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Given the unpredictable rapid onset and ubiquitous consequences of weight gain induced by antipsychotics, there is a pressing
need to get insights into the underlying processes at the brain system level that will allow stratification of “at risk” patients. The
pathophysiological hypothesis at hand is focused on brain networks governing impulsivity that are modulated by neuro-
inflammatory processes. To this aim, we investigated brain anatomy and functional connectivity in patients with early psychosis
(median age: 23 years, IQR= 21–27) using anthropometric data and magnetic resonance imaging acquired one month to one year
after initiation of AP medication. Our analyses included 19 patients with high and rapid weight gain (i.e., ≥5% from baseline weight
after one month) and 23 patients with low weight gain (i.e., <5% from baseline weight after one month). We replicated our analyses
in young (26 years, IQR= 22–33, N= 102) and middle-aged (56 years, IQR= 51–62, N= 875) healthy individuals from the general
population. In early psychosis patients, higher weight gain was associated with poor impulse control score (β= 1.35; P= 0.03). Here,
the observed brain differences comprised nodes of impulsivity networks - reduced frontal lobe grey matter volume
(Pcorrected= 0.007) and higher striatal volume (Pcorrected= 0.048) paralleled by disruption of fronto-striatal functional connectivity
(R=−0.32; P= 0.04). Weight gain was associated with the inflammatory biomarker plasminogen activator inhibitor-1 (β= 4.9,
P= 0.002). There was no significant association between increased BMI or weight gain and brain anatomy characteristics in both
cohorts of young and middle-aged healthy individuals. Our findings support the notion of weight gain in treated psychotic patients
associated with poor impulse control, impulsivity-related brain networks and chronic inflammation.
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INTRODUCTION
Current advances in studying the drivers of antipsychotics-
induced weight gain and associated metabolic dysfunction in
patients with mental disorders brought evidence of a plethora of
potential mechanisms. There is strong empirical evidence about
the role of underlying psychopathology, genetic factors, pharma-
cological treatment, and/or lifestyle factors (i.e., unhealthy diet
and/or lack of physical activity) [1, 2]. Studies report a 2 to 3 fold
increase in mortality rates among psychiatric patients compared
with the general population, corresponding to a 10- to-15-year
reduction in life expectancy [3]. Two-thirds of the increased
mortality risk is attributed to cardiovascular disease [4]. Patients
treated with psychotropic drugs (all antipsychotics, some anti-
depressants and mood stabilizers) frequently show dispropor-
tional weight gain, which can affect their psychological well-being
leading to treatment interruption and to a relapse of the illness [5].

Additionally, there is the notion that antipsychotics change the
appetite regulation (i.e., excessive food consumption) with a large
interindividual variation in the susceptibility to such effects [6, 7].
Obesity [8–11], binge eating disorder [12] and food addiction

[8, 13] are associated with impaired impulse control. Grey matter
(GM) volume loss and neural processing biases across network
nodes involved in impulse inhibition, such as the striatum and
frontal lobe, are among the most frequent observations in
structural and functional imaging studies in overweight and
obese participants [14–21]. Along these lines, also drug-naïve
patients experiencing their first psychotic episode [22–25] and
pharmacologically treated patients with schizophrenia [26–29],
show differences in GM volume and structural brain connectivity.
Up to date, there are only a handful of studies that have

examined the associations between brain morphology or function
and metabolic changes induced by antipsychotics [30, 31].
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One region-of-interest study reported a higher striatal volume and
decreased striatal functional connectivity that correlated with
weight gain in 81 early-phase psychosis patients treated for
12 weeks with risperidone or aripiprazole [30]. With reference to
brain activation related to presentation of food stimuli, another
study showed that olanzapine treatment enhanced both the
anticipatory and consummatory reward responses to food [31]. A
decrease in responsivity to food consumption in areas associated
with inhibition of feeding behaviour was also noted [31].
Recent evidence in patients with schizophrenia supports the

