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Gauge theories represent a fundamental framework underlying modern physics, constituting the
basis of the Standard Model and also providing useful descriptions of various phenomena in con-
densed matter. Realizing gauge theories on accessible and tunable tabletop quantum devices offers
the possibility to study their dynamics from first principles time evolution and to probe their exotic
physics, including that generated by deviations from gauge invariance, which is not possible, e.g., in
dedicated particle colliders. Not only do cold-atom quantum simulators hold the potential to provide
new insights into outstanding high-energy and nuclear-physics questions, they also provide a versa-
tile tool for the exploration of topological phases and ergodicity-breaking mechanisms relevant to
low-energy many-body physics. In recent years, cold-atom quantum simulators have demonstrated
impressive progress in the large-scale implementation of 1 + 1D Abelian gauge theories. In this
Review, we chronicle the progress of cold-atom quantum simulators of gauge theories, highlighting
the crucial advancements achieved along the way in order to reliably stabilize gauge invariance and
go from building blocks to large-scale realizations where bona fide gauge-theory phenomena can be
probed. We also provide a brief outlook on where this field is heading, and what is required exper-
imentally and theoretically to bring the technology to the next level by surveying various concrete
proposals for advancing these setups to higher spatial dimensions, higher-spin representations of the
gauge field, and non-Abelian gauge groups.

CONTENTS

I. Introduction 1

II. Lattice gauge theories 2

III. Quantum simulation with cold atoms 4
A. Optical lattices 4
B. Quantum gas microscopy 5
C. Alkaline-earth atoms 6
D. Rydberg-atom arrays 6
E. Hybrid-tweezer lattices 8

IV. First steps and building blocks 8
A. Z2 gauge theory by Floquet engineering 8
B. Ring exchange from high-order perturbation

theory 10
C. U(1) gauge theory from angular momentum

conservation 11
D. Chiral BF theory from Raman-dressing 11

V. Current state of the art: Large-scale
gauge-theory cold-atom quantum simulators 12
A. Rydberg setups 12

∗ jad.halimeh@physik.lmu.de
† yangbing@sustech.edu.cn

B. Gauge protection 13
C. Mapping onto optical superlattice 14

1. With matter fields 14
2. Integrating out the matter fields 15

D. Experiments in optical lattices 16

VI. Perspective 17

Acknowledgments 18

References 18

I. INTRODUCTION

Gauge theories are a fundamental framework of mod-
ern physics that encode the laws of nature through in-
trinsic local relations between the distribution of matter
and gauge fields [1]. These local relations arise directly
from gauge symmetry, which is the principal property
of a gauge theory. Gauge theories are the staple of the
Standard Model of particle physics, describing interac-
tions between elementary particles as mediated through
gauge bosons.
The properties of gauge theories are experimentally

probed at dedicated particle colliders such as CERN’s
Large Hadron Collider (LHC) and Brookhaven National
Laboratory’s Relativistic Heavy-Ion Collider (RHIC),
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which provide us with a plethora of data into the in-
ner workings of nature [2]. The processes probed in
such facilities naturally involve strongly interacting mat-
ter undergoing nonperturbative far-from-equilibrium dy-
namics, which is notoriously hard to treat theoretically.
A prominent example is the interaction cross section in
heavy-ion collisions, the physics of which is not com-
pletely understood, but which is necessary for a better
understanding of hadronization [3]. Currently, various
phenomenological and numerical models are used to in-
terpret output from particle colliders and probe this cross
section on classical computers, but they are fundamen-
tally limited in their scope as they lack the capability
to adequately handle the buildup of entanglement gen-
erated during the dynamics. This motivates employ-
ing quantum simulators of gauge theories. These spe-
cialized quantum computers implement a desired model
Hamiltonian in a physical and highly-controllable device
whose constituents obey the laws of quantum mechanics,
and thus naturally incorporate entanglement through the
wave function. Such machines make it possible to access
and probe time evolution from first-principles, and to
even provide temporal snapshots of the underlying non-
perturbative dynamics [4–8].

Another major front where quantum simulators of
gauge theories are of crucial importance is the equi-
libration of isolated quantum many-body systems [9].
Whereas generic interacting many-body models are ex-
pected to thermalize according to the eigenstate ther-
malization hypothesis (ETH) [10–13], there are many in-
teracting systems that violate the ETH and avoid ther-
malization up to practically all accessible times [14, 15].
Thermalization or its avoidance in many-body models is
investigated using advanced numerically controlled meth-
ods such as tensor networks [16]. These methods are
mostly limited to (quasi-)one spatial dimension and short
evolution times due to, again, entanglement buildup, al-
though these methods have also seen important progress
throughout the last years [17]. With their expected
quantum advantage, quantum simulators of gauge the-
ories promise to provide an ideal platform to probe the
equilibration of many-body models in higher spatial di-
mensions and at long evolution times. The ability to
quantum-simulate gauge theories is also particularly at-
tractive in this regard, as gauge symmetry affords a very
powerful knob that has been shown to give rise to exotic
nonthermal dynamics [18–20].

Gauge theories also emerge as effective descriptions in
condensed matter, particularly in strongly correlated sys-
tems with fractionalized excitations [21, 22] and in finite-
temperature superconductors [23–26]. This serves as fur-
ther motivation to realize large-scale quantum simulators
of gauge theories in order to probe the rich physics of such
models, especially when it is often prohibitively difficult
to do so using analytic or numerical means.

There are various platforms of quantum simulators on
which gauge theories have been realized. While signif-
icant progress has been made also on experiments in
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FIG. 1. Schematic illustration of Gauss’s law and
quantum simulation of LGTs. (a) Electric field distri-
bution of an electric dipole in the continuum. (b) Illustration
of Gauss’s law on a link. Top: one positive (+) and one nega-
tive (-) charge on a lattice that are connected by electric field
lines defined on the link (arrows). Bottom: distribution after
pair annihilation, i.e., a lattice without charges. (c) Lattice
gauge theory in 2D, where charges on the vertices are defined
by the operators ψ̂ℓ and the field, which lives on the links of
the 2D lattices is described by the operator Ûℓ,ℓ+1. (d) Im-
plementation on a 2D optical square lattice with cold atoms.
The crosses mark sites that are blocked by local energy off-
sets, where atoms cannot tunnel onto (dashed lines). The
solid lines mark tunneling bonds. They connect matter sites
(gray, blue, orange circles) with link sites (black circles). This
figure was adapted from Ref. [27].

trapped ions (see, e.g., [28–30]) and superconducting
qubits (see, e.g., [31–34]), in this Review we will focus
on cold-atom quantum simulators [35], which have re-
cently emerged as viable large-scale platforms to probe
the physics underlying gauge theories. This complements
recent reviews on related aspects, in particular digital
platforms and grand challenges for gauge-theory quan-
tum simulation [36–38], and tensor networks [17].
The rest of this review is organized as follows. In

Sec. II, we briefly review lattice gauge theories (LGTs)
and introduce the notation to be followed in this re-
view. In Sec. III, we review recent advances in quantum-
simulation techniques for LGTs, before going over first
building block of LGT quantum simulators in Sec. IV.
We then cover the current state of the art in cold-atom
quantum simulators of LGTs in Sec. V, before concluding
and providing perspective in Sec. VI.

II. LATTICE GAUGE THEORIES

Due to the computational intractability of evaluat-
ing infinite-dimensional gauge-theory path integrals on a
continuous spacetime, lattice gauge theories (LGTs) have
been proposed as a useful tool. They involve discretizing
spacetime to make the path integrals finite-dimensional,
and thus amenable for various numerical treatments [39].
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Indeed, lattice quantum chromodynamics (QCD) [40]
is a very powerful nonperturbative approach that has
led to significant progress in calculating, through Monte
Carlo methods, low-energy spectra and hadron masses
[41]. However, when it comes to finite baryon densi-
ties or dynamics, the sign problem renders Monte Carlo
methods ineffective. Given also the limitations of tensor
networks when it comes to longer evolution times and
higher spatial dimensions, quantum simulators become
an attractive venue to explore. Indeed, LGTs are well-
suited for realization in quantum simulators, due to the
discretized nature of the latter. To effectively simulate
LGTs, it is crucial to create a scalable artificial quantum
system with controlled interactions between constituent
elements, which will be discussed in this review.

