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C L I M AT O L O G Y

Compounding effects in flood drivers challenge 
estimates of extreme river floods
Shijie Jiang1,2,3*, Larisa Tarasova4, Guo Yu5, Jakob Zscheischler1,6,7

Estimating river flood risks under climate change is challenging, largely due to the interacting and combined in-
fluences of various flood-generating drivers. However, a more detailed quantitative analysis of such compound-
ing effects and the implications of their interplay remains underexplored on a large scale. Here, we use explainable 
machine learning to disentangle compounding effects between drivers and quantify their importance for differ-
ent flood magnitudes across thousands of catchments worldwide. Our findings demonstrate the ubiquity of com-
pounding effects in many floods. Their importance often increases with flood magnitude, but the strength of this 
increase varies on the basis of catchment conditions. Traditional flood analysis might underestimate extreme 
flood hazards in catchments where the contribution of compounding effects strongly varies with flood magni-
tude. Overall, our study highlights the need to carefully incorporate compounding effects in flood risk assessment 
to improve estimates of extreme floods.

INTRODUCTION
River floods are among the most common natural disasters, and 
their risk is projected to increase further in the future due to climate 
and socioeconomic changes, although substantial uncertainties re-
main (1, 2). Key to improving flood risk analysis is an improved 
scientific understanding of the mechanisms that lead to floods, es-
pecially those associated with extreme floods (3–9). River floods can 
be generated by a variety of atmospheric processes (e.g., circulation 
patterns causing heavy precipitation and temperature increases 
causing snowmelt or glacial melt) that are modulated by the condi-
tions and characteristics of the catchment (10). Complex interac-
tions between all of these factors determine the timing, duration, 
extent, temporal clustering, and severity of river floods (11–14), 
which makes estimating future flood risks particularly challenging 
because flood drivers may exhibit varying trends in a changing cli-
mate (15, 16).

Although it is recognized that river floods are typically affected 
by multiple drivers (5–7, 11, 13, 16–18), a quantitative and system-
atic analysis that disentangles the interaction effects between these 
drivers and their implications for flood generation remains under-
explored, especially at a large scale and event-specific level. These 
are often particularly important for extreme flood events due to po-
tential amplifying effects between different physical processes across 
various spatial and temporal scales (here referred to as compound-
ing effects) (19, 20). A thorough understanding of the compounding 
effects between river flood drivers under historical conditions is 
critical for improving current flood risk adaptation strategies and 
projecting future flood risks (3, 21). Moreover, the importance of 
compounding effects may vary depending on the magnitude of the 
flood and the specific catchment (22, 23), which is not well under-
stood. In certain catchments, the importance of these effects may 

exhibit considerable variability across flood magnitude, while, in 
others, the differences may be negligible. A large variability would 
imply heterogeneity in flood-generating processes and challenge 
the reliability of conventional statistical methods used to esti-
mate extreme flood hazards, which typically rely on an assump-
tion of homogeneity (24–26). It is therefore crucial to identify the 
catchment-specific variability in compounding effects, which can 
further be used to assess potential errors associated with extreme 
flood estimation. This task requires effectively capturing the nonlin-
ear interactions between flood drivers and the quantification of 
their joint contributions at the event scale.

In this study, we developed an approach based on advanced ex-
plainable machine learning (ML) to disentangle the importance of 
compounding effects in river floods (Fig. 1A). The approach com-
bines light gradient boosting machine (LightGBM) (27) for the pre-
diction of runoff events and Shapley additive explanation (SHAP) 
interaction values (28) to estimate the predictive contributions of 
input features and their interactions. Here, SHAP interaction values 
are used to assess the contribution of each pair of features to the 
prediction outcome in our ML model by identifying both the main 
effects of individual features and the pairwise interaction effects be-
tween features. This framework provides a unified approach to 
quantifying how interactions between meteorological drivers (rain-
fall and temperature) and catchment preconditions (snow depth 
and soil moisture) (fig. S1) may influence river floods (defined as 
annual maximum discharges) (12, 13) for a given catchment 
(Fig. 1B). We applied this approach to 3527 catchments worldwide 
(Fig. 1C) and identified compounding drivers and the role of com-
pounding effects for 124,642 annual discharge maxima from 1981 to 
2020 (Materials and Methods). Moreover, we quantified the 
catchment-specific variability in the importance of compounding 
effects across different flood magnitudes. This catchment property, 
which we term “flood complexity,” characterizes the heterogeneity 
in the physical processes underlying floods of varying magnitudes 
in individual catchments. In the study, we address the following 
questions: (i) How prevalent are compounding drivers in historical 
river floods, and what impacts do they have on flood severity? (ii) 
How does the relationship between the importance of compound-
ing effects and flood magnitude (i.e., flood complexity) vary under 
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different catchment conditions? (iii) What are the implications of 
high flood complexity for the reliability of flood hazard estimates? 
Overall, the study aims to advance our understanding of how com-
pounding flood drivers might question conventional estimates of 
extreme floods, underlining the necessity for tailored, catchment-
specific strategies in flood mitigation design.

