible to achieve a supernova-like explosion with a very
large explosion energy of order 1052 erg in the presence
of a compact and large-mass torus of Mtorus ∼ 0.1–1M⊙.
In this paper, we continue our exploration of this

problem for more massive progenitor stars with zero-age
main-sequence mass MZAMS = 35 and 45M⊙ as well as
MZAMS = 20M⊙. Following our previous work, we em-
ploy the stellar evolution models by Aguilera-Dena et
al. [1]. Since these stars have compact and very massive
cores at the onset of the collapse, we may expect for-
mation of a black hole shortly after the core bounce [16]
(but see Ref. [17] for a counter example). In this work,
therefore, we assume the black-hole formation after the
core bounce without an explosion in the proto-neutron
star stage. Under this assumption, we prepare an initial
condition composed of a spinning black hole and infalling
matter that self-consistently satisfy constraint equations

of general relativity. The initial condition is prepared for
a stage with no accretion disk/torus formation. With
such initial data, we perform a neutrino-radiation vis-
cous hydrodynamics simulation in full general relativity
paying particular attention to the disk/torus formation
and evolution, and subsequent development of the matter
outflow, which leads to a supernova-like explosion.
This paper is organized as follows: In Sec. II, we sum-

marize the progenitor models which we employ and then
describe how to set up the initial condition composed
of a spinning black hole and infalling matter. Section III
presents the results of numerical-relativity simulations fo-
cusing on the mechanism of the explosion, the explosion
energy, the ejecta property, and predicted light curves of
the supernova-like explosion. Section IV is devoted to
a summary. In Appendix A, we describe a formulation
for the initial-value problem of general relativity that we
employ in this paper. In Appendixes B and C, supple-
mental numerical results are presented. Throughout this
paper we basically use the geometrical units of c = 1 = G
where c and G are the speed of light and gravitational
constant, respectively, but when it is necessary to clarify
the units, we recover G and c. kB denotes Boltzmann’s
constant.

II. MODELS AND INITIAL CONDITIONS

We employ massive and very compact progenitor stars
among the stellar evolution models of Ref. [1]. Specifi-
cally, we select the stars with the mass of the zero-age
main-sequence state, MZAMS = 20, 35, and 45M⊙. For
these stars, we may suppose that a black hole would be
formed in a short timescale after the core bounce because
the compactness parameter of Ref. [16] is very large. 1

Assuming the conservation of the specific angular mo-
mentum during the formation and subsequent growth of
a black hole, it is possible to approximately determine
the mass and angular momentum of the formed black
hole for a given profile of the specific angular momentum
as a function of the enclosed mass j(m) [21, 22], if the
region with the enclosed mass m collapses to the black
hole without forming a disk. In the following, we as-
sume that the angular velocity profile Ω is a function of
spherical radius only, as is done in the stellar evolution
calculation [1], and thus, the specific angular momentum
j represents the angular average as

j =
1

4πr2

∫ 2π

0

∫ π

0

Ω(r)r4 sin3 θdθdφ =
2

3
r2Ω(r). (5)

1 Even for extremely compact progenitor stars, a supernova ex-
plosion may occur and a black hole may not be formed via neu-
trino heating [17] and/or via magnetohydrodynamics effects [18–
20], although our previous simulations for the 20M⊙ progenitor
model indicate that the assumption of the black-hole formation
may be valid for the progenitor models of Ref. [1].
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FIG. 1. Specific angular momentum, j, as a function of the
enclosed mass, m, for the models of MZAMS = 9, 20, 35, and
45M⊙ in Ref. [1] (solid curves). We also plot jISCO for a given
black hole of mass m and corresponding angular momentum
J(m) by the dotted curves. The filled circles denote the points
at which j = jISCO is satisfied for each stellar model.

Since j is a function of r, m is as well.
Then, we choose the mass of the black hole, MBH,0,

which is much larger than the maximum mass of neu-
tron stars of ≲ 3M⊙. The resulting angular momentum,
JBH,0, of the black hole is written as

JBH,0 =

∫ MBH,0

0

j(m′)dm′. (6)

We note that for the choice of MBH,0, j(m) with any
value of m ≤ MBH,0 has to be smaller than the specific
angular momentum of the innermost stable circular or-
bit jISCO [23] of the black hole of mass m and angular
momentum

J(m) =

∫ m

0

j(m′)dm′. (7)

Since the angular momentum of the black hole is deter-
mined by specifying the enclosed mass, jISCO is a function
of the enclosed mass m in this context.
Figure 1 shows j as a function of m for MZAMS = 9,

20, 35, and 45M⊙ of Ref. [1] (solid curves). We also
plot jISCO by the dotted curves. The filled circles denote
the points at which j = jISCO is satisfied (we refer to
the corresponding mass as MISCO). This figure shows
that for any model, j(m) < jISCO is satisfied for m <
MISCO and indicates that for the progenitor models with
MZAMS = 20, 35, and 45M⊙, a black hole is likely to
grow to MBH = MISCO ≈ 8, 15, and 22M⊙ prior to the
disk formation. In the presence of the viscous angular-
momentum transport, the disk formation is delayed and
black holes with larger mass can be formed before the
disk formation.

The next step is to determine the profile of the in-
falling matter located outside the black hole. For this,
we approximate that the envelope in the progenitor stars

is in a free-fall state during the collapse. To characterize
the profile, we employ a solution of Oppenheimer-Snyder
collapse (e.g., Ref. [24]) for our free-fall approximation
because the centrifugal effect before the disk formation
is minor for the collapsing matter. Then, the fluid mo-
tion in the stellar envelope during the collapse is given
by

rm(τm) =
1

2
rm,0 (1 + cos η) , (8)

τm := max(τ − τm,0, 0) =

√
r3m,0

8m
(η + sin η) ,(9)

where rm is the areal radius of the mass shell with the
enclosed mass m, rm,0 = rm(τm = 0), τm,0 is the starting
time of the free-fall (see below), τm is the free-fall time
of the mass shell, and η is an auxiliary parameter. For
simplicity, we assume that the matter in the envelope has
zero radial velocity initially and begins to free-fall when
the sound wave propagated from the center reaches the
radius at

τm,0 =

∫ rm,0

0

dr

cs(r)
. (10)

Then, the black-hole formation time τ = τBH can be
estimated as

τBH =

√
R3

BH,0

8MBH,0
(ηBH + sin ηBH) +

∫ RBH,0

0

dr

cs(r)
, (11)

where cos ηBH = 4MBH,0/RBH,0 − 1 and RBH,0 is the
areal radius of a mass shell with enclosed mass MBH,0.
Note that the mass shell for τm,0 > τBH does not start
infalling. The radial velocity of the matter is then given
approximately by

ur =
∂rm
∂τ

=

√
2m (rm,0 − rm(τm))

rm,0rm(τm)
. (12)

Since we use the spinning black-hole puncture in quasi-
isotropic coordinates for the initialization of geometric
variables (see Appendix A), we need to perform co-
ordinate transformation to quasi-isotropic coordinates
(r̄, θ, φ) for consistency as

r̄ =
1

2

(
rm −m+

√
r2m − 2mrm + a2m

)
, (13)

where am = J(m)/m and we assumed the conservation
of the rest mass, m, and angular momentum J(m) along
radial geodesics of infalling mass shells. As a result, the
weighted rest-mass density ρ∗, angular momentum den-
sity Ĵφ, and radial velocity ur̄ (see Appendix A for the
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TABLE I. Model description. Model name, mass of the zero-age main-sequence stars, MZAMS, employed angular velocity
profile, initial rest mass (including the fraction which is transformed to the black hole), initial mass and dimensionless spin
of the black hole, the ratio of the matter angular momentum Jmat to the black-hole angular momentum JBH,0 = M2

BH,0χ0,
alpha parameter for viscosity, and grid spacing for the central region, ∆x0, respectively. The last two columns present the
mass and dimensionless spin of the black hole at the termination of the simulations. Note that for model AD20-7.8, we stopped
the simulation on the way of further significant black-hole growth (see Fig. 5). The results for model AD20x1 are taken from
Ref. [6].

