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Highligths 

• Aging individuals (HO) show increased cortical excitability as compared to younger adults 

(HY); 

• HO’s neural responses to fully predictable isochronous tones were larger and more variable 

than HY; 

• HO showed reduced phase coherence in delta- and theta-band oscillations during listening 

to auditory sequence;  

• Altogether, these results show altered sensory and timing processes in aging. 
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Abstract 

Deterioration in the peripheral and central auditory systems is common in older adults and often 

leads to hearing and speech comprehension difficulties. Even when hearing remains intact, 

electrophysiological data of older adults frequently exhibit altered neural responses along the 

auditory pathway, reflected in variability in phase alignment of neural activity to speech sound 

onsets. However, it remains unclear whether these challenges in speech processing in aging stem 

from more fundamental deficits in auditory and timing processes. Here, we investigated if and how 

aging individuals encoded temporal regularities in isochronous auditory sequences presented at 

1.5Hz, and if they employed adaptive mechanisms of neural phase alignment in anticipation of 

next sound onsets. We recorded EEG in older and young individuals listening to simple 

isochronous tone sequences. We show that aging individuals displayed  increased amplitudes and 

variability in time-locked responses to sounds, an increased 1/F slope, but reduced phase-

coherence in the delta and theta frequency-bands. These observations suggest a lack of repetition-

suppression and inhibition when processing repeated and predictable sounds in a sequence and 

altered mechanisms of continuous phase-alignment to expected sound onsets in aging. Given that 

deteriorations in these basic timing capacities may affect other higher-order cognitive processes 

(e.g., attention, perception, and action), these  results underscore the need for future research 

examining the link between basic timing abilities and general cognition across the lifespan. 
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1. Introduction 

‘Wait, what? Can you repeat it?’ 

A cascade of biochemical, neuro-functional and -anatomical changes takes place in aging. 

Deteriorations in the peripheral (e.g., loss of hair, ganglion and/or striatal cells) and central 

auditory systems [1,2] are particularly common and typically lead to a decline in auditory 

processing capacity [3–6]. However, structural brain changes often extend more broadly, and 

include widespread reductions in grey and white matter volume across the brain [7], as well as in 

cortico-subcortical connectivity [8]. Moreover, modifications within striatal-frontal networks [9], 

under-recruitment of the cerebellum during challenging cognitive tasks [10], and alterations in 

cerebellum-basal ganglia connectivity [11] have been linked to diminished cognitive control [12] 

and a variety of motor and cognitive deficits [11]. However, there is significant heterogeneity in 

the trajectories of neurocognitive and structural decline, stemming from substantial inter-

individual variability in risk and modulating factors [13]. Furthermore, there exists variability in 

the capacity to compensate for cognitive decline by recruiting additional neural resources and/or 

adopting compensatory cognitive strategies [13]. For example, despite inevitable hearing loss 

[1,2], speech comprehension is largely preserved in older adults [14,15]. Performance, however, 

declines rapidly in challenging listening conditions, and is accompanied by decreased activation 

of the auditory cortex [15], inferior frontal regions, and reduced connectivity within the speech 

network [14]. Aging individuals tend to engage more working memory and attentional networks 

(e.g., frontal and prefrontal regions) in a compensatory manner [15]. Even in the absence of hearing 

loss, evidence confirms general difficulties in encoding simple and complex sounds, beginning in 

the brainstem [16] and in the inferior colliculus [17]. Auditory nerve modeling has demonstrated 

that the deterioration of auditory nerve fibers and loss of inner hair cells impact the brain’s capacity 

to precisely phase-lock (i.e., align) neural responses to sound onsets [18], resulting in reduced 

amplitude and phase-coherence of brainstem responses to simple and complex sounds [16]. This, 

in turn, can affect speech processing, as indicated by variable brainstem responses, decreased 

phase-locking to speech sounds [6,19], and a reduced connectivity between the brainstem and 

auditory cortex [4]. The weakened sensitivity to auditory input via the brainstem is typically 

compensated by increased excitability of the auditory cortex [20] and altered responses to sounds 

[3,6,21–24]. Consequently, event-related potentials (ERPs) recorded by electroencephalography 