RESULTS
Spatial distribution of multi-driver floods and association 
with flood severity
We first investigated the spatial distribution of flood events associ-
ated with compounding drivers (i.e., multi-driver floods) and their 
association with flood severity. We aggregated the SHAP interaction 
values additively (28) to estimate the total respective contribution of 
recent rainfall, recent temperature, soil moisture, and snowpack 
(variables are color-coded in Fig. 1B). To identify candidates for the 
main driving variables of each discharge peak, we defined a thresh-
old at the 80th percentile of all aggregated SHAP values for an indi-
vidual catchment (fig. S4). To ensure the robustness of the results, 
we used an ensemble of ML models trained on different boot-
strapped subsets of the data, allowing each peak sample to be evalu-
ated 100 times by different models. We further used a binomial test 
to determine the main driving variables from the candidate vari-
ables identified by these evaluations. Multi-driver floods are defined 
as those that consistently exhibited an association with more than 

one candidate variable across numerous evaluations (refer to Mate-
rials and Methods for more details).

For all identified flood events, 61.1, 21.8, 51.5, and 20.3% are as-
sociated with recent rainfall, recent temperature, soil moisture, and 
snowpack, respectively. The main variables influencing the annual 
maximum discharge events vary considerably between catchments 
(fig. S5), demonstrating spatial heterogeneity in the flood-generating 
processes (e.g., precipitation, soil moisture saturation, and snow-
melt). In addition, the subtle role of temperature in non-snowmelt 
regions may indirectly indicate the influence of factors such as 
evapotranspiration. The spatial patterns of the driving variables are 
largely consistent with previously identified global and regional 
flood types in the literature (3, 6, 9), which typically assign one dom-
inant process to each flood event, but our emphasis lies in quantify-
ing the specific contribution of individual drivers. Figure 2A reveals 
the distribution of multi-driver floods that are associated with at 
least two of the four main variables identified above. Of the 124,642 
flood events analyzed, 51.6% are associated with at least two driving 
variables. Almost all the studied catchments have experienced 
multi-driver floods to a greater or lesser extent. In 55.1% of the 
catchments, more than 50% of the floods are multi-driver floods. 
The variety of identified driver combinations suggests the existence 
of complex interplays between precipitation, temperature, anteced-
ent soil moisture, and snowpack in flood generation (Fig. 2B), em-
phasizing the importance of understanding river flood risks from a 
multivariate perspective (21). In particular, the joint contribution of 

CB

A

Fig. 1. Procedure for identifying compounding effects in river flood drivers. (A) Conceptual diagram of the methodological framework. Meteorological drivers, in-
cluding recent rainfall (RR) and recent temperature (RT), and catchment preconditions, including soil moisture (SM) and snowpack (SP), are used as input variables. The 
model output refers to all identifiable discharge peaks regardless of their magnitude (fig. S2). The interpreted interaction effects are used to identify multi-driver floods 
associated with compounding drivers and to determine flood complexity in subsequent analyses. (B) Illustration of SHAP interaction values for machine learning (ML) 
model outputs for exemplary discharge peaks. The tick labels indicate the different types of variables, distinguished by different colors as indicated in (A). The number 
represents the number of days before a discharge peak for the corresponding variable. (C) Locations of the 3527 catchments used in this study and the length of discharge 
records in individual catchments.
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recent rainfall and soil moisture accounts for the largest proportion 
of multi-driver floods, which highlights the preconditioning role of 
antecedent soil moisture in flood development (6, 29).

To evaluate the impact of compounding drivers on flood severity, 
we compared the mean magnitude of multi-driver floods and single-
driver floods in individual catchments (Fig. 3A). We find that the 
mean magnitude of multi-driver floods is significantly higher than 
that of single-driver floods in 56.1% of the 3527 catchments (one-
sided t test, α = 0.05). Among these catchments, the mean magni-
tude of multi-driver floods is at least 20% higher than that of 
single-driver floods in 63.9% of catchments and at least 50% higher 
in 28.5% of catchments. The catchments with a higher magnitude 
ratio are generally characterized by a high degree of aridity (fig. S3A), 
with a strong negative correlation between magnitude ratio and the 
climate moisture index (CMI) of the catchments (Spearman’s rank 
correlation coefficient = −0.55, P <  0.001). Previous studies have 
consistently found that drier catchments have heavier flood tails (26, 
30), and our results suggest that compounding drivers that tend to 
increase nonlinear interactions between processes may be a contrib-
uting mechanism.

Moreover, the likelihood of floods being associated with multiple 
drivers generally increases as floods become more extreme (Fig. 3B). 
The proportion of multi-driver events in all annual maximum floods 
(124,642 events in total) increased from 51.6 to 64.9, 70.1, and 71.3% 
for floods with a catchment-specific return period of at least 2 years 
(63,199 events), 5 years (24,289 events), and 10 years (11,338 events), 
respectively. The catchment-wise proportions largely follow the 
same pattern across different return periods (Fig. 3B), with signifi-
cant differences as confirmed by both the one-sided Wilcoxon rank 

sum test and one-sided Wilcoxon signed-rank test (P < 0.001). No-
tably, the variance of these proportions increases for 10-year floods. 
In some catchments, multi-driver floods may be less dominant for 
extreme floods than for moderate floods (e.g., 5-year floods), par-
ticularly when a single driver is capable of exerting a sufficiently 
dominant influence on the generation of extreme floods (16).