Box 1 | Quantum link formulation of lattice QED

Lattice QED in 1+1D includes fermionic matter degrees

of ψ̂ℓ on sites ℓ, and gauge and electric-field operators
Ûℓ,ℓ+1 and Êℓ,ℓ+1, respectively, on links in between these
sites with an infinite-dimensional Hilbert space locally;
see Fig. 1c. The link operators satisfy the commutation
relations [

Ûℓ,ℓ+1, Û
†
r,r+1

]
= 0, (1a)[

Êℓ,ℓ+1, Ûr,r+1

]
= gδℓ,rÛℓ,ℓ+1, (1b)

where g is the gauge-coupling strength.
For numerical and experimental feasibility, a quantum

link formulation can be adopted to map the gauge and
field operators to spin-S operators as

Ûℓ,ℓ+1 →
ŝ+ℓ,ℓ+1√
S(S + 1)

, (2a)

Êℓ,ℓ+1 → gŝzℓ,ℓ+1, (2b)

which maps the commutation relations (1) as

[
Ûℓ,ℓ+1, Û

†
r,r+1

]
→

2δℓ,r ŝ
z
ℓ,ℓ+1

S(S + 1)
, (3a)

[
Êℓ,ℓ+1, Ûr,r+1

]
→

gδℓ,r ŝ
+
ℓ,ℓ+1√

S(S + 1)
. (3b)

Whereas the commutation relation (1b) is satisfied at any
value of S, we see that commutation relation (1a) is sat-
isfied in the limit of S → ∞. In 1 + 1D, the fermionic
matter degrees of freedom can be mapped onto Pauli op-
erators through a Jordan–Wigner transformation. This
quantum link formulation of 1 + 1D lattice QED gives
rise to the spin-S U(1) QLM (4).

To facilitate the following discussion, it is pertinent to
put things on a formal footing and define relevant ob-
jects. Unless otherwise specified, we shall denote as Ĥ0

the LGT Hamiltonian, which we are interested in, and

which we shall try to realize with a quantum simulator.
The gauge symmetry of Ĥ0 is encoded in the commuta-
tion relations

[
Ĥ0, Ĝj

]
= 0, ∀j, where Ĝj is the generator

of the gauge symmetry. Since constituents in many com-
mon quantum simulators are naturally discrete, we focus
here on LGTs, such that j represents a given site on the
lattice, though much progress has also been made in re-
cent years in cold-atom simulations of field theories; see,
e.g., [42–44]. Intuitively, one can think of the operator

Ĝj as a discretized version of Gauss’s law from electrody-
namics, see Fig. 1a,b. The dynamics of the gauge theory
is thus determined by an extensive set of local conserva-
tion laws, one for each lattice site. For simplicity, and
in line with current developments, we shall primarily fo-
cus on Abelian LGTs, which host a single generator lo-
cally. In contrast, their non-Abelian counterparts, which
we will briefly discuss in the Perspective, host multiple
generally noncommuting generators locally.
Gauge-invariant states are simultaneous eigenstates of

the local generators: Ĝj |ψ⟩ = gj |ψ⟩ , ∀j. A gauge su-
perselection sector within the full many-body spectrum
of the Hamiltonian Ĥ0 is defined by a unique set of these
conserved eigenvalues gj , so-called background charges,
over the entire system. On a quantum simulator, we
are usually interested in restricting the physics to a sin-
gle target gauge superselection sector gtarj . In a quan-
tum simulator, coherent errors can emerge that explicitly
break the gauge symmetry, and they will be denoted by
λĤ1 with strength λ, where

[
Ĥ1, Ĝj

]
̸= 0. Processes due

to λĤ1 transition the system away from the target sector.
These processes can be pure errors that deteriorate the
dynamics, or they can represent interesting effects that
generate new physics not present in the ideal LGT.

Quantum link models (QLMs), widely used in quan-
tum simulators, further discretize the continuous trans-
porters of lattice quantum electrodynamics (QED) and
QCD into quantum links, associated with discrete finite-
dimensional local Hilbert spaces, while preserving the es-
sential features of strong gauge dynamics. Our focus will
be on the 1 + 1D spin-S U(1) QLM formulation [45, 46]
of 1 + 1D lattice QED (see Box 1), given by the Hamil-
tonian [47]

Ĥ0 =− κ

2a
√
S(S + 1)

Lm−1∑
ℓ=1

(
σ̂−
ℓ ŝ

+
ℓ,ℓ+1σ̂

−
ℓ+1 +H.c.

)
+
µ

2

Lm∑
ℓ=1

σ̂z
ℓ +

g2a

2

Lm−1∑
ℓ=1

(
ŝzℓ,ℓ+1

)2
+ aχ

Lm−1∑
ℓ=1

(−1)ℓ+1ŝzℓ,ℓ+1. (4)

In this formulation, the gauge and electric fields at the
link between sites ℓ and ℓ+1 are represented by the spin-
S operators ŝ+ℓ,ℓ+1/

√
S(S + 1) and ŝzℓ,ℓ+1, respectively.

The matter field on site ℓ is represented by the Pauli
operator σ̂z

ℓ , where µ is the fermionic mass, Lm is the
number of sites, κ is the tunneling strength, g is the gauge
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coupling, χ = g2(θ − π)/(2π) quantifies the deviation
of the topological θ-angle from π, and a is the lattice
spacing, which we shall henceforth set to unity. Note
that we have employed a particle–hole transformation to
obtain the final form of Hamiltonian (4) [48].

The U(1) gauge symmetry of Hamiltonian (4) is gen-
erated by the operator

Ĝℓ = (−1)ℓ
(
σ̂z
ℓ + 1

2
+ ŝzℓ−1,ℓ + ŝzℓ,ℓ+1

)
, (5)

the eigenvalues gℓ of which take on the values (−1)ℓgℓ ∈
{−2S,−2S + 1, . . . , 2S + 1}. Typically, we want to work
in the target gauge superselection sector gℓ = 0, ∀ℓ, also
sometimes called the sector of Gauss’s law.

In the limit of S → ∞ at fixed lattice spacing a, Hamil-
tonian (4) retrieves lattice QED. Ideally, we want to aim
to implement this Hamiltonian on a quantum simulator
for as large S as possible, but even small values of S can
give rise to very interesting physics relevant to QED [46],
such as the Coleman phase transition [49, 50] and con-
finement [18]. Furthermore, the QLM is amenable for
implementation in cold-atom setups, as we will detail in
the following; see Fig. 1d.

III. QUANTUM SIMULATION WITH COLD
ATOMS

Cold neutral atoms offer a promising approach to cre-
ate a scalable many-body system with controlled inter-
actions [35, 51]. By cooling these atoms to ultra-low
temperatures and trapping them optically, precise con-
trol over the system’s geometry and dimensionality can
be achieved. These optical traps create discretized lat-
tice structures, similar to the discrete space in LGTs; see
Fig. 1c,d. The interactions between the atoms can be ad-
justed to be stronger than the kinetic energy, allowing for
exploration of the nonperturbative regime. Techniques
such as optical lattices, Feschbach resonance, and long-
range Rydberg interactions can facilitate this tuning. To
represent fermion matter and gauge fields in LGTs, one
can utilize fermionic or bosonic cold atoms, as well as dif-
ferent atom species. Ultracold atoms in optical lattices,
described by the Hubbard model, provide a valuable
platform for studying various quantum phases. Specifi-
cally, atomic Mott insulators serve as defect-free systems,
which constitute an ideal starting point for high-fidelity
initialization of the system for investigating strongly cor-
related phenomena in LGTs.