Model MZAMS Ω profile M∗,0 MBH,0 χ0 Jmat/JBH,0 αν ∆x0 (m) MBH,f χBH,f

AD20-7.8 20M⊙ original 15.1M⊙ 7.8M⊙ 0.60 9.93 0.03 250 (10.4M⊙) (0.74)
AD20-9 20M⊙ original 15.1M⊙ 9.0M⊙ 0.72 5.60 0.03 216 10.8M⊙ 0.79
AD20-10 20M⊙ original 15.0M⊙ 10.0M⊙ 0.83 3.86 0.03 240 10.9M⊙ 0.84
AD35-15 35M⊙ original 25.5M⊙ 15.0M⊙ 0.66 4.32 0.03 360 20.2M⊙ 0.81
AD35-15-hi 35M⊙ original 25.4M⊙ 15.0M⊙ 0.66 4.53 0.03 300 19.6M⊙ 0.81
AD35-15-mv 35M⊙ original 25.5M⊙ 15.0M⊙ 0.66 4.33 0.06 360 19.6M⊙ 0.79
AD35-15-hv 35M⊙ original 25.5M⊙ 15.0M⊙ 0.66 4.32 0.10 360 18.9M⊙ 0.78
AD35x0.5-21.5 35M⊙ original×0.5 25.5M⊙ 21.5M⊙ 0.48 0.84 0.03 516 25.1M⊙ 0.60
AD35x0.6-21.5 35M⊙ original×0.6 25.5M⊙ 21.5M⊙ 0.58 0.84 0.03 516 24.5M⊙ 0.66
AD35x0.8-18 35M⊙ original×0.8 25.4M⊙ 18.0M⊙ 0.63 2.13 0.03 432 22.2M⊙ 0.75
AD35x1.2-12.5 35M⊙ original×1.2 25.5M⊙ 12.5M⊙ 0.69 8.18 0.03 300 18.2M⊙ 0.85
AD45-22 45M⊙ original 32.6M⊙ 22.0M⊙ 0.64 2.71 0.03 528 28.0M⊙ 0.77
AD45-25 45M⊙ original 32.4M⊙ 25.0M⊙ 0.73 1.45 0.03 600 27.7M⊙ 0.75
AD45-25-hv 45M⊙ original 32.4M⊙ 25.0M⊙ 0.73 1.45 0.10 600 26.8M⊙ 0.74
AD20x1 20M⊙ original 15.1M⊙ — — — — 175 11.2M⊙ 0.73

definition of them) are given by

ρ∗ =
1

4πr̄2
∂m

∂r̄
, (14)

Ĵφ =
3

8πr̄2
∂J(m)

∂r̄
sin2 θ, (15)

ur̄ =
r2m
r̄2

∂r̄

∂rm
ur

=
r2m

r̄ (m+ 2r̄ − rm)

√
2m (rm,0 − rm)

rm,0rm
, (16)

while other thermodynamical quantities such as the spe-
cific enthalpy (h) and temperature (T ) are obtained from
the initial entropy of the matter assuming the adiabatic
flow. In addition, we assume that the electron fraction is
unchanged in the free-fall. After all the hydrodynamical
quantities are set, we initialize the geometrical quanti-
ties following an initial-value formulation presented in
Appendix A.

The initial data is prepared using the multigrid solver
code modified based on octree-mg [25], an open source
multigrid library, with an octree adaptive-mesh refine-
ment (AMR) grid. This code can provide more accurate
initial data than in our previous paper [6], and hence, en-
ables us to explore the explosion energy and ejecta mass,
which are sensitive to the accuracy of the gravitational
field in the outer region of progenitor stars, with a better
accuracy.

In numerical computation, we cut out the outer part
of the progenitor stars with r ≳ 105 km, because our sim-
ulation time is at most ∼ 20 s, and hence, the matter in
such an outer region does not fall into the central region,
i.e., it does not give any effect on the evolution of a black
hole and a disk/torus.

Table I lists the models employed and their parame-
ters, i.e., the initial total rest mass in the computational
domain (including that of the matter transformed to the
black hole), the initial mass and dimensionless spin of the
black hole, the ratio of the matter angular momentum to
the black-hole angular momentum, the alpha viscous pa-
rameter (see Sec. III for the definition), the grid spacing
that covers the central region as well as the mass and
dimensionless spin of the black hole at the termination
of each simulation. The last number for the model name
denotes the initial black-hole mass. Here, the black-hole
mass is determined from the equatorial circumferential
radius, Ce, of apparent horizons (e.g., see Ref. [26]) by

MBH =
Ce

4π
. (17)

The dimensionless spin, χ, is determined from the ratio
of the meridian circumferential radius Cp to Ce using the
relation between χ and Ce/Cp for Kerr black holes [26].
We also confirm that the area of the apparent horizons,

AAH, is written as AAH = 8πM2
BH(1 +

√
1− χ2) for the

given set of MBH and χ within 0.1% error.
For the models with MZAMS = 20, 35, and 45M⊙, the

rest-mass of the matter located outside the black hole
is ≈ 7, 10, and 10M⊙ for MBH,0 = 8, 15, and 22M⊙.
This suggests that for the 35M⊙ and 45M⊙ models, the
energy source available for the explosion is larger. For
the stellar models of Ref. [1], the stellar radius R∗ ∼
3 × 105 km depends only weakly on the stellar mass M∗
at the onset of the stellar core collapse. This implies
that a compactness, defined by C∗ = GM∗/(c

2R∗), and
the density at a given radius are larger for the larger
values of MZAMS, leading to a higher mass infall rate.
This dependency is reflected in the explosion energy as
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discussed in Sec. IIID. It should be also mentioned that
the angular momentum of the matter outside the black
hole, Jmat, is larger than that of the black hole, JBH,0 =

χ0MBH,0
2, for all the models with the original angular

velocity.
In this paper, the model with MZAMS = 35M⊙ and

αν = 0.03 (AD35-15) is taken as a fiducial model. We
perform additional simulations by uniformly multiply-
ing constant factors 0.5, 0.6, 0.8, and 1.2 to the an-
gular velocity of this fiducial model (each is referred
to as AD35-15x0.5, AD35-15x0.6, AD35-15x0.8, and
AD35-15x1.2). This exploration is motivated by the fact
that the stellar evolution calculation is carried out assum-
ing the spherical morphology and the results for the angu-
lar velocity profile may have a systematic uncertainty. By
varying the angular velocity we explore the dependence
of the ejecta mass and explosion energy on the initial
angular momentum. We also perform simulations with
αν = 0.06 and 0.10 for the model with MZAMS = 35M⊙.

As we already mentioned, Fig. 1 indicates that it would
be safe to choose MBH,0 ≈ 8, 15, and 22M⊙ at which a
disk starts forming. By performing numerical simula-
tions, we find that it is practically possible to employ
larger values of MBH,0, because in an early stage of the
disk evolution during which the viscous timescale of the
disk is shorter than its growth timescale, the matter in
the disk quickly falls into the black hole. Thus, we also
employ MBH,0 = 9 and 10M⊙ for MZAMS = 20M⊙ and
MBH,0 = 25M⊙ for MZAMS = 45M⊙. With these set-
tings, the computational costs are saved because we can
employ a larger grid spacing (see Sec. III). Although the
setting is different from the more reliable one (with a
smaller value of MBH,0), it is indeed found that the re-
sults for the explosion energy and ejecta mass depend
only weakly on the initial choice of MBH,0 if the boost of
MBH,0 is within ∼ 15%. However, MBH,0 should not be
taken to be too large. For example, for MZAMS = 20M⊙
with MBH,0 = 10M⊙, the final black-hole spin is overes-
timated, because a part of the high-angular-momentum
matter that should form the disk in reality is incorrectly
taken inside the black hole for the initial condition.

III. NUMERICAL RESULTS

A. Set-up

Numerical simulations are performed employing the
same formulations as in our previous studies [27–29]. For
the viscous hydrodynamics simulation, we have to give
the viscous parameter ν [27–29]. Following our previous
works we write it in the form

ν = min(cs, 0.1c)ℓtur, (18)

where ℓtur := ανH is considered as a typical eddy scale
in the turbulence. To conservatively incorporate the vis-
cous effect, we set up the upper limit (0.1c) for the term

proportional to the sound velocity in this paper. Follow-
ing previous works, we choose H = 2GMBH/c

2, where
the black-hole mass MBH is determined by Eq. (17) at
each time (see Sec. II). This choice of H is conservative
because it should be much larger than 2GMBH/c

2 in an
outer region of the disk/torus. However, we will show
that even with such a conservative choice, the viscous ef-
fect becomes strong enough to induce a stellar explosion.
In other words, the key to the explosion is the viscous
effect in an inner region of the torus.