We further compared the extremeness of the drivers between the 
largest single-driver and multi-driver floods globally from 1981 to 
2020 (Fig.  3C), where rainfall and snowpack are collectively ac-
counted for to accommodate the diversity of flood types. The largest 
single-driver floods tend to exhibit the most extreme event-wise 
rainfall or snowpack. In contrast, the extremeness of rainfall or 
snowpack that triggers multi-driver floods is more widely distrib-
uted, suggesting that non-extreme drivers can, nevertheless, drive 
extreme outcomes. A comparison of the relevance of the event-wise 
rank of the recent rainfall and flood magnitude in each catchment 
further reveals differences between floods induced by recent rainfall 
only and floods jointly triggered by recent rainfall and additional 
drivers. When recent rainfall contributes to flooding events in com-
bination with other drivers, the mean rank of recent rainfall is sig-
nificantly higher than that of the annual maximum flood (Fig. 3E; 
one-sided paired t test, P < 0.001). In contrast, when recent rainfall 
is the single flood driver, even extreme recent rainfall does not al-
ways cause large floods (high density below the diagonal in Fig. 3D), 
which is likely due to buffering effects (i.e., negative contributions) 
from other drivers (e.g., drier soils). Limiting the analysis to catch-
ments with a longer observation period (e.g., at least 35 annual max-
imum discharges) does not change the above conclusion. These 
combined results demonstrate again the role of compounding driv-
ers in amplifying the flood magnitude of a river and illustrate that 
extreme outcomes can result from moderate drivers, which under-
scores the importance of considering the compounding nature of 
flood drivers in risk management.

Because the identification of main driving variables is highly de-
pendent on the selected threshold, we conducted a number of sensi-
tivity tests. Generally, lower thresholds lead to a higher number of 
contributing drivers, resulting in more flood events being consid-
ered as multi-driver floods, and vice versa for higher thresholds. 
However, different thresholds lead to similar spatial patterns of 
multi-driver flood proportions (fig. S6), showing the robustness of 
our conclusions against different threshold choices. In particular, 
the proportions of multi-driver floods using different thresholds are 
strongly correlated. The conclusions about the relevance of com-
pounding drivers and flood severity drawn in Fig. 3 hold with differ-
ent thresholds as well (figs.  S7 and S8). In addition, a stricter 
criterion for the predictive performance of the ML algorithms does 
not affect the above conclusion (fig. S9).

Flood complexity: Variability of compounding effects with 
flood size
As suggested by Fig. 3, the impact of compounding drivers on flood 
magnitude varies across catchments. A given catchment may also 
exhibit substantial variability in the importance of compounding ef-
fects between different events, indicating a high degree of catchment-
specific complexity in terms of flood generation processes. In this 
case, insights gained from smaller floods may not be applicable 
when estimating the magnitude of larger events. To assess the flood 
complexity of a given catchment, we used the simple linear regres-
sion slope between the importance of compounding effects and the 

A

B

Fig. 2. Multi-driver flood events in the 3527 catchments. (A) Proportion of flood 
events associated with compounding drivers. (B) Upset plot comparing the combi-
nations of the four main driving variables: RR, RT, SM, and SP. The horizontal bars on 
the bottom left denote the number of flood events associated with each variable. 
Each unique combination of variables is represented by a line connecting the filled-
in cells, while the height of the vertical bars signifies the number of events present-
ing that specific combination. The 80th percentile of the aggregated contributions 
of all samples in each evaluation was used as the cutoff for determining main driv-
ing variables and identifying multi-driver events (see Materials and Methods).
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empirical non-exceedance probability of flood events. Here, the 
importance of compounding effects for individual flood events is 
defined as the relative number of main interaction effects (by thresh-
olding the SHAP interaction values) that have a large and positive 
contribution to increasing discharge (fig.  S10). In contrast to the 
previous section, we now consider all 48 possible interactions. Flood 
complexity can serve as an indicator of flood process heterogeneity 
resulting from compounding effects between drivers. This is illus-
trated in Fig. 4 (A and B) that shows the flood complexity of two 
different catchments; it is evident that the flood generation in the 
Slovakian catchment (Fig. 4A) exhibits greater heterogeneity com-
pared to the British catchment (Fig. 4B).

We estimated flood complexity for all 3527 catchments (Fig. 4C). 
Of the catchments studied, 96.1% have a significantly positive slope 
(combined P < 0.01 by Fisher’s method from the 100 evaluations). 
Catchments with a low flood complexity (often coinciding with 
nonsignificant flood complexity overall) are mainly found in the 
northern regions, the Alpine region, and the Amazon Basin. For 
high-latitude and high-altitude regions, flood generation tends to 
be uniformly dominated by snowmelt, and, therefore, the impor-
tance of compounding effects is likely to be homogeneous across 
flood magnitudes. In contrast, floods in the Amazon Basin are typi-
cally triggered by saturated soil moisture that has accumulated 

throughout the rainy season (31), resulting in low variability in the 
number of driver interactions during the few days preceding differ-
ent magnitudes of flood events.

Regions with average flood complexity of catchments signifi-
cantly higher than the global average (one-sided t test, P < 0.001) 
mainly include eastern Brazil, the Andes, eastern Australia, the 
Rocky Mountains extending to the west coast, and the western and 
central European plains (Fig. 4, C and D). Catchments in these re-
gions typically have multiple flooding mechanisms. For example, 
catchments in the European plains may experience flooding caused 
by recent rainfall alone or by both recent rainfall and snowmelt/
antecedent soil moisture (5, 9). The various combinations of factors 
and processes involved in the generation of the catchment response 
produce a wide range of hydrologic behaviors with varying degrees 
of interactions and nonlinearity (32). The estimated flood complex-
ity is not dependent on the choice of the threshold that determines 
the main interaction effects, which demonstrates the robustness of 
the above results (fig. S11, A to D).