In this section, we will discuss recent technical ad-
vances in cold-atom experiments for simulating LGTs.
Specifically, we will focus on techniques involving ultra-
cold atoms in optical lattices, quantum gas microscopes,
tweezer-trapped Rydberg-atom arrays, and emerging
techniques utilizing alkaline-earth atoms. By exploring
these advancements, we aim to uncover their potential
applications in quantum simulations of LGTs and simpli-

fied QLMs, which nonetheless share many exciting prop-
erties with more complex gauge theories.

A. Optical lattices

When neutral atoms are cooled to temperatures in the
nano-Kelvin range, their quantum properties become ap-
parent, allowing for the creation of a scalable quantum
system comprising up to 106 identical particles [54, 55].
By using spatially ordered optical potentials, the atoms
can be distributed and rearranged into regular patterns.
These optical micro-traps offer precise control over the
atomic states [51]. In particular, loading a quantum de-
generate gas into such an optical lattice can trigger a
quantum phase transition from a superfluid to a Mott in-
sulator (MI) [56–58]. This transition is primarily driven
by the competition between the kinetic energy that scales
with the tunnel coupling between neighboring sites J and
the on-site Hubbard interaction energy U , which denotes
the energy cost of having two particles on one lattice site
(Fig. 2a). In the strongly interacting limit where J ≪ U ,
the phase transition leads to a uniformly filled MI [52, 59].
The MI at filling n = 1, i.e., one atom per site, can be
considered a quantum register, where various techniques
for local state-dependent control of the atoms have been
developed in order to realize well-defined initial states
with high fidelity [35, 60].
The achievement of a defect-free MI can be considered

as the initialization step in quantum simulation. How-
ever, defects in the form of particle or hole excitations
tend to increase with temperature [52, 61, 62]. While
cooling of bulk gases can be achieved with high efficiency,
the process of lattice loading and subsequent state manip-
ulation typically introduces additional heating and the
number of defects in the MI serves as a thermometer for
the system. Decreasing the initial-state temperature is
one of the main challenges for high-fidelity quantum sim-
ulation experiments [63].
Ultracold atoms confined in optical lattices are well iso-

lated from the surrounding environment. However, the
cooling of such systems necessitates dissipative processes,
which requires coupling with reservoirs to facilitate the
cooling process. Developing these techniques for atoms
in lattices is an outstanding challenge. In an open sys-
tem, it is crucial to identify a phase characterized by a
small energy gap and a large density of states to absorb
entropy from the gapped phase that one aims to cool.
One option following the theoretical ideas presented in
Ref. [64] constitutes extracting entropy by utilizing a sur-
rounding superfluid or metallic reservoir. Similar ideas
could be realized in a bilayer system [65]. The former has
been successfully implemented in Ref. [66] to reveal anti-
ferromagnetic correlations in the low-temperature phase
of the Fermi-Hubbard model at half filling. One of the
main limitations of the idea is the scaling of the cool-
ing performance with system size, since the contact be-
tween the gapped and gapless phase exists only at the
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Cooling in optical lattices 

FIG. 2. Optical lattices and quantum gas microscopy. (a) Parity-projected site occupation in an optical lattice for a
superfluid (left) with average occupation n ≃ 1/2 and for a Mott insulator (right) with average filling n ≲ 1 (figure adapted
from Ref. [52]). (b) Schematic of the staggered-immersion cooling. A bichromatic optical superlattice is used to prepare low-
entropy Mott insulators (samples) simultaneously with gapless superfluid reservoirs in a staggered configuration by introducing
a potential energy offset ∆ on every other site (figure adapted from Ref. [53]). (c) Illustration of a quantum gas microscope
setup. Atoms are confined in a single plane of a vertical lattice. For fluorescence imaging atoms are pinned in a deep 3D
lattice (red arrows). The fluorescence photons are collected with a high-NA imaging system. The signal from each atom (red)
corresponds to the point-spread-function of the imaging system (figure adapted from Ref. [52]).

circumference of the central region which hosts the gap-
less low-entropy phase. Using superlattices, however, su-
perfluid reservoirs can be immersed as stripes within 1D
bosonic MI chains (Fig. 2b) as demonstrated in Ref. [53].
By making use of the large density of states in the su-
perfluid phase, the superfluid reservoirs can efficiently
extract entropy from the system. Subsequently, a state-
engineering technique was employed to achieved a unity-
filled MI with only 0.8(1)% of defects. This experimen-
tal implementation provides an excellent platform for the
quantum simulation of various models, for instance the
realization of a bosonic antiferromagnet state [67].

B. Quantum gas microscopy

The quantum states of cold atoms offer a rich set of
degrees of freedom that can be utilized to encode the
fermionic matter and dynamical gauge field in LGTs.
Within the framework of the QLM formalism, spins can
be effectively represented by the internal energy levels
of atoms [68, 69], the occupation numbers on lattice
sites [70–72], and different atomic species [73–76]. In
addition, quantum gas microscopes (Fig. 2c) facilitate
the detection and manipulation of individual atoms with
extreme resolution down to the level of a single lattice
site [60]. Following early pioneering works on single-atom
sensitive imaging [77–79], the advent of quantum gas mi-
croscopes in 2009 enabled detection fidelities near unity
of dense low-entropy strongly correlated many-body sys-
tems [52, 80].

The detection method is based on fluorescence imag-
ing, where individual atoms scatter several thousand pho-
tons, which are then collected with a high-resolution
imaging system (Fig. 2c). Typical length scales are given
by the lattice constant and are on the order of or less than
the optical wavelength used to generate the potential.
Reaching an optical resolution on the order of ∼ 0.5µm
requires careful engineering of the experimental appara-
tus, e.g., by designing high-NA imaging objectives [81]
or via two-dimensional tunable accordion lattices [82].
Combining microscope setups with additional experimen-
tal techniques specific to the respective atomic species
requires the construction of elaborate experimental se-
tups [83]. At the same time, a large signal-to-noise ratio
is essential. This can even aid high-fidelity reconstruction
of the density distribution in regimes, where naively the
optical resolution would only be able to distinguish parti-
cles at a distance of more than two lattice constants [84].
The challenges associated with a large number of scat-
tered photons are atom loss and temperature-assisted
tunneling processes, i.e., while the atoms scatter pho-
tons, their temperature in the lattice well increases and
they can move to a different lattice site further away,
where they are recaptured, or they can be completely
lost from the trap. Both processes result in false detec-
tion events and need to be minimized by applying effi-
cient cooling during imaging and by pinning the atoms
in very deep optical lattices. While the first quantum
gas microscopes have been developed for bosonic Alkali
atoms [52, 80] due to the existence of less complex imag-
ing and cooling techniques, there is now a large number
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of microscopes for fermionic Alkali atoms [85–88], and
recent developments have further extended their appli-
cation to Alkaline-earth(-like) atoms [89, 90] as well as
magnetic atoms [82] and even molecules [91, 92]. Quan-
tum gas microscopes offer unique opportunities to study
the properties of quantum many-body systems via di-
rect detection of entanglement entropy [93–96], string or-
der [62, 97], hidden order [98], (multi-point) correlation
functions [99, 100], and full counting statistics [101, 102].