notion of vulnerability due to interaction between aberrant
inflammatory response and the presence of metabolic syndrome.
Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor
of tissue plasminogen activator (tPA) and urokinase, and is
therefore an inhibitor of fibrinolysis [32]. High plasma levels of
PAI-1 have been associated with an increased risk of suffering
from cardiovascular disease [33]. Moreover, pathways depending
on PAI-1 are also thought to play a role in the development of
obesity, insulin resistance and type 2 diabetes [34]. Interestingly,
the SERPINE-1 gene, which encodes for PAI-1 is overexpressed in
the monocytes of patients with schizophrenia [35]. Macrophage
migration inhibitory factor (MIF) is a pleiotropic cytokine involved
in the regulation of innate and adaptive immunity [36] and higher
levels of MIF were found in metabolic disease [37]. Normal MIF
expression was found to be linked to metabolic dysfunction and
insulin resistance induced by olanzapine, when compared to low
MIF expression [38]. Several studies have also identified MIF level
as a potential biomarker for schizophrenia [39–41]. These findings
regarding PAI-1 and MIF levels lead to the hypothesis that they
may be involved in the difference in weight gain in schizophrenia.
A plethora of factors could account for the interindividual

variability in weight gain among patients treated with antipsycho-
tics; however, the association with impulsivity, brain structure and
function has not been clearly established yet. Here, we first sought
to investigate, in a cohort of patients in the early phase of psychosis
(Early Psychosis Patients; EPP), the associations between interindi-
vidual variability in weight gain following the introduction of
antipsychotics and the structural and functional brain characteristics.
We predicted that impulsivity and the anatomical and functional
properties of brain regions which are relevant to impulsivity control
would be linked to weight gain (i.e., frontal lobe and striatum).
Additionally, we aimed to determine whether patients who had put
on more weight had increased plasma levels of PAI-1 and/or MIF. By
repeating these analyses in both a cohort of healthy individuals
(cohort A) and a population-based cohort (cohort B), we sought to
determine whether the observed associations were specific to EPP
treated with weight gain-inducing antipsychotics.

METHODS
Subjects
Early psychosis cohort. EPP (i.e., illness duration <5 years) were recruited
from the Treatment and Early Intervention in Psychosis Programme (TIPP)
[42] and from the PsyMetab cohort [43].
EPP within the first 3 years of treatment for a psychotic disorder and

having met psychosis threshold according to the Comprehensive Assessment
of At Risk Mental States criteria [44] were selected. A total of 42 patients who
had an available brain magnetic resonance imaging (MRI) scan (during the
first year after the introduction of antipsychotics) and who had an
assessment of impulsivity were included in the current study. Based on
previous findings from our group, patients were classified into a high (HWEPP,
N= 23) or low (LWEPP, N= 19) weight gain group if they gained more than
5% or less than 5% of their initial weight after one month of antipsychotic
treatment, respectively [45]. Patients included in the PsyMetab and TIPP
cohorts gave their written informed consent to participate in the studies.
PsyMetab and TIPP protocols were approved by the local Ethics Committee.

Cohort A. A total of 102 healthy psychotropic-naïve participants with no
history of psychotic or substance use disorders were recruited from the
same geographic area as in the TIPP programme. Only body mass index

(BMI) was available for cohort A. Therefore, groups were formed based on
participants’ BMI, with 83 classified as normal BMI < 25 kg/m2 and 19 as
high BMI ≥ 25 kg/m2. Informed written consent in accordance with the
institutional guidelines was obtained for all participants.

Cohort B. CoLaus|PsyCoLaus is a prospective cohort study designed to
investigate cardiovascular risk factors and mental disorders as well as their
associations in the community. A total of 6734 individuals aged 35 to 75
years were randomly selected according to the civil register of the city of
Lausanne, Switzerland, between 2003 and 2006 and underwent a physical
[46, 47] and psychiatric evaluation [48]. Since the baseline assessment,
three follow-up evaluations were completed which took place from 2009
to 2013 (first follow up or F1), 2014 to 2018 (second follow up or F2) and
2018 to 2021 (third follow up or F3). The present analyses included data
from the F1 and F2 evaluations. Computational brain anatomy analyses
were confined to participants who accepted an MRI exam (BrainLaus,
N= 1145). For the present study, the included participants (N= 875) were
classified as follows, based on weight gained from the first to the second
follow-up. Given the larger interval between two measures in cohort B, a
7% weight gain criterion was applied [49]: (i) the high weight gain group
(HWcohortB, N= 729) if they had a weight gain of ≥7% [49] or more during
the period between the first and second follow-up, and (ii) the low weight
gain group (LWcohortB, N= 146) if they gained <7%. A total of 98
participants with weight loss >−7% and 172 with age ≥65 years of age at
the first follow-up exam were excluded to avoid brain changes due to
significant weight loss [50–52] and aging [53–57]. All participants gave
written informed consent, and the study was approved by the local
Institutional Ethics Committee.