Relation to catchment attributes and implications for 
estimating large floods
The variation in catchment-specific flood complexity between and 
within the Intergovernmental Panel on Climate Change (IPCC) 

A

B C

E

D

Fig. 3. Impact of compounding drivers on the severity of river flood events. (A) The magnitude ratio of multi-driver floods to single-driver floods in individual catch-
ments. The ratio was calculated as the mean magnitude of multi-driver floods divided by the mean magnitude of single-driver floods. The inset box plot compares the 
magnitude ratio between dry catchments (CMI < 0) and wet catchments (CMI ≥ 0) (fig. S3A). (B) Proportion of multi-driver floods associated with different return periods. 
The height of the bars indicates the event-wise proportion, whereas the points indicate the median of the catchment-wise proportions and error bars indicate the 25th 
and 75th percentiles. (C) Comparison between multi-driver and single-driver floods in terms of the minimum rank of RR and antecedent SP before individual events. The 
minimum rank is determined on the basis of the lower of the catchment-specific ranks of RR and SP for the largest flood event in each catchment. Lower ranks correspond 
to higher magnitudes. (D and E) Event-wise ranks of RR against event-wise ranks of annual maximum (AM) discharges when RR is the sole contributor (D) and when RR 
contributes in combination with other drivers (E). The color indicates the two-dimensional histogram of RR-AM discharge rank pairs across all catchments, with darker 
shades indicating more counts. The number of bins for each dimension was set to 20.
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reference regions (Fig.  4D) suggests that it may be influenced by 
climatic conditions, as well as by local differences in catchment 
characteristics, such as physiography, vegetation, and soil proper-
ties. To further investigate the conditions that may promote high 
flood complexity in a catchment, we compared flood complexity 
across different catchment attributes (fig.  S3). We find that drier 
catchments and wet catchments with moderate snow cover tend to 
display high flood complexity (Fig. 5, A and B). Generally, rainfall-
runoff processes in humid catchments are assumed to be more lin-
ear due to the reduced variability of hydrological conditions, 
whereas catchments in arid environments may experience more dis-
ruptions to within-basin connectivity (33–35). In wet catchments 
with moderate snow cover, the potential interactions between both 
rainfall and snowmelt processes make flood generation mechanisms 
more heterogeneous and complex than in catchments dominated by 
rainfall or snowmelt alone. This relationship holds under a more 
stringent criterion for the predictive performance of the ML models 
(fig.  S11, E and F). Spearman’s rank correlation analysis between 
flood complexity and representative local characteristics across var-
ious climate reference regions suggests that catchments with higher 
flood complexity tend to exhibit larger size, flatter terrain, reduced 
forest cover, and lower sand content (Fig. 5C). These associations 

may be related to the effects of scale and soil storage capacity (22, 33, 
36). For example, with increasing catchment size, the flood genera-
tion mechanisms are expected to become more diverse, interactive, 
and long-lasting, leading to potentially greater heterogeneity in the 
physical processes underlying floods of different magnitudes (37, 
38). However, it should be noted that larger catchments tend to 
smooth the effects of within-basin process heterogeneities on their 
discharge responses more than smaller ones (26, 34, 36). Neverthe-
less, measurement uncertainty and confounding factors may com-
plicate the correlation analysis for different flood processes, which 
warrants further investigation.

To evaluate the influence of high flood complexity on the reli-
ability of extreme flood estimates, we assessed the potential errors 
that may arise when estimating extreme flood magnitudes in 
catchments with different levels of flood complexity (Materials and 
Methods). Specifically, we conducted flood frequency analysis 
based on all annual flood events except the largest one within indi-
vidual catchments. Our analysis indicates a tendency toward un-
derestimation of the largest flood magnitudes in catchments with 
higher flood complexity (Fig.  5, D and E). Further experiments 
with various components of flood frequency analysis, such as dif-
ferent estimation methods and plotting positions (fig.  S12), 