The simulation is performed on a two-dimensional do-
main of R and z as in our previous works [27, 28]. For
both directions, the following nonuniform grid is used for
the present numerical simulation: For x ≲ 7GMBH,0/4c

2

(x = R or z), a uniform grid with the grid spacing, typ-
ically, of ∆x0 ≈ 0.016GMBH,0/c

2 is used, while outside
this region, the grid spacing ∆xi is increased uniformly
as ∆xi+1 = 1.01∆xi, where the subscript i denotes the
i-th grid. The black-hole horizon is always located in the
uniform grid zone.

For the fiducial model with MZAMS = 35M⊙ and
αν = 0.03, we additionally perform a high-resolution sim-
ulation with ∆x ≈ 0.0135MBH,0 to examine the numer-
ical convergence (model AD35-15-hi). For this we also
prepare the uniform grid for x ≲ 7GMBH,0/4c

2 and non-
uniform one with ∆xi+1 = 1.01∆xi for the outer region.
The dependence of the numerical results on the grid res-
olution is briefly summarized in Appendix C.

Because we start from the initial data of a black
hole and infalling matter, we can take a large value of
∆x0 from the beginning of the simulation. For exam-
ple, for MBH,0 = 15M⊙, ∆x0 is chosen as 360m (i.e.,
∆x0 ≈ 0.016MBH,0). If we started the same simulation
from the pre-collapse star, we had to prepare a computa-
tional domain that could resolve the black-hole formation
and subsequent evolution. At the formation of the black
hole, its mass is ∼ 3M⊙, and hence, if we require the grid
spacing that can resolve the black hole at birth with an
accuracy as good as the present setting, we have to pre-
pare ∆x0 ≈ 72m. Therefore by starting the simulation
from a black hole and infalling matter, we can save the
computational costs significantly.

A caution is appropriate here: For the lower grid reso-
lutions (larger values of ∆x0/MBH), the black hole is less
accurately resolved, leading to the overestimation of the
black-hole mass and underestimation of the black-hole
spin in our implementation [27] (see also Appendix B).
This is in particular the case for model AD20-7.8 as
well as for model AD20x1 for which the early evolution
of the black hole during the stage of MBH ≈ 3M⊙ is
less accurately computed. For other models, we choose
∆x0 ≤ 0.016GMBH/c

2, with which the black hole is
evolved in a good accuracy (see Appendix B).

As we mentioned in Sec. II, we cut out the matter for
r ≳ 105 km although the original stellar surface is located
at ∼ 3 × 105 km. The matter in the outer region can
affect the explosion dynamics when the exploded matter
interacts with it. However, the total mass of the cut-out
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FIG. 2. Snapshots of the profiles for several quantities at selected time slices for model AD35-15. At each time, the rest-mass
density (top-left), entropy per baryon (top-right), temperature (bottom-left), and electron fraction (bottom-right) are displayed.
The poloidal velocity field is depicted with arrows, the length of which is logarithmically proportional to the magnitude of the
poloidal velocity. See the key shown in the top-left legend for the scale. Note that for the third to sixth panels, the regions
displayed are wider than those for the first and second panels. The filled circles at the center denote the inside of apparent
horizons. An animation for this model can be found in https://www2.yukawa.kyoto-u.ac.jp/~sho.fujibayashi/share/

AD35-15-multiscale.mp4

matter is about 0.6, 1.1, and 1.3M⊙ for MZAMS = 20,
35, and 45M⊙ [1], and thus, they are much smaller than
the ejecta mass for most of the models (see Sec. III).

We stop the simulation when a shock wave associated
with the explosion from the disk/torus reaches the outer
boundary (at r ≈ 105 km) for MBH = 35M⊙ and 45M⊙.
ForMBH = 20M⊙ for which ∆x0 is small and more com-
putational resources are required for a long-term compu-
tation, we stopped the simulations before the explosion
energy and ejecta mass saturate to save the computa-
tional time, because our main focus in this paper is the
explosion property for large-mass progenitor stars.

B. Explosion mechanisms

1. General feature

First, we summarize how the disk and torus are formed
and evolved, leading to the eventual explosion (see Figs. 2
and 3). As we find from Fig. 1, broadly speaking, the spe-

cific angular momentum of the infalling matter increases
with the enclosed mass, thus with the radius. The mat-
ter located in the inner region does not have the specific
angular momentum large enough to form a disk or torus
around the black hole. Thus, in an early stage of the
black-hole evolution, most of the infalling matter simply
falls into the black hole. During this stage, the centrifu-
gal force of the infalling matter does not play an im-
portant role. Subsequently, the matter with sufficiently
large specific angular momentum starts forming a geo-
metrically thin disk (see the first panel of Fig. 2). After
the formation of the disk, a strong shear layer is estab-
lished between the infalling matter and the shock sur-
face outside the disk. Thus, viscous heating efficiently
generates the thermal energy. Also, shock dissipation ef-
ficiently proceeds around the shock surface. By these
heating mechanisms, the disk subsequently becomes geo-
metrically thick, leading to the formation of a torus (see
the second panel of Fig. 2).

After its formation, the torus gradually grows due to
the continuous matter infall, while the black hole grows
due to the matter infall primarily from the polar region.

https://www2.yukawa.kyoto-u.ac.jp/~sho.fujibayashi/share/AD35-15-multiscale.mp4
https://www2.yukawa.kyoto-u.ac.jp/~sho.fujibayashi/share/AD35-15-multiscale.mp4
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FIG. 3. The same as Fig. 2 but for larger viscosity model AD35-15-hv. An animation for this model can be found in
https://www2.yukawa.kyoto-u.ac.jp/~sho.fujibayashi/share/AD35-15-hv-multiscale.mp4

During the evolution of the torus, the kinetic energy of
the infalling matter is dissipated around the shock sur-
face just outside the torus, which increases the tempera-
ture and entropy per baryon of the torus (see the second
and third panels of Fig. 2 and the first panel of Fig. 3).
Since the shock surface is non-spherical while the mat-
ter infall proceeds nearly spherically, the shear layer is
also formed, enhancing the viscous heating. The oblique
shocks formed around the shock surface play a role in en-
hancing the matter infall onto the black hole and inner
region of the torus from the polar region. This enhances
the efficiency of the viscous heating in the inner region.

In the early stage of the torus evolution, the ram pres-
sure of the infalling matter is too high to induce an out-
flow from the torus. In addition, the neutrino cooling
suppresses the viscous heating effect. However, the ram
pressure of the infalling matter continuously decreases
because of the decrease in its density, and also, the neu-
trino cooling efficiency becomes lower in a later stage (see
below for more details). As a result, the thermal pressure
of the torus generated by the viscous and shock heating
eventually exceeds the ram pressure. Then, an outflow
from the torus sets in, inducing the explosion of the en-
tire star (see the fourth, fifth, and sixth panels of Fig. 2
and the second and third panels of Fig. 3).

The viscous heating as well as the shock dissipation
are most efficient around the shock surface in the vicin-
ity of the torus. Thus, the outward motion of the outflow
is initially induced along the torus surface. The matter
of the outward motion has high entropy per baryon, and
thus, the outward motion accompanies convective mo-
tion, which redistributes the thermal energy to a wide
region. Thus, although the matter initially moves toward
a particular direction, subsequent motion becomes quasi-
isotropic, and the explosion occurs in a nearly spherical
way.

Although the viscous and shock heating are universally
the explosion sources, the efficiency of the heating and
evolution process of the torus depend on the neutrino
cooling (see Fig. 4). In the presence of an efficient cooling

by neutrinos, the torus relaxes to a neutrino-dominated-
accretion-flow (NDAF) state. On the other hand, if the
neutrino cooling is not efficient, the explosion takes place
in the absence of the NDAF state and the explosion sets
in earlier. For example, for model AD35-15 for which the
NDAF stage is present the explosion sets in at t ∼ 7 s
while for model AD35-15-hv for which the NDAF stage
is absent the explosion set is at t ∼ 5 s (compare Figs. 2
and 3).
Even after the onset of the explosion, the matter infall

continues for at least several seconds near the rotational
axis, around which the matter with small specific angular
momentum continuously falls onto the black hole and the
inner region of the torus. This matter infall to the torus
contributes to the efficient viscous and shock heating,
sustaining the explosion.