Clinical assessments
In EPP, weight measurements were completed at baseline, after one
month of treatment, and at the time of MRI scanning. Cohort A weight was
assessed only once during an interview. The consumption of cannabis was
assessed with the Case Manager Rating Scale (CMRS) [58] in both EPP and
cohort A. In cohort B, measures of weight, BMI and smoking were collected
from standardized interviews and anthropometric assessments resulting in
a comprehensive set indicative of disease history and cardiovascular risk
[46].
Psychopathology and functional levels were scored with the Global

Assessment of Functioning (GAF) scale, the Positive and Negative
Syndrome Scale (PANSS) [59] and the Montgomery-Åsberg Depression
Rating Scale (MADRS) [60].
Impulsivity in EPP was assessed in the early psychosis cohort using the

PANSS score for “poor impulse control (G14)” [61]. This item assesses the
degree of impulsivity on a scale from 1 to 7 (1 being the absence of
impulsivity and 7 an extreme level of impulsivity). Duration of illness (DOI)
was defined as the time between reaching the psychosis threshold for the
first time and the time of assessment. Poor impulse control score was not
available in cohort A. In cohort B, impulsivity control score was constructed
using the Neuroticism and the Conscientiousness factors of the NEO-Five-
Factor Inventory-Revised (NEO-FFI-R) [62] completed at F1. Impulsivity
control scores were calculated as the square root of the sum of the squares
of the normalized scores for Neuroticism and the normalized inversed
scores for Conscientiousness.
Regarding plasma analyses, blood samples were subjected to two

rounds of centrifugation. Firstly, a 10-min spin at 400 g and 4 °C was
performed, and the resulting supernatant was collected in a fresh falcon
tube. Secondly, the tube was centrifuged again at 3000 g for 10min at 4 °C,
and 500 μl aliquots were prepared. These aliquots were subsequently
frozen at −80 °C until PAI-1 and MIF analysis. Plasma levels of PAI-1 and
MIF were measured using ELISA kits (-ab157528, Abcam’s PAI-1 ELISA kits,
Abcam, Cambridge, MA, USA; Human Active MIF ELISA Kit, R&D System,
Abingdon, United Kingdom). All assays were performed according to the
manufacturer’s instructions in EPP and cohort A.

MRI acquisition and analysis
In both EPP and cohort A, MRIs were performed with 3 Tesla magnetic
resonance scanner (Siemens Medical Solutions, Erlangen, Germany)
equipped with 32-channel head coil. Each scanning session included a
magnetization-prepared rapid acquisition gradient echo (MPRAGE) T1-
weighted sequence and a 9-minute gradient echo-planar imaging (EPI)
sequence that was sensitive to BOLD (blood-oxygen-level-dependent)
contrast. The MPRAGE acquisition exhibited a 1mm in-plane resolution
and 1.2 mm slice thickness, encompassing 240 × 257 × 160 voxels
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(TR= 2.30ms, TE= 2.98ms, and TI= 900ms). In contrast, the functional
MRI (EPI) acquisition employed an isotropic 3.3 mm voxel size, with a
0.3 mm inter-slice gap, covering a total of 64 × 58 × 32 voxels (TR= 1920
ms and TE= 30ms). During the resting-state fMRI (rs-fMRI) recordings,
patients were instructed to lie calmly in the scanner with their eyes open,
without fixating on any specific thought. The rs-fMRI sequence was
initiated at the beginning of the session, immediately following the
acquisition of the structural scan, with the accompaniment of an
experienced psychologist for all patients throughout the scanning process.
Ultimately, the acquisition procedure yielded a sequence of 280 BOLD
images for each participant.
During the study, there was a routine MRI-system upgrade from the