A C

D

B

Fig. 4. Comparison of flood complexity across catchments. (A and B) Illustrative examples of the flood complexity of two catchments, one located in Slovakia with an 
outlet at 49.07°N, 18.91°E (A) and the other in the United Kingdom with an outlet at 54.44°N, 3.53°W (B). Points denote the median of the compounding effects impor-
tances over the 100 evaluations, with the error bars indicating the 25th and 75th percentiles. The importance of compounding effects (exemplified in fig. S10) is based on 
the number of interaction values exceeding a threshold (here, the 80th percentile of the positive interaction values across all samples). The dashed lines indicate the fitted 
slope in each of the evaluations, and the flood complexity is the median of these slopes (the solid orange line). The combined P value is estimated using Fisher’s method 
from individual P values that indicate the significance of whether the corresponding slope is positive. (C) Spatial distribution of flood complexity for individual catchments 
(median across 100 evaluations). The gray polygons represent the IPCC climate reference regions (66), each of which contains at least 50 study catchments. The bold ab-
breviation indicates the region has an average flood complexity significantly higher than the global average (one-sided t test, α = 0.001). (D) Flood complexity of catch-
ments in IPCC reference regions. The red dashed line indicates the average flood complexity across all catchments. Box plots show the median, 25th percentile, 75th 
percentile, and 1.5× interquartile range of the data. EAU, eastern Australia; NAU, northern Australia; SWS, southwestern South America; NES, northeastern South America; 
SES, southeastern South America; SAU, southern Australia; ESAF, east southern Africa; WCE, western and central Europe; CNA, central North America; WNA, western North 
America; MED, Mediterranean; ENA, eastern North America; NWN: northwestern North America; NEU, northern Europe; NEN, northeastern North America; SAM, South 
American monsoon; NSA, northern South America.
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confirm this general pattern, although it should be noted that the 
magnitude of underestimation varies when different techniques 
are used. For example, in the 388 catchments with a flood com-
plexity > 0.15 (the green and white points in Fig.  4C), the esti-
mated magnitude of the largest floods is, on average, 17.0 ± 3.5% 
lower than the observed values across the methods used. This level 
of underestimation, despite the existing variability, highlights po-
tential risks in practical hydrological design and flood manage-
ment (26, 39, 40). Our results suggest that catchments without 
recorded extreme flood events may experience unexpectedly large 
events in the future, and such a case could be exacerbated if the 
physical processes in flood generation in the catchment are hetero-
geneous due to compounding effects between flood drivers. Note 
that the observed increase in underestimation error with rising 
flood complexity is unlikely to be caused by a decrease in the sam-
ple size used for flood frequency analysis, as we did not find a 
negative correlation between flood complexity and sample size 
[correlation coefficient (r) = 0.07]. Sensitivity analyses show that 
the conclusion is robust even if only catchments with a longer ob-
servation period were considered (fig. S13). Nonetheless, given the 

overall short record lengths of our samples, the implications of 
flood complexity for practical risk management require further in-
vestigation.

DISCUSSION
Recent literature has increasingly focused on the compounding ef-
fects of drivers of river floods, which can potentially improve our un-
derstanding of flood extremes under historical conditions and 
advance predictive capabilities for future flood risks (21, 41, 42). 
However, quantifying the role of these compounding effects across 
different flood magnitudes and catchments has not been attempted so 
far. On the basis of advanced explainable ML techniques, this study 
developed an approach to clarify this relationship in a unified frame-
work (Fig. 1). The methodological advance in our study allows de-
tailed dissection and quantification of the intricate interplay of 
compounding drivers in ways that traditional methods may not fully 
capture. This opens avenues for studying a variety of weather and cli-
mate extremes including river floods, where the role of compounding 
drivers is particularly important (15, 19). Our results demonstrate 

A B D

E

C

Fig. 5. Relationship between flood complexity and catchment attributes, and its impact on estimating large flood magnitudes. (A and B) The relationship between 
flood complexity and average CMI (A) and snow cover extent (B) over the catchment, using the locally weighted scatterplot smoothing (LOWESS) of the points and 95% 
confidence interval from 1000 bootstraps. Only wet catchments (CMI ≥ 0) are considered in (B). (C) Spearman’s rank correlations (within each IPCC climate reference re-
gion) between flood complexity and catchment size, catchment-average stream gradient, forest cover extent, and sand fraction in soil, where marker size indicates statis-
tical significance and only regions with sufficient attribute variability (e.g., the interdecile range of an attribute in the region is at least 60% of its total interdecile range 
across all catchments) are shown. (D) Estimation error in the magnitude of the largest observed floods per catchment against different levels of flood complexity (x axis). 
The estimation error in each catchment is calculated as the relative error between the estimated magnitude extrapolated from all other flood events and the observed 
magnitude of the largest flood in the observations (see Materials and Methods). A negative error indicates an underestimation of the largest flood magnitude. Box plots 
show the median, quartiles, and 1.5× interquartile range. The sample size per bin and statistical significance (one-sided t test, α = 0.05) are noted, with shared letters (e.g., 
c in the third and fourth bins) indicating no significant difference in mean errors between bins. (E) Proportions of catchments where the largest flood is underestimated 
by at least 30%, i.e., below the red dashed line in (D). The error bar indicates the 95% confidence interval, which is approximated as p̂ ± 1.96

√

p̂(100− p̂)

n
 ( ̂p is the estimated 

proportion and n is the sample size), and letters signify significance between proportions (one-sided z test, α = 0.05).

D
ow

nloaded from
 https://w

w
w

.science.org at M
ax Planck Society on M

arch 28, 2024



Jiang et al., Sci. Adv. 10, eadl4005 (2024)     27 March 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

7 of 11

that compounding drivers are not only prevalent around the globe 
(Fig. 2) but are also critical for large river floods in most catchments 
(Fig. 3). They can exacerbate flood magnitude and lead to extreme 
flood events even when individual drivers are moderate. The contri-
bution of compounding effects often increases with flood magnitude, 
but the strength of this increase varies across catchments according to 
the climatic conditions and local catchment characteristics (Figs.  4 
and 5, A to C). Ignoring the substantial variability of the contribution 
of compounding effects across different flood magnitudes in many 
catchments could potentially lead to an underestimation of extreme 
flood hazards (Fig. 5, D and E), which warrants careful consideration 
in flood infrastructure design and construction. Our results suggest 
that flood risk assessment and management particularly in arid and 
snow-rain mixed catchments should be approached with caution.