2. Dependence of the progenitor mass

As mentioned in Sec. II, more massive progenitor stars
are more compact and thus have higher mass-infall rates,
which are advantageous for generating more thermal en-
ergy (see below). By contrast, the neutrino luminosity
tends to be smaller for more massive progenitor stars at
the torus formation (compare the models with original
rotation profiles AD20-9, AD35-15, and AD45-25: see left
panels of Fig. 4). This is due to the larger radius of the
innermost stable circular orbit around the black hole for
more massive models. That is, for more massive models,
which form more massive black holes, the density and
temperature of the torus are lower [28], and the neutrino
luminosity is also lower. Consequently, the thermal en-
ergy generated by the viscous heating is efficiently used
for the explosion of the system. Indeed the right panel
of Fig. 4 shows that the neutrino cooling efficiency de-
fined by Lν/ṀBHc

2 is lower for more massive progenitor
models. This results in a shorter (or no) NDAF phase,
leading to a quick explosion. The lower neutrino cooling
efficiency, in addition to the higher mass-infall rate, is

https://www2.yukawa.kyoto-u.ac.jp/~sho.fujibayashi/share/AD35-15-hv-multiscale.mp4
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FIG. 4. Time evolution of the total neutrino luminosity (left) and cooling efficiency (right) for models of MZAMS = 20M⊙ (top
panels), 35M⊙ with three different values of the viscous coefficient (second top panels), 35M⊙ with different initial angular
momentum (third top panels), and 45M⊙ (bottom panels). The time is shifted so that t = 0 corresponds to the torus formation
time for each model. The time offsets are shown in the legend.
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advantageous for large explosion energy (see Sec. IIID).
This situation is in contrast to the usual core-collapse
supernova explosion, in which higher neutrino luminos-
ity of proto-neutron stars is advantageous for an earlier
explosion (e.g., Ref. [30]).

For the fixed viscous parameter αν = 0.03, MZAMS =
20 and 35M⊙ models (AD20-9 and AD35-15) have high
neutrino cooling efficiency appreciably exceeds 0.01 (see
Fig. 4), and have a NDAF phase. As a result, the ex-
plosion for these models is delayed after the torus forma-
tion. By contrast, no NDAF phase is found for 45M⊙
models (AD45-22 and AD45-25), which drive the explo-
sion shortly after the torus formation. We note that the
presence or absence of the NDAF phase depends not only
on the progenitor stars but also on the viscous coefficient
and the initial angular momentum of the progenitor star,
as discussed in the following subsections.

3. Dependence on the viscous coefficient

For the 35M⊙ progenitor, we perform three simulations
varying the viscous coefficient and find that the evolution
of the system depends qualitatively on the magnitude of
αν . For large values of αν , i.e., 0.06 and 0.10, the evo-
lution toward the explosion is the qualitatively same as
those for the 45M⊙ models: The explosion sets in in
a relatively short timescale after the formation of the
torus with no NDAF phase (cf. Fig. 3). By contrast,
for αν = 0.03, the explosion is delayed because the neu-
trino cooling efficiency is sufficiently high to suppress the
outward motion of the matter by the viscous and shock
heating in the early evolution stage of the torus. For
this model, the explosion is started only when the mass
infalling rate is sufficiently low. This difference results
from the stronger effects of the viscous heating and an-
gular momentum transport for the larger viscosity, by
which the torus expands more rapidly, reducing the neu-
trino cooling efficiency in an early stage.

4. Dependence on the initial angular momentum

The dependence of the evolution process of the system
on the initial angular momentum is explored for the mod-
els of MZAMS = 35M⊙ with a fixed value of αν(= 0.03).
For our models, a disk and/or a torus surrounding a black
hole is always formed, but their mass depends strongly
on the initial angular momentum: For larger initial angu-
lar momentum, it is larger and, as a result, the explosion
can be more energetic and mass ejection is more enhanced
(see Sec. IIID).

Models AD35-15 and AD35x1.2-12.5 achieve a high
neutrino cooling efficiency and NDAF phase after the
formation of tori (see Fig. 4). By contrast models
AD35x0.6-21.5 and AD35x0.8-18.0 do not achieve the
NDAF phase. This illustrates that larger angular mo-
mentum stars are more subject to the NDAF phase after

the formation of a torus around a black hole.
For a model with sufficiently reduced angular momen-

tum (AD35x0.5-21.5), the disk is too sparse and low-
mass (≲ 0.5M⊙) to find explosion in our simulation time.
In this case, the geometrically-thick torus formation is
not also found in the simulation time. Even for this case,
however, a low-mass disk may be a source of a tran-
sient at a very late stage, i.e., t ≫ 10 s: As discussed
in Ref. [31], in this case, the final configuration is likely
to be a black hole surrounded only by a low-mass low-
compactness disk, which could be evolved by a viscous
hydrodynamics effect (resulting from magnetohydrody-
namics turbulence) leading to mass ejection. If this hap-
pens, a blue, rapidly varying optical transient may be
generated after long-term evolution of the accretion disk
formed in late time [31].

C. Evolution of black holes

Figure 5 shows the evolution of the mass and dimen-
sionless spin of the black holes for all the models studied
in this paper. Note that for model AD20-10, we stopped
the evolution of the gravitational field at t ≈ 8 s to save
computational time because the total mass of the mat-
ter in the computational region was smaller than 10% of
the black-hole mass, and moreover, model AD20-9 is our
main model for MZAMS = 20M⊙. Both the mass and di-
mensionless spin increase steeply prior to the onset of the
explosion, but after that, they relax toward final values.
The final black-hole mass is 50–60% of MZAMS; large-
mass black holes such as observed by gravitational-wave
observations [2, 3] are naturally formed from the progen-
itor models of Ref. [1]. For the models with larger values
of αν , the final mass and dimensionless spin of the black
hole are slightly smaller, because higher viscous heating
efficiency as well as viscous angular momentum transport
enhances the mass ejection while preventing the matter
infall onto the black hole. However the dependence on
αν is not very strong; the mass and dimensionless spin
decrease by ∼ 1M⊙ and 0.03, respectively, for the change
of αν from 0.03 to 0.1.
Accompanied with the formation of a massive

disk/torus around a black hole, the black-hole spin is
naturally increased. For all the models with no modifica-
tion of the initial angular momentum, the dimensionless
spin of the black holes is ∼ 0.75–0.85 at the termination
of the numerical simulation (cf. Table I). The high spin is
advantageous for efficiently converting the released grav-
itational potential energy to the thermal energy.
For smaller and larger initial angular momentum mod-

els with MZAMS = 35M⊙, the resulting final value of
the dimensionless spin of the black hole, χf , is smaller
and larger, respectively, while the final black-hole mass is
larger and smaller, respectively. However, χf varies only
±0.05 for the change of the initial angular momentum
by ±20% (compare the results for models AD35x0.8-18,
AD35-15, and AD35x1.2-12.5). Thus, the final black
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FIG. 5. Time evolution of the mass and dimensionless spin of
the black holes for models of MZAMS = 20M⊙ (upper panels),
35M⊙ (middle panels), and 45M⊙ (lower panels). Note that
for model AD20-10, we stopped the evolution of the gravita-
tional field at t ≈ 8 s, and thus, the actual final black-hole
mass may be larger.

hole spin is likely to be fairly high as long as a disk/torus
with a few M⊙ is formed around the black hole. By con-
trast, for model AD35x0.5-21.5, for which a substantial
amount of the infalling matter falls into the black hole,
the final value of χ is much smaller than those of the
other 35M⊙ models, while the final mass is much larger

than others.
Models AD45-22 and AD45-25 started the simulations

from different black-hole mass. However, the final mass
and dimensional spin for these models have similar val-
ues. This appears to be also the case for models AD20-7.8
and AD20-9. These results indicate that in the early stage
of the disk evolution, a substantial fraction of the matter
in the disk quickly falls into the black hole by the viscous
effect, and the simulation may be started from a black-
hole mass which is slightly larger than those predicted
from Fig. 1.