MAGNETOM-Trio to the MAGNETOM-Prisma system. Imaging parameters
were precisely matched before and after the upgrade, and the same 32-
channel head coil was used.
In order to obtain the sample size for a robust study and avoid scan bias,

the MRI data was harmonized using the empirical Bayes approach ComBat
- Combining Batches [63]. The global network analyses were repeated on
data acquired on the MAGNETOM-Trio or on the MAGNETOM-Prisma
system only to further exclude major effects of the scanner upgrade on the
results. Additional information on the scanner effect could be found in
supplementary material.
fMRI data were processed according to a state-of-the-art pipeline that

involved several steps. These steps included the removal of the initial 5
time points to ensure signal stability, addressing slice-timing discrepancies,
correcting for motion artifacts by regressing out six motion parameters,
averaging signals from white matter and cerebrospinal fluid, performing
linear detrending, and applying bandpass filtering within the frequency
range of 0.01–0.1 Hz. All of these processing steps were carried out using
the CMTK software [64]. Time series have been averaged over the
Freesurfer (v.6.0.0, https://surfer.nmr.mgh.harvard.edu/) cortical regions.
Functional connectivity has been obtained by computing the Pearson’s
correlation between the mean temporal signals from each pair of brain
regions. Four regions of interest have been selected: the inferior frontal
gyrus, the putamen, the pallidum, and the primary motor cortex.
All imaging data for cohort B were acquired on the very same 3 T whole‐

body MRI system (MAGNETOM Prisma; Siemens Medical Systems, Erlangen,
Germany) using a 64‐channel radiofrequency receive head coil and body
coil for transmission. Methods regarding the acquisition of cohort B were
described somewhere else [65]. We sampled regional volume average
values in individuals’ native space using factorization-based image labelling
[66] after performing automated tissue classification using the multi-channel
option of SPM12s “unified segmentation”. Aiming to adjust all regional
values for the global effect of head size, we estimated its proxy – the total
intracranial volume (TIV) from the sum of GM, WM, and CSF volumes [67].

Statistical analysis
Descriptive data are shown as numbers and percentages for categorical
variables or median and interquartile range (IQR) for continuous variables.
To compare between groups, Wilcoxon-Mann-Whitney rank-sum test or
the Chi-squared test were used, depending on the variable type.
The association between weight gain and the poor impulse control

score was tested using linear regression model adjusted for covariates
(age, sex, smoker status and weight at baseline for EPP or at F1 for
cohort B).
Weight gain differences (HWEPP vs. LWEPP or HWcohortB vs. LWcohortB) or

the correlation between weight gain (%) for EPP, or BMI (<25 kg/m2 vs.
≥25 kg/m2) for cohort A, and brain volumes of region of interest (ROI),
were independently tested using the general linear model at each voxel and
the multiple regression analyses respectively, as implemented in Randomise
(http://fsl.fmrib.ox.ac.uk/). Age, gender, and TIV were set as nuisance factors
in the model. All results were corrected for multiple comparison Type I error
with a non-parametric cluster-size based procedure [68, 69].
In cohort B, the associations between weight gain group or BMI status

(<25 vs. ≥25 kg/m2) and GM volumes were tested with general linear
regression analyses, adjusted for age, sex, and TIV.
The relationship between weight gain (%) and the fronto-striatal

functional connectivity (RSFC) (i.e., the inferior frontal gyrus, putamen,
pallidum and primary motor cortex) was assessed with the linear
regression model in EPP and in cohort A. RSFC values were converted
into Z-scores.
For inflammatory biomarker analyses, linear models were used to examine

the association between plasma levels of PAI-1, or MIF and weight gain (%) in
the EPP cohort, or BMI in the cohort A, adjusted for age and sex. Associations
between inflammatory biomarkers and poor impulse scores were analysed.

Considering that inflammatory markers have been associated with impulsive
behaviour [70–72], we sought to investigate whether there is an association
between PAI-1 or MIF levels and poor impulse control.
Analyses were performed in R (version 4.0.2; RStudio, Inc; Boston,

Massachusetts). The statistical significance was set at a P ≤ 0.05.