High-resolution imaging also offers intriguing possibil-
ities for local control and manipulation at the level of
a single atom [103], which is enabled by precise shap-
ing of optical potentials at length scales on the order
of 0.5µm [104]. Starting from an initial MI at unit
filling, the internal state of the atom can be rotated
by introducing light that couples to a different internal
state. Addressability is provided by applying local dif-
ferential light shifts in combination with a global cou-
pling laser or microwave field [105]. Moreover, by em-
ploying resonant light, atoms in internal states that are
sensitive to it can be heated out of the trap. This en-
ables the preparation of essentially arbitrary initial prod-
uct states. This method is sometimes also referred to
as “cookie cutting” in contrast to local rearrangement
techniques facilitated by tightly focused movable tweezer
beams [106], as we will discuss in more detail below. Lo-
cal addressability has been particularly useful for study-
ing few-particle systems, such as magnon excitations in
spin chains [107], spin-charge separation in 1D Fermi-
Hubbard chains [108], few-particle dynamics [109, 110],
and 1D anyons [111], to name only a few. Moreover,
state-dependent superlattices provide additional tools for
preparing high-fidelity initial states [53]. Initial states
that are prepared with this technique share the same
translation symmetry as the lattice; hence, this scheme is
less programmable, but it can give rise to higher fidelities
due to the relative stability between the lattice and the
local state-dependent light shifts. In the context of the
quantum simulation of LGTs, local addressing for precise
initial-state preparation is particularly important, since
studying a certain physical subspace of the many-body
spectrum, such as given by the superselection sectors gj ,
relies on the preparation of specific configurations of par-
ticles in the initial state.

C. Alkaline-earth atoms

The rich internal level structure of Alkaline-earth(-like)
atoms, such as Sr or Yb, significantly extends the avail-
able toolbox for state manipulation and detection [115].
These atoms have two valence electrons. Hence, the
spectrum consists of a singlet and triplet manifold with
the absolute ground state being the singlet state 1S0.
There are several ultra-narrow transitions that connect
the ground state with triplet states [116–119], which are
of importance for applications in quantum simulation,
computation, and the study of fundamental physics. The

most prominent transition is 1S0-
3P0 [117], which is used

in optical lattice clocks [120]. The lifetime of the excited
states is many seconds, such that atoms prepared in the
excited clock state are stable for the duration of typi-
cal experiments and can be viewed as a second species.
This offers the possibility for implementing highly tun-
able state-dependent optical potentials with low scatter-
ing rates [121–124]. In combination with local control,
new methods for engineering Gauss’s law come within
reach. This has recently been worked out in a theoret-
ical proposal for studying U(1) QLMs in one and two
dimensions [27].
Alkaline-earth(-like) atoms further exhibit exotic in-

teractions, which provide a fruitful playground for the
design of more complex LGTs. The fermionic isotopes of
Sr and Yb have a nonzero nuclear spin I, and the interac-
tions between them are SU(N) symmetric, i.e., indepen-
dent of the internal state, where N = 2I + 1 [125, 126].
While the conventional SU(2) Fermi-Hubbard model
(FHM) has attracted a lot of interest, as it has been
suggested as a minimal model for high-Tc supercon-
ductivity, the SU(N) FHM is expected to host even
more exotic quantum phases, such as chiral spin liq-
uids [127]. Moreover, the long lifetime of the excited
clock state 3P0 facilitates the realization of two-orbital
Hubbard models, where spin-exchange plays an impor-
tant role. In particular, for fermionic 173Yb the ferro-
magnetic exchange interaction is extremely large in con-
trast to typical spin-exchange interaction strengths that
emerge within second-order perturbation theory [128].
While the exchange interaction for fermionic 87Sr is also
ferromagnetic, it is of antiferromagnetic nature for 171Yb
providing a route towards studying the Kondo lattice
model [129] (mappable onto an effective LGT problem)
and Ruderman-Kittel-Kasuya-Yoshida interactions [130].
Harnessing the exotic interactions of Alkaline-earth(-like)
atoms appears to be a promising direction towards quan-
tum simulation of non-Abelian LGTs [131].
The rich level structure of Alkaline-earth(-like) atoms

further offers the possibility of implementing partial mea-
surements, which could be interesting for the prepara-
tion of exotic initial states potentially with large entan-
glement [132]. Being able to prepare different types of
physical initial states is an important ingredient for quan-
tum simulation of LGTs. In addition, implementing fast
imaging schemes enables feedback. This was recently
demonstrated in tweezer arrays, where mid-circuit mea-
surements have been implemented [133–135]. Extending
these ideas to optical lattices is possible, although tech-
nically more demanding due to the lower depth and risk
of thermally activated tunneling during the imaging pro-
cess.

D. Rydberg-atom arrays

Atoms trapped in optical tweezers have recently
emerged as an alternative platform for quantum tech-
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a b
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FIG. 3. Optical tweezer arrays. (a) Illustration of a tweezer array platform, where an SLM imprints is used to generated
tweezer arrays via application of a phase mask on the SLM and a high-NA imaging system (figure adapted from Ref. [112]).
(b) 1D array of optical tweezers generated with an acousto-optical deflector (AOD) and multiple radio-frequency tones. After
detecting the position of the atoms the traps are rearranged in order to form a defect-free array (figure adapted from Ref. [113]).
(c) Illustration of a 2D AOD setup in 4f -configuration for tweezer generation. By stroboscopically switching between different
configurations, the atoms effectively see an average potential in the form of a ring that consists of eight individual traps, which
are close enough such that tunneling is significant for light Li atoms (figure adapted from Ref. [114]). (d) Schematic of a
hybrid tweezer-lattice setup. Atoms are first loaded and cooled in optical tweezers (preparation/oracle tweezer, green), and
then implanted into a 3D optical lattice (red), which consists of a vertical 1D lattice to confine the atoms in a single plane
and a 2D square horizontal lattice. The large-waist tweezer (confinement tweezer, pink) can be used to introduce an additional
in-plane harmonic confinement (figure adapted from Ref. [106]).

nologies [136–139]. Here, instead of the regular inter-
ference pattern characterizing standing-wave optical lat-
tices, individual atoms are held in tightly focused optical
tweezer beams, which are typically separated by a few
µm. The tweezer array is usually either generated with a
spatial light modulator (SLM), as illustrated in Fig. 3a,
or acousto-optic modulators (AODs) with multiple radio-
frequency tones (Fig. 3b,c). An advantage of tweezer ar-
rays is that this setup eliminates the need to cool the
atoms to the quantum degenerate regime, which signifi-
cantly reduces experimental complexity and cycle times.
Moreover, since the tweezer array can be produced with
SLMs, the topology of the array can be freely chosen in
contrast to optical lattices. In these setups, atoms are
directly loaded into the array after a laser cooling stage.
Due to light-assisted collisions, each trap is at most occu-
pied by one atom with a probability of p ≃ 1/2 [77]. This
results in an initial state where the atoms are stochasti-
cally loaded into the traps and hence appear in random
locations. In order to remove entropy and obtain a uni-
form array with precisely one atom per trap, the atoms
need to be rearranged [113, 140, 141]. To this end, the
atoms are imaged after the initial loading step using non-
destructive fluorescence imaging. Based on the measured
occupations, atoms will be moved with dynamically con-
figurable optical tweezer beams to their final locations in
order to produce defect-free arrays (Fig. 3b).

In contrast to optical lattice experiments, there is no
tunneling between neighboring traps. Instead, interac-
tions are induced by exciting the atoms to highly excited

Rydberg states [136]. The interaction strength can be
adjusted either by controlling the interatomic distance or
by utilizing different Rydberg states. The large dipole-
dipole interaction between Rydberg atoms can be em-
ployed to implement different spin models. Here, the
ground |g⟩ and Rydberg |r⟩ states are mapped onto a
spin-1/2 system, and the van der Waals interaction be-
tween Rydberg atoms gives rise to an Ising-type spin
Hamiltonian whose interactions scale as 1/R6 as a func-
tion of the separation R between atoms. In addition, the
atoms are driven by a laser beam that couples |g⟩ and
|r⟩. Here, the coherent coupling maps to a transverse
field while the detuning from resonance maps to a longi-
tudinal field [137]. All parameters are independently tun-
able either by changing the parameters of the coupling
laser or by adjusting the distance between neighboring
atoms. Moreover, using local addressing, the Hamilto-
nian parameters can be adjusted on the level of indi-
vidual atoms [142]. Coherent many-body dynamics and
phase transitions have been studied for such an Ising-type
Hamiltonian with up to 51 atoms in Ref. [143].