The origins of large (extreme) floods have been a subject of ongo-
ing debate regarding whether such events are fundamentally dis-
tinct from small floods or merely differ in the magnitude of the 
contributing factors (25, 40, 43). The clarification of this issue is 
paramount in selecting and designing appropriate flood estimation 
methods, which often assume homogeneity in flood samples and are 
widely used in engineering practice (24). However, our findings 
suggest that this disagreement might be reconciled by considering 
the catchment conditions that influence the compounding nature of 
river floods. This is especially relevant in regions with high flood 
complexity, such as arid and snow-rain mixed catchments, where 
conventional statistical methods based on the assumption of homo-
geneity may considerably underestimate the magnitude of extreme 
floods. Recently, a few alternative approaches have been proposed to 
explicitly account for diverse flooding mechanisms in flood fre-
quency analysis (24, 44, 45). We propose further incorporating the 
concept of flood complexity into hydrological practice to improve 
flood risk preparedness and assessment.

The ubiquity of compounding drivers in river floods poses a con-
siderable challenge to flood risk management in a warming climate, 
as the magnitudes and associated probabilities of extreme floods 
will be affected by the combined effects of the varying trends in dif-
ferent flood drivers (9, 14), thereby challenging current risk man-
agement measures. Our study enhances this understanding by 
quantifying the specific contributions of each driver, providing a 
solid basis for accurately projecting how changes in individual driv-
ers might affect flood dynamics under climate change, which is 
critical for developing future flood scenarios and effective adapta-
tion strategies. Moreover, climate change is likely to increase the 
now low flood complexity in high-latitude regions because the pres-
ent snowmelt-dominated flood generation will probably become 
proportionally more affected by rainfall (46, 47). However, these 
regions may be underprepared for potential flood risk increases be-
cause flood magnitudes have decreased in recent decades concur-
rent with decreasing snowmelt (13). Although snowmelt until now 
has remained the dominant driver in those catchments, the expect-
ed increase in precipitation extremes may soon take over (16, 48), 
potentially leading to unprecedented flood disasters.

MATERIALS AND METHODS
Historical observations and simulations
Daily discharge observations in 3527 catchments around the world 
(Fig. 1C) from 1981 to 2020 were obtained from the Global Runoff 
Data Center (www.bafg.de/GRDC, accessed 1 August 2022), which 

consists of discharge records from approximately 10,000 catchments 
worldwide. The 3527 catchments were selected using the following 
criteria. First, the catchment should have daily discharge records for 
at least 20 years during 1981 to 2020. Second, the catchments are 
larger than 100 km2 to encompass at least one grid cell of the meteo-
rological datasets (at ~9-km spatial resolution) and smaller than 
100,000 km2 based on (3, 23, 49) to minimize potential complica-
tions arising from spatial heterogeneity in overly large catchments. 
Third, the predictive relationship between hydrometeorological 
data and identified peak flows should be well captured by the ML 
model, as an accurate predictive relation is essential in order to de-
rive meaningful information from ML models (50). Therefore, the 
catchments with an average coefficient of determination (R2) regres-
sion score between the predicted and observed peak discharges in 
the test periods across all replicated cross-validations below 0.3 
were excluded.

Global daily precipitation and air temperature from 1979 to 2020 
were obtained from the multi-source weighted-ensemble precipita-
tion (MSWEP) and multi-source weather datasets (51, 52), respec-
tively, with a spatial resolution of 0.1°. Daily rainfall, soil moisture 
storage, and snowpack were estimated by a gridded implementation 
of the Hydrologiska Byråns Vattenbalansavdelning (HBV) model 
(53) using daily precipitation and temperature. The model has been 
well calibrated with daily observed discharge from over 4000 catch-
ments worldwide using the same MSWEP precipitation product 
(54). The simulations between 1979 and 1980 were excluded to ac-
count for model warm-up processes. The gridded rainfall, tempera-
ture, soil moisture, and snowpack were aggregated to individual 
catchments (fig. S1), with catchment boundaries delineated using an 
automated outlet relocation algorithm (55).

Overall, the simulated spatially aggregated soil moisture and 
snowpack for each catchment align well with observation-based es-
timates, which was confirmed through comparisons with several 
gridded datasets based on satellite or in  situ measurements. The 
validation process involved comparing the catchment-averaged 
time series of the model with those of other datasets on the grids 
where the centroid of each catchment is located. To ensure robust-
ness, only catchments with at least 3000 daily remote sensing obser-
vations were considered for the remote sensing product analysis. 
The median Pearson correlation coefficient between the modeled 
daily soil moisture and the European Space Agency’s Climate 
Change Initiative for Soil Moisture combined product (v07.1) (56, 
57) is 0.55. In addition, the median Pearson correlation coefficients 
between the modeled daily soil moisture and the SoMo.ml dataset 
(available in 2000 to 2019 only)—a global soil moisture dataset 
derived from in situ measurements using ML (58)—are 0.70 (0 to 
10 cm), 0.77 (10 to 30 cm), and 0.83 (30 to 50 cm), respectively. Last, 
the median Pearson correlation coefficient between the modeled 
snowpack and the ESA satellite snow water equivalent dataset 
(Northern Hemisphere only) (59) is 0.73. Moreover, the simulation 
data would be reconsidered in ML models in terms of their predic-
tive relationship to the discharge observations. Catchments with 
underperformed predictions due to potentially poor simulation 
data were excluded.