RESULTS
Study demographics
Among 42 EPP, high (≥5%) and low (<5%) weight gain were
reported for 19 and 23 patients, respectively. Both groups
(Table 1) were of similar age and sex (HWEPP: 37%; LWEPP: 35%
women) and did not differ in terms of illness duration or in
terms of treatment. There was no difference between the
groups in the PANSS negative, PANSS positive and PANSS
general scores, nor for total MADRS score or GAF score. EPP
were younger than cohort A (N= 102) with a median age of 23
years (IQR: 21–27) versus 26 years (IQR: 22–33) for cohort A
(P= 0.002). EPP had a lower level of education (13 years vs. 16
years; P < 0.001) and were more likely to smoke (59% vs. 8%;
P < 0.001) and to use cannabis (29% vs. 5%; P < 0.001) when
compared to cohort A (Supplementary Table 1).
Within cohort A, there were no statistical differences for sex,

smoking status and cannabis use between the high (≥25 kg/m²;
N= 19) and normal BMI groups (<25 kg/m²; N= 83). There were
differences in age, level of education and BMI between the two
groups (Supplementary Table 2).
In cohort B, which included middle-aged individuals (N= 875,

median 51 years, IQR: 46–57), there were differences for age
(median 48 vs. 51 years, respectively; P < 0.001), sex (60% vs. 49%
women; P= 0.01), and BMI during follow-up 2 (median 29 vs.
25 kg/m2; P < 0.001; Supplementary Table 3) between HWcohortB

and LWcohortB.

Association between the poor impulse control score and
weight gain
In the EPP, higher weight gain was significantly associated with a
poor impulse control when corrected by age, sex, baseline weight
and cigarette smoker status (β= 1.35, P= 0.03; Table 2). In cohort
B, there was no association between the impulsivity control score
at F1 and weight gain between F1 and F2 (β= 0.01, 95%
CI=−0.36–0.38, P= 0.94, data not shown), when corrected by
age, sex, smoker status and weight at F1.

Differences in brain regions related to impulsivity
In the EPP, spatial clusters of significantly reduced GM in the
frontal lobe (Pcorrected= 0.007) were found in the HWEPP group
(N= 19) compared to the LWEPP group (N= 23; Fig. 1a). No
significant GM volume group difference was found in the striatum.
Considering the whole early psychosis group, a positive correla-
tion was identified by multiple regression analysis between the
GM volume of the striatum and weight gain (%) after 1 month of
treatment (Pcorrected= 0.048; Fig. 1b).
As no longitudinal data are available for cohort A, associations

were examined between brain structures and functions with BMI
at the time of the scan (normal BMI < 25 kg/m² vs. high
BMI ≥ 25 kg/m²). No associations based on BMI (continuous and
dichotomous), or ROIs (data not shown) were found.
No association was found in cohort B, nor between HWcohortB

and the frontal lobe or the striatum volumes (Supplementary
Table 4). When analysing participants according to BMI groups
(BMI < 25 kg/m² vs. BMI ≥ 25 kg/m²), no statistical differences nor
associations were shown with impulsivity related brain regions
(data not shown).

Correlation between fronto-striatal RSFC and weight gain
Pearson correlation was performed with the RSFC between the
areas of the fronto-striatal circuit areas. In the early psychosis
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group, we observed a negative correlation between weight gain
(%) and the RSFC of the right primary motor cortex to the pallidum
(R=−0.32; P= 0.04; Supplementary Fig. 1). Considering the whole
cohort A, no correlations were observed between BMI and RSFC
(data not shown).

PAI-1 and MIF markers
In EPP, higher PAI-1 levels were measured in the HWEPP (N= 11) as
compared to the LWEPP (N= 15) group (34 vs. 14 U/mL; P= 0.02;
Table 3). In linear models, after correction for age and sex, weight
gain was associated with an increase in PAI-1 levels (β= 4.9;
P= 0.002; Table 4). This association was absent for MIF levels
(N= 12 for HWEPP, N= 12 for LWEPP; P= 0.66). The association
between PAI-1 and poor impulse control was investigated,
however, no significant associations were found.
In cohort A, a difference in PAI-1 levels was observed between

low and high BMI groups (3.5 vs. 13 U/mL; P= 0.04; Table 3). On
the other hand, after adjustment for age and sex, BMI was not
associated with PAI-1 or MIF levels in linear models (Supplemen-
tary Table 5).
Higher PAI-1 levels were measured in EPP as compared to

subjects from cohort A (20 vs. 4.0 U/mL; P < 0.001; Table 3), and no
difference in MIF levels was observed between EPP and cohort A.
The association between PAI-1 or MIF and poor impulse control

was investigated, but no significant associations were found.

DISCUSSION
Our study on early psychosis patients treated with antipsychotics
confirms associations between weight gain and poor impulse control,
brain networks governing impulsivity and chronic inflammation.
In our study, we show that EPP treated with antipsychotics, the

high and rapid weight gain was associated with poor impulsive

Table 2. Associations between poor impulse control scores and
weight gain (%) in early psychosis patients (N= 42).