D. Ejecta mass and explosion energy

Figure 6 shows the time evolution of the explosion en-
ergy (left panels) and ejecta mass (right panels) for all the
models studied in this paper (see also Table II) except for
model AD35x0.5-21.5, for which explosion is not found
in the simulation time. At the termination of the simu-
lations, the explosion energy is still increasing for most
of the models, and hence, the values listed in Table II
are considered to be the lower bound. However, broadly
speaking, we may conclude that (i) for MZAMS = 20M⊙,
the explosion energy is a few times 1051 erg, i.e., com-
parable to or slightly larger than that of the ordinary
supernovae, while (ii) for MZAMS = 35M⊙ and 45M⊙, it
is ∼ 1052 erg, i.e., about one order of magnitude larger
than the ordinary supernovae, for the original progenitor
models with no modification of the angular momentum
profile.
The large explosion energy of the massive progenitor

models stems from their relatively large compactness. As
we already mentioned in Sec. II, for the pre-collapse mod-
els of Ref. [1], the compactness of the progenitor star
C∗ = GM∗/(c

2R∗) is larger for the more massive stel-
lar models. Broadly speaking, the mass infall rate dur-

ing the collapse is proportional to M∗/tff ∝ C
3/2
∗ , where

tff =
√
R3

∗/M∗ is the free-fall timescale. Thus, the mass-
infall rate is higher for the larger-compactness progenitor
models. The higher mass-infall rate enhances the viscous
and shock heating rates around the inner region of the
disk/torus, which result in the larger explosion energy for
the more massive progenitor models.
For models with larger values of αν , the explosion en-

ergy and ejecta mass are naturally larger. Fundamen-
tally, the viscous effect should come effectively from the
magnetohydrodynamical turbulence and hydrodynami-
cal shear in the present context. Thus, the explosion
energy and ejecta mass can be accurately determined
only by a magnetohydrodynamics simulation. However,
the present study indicates that the dependence of these
quantities on αν is not very strong; even for the 10/3
times larger value of αν , the explosion energy and ejecta
mass increase within a factor of 2. In particular, the ex-
plosion energy and ejecta mass show similar values for
MZAMS = 35M⊙ with αν = 0.03 and 0.06. Therefore it
is reasonable to conclude that the explosion energy can
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FIG. 6. Time evolution of the explosion energy (left) and ejecta mass (right) for models of MZAMS = 20M⊙ (upper panels),
35M⊙ (middle panels), and 45M⊙ (lower panels). For MZAMS = 20M⊙, we also plot the result in Ref. [6] by the dashed curves.

reach Eexp ∼ 1052 erg with the ejecta mass of Meje = 4–
5M⊙ for the present choice of the massive progenitor
stars, if the turbulent state is excited and the resulting
effective viscosity with αν = ø(10−2) is generated around
the inner region of the accretion disk/torus.

The modification of the initial angular momentum pro-
file for the progenitor stars of MZAMS = 35M⊙ has an
impact on the explosion energy and ejecta mass, in par-
ticular for the case that we reduce it by more than 40%.
The ejecta mass decreases monotonically with the de-
crease of the initial angular momentum because the to-
tal mass outside the black hole is initially smaller and
the mass of the resulting disk/torus becomes smaller for

the smaller initial angular momentum. The ejecta mass
becomes ∼ 1M⊙ for the reduction of the angular mo-
mentum by 40% (model AD35x0.6-21.5) and smaller
than 0.4M⊙ (i.e., < M∗,0−MBH,f) by the 50% reduction
(model AD35x0.5-21.5). For model AD35x0.6-21.5, the
explosion energy is ∼ 2×1051 erg, which is comparable to
that of ordinary supernovae. This suggests that a rapid
rotation as well as the large compactness of the progeni-
tor star is the key to the large explosion energy.

For the models of MBH = 20M⊙ and 45M⊙, we per-
formed simulations with different initial black-hole mass.
We find a fair agreement of the final values of explosion
energy and ejecta mass, although their time evolution
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TABLE II. Summary of the quantities associated with the explosion for the models for which the simulation is performed for
sufficiently long time: Time at the onset of the explosion measured from the torus formation time, texp (the values in the
parenthesis denote the simulation time), explosion energy, Eexp, and ejecta mass, Mej, measured at the termination of the

simulation, the ejecta velocity defined by vej =
√

2Eexp/Mej, and synthesized 56Ni mass MNi. In the last two columns, we also
list the mass of an ejecta component with the temperature satisfying T > 5×109 K during the ejection process and the average
value of the entropy per baryon for the ejecta. For model AD35x0.5-21.5, we do not find explosion. For most of the models,
the explosion energy was still increasing at the termination of the simulations, and thus, the values shown here are considered
as the lower bound.

Model texp (s) Eexp (10
51 erg) Mej (M⊙) vej (10

9 cm/s) MNi (M⊙) M>5GK (M⊙) ⟨s⟩/kB
AD20-9 3.8 (3.8) 2.2 2.2 1.0 0.24 0.44 17
AD20-10 <0.1 (0.1) 2.6 2.6 1.0 0.20 0.44 17
AD35-15 2.8 (7.1) 6.5 4.2 1.2 0.18 0.55 23
AD35-15-hi 2.0 (6.3) 7.0 5.0 1.2 0.24 0.72 28
AD35-15-mv 0.8 (5.1) 8.1 4.1 1.4 0.41 1.02 26
AD35-15-hv 0.5 (4.8) 10.1 5.5 1.4 0.15 0.69 39
AD35x0.5-21.5 — — — — — — —
AD35x0.6-21.5 0.7 (9.2) 2.1 1.0 1.5 0.04 0.16 34
AD35x0.8-18 0.8 (7.2) 4.4 2.6 1.7 0.15 0.52 32
AD35x1.2-12.5 3.9 (7.4) 6.8 5.3 1.1 0.38 0.90 23
AD45-22 0.6 (5.9) 11.5 3.7 1.8 0.28 0.95 33
AD45-25 <0.1 (0.1) 8.4 4.3 1.4 0.46 1.15 27
AD45-25-hv <0.1 (0.1) 13.0 4.7 1.7 0.25 0.87 43

depends weakly on the initial setting. Thus, the ejecta-
related quantities can be approximately obtained even if
we start the simulations with black-hole mass larger than
the value expected at the disk formation (see Sec. II).

For MZAMS = 20M⊙, we compare the present results
with that in our previous paper [6]. We find that both the
explosion energy and ejecta mass were underestimated in
the previous study because the simulation time was too
short. For obtaining the accurate explosion energy and
ejecta mass for this case, we needed a long-term simu-
lation with the duration of ≳ 10 s after the onset of the
explosion.

Even in the present study, the ejecta mass for MBH =
20M⊙ does not relax to a saturated value at the termi-
nation of the simulation. For this model, the expanding
shock is still inside the computational domain, and a sig-
nificant amount of unshocked, bound matter is present in
the outer region of the star. The progenitor star for this
model is less compact than the more massive progenitor
stars, and hence, it takes more time (in units of MBH) to
follow the ejecta generation. In the longer-term energy
injection from the accretion torus, the ejecta mass may
be increased to M∗,0 −MBH,f ∼ 4M⊙.

At the termination of the simulations for MZAMS =
35M⊙ and 45⊙, we typically find M∗,0−MBH,f −Meje ≈
1–2M⊙, which is still bound by the black hole. Since the
black-hole mass increases slowly with time even at the
termination of the simulations, most part of this mass
will eventually fall into the black hole, and a fraction will
be ejected from the system via the viscous heating and
viscous angular momentum transport. However, this is a
minor part compared with the matter ejected earlier.

As mentioned in Sec. II, we discard the stellar matter
with r > 105 km in our simulation for which the mass
is ∼ 1M⊙. Thus the ejecta mass may be larger than
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those listed in Table II by this amount, but this possible
increase is a small fraction of the numerical result of Mej

for most of the models.

E. Nickel mass and predicted light curve

Using the time evolution of the thermodynamical
quantities on the tracer particles [6], post-process nucle-
osynthesis calculations are performed with a open-source
nuclear reaction network code torch [34] with 495 iso-
topes, paying particular attention to the 56Ni production.