(EEG) exhibit enhanced amplitude responses in aging individuals, particularly in the N100 
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component [3,20,21,23,25–27]. There is consensus in associating these larger ERP responses with 

the reduced ability to employ ‘sensory gating’ [26], an adaptive mechanism to suppress cortical 

responses to repetitions of predictable stimuli [21,27]. Furthermore, variability in the latency of 

event-related responses to sounds [25,28] and the reduction in steady-state responses to auditory 

metronomes [29,30] suggest deteriorations in the encoding of the precise timing of sensory events, 

and in internalizing  temporal regularity in auditory sequences. At the same time, there is 

complementary evidence showing greater neural synchronization with amplitude and frequency 

modulations of sounds in aging individuals and increased sensitivity to temporal regularities, as 

revealed by metrics of phase concentration [17,22,24,31]. Larger and less variable event-related 

responses [23] were, however, typically accompanied by reduced sustained neural activity to sound 

modulations in continuous listening scenario [22,24,32]. These partially contradicting 

observations leave  open the question of whether aging impacts the basic capacities to detect 

temporal regularities in the sensory environment, generate predictions about the timing of future 

events, and employ these predictions to optimize sensory processing and perception. In turn, this 

perspective prompts the question: are difficulties in speech comprehension observed in older adults 

linked to speech-specific processing difficulties or to more fundamental temporal processing 

deficits?  

We aimed to investigate whether older adults detect, encode, and employ temporal regularities in 

the sensory environment to generate predictions and optimize sensory processing similarly to 

younger adults. We addressed this question by recording EEG in older and younger adults while 

they listened to isochronous tone sequences and performed a deviant counting task. The task served 

the scope to focus their attention on the formal properties of the auditory sequences, while diverting 

their attention from temporal regularity. As such, we did not directly instruct participants to process 

the timing of sound onsets. We hypothesized that aging would be associated with increased 

variability in event-related responses to tone onsets, as indexed by metrics of N100 variability, and 

reduced Inter-Trial Phase Coherence (ITPC) in delta-band oscillatory activity. Furthermore, we 

hypothesized that older individuals would fail to show a continuous phase-alignment  while 

listening to isochronous sequences. Finally, we expected a steeper 1/F of the Fourier spectrum in 

the aging group, indicative of increased cortical excitability. Combined results from event-related, 

spectral parametrization, and ITPC analyses confirmed increased cortical excitability and 

hypersensitivity to sound onsets, and reduced phase coherence in delta- and theta- frequency bands 
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in the aging group. Altogether, these observations suggest that aging alters basic sensory and 

temporal processing.  

These limitations in fundamental timing capacities in older adults might critically affect not just 

basic auditory processing but also higher-order cognitive functions such as speech processing. 

Consequently, the current results motivate future research on the impact of altered timing 

capacities on cognition in aging and across the lifespan. 

 

2. Materials & Methods 

2.1. Participants 

Forty-three native German speakers participated in this study and signed written informed consent 

in accordance with the guidelines of the ethics committee of the University of Leipzig and the 

declaration of Helsinki. Participants were grouped into 18 younger (HY; 9 females; 21–29 years 

of age, mean 26.2 years) and 18 older (HO; 9 females; 50-78 years of age, mean 60 years) adults. 

All participants were right-handed, had normal or corrected-to-normal vision, and no hearing 

deficits. Participants received 8€/h for taking part in the study. Participants were not asked to 

indicate musical expertise and/or daily music listening choices.  

2.2. Experimental design and procedure 

Participants listened to 96 sequences comprising 13-to-16 tones (F0 = 400Hz, duration = 50ms, 

amplitude = 70dB SPL; standard STD), presented in one recording session of approximately 

25min. Each tone sequence included one or two deviant tones (DEV), attenuated by 4dB relative 

to the STD tones. The inter-onset-interval between successive tones was 650ms, resulting in a 

stimulation frequency (Sf) of 1.54Hz, and a total sequence duration of 8.45-10.4s (13 to 16 tones 

* 650ms; Fig. 1A). Participants were seated in a dimly lit soundproof chamber facing a computer 

screen. Every trial started with a fixation cross (500ms), followed by an auditory sequence. The 

cross was continuously displayed on the screen to prevent excessive eye movements while 

listening to the auditory sequences. At the end of each sequence, a response screen appeared and 

prompted participants to immediately press a response button to indicate whether they had heard 

one or two softer tones. After the response, there was an inter-trial interval of 2000ms. A session 

was divided into two blocks of approximately 10 minutes each, with a short pause in between 
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(about 25min total duration). Stimulation materials and experimental setups thus mirror those 

adopted and previously described [33–35]. 