Weight gain (%)

Predictors β 95%CI P

(Intercept) 0.61 −10.52–11.73 0.91

Age (years) 0.07 −0.17–0.30 0.57

Women 0.42 −2.36–3.20 0.76

Smoking status (yes) −1.54 −3.83–0.74 0.18

Weight at baseline (kg) 0.01 −0.12–0.14 0.86

Poor impulse control scores
(PANSS G14)

1.35 0.13–2.56 0.03

After correcting for age, sex and smoking status, weight gain was
associated with poor impulse control scores. Estimates with 95%
confidence intervals (CI) and P-values are reported from linear regression
models. P < 0.05 in bold.
β beta coefficient, CI confidence interval, PANSS G14 positive and negative
syndrome scale, poor impulse control score.

Table 1. Demographic and clinical characteristics of early psychosis patients (N= 42).

HWEPP (N= 19) LWEPP (N= 23) Pa

Women, N (%) 7 (37%) 8 (35%) 1

Age median (IQR), years 24 (21–27) 22 (21–27) 0.33

Weight at baseline median (IQR), kg 69 (63–75) 71 (60–74) 0.63

BMI at baseline median (IQR), kg/m² 24 (20–25) 22 (21–24) 0.49

Duration of illness median (IQR), yearsb 0.77 (0.42–1.4) 0.77 (0.54–2.0) 0.63

Years of education median (IQR), years 13 (12–16) 12 (10–14) 0.33

Years of education father median (IQR), years 14 (9–16) 12 (9–17) 0.84

Years of education mother median (IQR), years 12 (9–15) 12(8–12) 0.44

Cannabis users, N (%) 6 (32%) 6 (27%) 0.96

Smoking, N (%) 11 (58%) 14 (61%) 1

Medication:

Amisulpride 4 (21%) 6 (26%) 0.45

Aripiprazole 4 (21%) 2 (8.7%)

Lurasidone 1 (5.3%) 0 (0%)

Olanzapine 1 (5.3%) 2 (8.7%)

Quetiapine 8 (42%) 8 (35%)

Risperidone 1 (5%) 5 (22%)

PANSS positive score median (IQR) 12 (11–16) 13 (9.5–15) 0.75

PANSS negative score median (IQR) 16 (13–18) 14 (11–23) 0.93

PANSS general score median (IQR) 33 (27–40) 32 (24–36) 0.68

GAF score median (IQR) 50 (45–68) 48 (41–59) 0.42

MADRS total score median (IQR) 12 (7.0–16) 13 (5.0–19) 0.94

Data are medians (IQR) or numbers (percentage).
BMI body mass index, HWEPP high weight gain group, IQR interquartile range, LWEPP low weight gain group, MADRS Montgomery-Åsberg depression rating
scale, PANSS positive and negative syndrome scale.
aP-values for statistical comparisons between HWEPP/LWEPP, Wilcoxon–Mann–Whitney rank-sum tests for continuous variables and chi-square test for
categorical variable; P < 0.05 in bold.
bDuration of illness at the time of the magnetic resonance imaging, defined as the temporal lapse (years) between the crossing of psychosis threshold
(according to the Comprehensive Assessment of At Risk Mental States) and the date of the magnetic resonance imaging.
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control. This suggests that patients with increased impulsiveness
have difficulties controlling their eating behaviour. Such an
association was not found in the population-based cohort B,
which suggests a specific mechanism in EPP. Then, by analysing
brain regions related to impulsivity and reward, a decrease in
frontal lobe GM volumes in the HWEPP gain group was observed,
as well as a positive correlation between weight gain and the
striatum GM volume. These results are consistent with the
previously reported decreased frontal GM volume following
antipsychotic therapy [73] and reported positive correlation
between striatal [30] volume and weight gain induced by
antipsychotic treatment. The absence of frontal and striatal
volume changes in cohort A and cohort B suggests that changes
of volume in these regions are specific to weight gain in the early
psychosis cohort. Altogether, the present results support the
hypothesis that brain region related to impulsivity and reward,

namely fronto-striatal structures, and poor impulse control scores
are associated with weight gain induced by antipsychotics.
Our study extends previous findings by additionally investigat-