Table II lists the mass of 56Ni, MNi, for selected
models. The 56Ni mass is found to be always larger
than 0.15M⊙ and ∼ 3–11% of the total ejecta mass
for all the models except for the models with signifi-



13

10−1 100 101

Eexp (1051 erg)

10−2

10−1

100
M

N
i

(M
�

)

20M�
35M�
×0.6

×0.8

×1.2

45M�

MNi

αν = 0.03

αν = 0.06

αν = 0.10

Taddia+2019

Gomez+2022

0 5 10 15 20 25
vej (1000 km/s)

10−2

10−1

100

M
N

i
(M
�

)

20M�
35M�
×0.6

×0.8

×1.2

45M�

MNi

αν = 0.03

αν = 0.06

αν = 0.10

Taddia+2019

Gomez+2022

FIG. 8. MNi as a function of the explosion energy Eexp (left) and average ejecta velocity vej (right). The open symbols
denote the observational data for stripped-envelope supernovae, some of which are broad-lined type Ic supernovae, taken from
Refs. [32, 33].

cant angular momentum reduction (AD35x0.5-21.5 and
AD35x0.6-21.5). The 56Ni mass does not have strong
correlation with the ejecta mass because the 56Ni pro-
duction efficiency depends strongly on the thermal his-
tory of the matter during the explosion. In Table II,
we also show the mass of the ejecta that experiences a
state with T > 5GK (= 5 × 109 K), M>5GK, and the
average entropy per baryon, ⟨s⟩/kB, for the ejecta. The
56Ni production primarily occurs for T ≳ 5 GK, while
it is suppressed for the ejecta with a high entropy per
baryon [35]. No clear correlation between MNi and the
viscous coefficient is found (compare the results for mod-
els AD35-15, AD35-15-mv, and AD35-15-hv). This stems
from the fact that the high viscous heating can enhance
not only the fraction of the ejecta with T > 5GK, but
also the entropy per baryon. In our results, the 56Ni mass
is approximately written as (see Fig. 7)

MNi ≈
M>5 GK

2

( ⟨s⟩
17kB

)−4/5

. (19)

It is also worth pointing out thatM>5GK is by more than
a factor of ∼ 2 larger than MNi for the models studied in
this paper. Thus, M>5GK overestimates the 56Ni mass
for the present models.

By contrast, a clear correlation is found between MNi

and the angular momentum of the progenitor stars for
the MZAMS = 35M⊙ model; larger angular momentum
results in the larger 56Ni mass. This correlation stems
from the larger mass and lower entropy per baryon of
the ejecta for the larger initial angular momentum. The
latter is associated with the difference in the evolution of
the torus before the explosion sets in. For larger-angular-
momentum models AD35-15 and AD35x1.2-12.5, the ex-
plosion takes place after a quasi-stationary NDAF phase
of the torus, during which neutrino emission extracts the
entropy of the torus efficiently. In addition, the explosion
after the quasi-stationary phase is less violent [6]. These
factors result in the lower entropy of the ejecta. This sit-
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FIG. 9. Bolometric light curves for all exploded models in
this paper. Light curves for different models are plotted in
different colors and line thicknesses. The filled circles along
each curve indicate the time at which the ejecta becomes op-
tically thin to thermal photons. The shaded regions denote
templates of the bolometric light curves with standard devi-
ations for type Ib, Ic, and Ic-BL taken from Ref. [36].

uation is in clear contrast with those for smaller-angular-
momentum models AD35x0.6-21.5 and AD35x0.8-18.0,
for which the explosion takes place in a relatively short
timescale after the formation of the torus because of the
lower neutrino cooling efficiency and lower ram pressure
of infalling matter. For these models, a high entropy gen-
erated by the shock dissipation at the formation of the
torus is directly reflected in that of the ejecta.

For the MZAMS = 45M⊙ models, the 56Ni mass is
larger, ≥ 0.25M⊙, reflecting the large mass fraction of the
high-temperature ejecta component. The larger values of
M>5GK for these models result from the earlier explosion
than for less massive progenitor models (see Sec. III B).
A significant difference is found between the results of
models AD45-22 and AD45-25 in spite of the facts that for
these models the explosion energy and ejecta mass show



14

similar values. This illustrates that the 56Ni mass de-
pends sensitively on the thermal condition of the ejecta.

Figure 8 displays the 56Ni mass as a function of the ex-
plosion energy (left panel) and the average ejecta velocity
(right panel). Together with the numerical results shown
by the filled symbol, we plot the observational data for
stripped-envelope supernovae, some of which are broad-
lined type Ic supernovae, taken from Refs. [32, 33], by
the open symbols. It is found that our numerical re-
sults reproduce the relations between MNi and Eexp or
MNi and vej for high-energy supernovae with Eexp = 2–
10 × 1051 erg and with vej = 1–2 × 109 cm/s, suggesting
that a fraction of these supernovae may be driven by the
explosion from a torus surrounding a massive black hole
of MBH ≈ 10–30M⊙.

Using the explosion energy, ejecta mass, and 56Ni mass
as input parameters, we derive model light curves for the
supernova-like explosion using the Arnett’s model [37].
In this modelling, we use the same prescription as de-
scribed in our previous paper [6]. The resulting light
curves are displayed in Fig 9. As predicted from the
explosion energy, ejecta mass, and 56Ni mass, the peak
luminosity and timescale of the luminosity decline for
most of the models are in good agreement with the ob-
served data for high-energy supernovae like the broad-
lined type Ic supernovae or type Ib/Ic supernovae. For
model AD35x0.6-21.6, the peak luminosity is lower than
those for other models due to the smaller ejecta mass and
explosion energy, indicating that a rapid rotation may be
necessary to reproduce the brightness of high-energy su-
pernovae.

We note that the luminosity predicted by the Arnett
model for given 56Ni mass may be underestimated by a
factor of a few (see Refs. [38–40]). Thus, the explosion
models presented in this paper may show more luminous
light curves than in Fig. 9, i.e., most of them may be
good models for broad lined type Ic supernovae, as Fig. 8
indicates. To clarify this point, we need a more detailed
radiation transfer study for deriving the light curves in
follow-up work.

IV. SUMMARY

We studied the fate after the collapse of rotating mas-
sive stars that form a black hole and a disk/torus by
performing a neutrino-radiation viscous-hydrodynamics
simulation in general relativity and employing the stel-
lar evolution models by Aguilera-Dena et al. [1] as ini-
tial data. Specifically, we employed rapidly rotating and
compact progenitor stars as base models and constructed
a system of a spinning black hole and infalling matter as
the initial conditions. For most of the models we em-
ployed, a system of a black hole surrounded by a massive
torus is formed during the time evolution.

Due to the viscous heating as well as shock heating
around the surface of the torus, thermal energy is gen-
erated and becomes the source for the explosion of the

system. For the massive models (MZAMS = 35M⊙ and
45M⊙), the ejecta mass is 4–5M⊙ and the explosion en-
ergy is ∼ 1052 ergs, i.e., much larger than typical super-
novae. The explosion energy is enhanced for larger vis-
cous coefficients. By contrast, the explosion energy for
the 20M⊙ model is of order 1051 erg. The primary reason
for this difference is that for the more massive models, the
compactness of the progenitor stars is larger, the mass in-
fall rate to the central part is higher, and as a result, the
viscous and shock heating efficiency are enhanced to get
large explosion energy.

For MZAMS = 35M⊙, we performed simulations artifi-
cially varying the initial angular momentum for a fairly
wide range. For its change by ±20%, the explosion en-
ergy and ejecta mass do not vary significantly. However,
for the reduction by 50%, we did not find the torus for-
mation and explosion in our simulation time, although a
small-mass disk is formed. This indicates that for high-
energy explosion from the torus, a rapid rotation of the
progenitor stars that results in a rapidly spinning black
hole with χ ≳ 0.7 and a massive torus with mass ≳ 1M⊙
is necessary.

For the simulations with the original progenitor mod-
els of Ref. [1], the final black-hole spin is always 0.75–
0.85, and thus, a rapidly spinning black hole is the
outcome. The final black-hole mass is ≈ 10–30M⊙,
which are 50–60% of the progenitor mass. Even for the
model with initially reduced angular momentum (model
AD35x0.5-21.5) the final dimensionless spin is ≈ 0.6.
Since the black-hole dimensionless spin is high, in the
presence of electromagnetic fields, the Blandford-Znajek
effect is likely to play an important role [41] for launching
an energetic jet or outflow along the spin axis of the black
hole. If a relativistic jet is produced, a gamma-ray burst
will be also launched (see Refs. [42–44] for simulation
works). Our present explosion models may naturally ex-
plain the association between the gamma-ray burst and
supernova-like explosion [45] if a jet is really launched.
To demonstrate that a relativistic jet is indeed launched,
it is necessary to perform a magnetohydrodynamics sim-
ulation, which is one of our follow-up works to be done.
In the presence of a jet, energy available for the explo-
sion and 56Ni production is additionally injected, and
also, observed relativistic motion in supernova-associated
gamma-ray bursts will be naturally modelled [45]. Ex-
ploring this additional effect is an important subject for
developing a model for supernova-associated gamma-ray
bursts.