2.3. EEG recording 

The EEG was recorded from 59 Ag/AgCl scalp electrodes (Electrocap International), amplified 

using a PORTI-32/MREFA amplifier (DC set to 135Hz), and digitized at 500Hz. Electrode 

impedances were kept below 5kΩ. The left mastoid served as an online reference. Additional 

vertical and horizontal electro-oculograms (EOGs) were recorded.  

 

2.4. Data Analysis 

2.4.1. EEG Preprocessing 

The preprocessing pipeline and the analysis approach adopted here mirror and expand those 

described previously [33–35]. EEG data were analyzed in MATLAB with a combination of custom 

scripts and functions and the FieldTrip toolbox [36]. Data were first re-referenced to the average 

of the two mastoid electrodes and band-pass filtered with a 4th order Butterworth filter in the 

frequency range of 0.1-50 Hz (ft_preprocessing). Eye-blinks and other artifacts were identified 

using independent component analysis. This semi-automated routine combined two steps: in the 

first iteration, we employed ‘fastICA’ (as implemented in FieldTrip) to decompose the original 

EEG signal into independent components (N= number of EEG channels -1), then automatically 

identified components with a strong correlation (>.4; labeled as ‘bad’ components) with the EOG 

time-courses, removed them with ‘ft_rejectcomponent’, and then reconstructed the EEG time-

course. In a second step, we again used ‘fastICA’ but now with a dimensionality reduction to 20 

components. We visually inspected these components via ‘ft_rejectvisual’, and selected ‘outliers’ 

(e.g., based on max values and z-scores). The 20 components were visually inspected after plotting 

their topographies and time-series, and a new selection of ‘outliers’ was defined. Lastly, we 

visually inspected the two lists of outliers and decided which components had to be removed. On 

average, we removed 2 components via ‘ft_rejectcomponent’. Then EEG time-series were 

reconstructed. In the next preprocessing step, we performed artifact subspace reconstruction as 

implemented in the ‘pop_clean_rawdata’ function in EEGlab, and with the 'BurstCriterion' 

parameter set to 20 (all other parameters were set to ‘off’). We then employed an automatic channel 

rejection procedure to remove noisy channels. In this routine, we calculated the median variance 
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across channels (and excluding EOG channels), and ‘outliers’ were then defined as exceeding 

2.5*median variance. Next, we implemented an artifact suppression procedure [33–35], a cleaning 

routine that interpolates noisy (>absolute mean+4*SD) time-windows on a channel-by-channel 

basis. Lastly, data were low-pass filtered at 40Hz via ‘ft_preprocessing’, segmented to each 

auditory sequence (starting 4s before the first tone onset and ending 4s after the last tone onset), 

and downsampled to 250Hz.  

2.4.2. Event-related analyses 

We assessed the amplitude, latency, and variability of neural responses to tone onsets along the 

auditory sequences by adopting an  event-related potential (ERP) approach. Thus, sequence-level 

data as obtained from preprocessing were further segmented into time-windows ranging from -1 

to 8s relative to the first tone onset in each auditory sequence and later underwent a low-pass filter 

with a 20Hz frequency cutoff (‘ft_preprocessing’). Next, we centered the data by mean correcting 

each trial by a global average (calculated from -1 to 8s and across trials) and performed ‘peak 

analyses’. Thus, we calculated the participant-, trial-, and channel-level peak amplitude, latency 

and variability of the N100 component of the ERP [3,20,21,23,25–27]. For doing so, we defined a 

60ms-long time-windows centered at 100ms. Within this time-window we obtained the amplitude 

peak and its latency (the max value and its time point). Next, we calculated the intra-individual 

variability (peak amplitude and latency) across trials and within a fronto-central channel (FC) 

cluster of interest. The FC cluster encompassed the sensor-level correspondents of prefrontal, pre-

, para-, and post-central regions highlighted in previous studies [37] and further highlighted in 

similar EEG work on rhythm processing [33,34,38]. The cluster included 16 channels: 'AFz', 'AF3', 

'AF4', 'F3', 'F4', 'F5', 'F6', 'FCz', 'FC3', 'FC4', 'FC5', 'FC6', 'C1', 'C2', 'C3', 'C4'. As the first tones 

within an auditory sequence are known to elicit much stronger neural responses compared to later 

tones, we focused subsequent analyses on tones from the 3rd to the 7th position (STD before the 

onset of a DEV tone).  