ing the properties of fronto-striatal connectivity. A negative
correlation between weight gain and RSFC in the fronto-striatal
circuits in the EPP group was identified. A functional MRI study in
healthy volunteers exposed to one-week treatment with olanza-
pine showed increased responses to cues predicting rewarding
liquids, while activations of striatum activities elicited by the image
of tasteless liquid decreased. This suggests that striatum activity
may be one of the mechanisms leading to weight gain induced by
antipsychotics [31]. Of note, no correlation between BMI and RSFC
in the fronto-striatal circuits was found in healthy individuals from
cohort A. In patients with schizophrenia, there appears to be a
significant association between emotion-related impulsivity (posi-
tive and negative emotions) and brain connectivity. In particular,

Fig. 1 Volume differences in early psychosis patients (N= 42). a The clusters of voxels result from the comparison between the high weight
gain group (HWEPP) and the low weight gain group (LWEPP) in the frontal lobe: the orange cluster located on the left frontal lobe represents
areas of lower grey matter volume in HWEPP (contrast: HWEPP < LWEPP, MNI: 132,161,76, Pcorrected= 0.007). The colour bar representing the
t statistic. b The clusters of voxels result from the correlation between weight gain and volume of grey matter in the striatum: the yellow
cluster located on the right striatum represents areas of higher grey matter volume (MNI: 69,142,65, Pcorrected= 0.048). The colour bar
represents the t statistic.
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one study has shown that schizophrenia patients with higher levels
of emotion-related impulsivity have reduced connectivity between
the ventral prefrontal and limbic/cognitive control regions and
within the ventral prefrontal areas [74]. In contrast, increased
connectivity has been observed between emotion-related impul-
sivity and sensory regions such as the middle occipital gyrus [74]. It
is also worth noting that this issue extends beyond schizophrenia,
as similar patterns have been observed in conditions such as binge
eating disorder, where greater impulsivity in relation to negative
emotions has been found [75]. Future research should examine
these multiple dimensions of impulsivity in psychotropic drug-
induced weight gain in patients with early psychosis.
The present study also sought to investigate whether PAI-1 and

MIF levels, as markers of inflammation, were elevated in patients
with higher weight gain. In the EPP, PAI-1 levels were significantly
higher in patients who had significant weight gain after one
month of treatment. Prospective studies have shown that PAI-1 is
a predictor for future cardiovascular events [76, 77], and this is in
line with a previous study that predicted cardiovascular events in
patients who gained more than 5% of their baseline weight after
1 month of the introduction of an AP at risk [45]. The present
study did not identify an association between MIF levels and
changes in weight, contrary to a previous study that identified
such an association [38]. The previous study took into account MIF
expression, whereas our study just examined plasma analyses,
which could be one reason for the discrepancy. In contrast to
previous studies [39–41], no difference was also noted between
MIF in EPP and cohort A. In one study, there was a difference in
MIF levels between controls and patients who were naïve or not
treated with AP for more than 6 weeks prior to sample collection
[39]. Our analyses included patients who were being treated with
AP drugs, which could explain the contradictory results. In
addition, one study with older participants, including 86 patients

with schizophrenia (mean age ± SD, 54.3 ± 10.3 years) and 51
controls (48.4 ± 9.5 years), observed that MIF levels were unrelated
to the schizophrenia group when compared to the control group
[41] after regression analyses, which is consistent with our
findings. Although no significant association was found between
PAI-1 or MIF levels and poor impulse control, it is important to
note that the limited number of patients with available PAI-1 or
MIF samples may have contributed to these null findings. In
addition, the nature of the inflammatory markers and the
multidimensional aspect of the impulsivity scores may have
influenced our results compared to previous studies. Future
research, with larger patient cohorts and specific facets of
impulsivity [78], may provide a more comprehensive exploration
of potential associations with PAI-1 or MIF.
Some limitations of our study must be acknowledged. First,

results are limited by the cross-sectional design of the study, the
MR scan being available only after the introduction of the
antipsychotic. Further longitudinal studies are required to
elucidate whether or not the same associations would be
observed with MR scans obtained before the treatment. Second,
this is an observational study and no causal relationship can be
established between weight gain, impulsivity and brain structures.
Third, the MRI technique for measuring changes in frontal and
striatum volumes was different in cohort B (analyses on averaged
volumes from selected ROIs), with an older population (median 56
years, IQR: 51–62) and with a long duration between weight
measurements (median 63 months, IQR: 63–66), which differs from
the other cohorts. Fourth, the assessments of impulsivity control
scores did not rely on specific scales designed to measure this
personality characteristic and differed between EPP and cohort B,
with the former relying on a single PANSS item and the latter
using the two dimensions of the NEO-FFI-R, which may account
for differential findings between the two cohorts. Fifth, there were

Table 3. Macrophage migration inhibitory factor and plasminogen activator inhibitor-1 levels in early psychosis patients and in the cohort A.