Using a system of two Rydberg states |r1⟩ and |r2⟩, the
resonant dipole-dipole interaction maps onto an XY-spin
model, where transverse and longitudinal fields are real-
ized with a microwave field. The two-dimensional dipolar
XY-model, for instance, served as a basis for the obser-
vation of scalable spin squeezing in Rydberg arrays [144],
which has also been achieved with Ising-type interac-
tions on an optical clock transition [145]. Moreover,
making use of Rydberg blockade between nearest neigh-
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bors, dimer models can be efficiently implemented, which
for a filling of 1/4 on a Kagomé lattice facilitated the
preparation of nontrivial states with spin liquid charac-
ter [146]. Rydberg atom arrays are further ideally suited
for studying hybrid digital-analog or purely digital quan-
tum information protocols. This has been demonstrated
in Ref. [147] where coherent transport of entangled atoms
was used to realize highly entangled states including the
toric code state on a torus with sixteen data and eight
ancillary qubits.

E. Hybrid-tweezer lattices

One of the main challenges for the reliable quantum
simulation of LGTs is the careful engineering of local
symmetries, so that Gauss’s law is respected even for
long evolution times. This does not occur naturally in
Hubbard-type optical lattices, where symmetries are typ-
ically global. A promising route to overcome these lim-
itations constitutes combining optical lattices with lo-
cal control provided by optical tweezer arrays. While
it is technically challenging to combine both setups in
a way that provides good relative stability in terms of
the position of the tweezer beams relative to the lat-
tice sites, there have been significant experimental ad-
vances recently. One pathway towards enhancing the
programmability of atom arrays with significant tunnel-
ing between neighboring sites is to bring the tweezer
traps close enough for tunneling to occur. The main
challenge here are position and intensity fluctuations,
which will result in decoherence and dephasing of tun-
neling between neighboring traps. Following early pio-
neering work with Rb atoms, these techniques have been
extended to two dimensions for experimental studies of
programmable Fermi-Hubbard systems of a few parti-
cles [114, 148], as illustrated in Fig. 3c. These imple-
mentations are based on light Li atoms, where larger
separations between potential wells can still result in siz-
able tunnel couplings. A second pathway consists in the
use of local potentials to locally manipulate the poten-
tial energy of selected sites in order to detune or suppress
tunneling between neighboring sites (Fig. 3d) as recently
demonstrated with bosonic Sr atoms [106, 149] and in
a Rb quantum gas microscope [150]. Combining opti-
cal lattices with optical tweezers further offers intriguing
possibilities for increasing the repetition rate of quantum
simulation experiments via direct laser cooling of atoms
in tightly focused tweezer traps, which can then be used
to implant atoms into an optical lattice at the desired
positions [106]. In the context of LGTs, where dynamics
is one of the most immediate applications of quantum
simulation, this approach provides an exciting route for
the realization of specific physical initial states.

IV. FIRST STEPS AND BUILDING BLOCKS

Cold-atom experiments have already made significant
steps along the way towards simulating full-blown gauge
theories with couplings to dynamical matter. Several im-
plementations so far have focused on realizing individual
building blocks, demonstrating local gauge-invariant cou-
plings on the smallest possible scales, see Fig. 4. Another
route starts by formally integrating out the gauge fields,
which leads to nontrivial couplings between the remain-
ing matter fields which can also be realized experimen-
tally. In the following, we review the key experiments so
far involving cold atoms, all of which could potentially
be scaled up to realize extended gauge theories.

A. Z2 gauge theory by Floquet engineering

The simplest representation of a gauge field corre-
sponds to a gauge degree of freedom on the links of a
lattice with a two-dimensional Hilbert space, which we
denote by τ̂z⟨i,j⟩ in the following; it takes the role of a

parallel transporter Û⟨i,j⟩ on link ⟨i, j⟩. The conjugate
electric-field variable can be described by the Pauli ma-
trix τ̂x⟨i,j⟩, with its positive (|+x⟩) and negative (|−x⟩)
eigenvectors corresponding to the allowed electric-field
configurations. Different proposed implementations work
in different bases, typically either the τ̂x or τ̂z eigenbasis
is used.
Out of such spin-1/2 gauge degrees of freedom, differ-

ent local symmetries Ĝj can be constructed such that

[Ĥ0, Ĝj ] = 0. These define different local gauge con-
straints, i.e., different Gauss’s laws: If the adjacent link
variables τ̂x⟨i,j⟩ are combined in a sum, the spin-1/2 U(1)

QLM is obtained. If, on the other hand, products of the
electric fields are taken, Ĝj ∝

∏
i:⟨i,j⟩ τ̂

x
⟨i,j⟩, the Z2 gauge

group is obtained; here the product includes all bonds
⟨i, j⟩ including the reference site j.
In addition to the link variables, matter fields âj can

be defined on the sites j of the lattice. The simplest case
assumes hard-core bosons âj whose parity corresponds
to their Z2 charge. I.e., the local Z2 gauge symmetry
becomes [Ĥ0, Ĝj ] = 0, with

Ĝj = (−1)n̂j

∏
i:⟨i,j⟩

τ̂x⟨i,j⟩, n̂j = â†j âj . (6)

The corresponding Gauss’s law constraint reads

Ĝj |Ψ⟩ = gj |Ψ⟩ , gj ∈ {−1,+1}, (7)

where gj describes a given configuration of background
charges. For a lattice without open links, these have to
satisfy

∏
j gj = 1, since

∏
j Ĝj = 1.

The simplest Z2 gauge-invariant term, besides τ̂x⟨i,j⟩
and n̂j , that may appear in the Hamiltonian corresponds
to the Z2 minimal coupling :

Ĥmin,Z2 = −Ja â†i τ̂
z
⟨i,j⟩âj +H.c. (8)
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state-resolved detection techniques29. They provide direct access to 
the state-resolved density on each site of the double well naj

I
 and nfj

I
, 

averaged over the entire 3D array of double-well realizations. The 
experimental results are shown in Fig. 3b for U/J = 6.6 and ϕ = 0. 
As expected, we find that the charge oscillates, while the dynamics 
of the f particle is strongly suppressed. We observe a larger char-
acteristic oscillation frequency for the a particle compared to the 
prediction of equation (6) (grey line, Fig. 3b). This is predominantly 
caused by an inhomogeneous tilt distribution Δ(x, y, z) present in 
our system. Taking the inhomogeneity into account, the numeri-
cal analysis of the full time-dependence according to equation (3) 
(solid blue line, Fig. 3b) shows good agreement with the experimen-
tal results. The fast oscillations both in the data and the numerics 
are due to the micromotion at non-stroboscopic times.

The f particle is initially prepared in an eigenstate of the elec-
tric field operator τ̂x

I
, which corresponds to an equal superposition 

of the particle on both sites of the double-well potential, that is, 
hτ̂zðt ¼ 0Þi ¼ 0
I

. The Z2
I

 electric field follows the oscillation of the 
matter particle in a correlated manner to conserve the local quantities 
gj. At the same time the expectation value of the gauge field hτ̂zðtÞi

I
 

is expected to remain zero at all times. This is a non-trivial result, 
which is a direct consequence of the Z2

I
-symmetry constraints. In 

contrast, a resonantly driven double-well system with Δf = 0, which 
does not exhibit Z2

I
 symmetry, would show dynamics with equal 

oscillation amplitudes for the a and f particles. In the experiment we 
clearly observe suppressed dynamics for the f particle, which is a sig-
nature of the experimental realization of the Z2

I
 symmetry (Fig. 3b). 

Deviations between the time-dependent numerical analysis and the 
experimental results are most likely to be due to an imperfect initial 
state, residual energy offsets and finite ramp times.