Statistical analyses  

Statistical analyses assessed group differences in the N100 peak amplitude over tone repetitions 

along the auditory sequence by means of a repeated-measure ANOVA. Thus, individual N100 peak 

amplitudes over 5 tonal positions (3rd to 7th) were modelled by the ‘fitrm’ algorithm by specifying 

‘Group’ and ‘Time’ as factors and allowing for an interaction term. Next, the model entered a 
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repeated measures analysis of variance via the ‘ranova’ function. In the absence of a Group x Time 

interaction, we proceeded by testing for the main effect of Group.  

Mixed Effect Models on ERP data 

We assessed group differences in N100 Peak amplitude and latency via Mixed effect models. The 

model included ‘Group’ as a fixed factor and a random intercept per participant. Model information 

and results are reported in Tab 1 and Suppl. Tab. 1, respectively.  

Statistical comparisons on the variance 

We assessed group differences in the variability of N100 Peak amplitude and latency by means of 

permutation testing. This iterative procedure performs 1000 permutations of data points belonging 

to one or the other group and ultimately assess the p value from the original groups against the p 

obtained from permutations. A p-value lower than .05 was considered statistically significant. 

Results are provided in Fig. 1D.  

 

2.4.3. Spectral parametrization 

To investigate how participants (i) encoded temporal regularities in auditory sequences, (ii-iii), and 

whether there were group differences in the excitation/inhibition balance [39,40], we performed 

spectral parametrization analyses. Differently from typical Fourier (FFT) analyses, the spectral 

parametrization allows disentangling oscillatory from non-oscillatory components (i.e., the 1/F 

typically observed in the Fourier spectra) [41]. Thus, a series of tone-locked neural responses 

should lead to a clear amplitude peak in the frequency spectrum at the Sf. To test this hypothesis, 

we first shortened trials into segments of 8s (from the first tone onset (0s) to the 12th tone offset), 

and then employed the automated spectral parameterization algorithm described in [41]  and 

implemented in FieldTrip in a two-step approach. Thus, ‘ft_freqanalysis’ was first used in 

combination with the multi-taper method for FFT (‘mtmfft’) and power as output (‘pow’), and 

secondly by specific ‘fooof_aperiodic’ as output. The output frequency resolution was set at 0.2Hz. 

Next, the aperiodic (fractal) spectrum was removed from the FFT spectrum via calling the 

‘ft_math’ function, finally isolating the so-called ‘oscillatory’ (Fig. 2A, left) from a non-oscillatory 

(‘fractal’) component (Fig. 2A, right).  
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Statistical analyses  

Subsequent statistical analyses were performed on the same FC cluster as described above. Group 

differences were statistically assessed by permutation testing (1000 permutations) of  the extracted 

peak amplitude values at the Sf and the amplitude of the fractal component across the frequency 

spectrum. A p-value below .05 was considered statistically significant.  

 

2.4.4. Inter-Trial Phase Coherence 

When neural activity precisely encodes the temporal regularities in auditory sequences, it should 

not only show a clear amplitude peak in the FFT spectrum but also display phase coherence. The 

inter-trial phase coherence (ITPC) metric is inversely proportional to the variability in the 

imaginary part of the complex FFT spectrum. Thus, when oscillations are precisely aligned over 

trials (they have the same phase), the ITPC is high; when, instead, there is variability in the phase 

of the oscillations over trials, the ITPC is lower.  

The complex FFT spectrum was obtained by performing FFT decomposition at the single-

participant, -channel and -trial level on 8s-long segments as above. Next, the ITPC spectrum was 

calculated by dividing the Fourier coefficients by their absolute values (thus, normalizing the 

values to be on the unit circle), calculating the mean of these values, and finally taking the absolute 

value of the complex mean. Further documentation can be found on the FieldTrip website 

(https://www.fieldtriptoolbox.org/faq/itc/). For illustration purposes, the ITPC spectrum was 

restricted to 1-4Hz (Fig. 2B).  

Statistical analyses  

Subsequent statistical analyses were performed on the same FC cluster as for the event-related 

analyses. Group differences were statistically assessed by permutation testing of the extracted 

ITPC values at the Sf and with 1000 permutations. A p-value below .05 was considered statistically 

significant. 