Catchment attributes
We chose CMI, snow cover extent, catchment size, stream gradient, 
forest cover extent, and sand fraction in soil to reflect certain aspects 
of a catchment’s climatology, physiography, vegetation, and soil 
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attributes, which considers both their representativeness and rele-
vance to flood generation as reported in the literature (22, 36). These 
catchment attributes (except catchment size) were derived from the 
well-established HydroATLAS dataset (60), which provides a com-
pendium of descriptive hydro-environmental information for all 
(sub)basins worldwide with nested levels, each representing consis-
tently sized polygons. We used the highest spatial resolution level 
(level 12), which has a scale of approximately tens of square kilome-
ters. We then derived the relevant attributes for the 3527 catchments 
in our study using an area-weighted aggregate based on the coverage 
(fig.  S3). Among these attributes, the CMI was calculated from 
annual precipitation (P) and potential evapotranspiration (PET) 
using the equation: [CMI = (P / PET) − 1 if P < PET] or [CMI = 1 − 
(PET / P) if P ≥ PET]. The CMI ranges from −1 to 1, with a higher 
value indicating wetter conditions. Catchment size was estimated 
directly from the catchment boundary. Stream gradient refers to the 
ratio of the slope within the stream reach to the length of the reach.

Preprocessing of ML samples
The training and testing targets for the ML models used in this study 
are identifiable discharge peaks, regardless of their extremeness, in 
the daily discharge series of each catchment (fig. S2). The identifica-
tion follows the procedure recommended by the guidelines of the 
US Water Resources Council, which has been widely adopted in 
many studies (61, 62). First, all local peaks with a minimum distance 
T  =  5 days + log(A) between neighboring peaks were selected, 
where A is the basin area in square miles and T is rounded to an 
integer. Then, the criterion that the minimum discharge between 
two consecutive peaks should be less than 75% must be satisfied; 
otherwise, the smallest peak in such a pair is removed until the con-
dition is fulfilled for all remaining peaks. In total, we identified 
1,582,043 discharge peaks for all 3527 catchments, with an average 
of 12.2 event peaks per year across the catchments. Note that, al-
though only annual maximum discharges are considered in the sub-
sequent analysis, we trained and interpreted the model on all 
identifiable peak flows for two main reasons. The first is to increase 
training samples to better capture diverse runoff processes. The sec-
ond is to provide an appropriate background for the interpretation 
of ML models (63), which serves as a reference point for identifying 
the contributions of features in the input to the prediction.

We used the time series of daily precipitation and 7-day mean 
temperature in the last 7 days before the discharge peaks, and soil 
moisture and snowpack on the day before this 7-day synoptic win-
dow as inputs to the ML model (fig. S2). The 7-day time window was 
chosen according to previous studies (5, 6, 12). We averaged the 
temperature within the 7-day synoptic window instead of using the 
time series within it to simplify the model complexity for better in-
terpretability and to avoid interpretation instability due to autocor-
relation between temperatures in the model inputs.

Training and interpretation of ML models
We used the LightGBM as the ML model, which is based on deci-
sion tree algorithms in a gradient boosting framework (27). In our 
preliminary experiments, we compared it with other tree-based ML 
models (e.g., random forest and XGBoost) and eventually chose 
LightGBM after accounting for both model performance and effi-
ciency. For each catchment, we implemented repeated fivefold 
cross-validation on the processed discharge peak samples for model 
training, evaluation, and interpretation. Specifically, we repeated the 

fivefold cross-validation process 100 times for each catchment, each 
time randomly shuffling the sample set to ensure a unique split. This 
process ensured that each individual data sample was incorporated 
into various training sets 400 times and subjected to independent 
evaluation 100 times due to the repeated fivefold cross-validation. 
Consequently, the interpretation of results in test periods for each 
sample was derived from a model trained on different training sam-
ple sets. Repeated cross-validation can help reduce the randomness 
and potential bias of the interpretation baseline.

As prior knowledge, we enforced monotonicity constraints on 
the input features of rainfall, soil moisture, and snowpack in the 
model, meaning that these features have a monotonically increasing 
relationship to the discharge response. Our preliminary experi-
ments showed that such constraints improve the predictive perfor-
mance of the model. We also disabled the interactions between the 
input features of rainfall and temperature in the model to ensure 
that the interpretability of the compounding effects is consistent 
with our domain knowledge. In each training process, the hyperpa-
rameters of the LightGBM model were automatically searched by 
optimizing the model performance on a subset of the corresponding 
training samples. The candidate hyperparameters are listed in 
table S1.

The SHAP interaction values (28) were used to explain the mod-
el outputs in terms of the predictive contributions of the pairwise 
interactions between input features. This approach, rooted in game 
theory, allows us to decompose a prediction into individual contri-
butions from each input feature. For each prediction, these contri-
butions are represented in a matrix format, where each matrix 
element represents the influence of either a single feature or a pair of 
features on the model output (Fig. 1B). Accordingly, the SHAP in-
teraction values provide information about both the main effects of 
individual features (shown on the diagonal of the matrix) and the 
interaction effects between pairs of features (on the off-diagonal). In 
this study, we calculated SHAP interaction values for all test samples 
for each of the catchments. Intuitively, the SHAP interaction values 
explain why the prediction was different from the expected output 
(i.e., the average of the training targets). As an additive feature at-
tribution method, the SHAP interaction values between feature i 
and all features (including feature i itself) sum to the predictive con-
tribution of feature i. Therefore, we derived the predictive contribu-
tion of different types of variables by aggregating all the interaction 
effects of the corresponding variables.