In a second set of experiments we study the dynamics where 
the gauge field particle is initialized in an eigenstate of the gauge 
field operator τ̂z

I
, while the matter particle is again localized on 

site j = 1, ψ z
0

!! "
¼ ja; 0i" j0; f i

I
 (Fig. 4a). Here, the system is in a 

coherent superposition of the two subsectors with g1 = −g2 = ±1 
and the expectation value of the locally conserved operators are 
hĜ1i ¼ hĜ2i ¼ 0
I

. Note that there is no coupling between differ-
ent subsectors according to Hamiltonian (equation (4)). The basic 
dynamics can be understood in the two limiting cases of the model. 
For J f ≪ Ja the electric field vanishes and the system is dominated 
by the gauge field τ̂z

I
. In this limit, a system prepared in an eigen-

state of τ̂z
I
 will remain in this eigenstate because τ̂z

I
 commutes with 

Hamiltonian (4) for Jf = 0. In the opposite regime (J f ≫ Ja), where the 
electric field dominates, hτ̂zi

I
 oscillates between the two eigenvalues.  

The dynamics of the Z2
I

 charge on the other hand is still determined 
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according to Hamiltonian (equation (4)). b, Measured expectation values 
of the Z2

I
 charge hQ̂1i
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 (blue points) and Z2

I
 gauge field hτ̂zi

I
 (red points) for 

ω!=!2π!×!4,320!Hz. Each data point represents the mean of at least three 
individual experimental results and the error bars denote the standard 
deviation. The blue and red lines and shadings show a numerical analysis 
using time-dependent exact diagonalization, which includes averaging 
of the observables in the presence of an inhomogeneous tilt distribution 
Δ(x, y, z) approximated by a normal distribution with standard deviation 
Δσ /h!=!0.44(2)!kHz, which was independently calibrated (Supplementary 
Information). The blue and red solid lines are the median and the shading 
represents the 1σ confidence interval obtained with a bootstrap analysis of 
1,000 repetitions. All calculations are performed using the independently 
calibrated experimental parameters, J/h!=!587(3)!Hz, Δf /h!=!4.19(3)!kHz, 
U/h!=!3.85(7)!kHz and taking into account additional terms that appear in 
the extended Bose–Hubbard model (Supplementary Information). The grey 
solid lines are the ideal dynamics according to equations (4) and (6).

2.01.51.00.50
–1

0

1
–1

0

1b

a

τz

t

fa

⟨τ
z ⟩

⟨Q
1⟩

Jt/h
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circles illustrate the expectation value of τ̂z
I
. b, Measured expectation 

values of the Z2
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 charge hQ̂1i
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 (blue points) and the Z2
I

 gauge field hτ̂zi
I

 (red 
points) for ω!=!2π!×!4,314!Hz. Each data point represents the mean of at 
least three individual experimental results and the error bars denote the 
standard deviation. The blue and red lines and shadings show a numerical 
analysis using time-dependent exact diagonalization, with J/h!=!578(3)!Hz, 
Δf /h!=!4.19(3)!kHz, U/h!=!3.85(7)!kHz and Δσ /h!=!0.46(2)!kHz as explained 
in the caption of Fig. 3b and the Supplementary Information. The blue and 
red solid lines are the median and the shading represents the 1σ confidence 
interval obtained with a bootstrap analysis of 1,000 repetitions. The grey 
solid lines are the ideal dynamics according to equations (4) and (6).
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elements JJ 0ðχÞ
I

 and JJ 2ðχÞ
I

. To lowest order, the effective double-
well Hamiltonian takes the form

Ĥeff ¼ "Ja τ̂z ây2â
y
1 þ ây1â

y
2

! "
" Ĵf τ̂

x ð4Þ

where Ĵf
I

 depends on the position of the a particle

Ĵf ¼ JJ 0ðχÞn̂a1 þ JJ 2ðχÞn̂a2 ð5Þ

The density dependence of Ĵf
I

 can be avoided by choosing the dimen-
sionless driving strength χ such that J 0ðχ0Þ ¼ J 2ðχ0Þ

I
, which occurs, 

for example, at χ0 ≈ 1.84. Then, equation (4) reduces to the two-site 
version of the Z2

I
 LGT described by Hamiltonian (equation (1)).  

Note that the double-well model defined in equation (4) is Z2
I

-sym-
metric for all values of the driving strength χ.

The experimental set-up consists of a 3D optical lattice gener-
ated at wavelength λs = 767 nm. Along the x axis an additional 
standing wave with wavelength 2λs = 1,534 nm is superimposed 
to create a superlattice potential. For deep transverse lattices and 
suitable superlattice parameters, an array of isolated double-well 
potentials is realized, where all dynamics is restricted to the two 
double-well sites (Supplementary Information). The periodic drive 
is generated by modulating the amplitude of an additional lattice 
with wavelength 2λs, whose potential maxima are aligned relative 
to the double-well potential to modulate only one of the two sites. 
This enables the control of the modulation phase, which is set to 
ϕ = 0 or π.

We first study the renormalization of the tunnelling matrix ele-
ments for the relevant ν-photon processes49,51–54 with a single atom 
on each double well (Fig. 2b). For every measurement, the atom is 
initially localized on the lower-energy site with a potential energy 
difference Δν ≈ νħω to the higher-energy site, where ν ∈ {0, 1, 2}. 
Then, the resonant modulation is switched on rapidly at frequency 
ω and we evaluate the imbalance I = n2 − n1 as a function of the evo-
lution time, where nj is the density on site j. These densities were 
determined using site-resolved detection methods29. Note, this tech-
nique provides an average of this observable over the entire 3D array 
of double-well potentials. Hence, an overall harmonic confinement 
and imperfect alignment of the lattice laser beams introduces an 

inhomogeneous tilt distribution Δ(x, y, z), which leads to dephasing 
of the averaged dynamics. The renormalized tunnelling amplitude 
is obtained from the oscillation frequency of the imbalance and  
by numerically taking into account the tilt distribution Δ(x, y, z)  
(Fig. 2b). We find that our data agree well with the expected 
Bessel-type behaviour for the ν-photon processes (Supplementary 
Information). Moreover, these measurements enable us to directly 
determine the value of the modulation amplitude, for which 
J 0ðχ0Þ ¼ J 2ðχ0Þ
I

, as indicated by the vertical line in Fig. 2b.
To study the dynamics of the Z2

I
 double-well model (equation (4)),  

we prepare two different kinds of initial states, where the gauge field 
particle is either prepared in an eigenstate of the electric field τ̂x

I
 

(Fig. 3) or the gauge field operator τ̂z
I
 (Fig. 4a). In both cases the 

matter particle is initially localized on site j = 1.
First, we consider the state ψx

0

!! "
¼ ja; 0i" jf ; 0iþ j0; f ið Þ=

ffiffiffi
2

p

I
 

(Fig. 3a), where the gauge-field particle is in a symmetric superposi-
tion between the two sites. This state is an eigenstate of Ĝj

I
 defined in 

equation (2). The corresponding eigenvalues are g1 = −1 and g2 = +1. 
After initiating the dynamics by suddenly turning on the resonant 
modulation, we expect that the matter particle starts to tunnel to the 
neighbouring site (j = 2) according to the matter–gauge coupling. 
Depending on the energy of the electric field Jf, this process can be 
energetically detuned and the matter particle does not fully tunnel 
to the other site. Solving the dynamics according to Hamiltonian 
(equation (4)) analytically, gives:

Q̂1ðtÞ
! "

¼ $
J2f þ J2a cos 2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2f þ J2a

q$ %

J2f þ J2a
ð6Þ

The maximum value of hQ̂1i
I

 is limited to ðJ2a " J2f Þ=ðJ2a þ J2f Þ
I

. The 
experimental configuration is well suited to explore the regime 
Jf =Ja ¼ J 0ðχ0Þ=J 1ðχ0Þ $ 0:54
I

, which corresponds to an interme-
diate regime between the two limiting cases discussed in Fig. 1c.  
These cases can also be understood at the level of the two-site 
model. In the weak electric field regime (Jf /Ja ≪ 1) the matter parti-
cle tunnels freely between the two sites, while in the limit of a strong 
electric field (Jf /Ja ≫ 1) the matter particle remains localized.