Time-resolved ITPC 

Although ITPC and similar phase concentration measures are typically interpreted as a proxy of 

entrainment, they mostly reflect a sequela of time-locked evoked responses [42–45]. In turn, the 

variability in the latency of event-related responses is inversely proportional to the estimated ITPC. 
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As ITPC mostly depends on the (initial) phase estimates from fast-Fourier transformations, it 

typically does not allow assessing the dynamics of phase alignment in a continuous manner. In 

other words, we cannot test whether phase coherence changes during the listening period.  

Here, we estimated a time-resolved metric of ITPC (t-ITPC) to quantify the build-up of phase-

coherence over the course of an auditory sequence. For doing so, we first employed time-frequency 

transform (TF data), then calculated the t-ITPC using the complex spectra of TF data (same 

procedure as in the ITPC above) and lastly calculated the slope of the t-ITPC at the single-

participant level and across frequency-bands. More details are provided in the respective 

paragraphs below.  

Time-frequency transform  

After preprocessing, single-trial EEG data underwent time-frequency transformation 

(‘ft_freqanalysis’) by means of a wavelet-transform [46]. The bandwidth of interest was centered 

around the stimulation frequency (+/- 1Hz, i.e., .54 - 2.54Hz, thus obtaining a 1.54Hz center 

frequency), using a frequency resolution of .2Hz. The number of fitted cycles was set to 3. The 

single-trial approach resulted in ‘induced’ (as compared to ‘evoked’) responses. The output was a 

complex spectrum; no averaging over channels, trials, or participants was performed at this stage.  

Slope of t-ITPC 

As for the ITPC above, t-ITPC was obtained by dividing the complex coefficients of TF-data by 

their absolute values (thus, normalizing the values to be on the unit circle), averaging, and finally 

taking the absolute value of the complex mean (average over participants in Fig. 3A). Next, we 

calculated the slope of each t-ITPC time-series (e.g., Fig. 3B) by fitting a first-order polynomial 

(‘polyfit’ function in MATLAB; p) and then deriving a first-order approximation 

(p(1)*Time+p(2)). The calculation of the slope was performed by  starting from the 3rd tone onset 

and up to the 8th tone (where the DEV tone was likely to occur).  

Statistical comparisons 

Group differences in the slope of the t-ITPC at each frequency-band were assessed via permutation 

testing and with a total of 1000 permutations.  
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2.1. Data and code Availability 

The analysis code and data in use here can be provided upon reasonable request by the 

corresponding author.  

3. Results 

3.1. Event-Related Analyses 

Event-related analyses tested for group differences in the N100 component of the event-related 

potential (ERP; Fig. 2B-D). A repeated-measures ANOVA tested for group differences in the N100 

peak amplitude over 5 tone positions along the auditory sequences (3rd to 7th position). This 

analysis specifically assessed a repetition-suppression effect. The Group * Time interaction term 

of the model was not significant (F = .63, p = .49). We then tested the main effect of Group across 

the sequence, by pooling the N100 peak amplitudes across the 5 tone positions. The group effect 

was statistically assessed by mixed effect models and including a fixed effect of group and a 

random intercept per participant. The model reported a significant group difference in the N100 

peak amplitude (t (2,180) = -3.24, p = .001; Tab 1). The mixed effect model testing group 

differences in the N100 peak amplitude latency was not significant (Suppl. Tab. 1).  

Next, we assessed group differences in the variability of the N100 peak amplitude and latency. 

Neither of the two comparisons reported significant group differences.  
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Figure 1 - Experimental setup and Event-related analyses.  

A. Participants listened to 96 isochronous tone sequences, containing 13-to-16 tones including standard (STD) tones (F0 = 400 

Hz, duration = 50 ms, amplitude = 70dB SPL) and either one or two deviants (DEV; attenuated by 4dB relative to the STD tones). 

The first DEV could either fall on positions 8,9,10, or 11, while the second DEV always fell on position 12. The inter-onset-interval 

between successive tones was 650ms, resulting in a stimulation frequency (Sf) of 1.54Hz. B. Event-related analyses focused on a 

fronto-central (FC) channel cluster (as provided on the left side) and on 5 tones from the 3rd to the 7th position along the auditory 

sequence (square on the time-series). Dark blue lines report the time-series for younger (HY) participants, while the lighter blue 
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lines report the time-series for older adults (HO) participants. C. Average ERPs over 5 tone positions as highlighted in B, and in 

the FC channel cluster. Color coding as in B. D. N100 peak amplitude and latency (top panel) were statistically compared across 

the two groups by means of permutation testing. At the bottom, the variance in the N100 peak amplitude and latency was statistically 

compared across the two groups by means of permutation testing.  