For model AD35x0.5-21.5, energetic explosion from
the torus is not found although a fairly rapidly spinning
black hole is formed. In such a case, a gamma-ray burst
may be launched in the presence of a strong magnetic
field penetrating the black hole, while supernova-like ex-
plosion is likely absent. A wide variety of the final out-
comes, which the present work illustrates, suggest that
there may be a variety of possibilities on the high-energy
phenomena depending on the initial angular momentum
profiles in the progenitor stars.
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For the case that an explosion occurs, an appreciable
amount of 56Ni is synthesized. We find that the 56Ni
mass is always larger than 0.15M⊙ and ∼ 3–11% of the
total ejecta mass for rapidly rotating progenitor stars.
For the models with reduced angular momentum, the
56Ni mass is significantly smaller. This illustrates that
rapidly rotating progenitor stars are necessary for the
significant 56Ni production.

The relations between the explosion energy and 56Ni
mass and between the average ejecta velocity and 56Ni
mass are similar to the observational data for stripped-
envelope supernovae with large explosion energy >
1051 erg. As a natural consequence, the model light
curves derived from our numerical results are also in good
agreement with the observational data. This suggests
a possibility that some of high-energy stripped-envelope
supernovae may take place from a system of a spinning
black hole and a massive torus. As discussed above, a
gamma-ray burst is likely to accompany with such super-
novae if a strong magnetic field penetrating the spinning
black hole is developed. Therefore, supernova-associated
gamma-ray bursts may be naturally explained in this
model.
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Appendix A: Initial data for collapsing stars onto a
spinning black hole

We consider an axisymmetric initial data with the line
element written in the form

dl2 = ψ4γ̂ijdx
idxj = ψ4

[
e2q(dR2 + dz2) +R2dφ2

]
,

(A1)

where γ̂ij is the conformal three metric and ψ is a confor-
mal factor, both of which are functions of R and z. We
suppose that q is a given function of R and z. We require
that the metric reduces to that of Kerr black holes in the
quasi-isotropic coordinates in the absence of matter [46],
i.e.,

ψ = ψK =
Ξ
1/4
K

r1/2Σ
1/4
K

, (A2)

eq = eqK =
ΣK

Ξ
1/2
K

, (A3)

where

ΞK = (r2K + a2)ΣK + 2Ma2rK sin2 θ, (A4)

ΣK = r2K + a2 cos2 θ, (A5)

M is the black-hole mass, a is the black-hole spin, rK is
the radial coordinate in the Boyer-Lindquiest coordinates
of Kerr black holes, r =

√
R2 + z2, and tan θ = R/z. The

relation between rK and r is

rK = r +M +
r2s
r
, (A6)

where rs :=
√
M2 − a2/2 denotes the location of the

black-hole horizon in the quasi-isotropic coordinates. In
the following, we assume q = qK. We note that for r → 0,
ΨK → rs/r and qK → 0.

From the extrinsic curvature Kij , we define K̂ij =

ψ2Kij , K̂
i
j = ψ6Ki

j , K̂
ij = ψ10Kij , and the subscripts

of K̂ij is raised by γ̂ij . In the following, we assume
that the trace of the extrinsic curvature is zero, i.e.,
(K̂RR + K̂zz)e2q + K̂φφR2 = 0. Then, for the metric
of Eq. (A1), the momentum constraint is written in the
form:

1

R
∂R(RK̂RR) + ∂zK̂Rz − (K̂RR + K̂zz)(∂Rq −R−1)

= 8πJRψ
6e2q, (A7)

1

R
∂R(RK̂Rz) + ∂zK̂zz − (K̂RR + K̂zz)∂zq

= 8πJRψ
6e2q, (A8)

1

R
∂R(RK̂Rφ) + ∂zK̂zφ = 8πJφψ

6e2q, (A9)

where Ji = αT t
i with α the lapse function and Tµν the

energy-momentum tensor. In the formalism presented
here, we will give Ji to determine the geometric quanti-
ties, and hence, we do not have to specify α.

We then write the conformal-tracefree extrinsic curva-
ture as

K̂ij = D̂iWj + D̂jWi −
2

3
γ̂ijD̂kW

k + K̂K
ij , (A10)

where D̂i is the covariant derivative with respect to γ̂ij ,
W i is a conformal three vector, i.e., Wj = γ̂jkW

k, and

K̂K
ij is the contribution from the black hole, which is

trancefree. Each component of K̂ij , necessary for the
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momentum constraint, is written as

K̂RR = ∂RWR − WR

R
− ∂zWz − 2WR∂Rq + 2Wz∂zq

+
1

3
divW,

K̂Rz = ∂RWz + ∂zWR − 2WR∂zq − 2Wz∂Rq,

K̂zz = ∂zWz − ∂RWR − WR

R
+ 2WR∂Rq − 2Wz∂zq

+
1

3
divW,

K̂Rφ = ∂RWφ − 2
Wφ

R
+ K̂K

Rφ,

K̂zφ = ∂zWφ + K̂K
zφ, (A11)

where divW = ∂RWR +WR/R+ ∂zWz,

K̂K
Rφ =

HER
3

r5
+
HFRz

r4
, (A12)

K̂K
zφ =

HER
2z

r5
− HFR

2

r4
, (A13)

and HE and HF are [47, 48]

HE =
Ma

[
(r2K − a2)ΣK + 2r2K(r

2
K + a2)

]
Σ2

K

, (A14)

HF = −2Ma3rK
√
r2K − 2MrK + a2 sin2 θ cos θ

Σ2
K

.(A15)

Here, K̂K
ij satisfies the φ-component of the momentum

constraint for Jφ = 0

1

R
∂R(RK̂

K
Rφ) + ∂zK̂

K
zφ = 0. (A16)

Then the equations for Wi are written as[
∆− 1

R2

]
WR +

1

3
∂R(divW )

− 2
(
∂2Rq + ∂2zq

)
WR −

(
8

3
divW − 2WR

R

)
∂Rq

+ 2

(
∂RWz +

Wz

R
− ∂zWR

)
∂zq

= 8πJRψ
6e2q, (A17)

∆Wz +
1

3
∂z(divW )

− 2
(
∂2Rq + ∂2zq

)
Wz −

(
8

3
divW − 2WR

R

)
∂zq

− 2

(
∂RWz +

Wz

R
− ∂zWR

)
∂Rq

= 8πJzψ
6e2q, (A18)[

∆− 1

R2

]
W φ̄ = 8πJφψ

6e2qR−1, (A19)

where W φ̄ :=Wφ/R and ∆ denotes the flat Laplacian,

∆ = ∂2R +
1

R
∂R + ∂2z . (A20)

For a given function of Jφψ
6e−2q, the equation forW φ̄ is

solved with the outer boundary condition of W φ̄ ∝ r−2

and the inner boundary conditions, W φ̄ ∝ R for R → 0
and ∂zW

φ̄ = 0 at z = 0.
To simplify the procedure for the numerical solution

of WR and Wz, we may rewrite these variables using
(see, e.g., Ref. [26] for a similar formulation in Cartesian
coordinates)

Wi = Bi −
1

8
∂i(χ+BRR+Bzz), (A21)

where χ and Bi are new functions to be solved instead of
WR andWz, and i denotesR or z. With this prescription,
we find [

∆− 1

R2

]
WR +

1

3
∂R(divW )

=

[
∆− 1

R2

]
BR

− 1

6
∂R

[
∆χ+R(∆−R−2)BR + z∆Bz

]
(A22)

and

∆Wz +
1

3
∂z(divW )

= ∆Bz −
1

6
∂z

[
∆χ+R(∆−R−2)BR + z∆Bz

]
.(A23)

Thus, by choosing the equation for ∆χ as

∆χ = −R(∆−R−2)BR − z∆Bz, (A24)

we obtain the equations for BR, Bz, and χ in simple
forms as [

∆− 1

R2

]
BR = SR, (A25)

∆Bz = Sz, (A26)

∆χ = −RSR − zSz, (A27)

where

SR = 2
(
∂2Rq + ∂2zq

)
WR +

(
2divB − 2WR

R

)
∂Rq

−2

(
∂RBz +

Wz

R
− ∂zBR

)
∂zq

+8πJRψ
6e2q, (A28)