EPP Cohort A Total EPP Total cohort A Pa

HWEPP LWEPP Pb Normal BMI High BMI Pc

MIF levelsd 69 (45–110) 49 (34–62) 0.2 46 (36–69) 46 (34–53) 0.61 56 (34–89) 46 (35–66) 0.25

PAI-1 levelsd 34 (21–67) 14 (4.9–27) 0.02 3.5 (1.9–9.6) 13 (5.2–28) 0.04 20 (6.0–35) 4.0 (2.1–11) <0.001

BMI body mass index, EPP early psychosis patients, HWEPP high weight gain group, IQR interquartile range, LWEPP low weight gain group, MIF macrophage
migration inhibitory factor, PAI-1 plasminogen activator inhibitor-1.
P < 0.05 in bold.
aP-values for statistical comparison between Total EPP/Total cohort A. MIF: Data were not available for 18 out of 42 EPP patients and 32 out of 102 participants
of cohort A. PAI-1: Data were not available for 16 out of 42 EP patients and 32 out of 102 participants of cohort A.
bP-values for statistical comparison between HW/LW from the EPP. MIF: Data were not available for 7 out of 19 HW patients and 11 out of 23 LW patients. PAI-1:
Data were not available for 8 out of 19 HW patients and 8 out of 23 LW patients.
cP-values for statistical comparisons between Normal BMI group/High BMI group from cohort A. MIF: Data were not available for 24 out of 83 participants with
normal BMI and 8 out of 19 participants with high BMI. PAI-1: Data were not available for 22 out of 83 participants with normal BMI and 8 out of 19 participants
with high BMI.
dData are medians (IQR), MIF levels are expressed in ng/mL and PAI-1 levels in U/mL.

Table 4. Linear models for Macrophage migration inhibitory factor and plasminogen activator inhibitor-1 levels in early psychosis patients (N= 42).

MIF (ng/mL) PAI-1 (U/mL)

Predictors β 95% CI P β 95% CI P

(Intercept) −31 −177–115 0.66 24 −27–75 0.34

Age (years) 3.9 −1.6–9.4 0.15 −0.90 −2.9–1.1 0.36

Women −4.2 −52–44 0.86 9.3 −8.9–27 0.30

Weight gain (%) 1.7 −6.1–9.4 0.66 4.9 2.0–7.7 0.002

Estimates with 95% confidence intervals (CI) and P-values are reported from linear regression models. P < 0.05 in bold.
β beta coefficient, BMI body mass index, MIF macrophage migration inhibitory factor, PAI-1 plasminogen activator inhibitor-1, PAI-1 plasminogen activator
inhibitor-1.
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few plasma samples available for measuring MIF and PAI-1 levels
in EPP. Although further studies using larger samples of patients
with early psychosis are still needed, the current results may
represent the first analysis of PAI-1 levels associated with weight
changes induced by antipsychotics. To better understand the
impact of treatment on weight gain, additional studies are
required, including pre- and post-treatment comparisons.
The strength of the present study lies in the inclusion of

patients with early psychosis and the availability of two additional
cohorts with similar measures, which allowed us to test whether
the findings derived from EEP can be generalized to unaffected
individual or mostly untreated people from the general popula-
tion. In addition, analyses in both population-based cohorts
support the hypothesis that these differences in the fronto-striatal
GM volumes, poor impulse control scores and in PAI-1 levels are
only present in EPP and absent in the general population.
In summary, the present findings suggest that inter-individual

variability in rapid weight gain induced by antipsychotics in EPP is
associated with poor impulse control and with differences in brain
regions related to impulsivity and is specific to the psychiatric
population. Future research in this area, also confirming the
observed association with the inflammatory marker PAI-1, may
provide new insights into the underlying neurobiology of
antipsychotic-induced weight gain.
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