Mixed effect model: ERP N100 Peak Amplitude 

Model information: 

Number of observations 180 

Fixed effects coefficients 2 

Random effects coefficients 36 

Covariance parameters 2 

Formula: varOI ~ 1+ Group + (1 | Participant) 

Model fit statistics 

AIC BIC Log Likelihood Deviance  

796.47 809.24 -394.23 788.47  

Fixed effects coefficients (95% CI): 

 Estimate SE tStat DF pValue Lower Upper 

Intercept .54 .81 .67 178 .05 -1.06 2.14 

Group -1.66 .51 -3.24 178 .001 -2.67 -.65 

Random effects covariance parameters (95% CIs) 

 Type Estimate Lower Upper   

Intercept | Participant Std 1.27 .91 1.80   

Residual Std Std 1.93 1.72 2.16   

 

Table 1 - Mixed effect model on ERP N100 Peak Amplitude 

The table reports model information: number of observations, fixed effect coefficients, random effect coefficients, covariance 

parameters. Then, the formula used to fit the model and model fit statistics: AIC, BIC values, Log Likelihood and Deviance. 

Further below, the fixed effect coefficients in a 95% confidence interval (CI): estimate, standard error, t-stat, degrees of freedom 

(DF), p value, lower and upper bound. Right below, random effects covariance parameters: estimate, lower and upper bound.  

 

3.2. Spectral parametrization 

After decomposing the Fourier spectrum into a so-called ‘oscillatory’ component (OSc) and a 

fractal component (FRc), we statistically assessed group differences in the amplitude of the OSc 

at the stimulation frequency (1.5Hz; Sf) and the amplitude of the FRc across frequencies by means 

of permutation testing, and with 1000 permutations. The group effect for the OSc at the Sf was 
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statistically significant and showed larger amplitude responses in the HO than the HY (p < .001; 

Fig. 2A, left). HO also showed a significantly stronger FRc across the spectrum (p < .001; Fig. 2A, 

right).  

3.3. Inter-Trial Phase Coherence  

The imaginary part of the complex Fourier spectrum was used to calculate the Inter-trial phase 

coherence (ITPC). Statistical analyses assessed group differences in ITPC at the Sf. Permutation 

testing revealed a significant group effect, with HY showing larger ITPC at the Sf as compared to 

HO (p = .001; Fig. 3B).  

 

Figure 2 – Spectral parametrization and Inter-trial phase coherence analyses 

A. Spectral parametrization analyses allowed to decompose the Fourier spectrum into an oscillatory component (left) and into a 

non-oscillatory (fractal) component (right). Both spectra provide frequencies on the x-axis and amplitude values on the y-axis.  
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Dark blue lines report the data for younger (HY) participants, while the lighter blue lines report the data for older (HO) 

participants. The inserts on top of the main panel provide the statistical comparisons on individual data as assessed by 

permutation testing. On the left, the group comparison assessed the amplitude peak at the stimulation frequency (1.5Hz). On the 

right, the group comparison assessed for amplitude differences across the entire spectrum.  

B. Inter-trial phase coherence (ITPC) analyses assessed group differences in the ITPC at the stimulation frequency by means of 

permutation testing (right). The ITPC spectrum (left) provides frequencies on the x-axis and coherence values on the y-axis. The 

two vertical lines on the spectrum report the group coherence peak.  

C. Exploratory analyses assessed the link between peak amplitudes in the oscillatory component (on the left, FooFosc) and in the 

ITPC (right) with ERP metrics of peak amplitude (Amp), latency (Lat) and variance (Var) across three ERP components (P50, 

N100, P200). Dark blue lines report positive relations, while lighter blue lines report negative relations.   

 

3.4. Time-resolved ITPC 

T-ITPC was obtained by quantifying phase coherence from the complex spectra of continuous 

wavelet transformed data in the delta-, theta-, alpha- and beta-frequency bands. The group 

average t-ITPC time course is displayed in Fig. 3A, left. The group difference across frequency-

bands is provided in Fig. 3A, right. For each participant and frequency band, we calculated the 

slope of t-ITPC and later performed group comparisons via permutation testing. HO showed a 

reduced t-ITPC slope in the delta (Fig. 3B) and theta (Fig. 3C) frequency-bands, but not in the 

alpha and beta-bands.  