In the experiment we can directly access the value of the charge 
operator Q̂j ¼ eiπn̂

a
j

I
 and the link operator τ̂z ¼ n̂f2 " n̂f1

I
 via site- and 
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, where U is the interspecies on-site 

interaction. Depending on the position of the f particle, the a particle acquires a phase shift of π, which realizes the matter–gauge coupling. Tunnelling of 
the f particle is renormalized by zero- or induced via two-photon processes, with amplitudes JJ 0ðχÞ
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 and JJ 2ðχÞ

I
 depending on the a particle’s position. 

b, Experimental results for the renormalization of the tunnel couplings J νðχÞ
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 for single-particle ν-photon processes ν!=!{0, 1, 2}, with ω!=!2π!×!4,122!Hz 
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elements JJ 0ðχÞ
I

 and JJ 2ðχÞ
I

. To lowest order, the effective double-
well Hamiltonian takes the form

Ĥeff ¼ "Ja τ̂z ây2â
y
1 þ ây1â

y
2

! "
" Ĵf τ̂

x ð4Þ

where Ĵf
I

 depends on the position of the a particle

Ĵf ¼ JJ 0ðχÞn̂a1 þ JJ 2ðχÞn̂a2 ð5Þ

The density dependence of Ĵf
I

 can be avoided by choosing the dimen-
sionless driving strength χ such that J 0ðχ0Þ ¼ J 2ðχ0Þ

I
, which occurs, 

for example, at χ0 ≈ 1.84. Then, equation (4) reduces to the two-site 
version of the Z2

I
 LGT described by Hamiltonian (equation (1)).  

Note that the double-well model defined in equation (4) is Z2
I

-sym-
metric for all values of the driving strength χ.

The experimental set-up consists of a 3D optical lattice gener-
ated at wavelength λs = 767 nm. Along the x axis an additional 
standing wave with wavelength 2λs = 1,534 nm is superimposed 
to create a superlattice potential. For deep transverse lattices and 
suitable superlattice parameters, an array of isolated double-well 
potentials is realized, where all dynamics is restricted to the two 
double-well sites (Supplementary Information). The periodic drive 
is generated by modulating the amplitude of an additional lattice 
with wavelength 2λs, whose potential maxima are aligned relative 
to the double-well potential to modulate only one of the two sites. 
This enables the control of the modulation phase, which is set to 
ϕ = 0 or π.

We first study the renormalization of the tunnelling matrix ele-
ments for the relevant ν-photon processes49,51–54 with a single atom 
on each double well (Fig. 2b). For every measurement, the atom is 
initially localized on the lower-energy site with a potential energy 
difference Δν ≈ νħω to the higher-energy site, where ν ∈ {0, 1, 2}. 
Then, the resonant modulation is switched on rapidly at frequency 
ω and we evaluate the imbalance I = n2 − n1 as a function of the evo-
lution time, where nj is the density on site j. These densities were 
determined using site-resolved detection methods29. Note, this tech-
nique provides an average of this observable over the entire 3D array 
of double-well potentials. Hence, an overall harmonic confinement 
and imperfect alignment of the lattice laser beams introduces an 

inhomogeneous tilt distribution Δ(x, y, z), which leads to dephasing 
of the averaged dynamics. The renormalized tunnelling amplitude 
is obtained from the oscillation frequency of the imbalance and  
by numerically taking into account the tilt distribution Δ(x, y, z)  
(Fig. 2b). We find that our data agree well with the expected 
Bessel-type behaviour for the ν-photon processes (Supplementary 
Information). Moreover, these measurements enable us to directly 
determine the value of the modulation amplitude, for which 
J 0ðχ0Þ ¼ J 2ðχ0Þ
I

, as indicated by the vertical line in Fig. 2b.
To study the dynamics of the Z2

I
 double-well model (equation (4)),  

we prepare two different kinds of initial states, where the gauge field 
particle is either prepared in an eigenstate of the electric field τ̂x

I
 

(Fig. 3) or the gauge field operator τ̂z
I
 (Fig. 4a). In both cases the 

matter particle is initially localized on site j = 1.
First, we consider the state ψx

0

!! "
¼ ja; 0i" jf ; 0iþ j0; f ið Þ=

ffiffiffi
2

p

I
 

(Fig. 3a), where the gauge-field particle is in a symmetric superposi-
tion between the two sites. This state is an eigenstate of Ĝj

I
 defined in 

equation (2). The corresponding eigenvalues are g1 = −1 and g2 = +1. 
After initiating the dynamics by suddenly turning on the resonant 
modulation, we expect that the matter particle starts to tunnel to the 
neighbouring site (j = 2) according to the matter–gauge coupling. 
Depending on the energy of the electric field Jf, this process can be 
energetically detuned and the matter particle does not fully tunnel 
to the other site. Solving the dynamics according to Hamiltonian 
(equation (4)) analytically, gives:

Q̂1ðtÞ
! "

¼ $
J2f þ J2a cos 2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2f þ J2a

q$ %

J2f þ J2a
ð6Þ

The maximum value of hQ̂1i
I

 is limited to ðJ2a " J2f Þ=ðJ2a þ J2f Þ
I

. The 
experimental configuration is well suited to explore the regime 
Jf =Ja ¼ J 0ðχ0Þ=J 1ðχ0Þ $ 0:54
I

, which corresponds to an interme-
diate regime between the two limiting cases discussed in Fig. 1c.  
These cases can also be understood at the level of the two-site 
model. In the weak electric field regime (Jf /Ja ≪ 1) the matter parti-
cle tunnels freely between the two sites, while in the limit of a strong 
electric field (Jf /Ja ≫ 1) the matter particle remains localized.

In the experiment we can directly access the value of the charge 
operator Q̂j ¼ eiπn̂

a
j

I
 and the link operator τ̂z ¼ n̂f2 " n̂f1

I
 via site- and 
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and F m↓" ≡ = 1, = 1"F∣ ∣  are coupled by two Raman laser beams of wave-
length λR = 2π/kR = 768.97 nm counter-propagating along the x axis. In 
this configuration, the single-beam recoil energy is ER/h = 8.66 kHz. 
We apply an external magnetic field B0 along the vertical z direction to 

control the intra- and interspin interaction strengths through the cor-
responding scattering lengths a↑↑, a↓↓ and a↑↓ using Feshbach reso-
nances. All experiments start by preparing a BEC in the lower dressed 
state with about 7,000 to 30,000 atoms, depending on the measure-
ment. The atoms are held in an optical dipole trap formed by crossing 
a waveguide beam and a confining beam, which propagate along the 
x and z axes respectively. At time t = 0, we remove the confining beam 
and let the Raman-dressed cloud evolve in the waveguide, before imag-
ing the atoms in situ along the z axis (Methods).

To reveal the momentum-dependent nature of the interactions in 
this system, in a first series of experiments we investigate the dynam-
ics of the Raman-dressed atoms when propagating in opposite direc-
tions along the x axis. To this end, we prepare a BEC in state −"∣  close 
to the minimum of the dispersion with ħΩ/ER = 5.3(3), ħδ0/ER = −2.62(6) 
and B0 = 374.29(1) G (for which a↑↑/a0 = −4.9, a↓↓/a0 = 24.6 and 
a↑↓/a0 = −13.8, where a0 is the Bohr radius). After removing the vertical 
confining beam, we impart a momentum ∆k/kR = ±1.45 to the cloud 
through Bragg diffraction using two additional laser beams 
counter-propagating along the x axis (insets in Fig. 2a,b). Figure 2a,b 
shows that the behaviour of the Raman-dressed BEC strongly depends 
on its propagation direction. As depicted in the top panel of Fig. 2c, 
we measure a centre-of-mass velocity v of 17.39(4) mm s−1 for a BEC 
moving with kx > 0, which is nearly twice as large in modulus as 
−8.83(2) mm s−1 observed for kx < 0. These values agree with the 
single-particle theoretical prediction Ev ħ= ∂ /kx

 (solid and dashed 
lines), and reflect the non-parabolic form of the dispersion relation 

k( )xE  at the Rabi frequency employed here. More interestingly, the 
width σx of the atomic cloud along the propagation direction is also 
markedly different in the two cases. As shown in the bottom panel, for 
kx > 0 the BEC expands to more than three times its initial size in 12 ms, 
whereas for kx < 0 it preserves its shape and σx remains constant. This 
difference reveals the momentum dependence of interactions in our 
Raman-dressed system and is compatible with the effective scattering 
lengths aeff/a0 = 21.1 for kx > 0 and aeff/a0 = −2.7 for kx < 0, with 
geff = 4πħ2aeff/m0. We attribute the absence of expansion in the attrac-
tive case to the formation of a type of bright soliton that is different 
from those observed so far42,43.