Determining main driving variables and identifying 
multi-driver floods
For each of the 100 evaluations, we can derive the aggregated contri-
bution of recent rainfall, recent temperature, antecedent soil mois-
ture, and antecedent snowpack (variables are color-coded in Fig. 1B) 
to every identifiable discharge peak. Using a catchment in Slovakia 
as an example, the aggregated SHAP values reveal predictive contri-
butions of the four types of variables in the model (fig. S4A). A pos-
itive SHAP contribution value of a specific feature indicates its role 
in increasing the predicted value (in our case, the discharge peak) 
relative to the model’s average or baseline prediction, whereas a 
negative contribution does the opposite. The contributions of recent 
rainfall, soil moisture, and snowpack all scale with their magnitudes, 
whereas recent temperature only has a positive contribution when 
the value is around 5°C, implying its role in flooding by inducing 
snowmelt. The robustness of the contribution pattern is confirmed 
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by the error bars, which indicate the variation across the 100 
evaluations.

We then determined a cutoff threshold to distinguish whether 
the specific driving variable had a considerable contribution. We 
used the 80th percentile of the aggregated contribution values for 
all peaks as the threshold, above which the variable is considered a 
candidate main driving variable. By focusing on annual maximum 
discharges, we generated a matrix that records the number of ex-
ceedances of the threshold in each of the 100 evaluations (fig. S4B). 
Notably, the results for a British catchment demonstrate a different 
pattern, as illustrated in fig. S4 (C and D).

For each flood event in the 100 evaluations, we can derive a set of 
Boolean values (100 elements in this case) that indicate whether the 
event is associated with a particular driver or combination. We took 
the majority as the final result and tested its significance using the 
binomial test. With 100 evaluations and a significance level of 0.01, 
a driver or a combination with at least 63 exceedances of the respec-
tive thresholds is considered to be significantly associated with the 
corresponding flood event, where the 63 is the minimum number of 
exceedances required to meet this significance level in the one-sided 
binomial distribution. Hence, a flood that is associated with multi-
ple candidate main driving variables at least 63 times in the 100 
evaluations is regarded as a multi-driver flood. Conversely, a flood 
that is associated with multiple candidate main driving variables at 
most 37 times is regarded as a single-driver flood. Note that a single-
driver flood may include cases in which the flood is not associated 
with any main driving variables (threshold for aggregated contribu-
tion never exceeded).

Importance of compounding effects and flood complexity
Similar to the thresholding of aggregated contribution values, we 
can threshold positive interactions between features in the SHAP 
interaction values to identify the main interaction effects that con-
siderably contribute to the prediction of discharge peaks. Specifi-
cally, the threshold is calculated as the 80th percentile of the positive 
interaction values between features (including the main effects of 
the features) across all the samples in the catchment. Note that each 
sample has 48 potential pair-wise interaction values, given the 10 
features used and the fact that the interactions between the seven 
input features of rainfall and temperature have been disabled in the 
model. We then defined the relative number of the main interaction 
effects to all possible interaction effects as the importance of com-
pounding effects for individual flood events (exemplified in fig. S10). 
In each of the 100 evaluations, we used the simple regression model 
to fit a slope between the empirical non-exceedance probability and 
the importance of compounding effects of annual maximum flood 
events in a catchment. The regression slope, which we defined as the 
flood complexity of a catchment, indicates the change in the impor-
tance of compounding effects for every 1% increase in the non-
exceedance probability of floods. We derived 100 slopes and 
associated P values that test whether the corresponding slope is sig-
nificantly positive. We used the median slope as the final slope 
across the 100 evaluations and estimated the combined P value us-
ing Fisher’s method.

Errors in estimating large flood magnitudes
The estimation error in the magnitude of the largest observed flood 
in a catchment is calculated as (Qest − Qobs)/Qobs, where Qobs is the 
magnitude of the largest observed flood during the study period 

(from 1980 to 2020) and Qest is the estimated magnitude based on 
the flood frequency analysis. Specifically, we first fitted the available 
annual discharge maxima during the study period (the largest is 
assumed to be unknown and thus was not included) using the gen-
eralized extreme value (GEV) distribution. For the annual maxima, 
only events in a calendar year with at least 200 days of discharge 
records were considered. The parameters of the GEV distribution 
were estimated using the widely used maximum likelihood method. 
We then calculated Qest for the largest flood from the fitted GEV 
distribution, given the empirical return period of the largest ob-
served flood based on the classical Gumbel plotting position. To 
assess the robustness of our findings, additional analyses were per-
formed using different estimation methods in the GEV fit, i.e., the 
method of moments and L-moments (64), and different plotting 
positions, including Cunnane, Bear, Tukey, and an unbiased meth-
od that takes into account specific parameters of the GEV distribu-
tion and sample size (65), the results of which are presented 
in fig. S12.

Supplementary Materials
This PDF file includes:
Figs. S1 to S13
Table S1
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