 

Figure 3 – Time-resolved ITPC 

A, left: the time-course of time-resolved inter-trial phase coherence (t-ITPC) time-locked to the auditory sequence and averaged 

across all participants. The time interval shown in the x-axis ranges from -1 to 9s. Vertical dotted lines indicate tone onsets. On 

the y-axis frequency in Hz, ranging from 1 to 30Hz. The color bar reports low ITPC values in light blue and higher ITPC values 

in pink. A, right: the time-course of t-ITPC differences comparing HY and HO (HY minus HO). The x- and y-axis are the same as 

in the left panel. The color bar reports greater ITPC values in the HO (>HY) in blue, and greater ITPC values in the HY (>HO) 

in pink. B: the time-course of the delta-band t-ITPC for HY (darker blue) and HO (lighter blue). Shaded contours report the 

standard error calculated per group across participants. The vertical dotted lines represent tone onsets. The horizontal dotted 
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lines report the slope of the t-ITPC per group. On the right, the distribution of the slope coefficient across participants, per 

group. C: the time-course of theta-band t-ITPC for HY and HO as in panel C.  

 

4. Discussion 

Throughout the lifespan, neuroanatomical brain changes typically follow an inverted U-shape 

trajectory [47]. Grey and white matter volume increase from childhood to adulthood and then 

decline with aging. Concurrently, primary sensory systems often undergo gradual deterioration, 

potentially leading to decline in auditory processing [3,5,20]. Changes within both peripheral and 

central auditory systems, such as the deterioration of auditory nerve fibers and loss of inner hair 

cells, affect the brain’s ability to accurately encode sensory events in the auditory environment 

[18], consequently impacting speech comprehension, social interactions, and cognition more 

broadly [48]. Importantly, even in the absence of hearing loss, older individuals experience 

difficulties in processing both simple and complex auditory sequences in noisy environments 

[16,25,26,28]. 

In this study, we posited that the challenges observed in higher cognitive processes such as speech 

processing during aging might stem form an underlying decline in the ability to detect, encode, 

and employ temporal regularities in the sensory environment to optimize sensory processing. To 

investigate this hypothesis, we recruited younger and older individuals and recorded their neural 

activity using EEG while they listened to simple isochronous equitone sequences presented at a 

stimulation frequency (Sf) of 1.5Hz. Analyses of event-related potentials (ERP) and spectral data 

(spectral parametrization analyses) revealed greater evoked responses in older adults, consistent 

with previous findings documenting hypersensitivity to sensory input in aging [3,20,32,21–27,31]. 

These results support the notion that aging affects the ability to engage in ‘sensory gating’ [26], 

thus failing to adaptively inhibit or suppress cortical responses to repetitive and predictable stimuli 

[21,24,27,49].  

Spectral parametrization analyses further showed that older adults exhibited an increase in the 

amplitude of the (1/F) fractal component across frequencies. This observation is consistent with 

the enhanced event-related responses described earlier and supports the notion of heightened 

excitability (or reduced inhibition) of the auditory cortex in aging [20]. While prior evidence 

showed diminished encoding of temporal regularity in metronome-like auditory sequences 

(obtained through typical Fourier analyses) [29,30], the removal of the fractal component from the 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2024. ; https://doi.org/10.1101/2024.03.24.586049doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.24.586049
http://creativecommons.org/licenses/by-nd/4.0/


frequency spectrum allowed revealing the reversed pattern: enhanced evoked responses to sounds 

in older individuals. This result seems to confirm prior evidence showing greater neural 

synchronization with sounds modulations in aging individuals, and an increased sensitivity to 

temporal regularities [17,22,24,31]. However, the inter-trial phase coherence (ITPC) analyses 

showed that older adults exhibited lower ITPC at the stimulation frequency (Sf; 1.5Hz), ultimately 

indicating increased variability in the neural encoding of sound onsets. Thus, we showed that aging 

is associated with stronger evoked responses, but reduced phase-alignment. These results support 

previous observations of reduced coherence and phase alignment of neural activity to sounds in 

simple and more complex auditory sequences [6,16,18,19].  

The hypersensitivity observed in aging individuals is typically further accompanied by reduced 

sustained neural activity in continuous listening scenario [22,24,32], potentially affecting speech 

tracking and comprehension, especially in noisy environments [31,32]. In order words, while older 

individuals display larger cortical responses to sound onsets, they seem to have difficulties in 

tracking the temporal fluctuations in the speech envelope [31].  