Sz = 2
(
∂2Rq + ∂2zq

)
Wz +

(
2divB − 2WR

R

)
∂zq

+2

(
∂RBz +

Wz

R
− ∂zBR

)
∂Rq

+8πJzψ
6e2q, (A29)

and

divB

(
=

4

3
divW

)
= ∂RBR +

1

R
BR + ∂zBz. (A30)
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We note that in SR and Sz the second spatial derivative
of BR, Bz, and χ is not present.
Because SR and Sz fall off sufficiently rapidly in the far

region (with O(r−6)), the elliptic equations (A25)–(A27)
can be solved in a straightforward manner with the outer
boundary conditions

BR ∝ R

r3
, Bz ∝ z

r3
, χ ∝ 1

r
. (A31)

The boundary conditions at R = 0 are

BR ∝ R, ∂RBz = 0 = ∂Rχ, (A32)

and the boundary conditions at z = 0 are

∂zBR = 0 = ∂zχ, Bz ∝ z. (A33)

For the equation of BR, it may be better to solve the
equation for BR̄ = BR/R to guarantee the boundary
condition, ∂RBR̄ = 0, at R = 0. For this case the kernel
operator of the equation becomes(

∂2R +
3

R
∂R + ∂2z

)
BR̄ =

SR

R
. (A34)

Here, we note that JR ∝ R and q ∝ sin2 θ at θ → 0, and
thus, the regularity of SR/R at R = 0 is guaranteed.
If we consider that Jiψ

6e2q is a given function, the
Hamiltonian constraint is solved for an obtained numer-
ical solution of K̂ij . In this context, the Hamiltonian
constraint is written as

∆ψ =
1

8
ψe2qR̂− 2πρHψ

5e2q − 1

8ψ7
K̂ijK̂

ij , (A35)

where ρH = α2T tt and R̂ is the Ricci scalar with respect
to the given conformal metric, γ̂ij , i.e., q = qK. In the
present context (e.g., Ref. [49]),

R̂ = −2e−2q(∂2R + ∂2z )q. (A36)

We also note that we will consider to give ρH (not T tt),
and hence, we do not have to specify α.

For the decomposition of ψ = ψK + ϕ, Eq. (A35) is
rewritten as

∆ϕ =
1

8
ϕe2qR̂− 2πρHψ

5e2q

− 1

8ψ7
K̂ijK̂

ij +
1

8ψ7
K

K̂K
ijK̂

Kij , (A37)

where we used

∆ψK =
1

8
ψKe

2qR̂− 1

8ψ7
K

K̂K
ijK̂

Kij . (A38)

The boundary conditions for ϕ are

∂r[r(ϕ− 1)] = 0 at r → ∞, (A39)

∂Rϕ = 0 at R = 0, (A40)

∂zϕ = 0 at z = 0. (A41)

For r → 0, ψK ∝ r−1, KK
ijK

Kij ∝ r−6, and R̂ → 2a2/r4s ,
the right-hand side of Eq. (A37) is regular anywhere.
Thus, it is also straightforward to solve this equation
under the boundary conditions shown above.
For the perfect fluid,

Tµν = ρhuµuν + Pgµν , (A42)

where ρ, h, uµ, P , and gµν are the rest-mass density,
specific enthalpy, four velocity, pressure, and spacetime
metric. Then we obtain

Ĵi := Jiψ
6e2q = ρhαutuiψ

6e2q = ρ∗hui, (A43)

S0 := ρHψ
6e2q = ρ∗h(αu

t)− Pψ6e2q, (A44)

where ρ∗ = ραutψ6e2q is the weighted rest-mass density
which satisfies the continuity equation,

∂tρ∗ +
1

R
∂R

(
Rρ∗v

R
)
+ ∂z(ρ∗v

z) = 0, (A45)

with vi = ui/ut and αut =
√

1 + ψ−4γ̂ijuiuj . Thus, the
total rest mass of the system is obtained by

M∗ = 2π

∫
RdRdz ρ∗. (A46)

The angular momentum of the matter is also obtained
by

J = 2π

∫
RdRdz Ĵφ. (A47)

In numerical computation,
(
ρ∗, Ye, T, Ĵϕ, uR, uz

)
are

provided using the data of the collapsing matter (see
Sec. II), and the field equations, e.g., (A25), (A26),
(A27), and (A37), are solved iteratively until the rest-
mass density ρ and all metric variables converge.

Appendix B: Accuracy of the black-hole quantities

To ascertain numerical accuracy in evaluating the mass
and dimensionless spin of black holes, we evolve iso-
lated spinning black holes using similar grid resolutions
to those used in the present work, initially preparing
a Kerr black hole in quasi-isotropic coordinates [46]
with χ = 0.8. Numerical evolution is carried out until
t = 80, 000MBH. To save the computational costs, the
outer boundary is located at ≈ 800MBH along each axis.
The simulations are performed for ∆x/MBH = 0.012,
0.016, and 0.020 which are employed for the uniform
grid zone with x ≤ 0.72MBH where x denotes R or z.
For x > 0.72MBH the grid spacing is increased with the
rate of 1.01 as in viscous hydrodynamics simulations. In
this section, the results are shown in units of MBH = 1
(with c = 1 = G). For example, for MBH = 15M⊙,
80, 000MBH ≈ 5.9 s and 800MBH ≈ 1.8× 104 km.
Figure 10 shows the evolution of the mass and dimen-

sionless spin. A bump found at t ≈ 1, 600MBH is due
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FIG. 10. Evolution of the mass (upper panel) and dimension-
less spin (lower panel) of spinning black holes for χ = 0.8 with
the grid resolutions of ∆x/MBH = 0.012, 0.016, and 0.020.

to a slight reflection of numerical errors from the outer
boundary: In this test simulations, the initial data are
Kerr black holes in the quasi-isotropic coordinates, and
thus, during the time evolution, the metric form is var-
ied due to the change of the slicing, approaching those on
the limiting hypersurface (trumpet hypersurface). Dur-
ing this variation, the gauge modes are propagated out-
ward with the speed of light and some of the modes are
reflected at the outer boundary toward the inner region
causing a high-frequency numerical noise. This oscilla-
tion spuriously and slightly perturbs the horizon in par-
ticular for the high-resolution runs, but the oscillation
does not grow in time and the error size associated with
this is minor.

Besides this numerical error, the accuracy of the mass
and the area of the apparent horizon converge approxi-
mately at fourth order with respect to the grid spacing
∆x. The numerical error for the mass and dimension-
less spin increase approximately linearly in time, but for
χ = 0.8 with ∆x ≤ 0.016MBH, which is the typical grid
resolution of the present paper, the errors in mass and

dimensionless spin are within ≈ 1.6% and ∆χ ≈ 0.004,
respectively, at t = 80, 000MBH. For ∆x = 0.020MBH,
the error size is more than twice as large as that with
∆x = 0.016MBH. This illustrates that a sufficiently high
grid resolution is necessary to accurately evolve the black
hole. For model AD20-7.8 with ∆x/MBH,0 ≈ 0.0215, the
grid resolution in the early stage of the black-hole evo-
lution is so low that the mass and dimensionless spin
are likely to be overestimated and underestimated, re-
spectively. This is also the case for model AD20x1 [6].
For this model the grid resolution for the early black-
hole evolution was not so high that the black-hole mass
and dimensionless spin were overestimated and underes-
timated, respectively. As a result, the specific angular
momentum at the innermost stable circular orbit around
the black hole was spuriously overestimated in the nu-
merical computation, and thus, the matter around the
black hole were more subject to falling into the black
hole. This leaded to the overestimation of the black-hole
mass and underestimation of the disk/torus mass. For
this model, the NDAF phase was not found [6], but this
might be a spurious result due to the poor grid resolution.

Appendix C: Dependence on the grid resolution

In this section, we compare the results of models
AD35-15 and AD35-15-hi as a convergence test. Fig-
ure 11 shows the evolution of the mass and dimension-
less spin (left) and the explosion energy and ejecta mass
(right). We find a fair agreement between the results for
different grid resolutions. For the black-hole mass, the
higher-resolution results slightly in smaller mass. The
primary reason for this is that with the higher-resolution,
the viscous heating is more efficient, enhancing larger
ejecta mass (see the right upper panel) while suppressing
the accretion onto the black hole. Thus the black-hole
mass presented in Fig. 5 may be slightly overestimated
for their late stages while the ejecta mass may be un-
derestimated in Fig. 6. The explosion energy are also
slightly larger for the higher grid resolution, reflecting
more energy injection from the viscous heating.
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