We here asked whether aging individuals would show similar difficulties in tracking and 

anticipating simple sound onsets in isochronous contexts. To assess the continuous neural 

dynamics of onset tracking, we employed a time-resolved ITPC coherence metric and calculated 

the slope of phase coherence during continuous listening. We showed a flatter slope of t-ITPC in 

the delta- and theta-band activity in aging individuals, but no differences in higher frequency bands 

(alpha and beta). This result confirms a reduction in sustained neural activity and tracking of sound 

onsets in the aging brain, and further confirms that alpha-band regulatory mechanisms are intact 

in older individuals [50].  

Taken together, these observations suggest that aging impacts basic sensory and timing processes. 

These findings underscore the importance of future research investigating the relationship between 

basic timing capacities and higher-order cognitive processes (e.g., speech processing) across the 

lifespan.  

This evidence, however, challenges  the ‘exploration-exploitation shift’ hypothesis [12]. According 

to this perspective, most aging individuals attempt to counteract sensory and cognitive decline by 

adopting compensatory cognitive strategies and leveraging on previous knowledge predictively 

[51]. For example, they may utilize long-term knowledge, generalizations, and predictions to 
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mitigate increased difficulty with learning and the decline of executive functions due to striatal 

cholinergic changes [52]. To operationalize and test this notion, Brown et al., [51] referred to the 

predictive coding framework: given the reduced certainty of sensory signals, aging individuals rely 

more on memory and consequently generate predictions about future events [53]. These 

predictions serve the purpose  of adaptation aiming to optimize perception and cognition despite 

cognitive decline [54]. Contrary to these expectations, the current findings indicate that older 

individuals either did not form predictions, or, at the very least, did not utilize temporal predictions 

to inform sensory processing at the very fast, millisecond temporal scale. Indeed, consistent with 

prior electrophysiological evidence, neural responses were not attenuated by top-down modulatory 

suppression mechanisms [3,20,21,23,25–27].  

The abilities  to detect and encode temporal regularities, as well as  to form temporal predictions, 

have been linked to widespread cortico-subcortical circuitries including the basal ganglia and the 

cerebellum [55]. Lesions in either of these circuitries have been shown to causally impact the 

ability to predictively align neural dynamics to sound onsets [33]. Conversely, aging is typically 

characterized by decreased fractional anisotropy and increased diffusivity, indicative of white 

matter deteriorations, along with bilateral grey [57] and white matter loss in the cerebellum (CE) 

and reduced connectivity within the dentato-thalamo-cortical network [10]. Additionally, 

functional connectivity patterns undergo alterations  [58], such as  reduced within-network 

connectivity and variegated patterns of increase and decrease in between-network connectivity 

[59]. Notably, deteriorations within the striatal-frontal networks [9], the under-recruitment of the 

cerebellum during challenging cognitive tasks [10], and changes within the cerebellum-basal 

ganglia circuitries [11] have been associated with reduced cognitive control [12] and  numerous 

motor and cognitive deficits [11].  

Aligned with the original hypotheses and bolstered by these novel findings, we propose that 

neuroanatomical and functional alterations in cortico-subcortical circuitries, including the basal 

ganglia (BG) and the cerebellum (CE) may impact fundamental timing and predictive abilities, 

which are integral to cognition. These changes could impact the documented declines in processing 

speed, working memory, inhibition, memory, and reasoning capacities [13,60,61]. However, 

establishing a causal link between timing, predictive functions, and general cognition presents a 

challenge due to the substantial heterogeneity in aging trajectories. Indeed, neuroanatomical and 
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cognitive changes throughout the life are subject to modulation by a complex interplay of vascular, 

metabolic, and inflammatory risk factors [7], which, in turn, are influenced by the intricate  

interaction of environmental factors (e.g., socioeconomic status and education) and genetic 

predispositions  [61]. Variability in any of these modulating variables inevitably results in 

significant diversity in cognitive capacities among older adults, impeding generalizations. 

Therefore, systematic, longitudinal, and comprehensive assessments of timing and cognitive 

functions across the lifespan are imperative.  

 

5. Conclusions 

Here, we examined the effects of aging on basic sensory and temporal processing. The integration 

of findings from three complementary analytical methods highlights the adverse effects of aging 

on the fundamental capacities to encode the timing of sound onsets in continuous streams and 

suppress cortical responses to predictable stimuli. This evidence motivates future research on the 

link between basic timing functions and general cognition, across the lifespan. 
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