To characterize such a Raman-dressed soliton, we investigate its 
behaviour after colliding with a potential barrier created by focusing 
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(insets). The images correspond to single-shot measurements. c, Top: 
centre-of-mass position xCOM of the atomic cloud versus propagation time for 
k x > 0 (green squares) and k x < 0 (blue circles). The different speeds reflect the 

non-parabolic shape of the dispersion relation, in agreement with 
single-particle theory without adjustable parameters (solid and dashed lines). 
Bottom: measured cloud widths σx along the waveguide direction. Although 
the cloud expands when propagating towards the right (effective scattering 
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field: collective excitations propagating without dispersion along only 
one direction and corresponding to the many-body chiral edge states 
of the original two-dimensional (2D) Chern–Simons system7–9 (Fig. 1a).

To simulate the chiral BF theory, we make use of its Hamiltonian 
formulation and impose the local conservation law by encoding the 
gauge degrees of freedom in the form of non-trivial interactions 
between new matter fields φ UΨˆ = ˆ ˆ, where Û  is a unitary transformation 
(Methods). This strategy, which has been successfully exploited to 
simulate the Schwinger model with trapped ions, ensures gauge invar-
iance by construction and makes optimal use of system resources, 
reducing the implementation of the gauge theory to the engineering 
of the corresponding interaction term21,37. For the Schwinger model, 
the encoding yields long-range (Coulomb) interactions, whereas for 
the chiral BF theory the resulting interactions are of finite range and 
are chiral. The corresponding interaction energy density reads 

λφ j φˆ = ˆ ˆ ˆ/2int
BF †

H  (refs. 7–9), where j ħ φ φ φ φ mˆ = [ ˆ ∂ ˆ − (∂ ˆ ) ]̂/(2i )x x
† †

 is the 
normal-ordered current operator, ħ = h/(2π) is the reduced Planck 
constant and m is the mass of the matter field. This interaction term 
explicitly breaks Galilean invariance, as can be seen by considering a 
semiclassical matter wavepacket of centre-of-mass momentum k, for 
which j = ħkn/m and λħkn m= /(2 )int

BF 2H , where n n= ˆ  is the matter den-
sity. Thus, realizing the chiral BF theory corresponds to engineering 

matter fields with contact interactions and a coupling constant that 
depends linearly on the centre-of-mass momentum.

This situation can be implemented in a weakly interacting BEC where 
two internal atomic states ↑'∣  and ↓'∣  of unequal interaction strengths 
g↑↑ ≠ g↓↓ are coupled through an external electromagnetic field with 
Rabi frequency Ω and detuning δ0. The resulting atom–photon dressed 
states −'∣  and +'∣  have modified scattering properties that depend on 
their spin composition, a situation that was recently investigated for 
radio-frequency dressing38. If the coupling is performed optically, for 
example, with two lasers in Raman configuration counter-propagating 
along the x axis (inset in Fig. 1b), a momentum 2kR is transferred to the 
atoms along kx. Here kR is the recoil momentum of a single Raman laser 
beam of recoil energy E ħ k m= /(2 )R

2
R
2

0 , where m0 is the mass of the 
atoms. In this case, the detuning and spin composition become momen-
tum dependent and can be described by the generalized detuning 

∼
δ , 

given by 
∼

ħδ E ħδ E k k/ = / − 4 /xR 0 R R  and spin polarization parameter 
∼ ͠P δ Ω= / , with Ω Ω δ= +2 2∼͠ . As a result, the dressed states acquire a 

momentum-dependent effective interaction strength. For ħΩ/ER > 4, 
the dispersion relation of the lower dressed state −'∣  has a single min-
imum and is separated from the higher dressed state +'∣  by a gap ͠ħΩ  
larger than all the other energy scales of the system. We thus restrict 
our description to state ∣−'. Its effective interaction strength is given 
by geff(P) = [g↑↑(1 + P)2 + g↓↓(1 − P)2 + 2g↑↓(1 − P2)]/4, where g↑↓ is the inter-
spin interaction strength, and becomes locally linear in kx (Fig. 1b).

We exploit this linear momentum dependence to map the effec-
tive Hamiltonian of the system truncated to the lower Raman-dressed 
state into the quantum version of the encoded chiral BF theory11.  
To this end, we write the effective Hamiltonian for a BEC in state ∣ − ' 
in momentum space39, and expand it in the small parameter 
q k ħΩ k E k k k ħΩ k E( / )/[ ( )/ ] = [( − )/ ]/[ ( )/ ],xR 0 R 0 R 0 R

͠ ͠  where the momentum 
k0 must be chosen close to the centre-of-mass momentum of the 
BEC. For δ0 = 0 and k0 = 0, we find

∫H φ
ħ

m m
g

φ φ
λ

j φˆ ≈ d ˆ −
2

∂
+

∇
+

2
ˆ ˆ +

2
ˆ ˆ (1)x
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2 2
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2

0
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⎥

which, along the x direction, corresponds to the 1D chiral BF Hamilto-
nian after encoding. Here  r  =  (x,y,z), ∇ = ∂ + ∂y z-

2 2 2 , g1 = geff(0), 
m m E ħΩ= [1 − 4 /( )]0 R

−1 is the effective mass of the atoms along x, and 
the strength of the chiral interaction term λ = mkR(g↓↓ − g↑↑)/(m0Ω) can 
be experimentally controlled by adjusting the intraspin interaction 
strengths. Interestingly, the mapping remains valid for δ0 ≠ 0 provided 
the expansion is performed at k0/kR = ħδ0/(4ER), that is, 

∼
δ = 0, although 

in this case a static single-particle vector potential As = −ħk0m/m0 
appears. Away from δ = 0

∼
, the effective lower-dressed-state description 

remains valid but additional momentum-dependent kinetic terms 
beyond the chiral BF Hamiltonian need to be included (Methods)11.

The equivalence between an optically coupled BEC with unequal 
interaction strengths and the encoded chiral BF theory has already 
been established in the classical field theory limit10, building on the 
fact that, in the weakly interacting regime, the interaction term of the 
chiral BF theory can be recast as a density-dependent vector potential 

λφ φˆ = − ˆ ˆ/2
†

A  (refs. 5–8) related to the chiral BF gauge field Â through 
A Aˆ = ˆ/2 (Methods)9,11. This density-dependent vector potential emerges 
naturally in the semiclassical description of a Raman-dressed BEC with 
g↑↑ ≠ g↓↓ owing to the density-dependent detuning introduced by the 
differential mean-field energy shift of the transition, and can be read-
ily calculated for large values of the Rabi frequency using a position-
space approach40. Similarly to what happens at the single-particle 
level41, our momentum-space treatment allows one to extend the 
mapping to moderate values of Ω, facilitating its experimental  
realization.

We implement the chiral BF theory with a 39K BEC, in which two Zee-
man sublevels (mF) of the F = 1 hyperfine manifold ∣ ∣F m↑' ≡ = 1, = 0'F  
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Fig. 1 | Simulation of the chiral BF theory in an optically dressed BEC. a, The chiral  
BF theory is a 1D reduction of the 2D Chern–Simons theory of fractional 
quantum Hall states and describes chiral solitons: matter wavepackets that 
propagate without dispersion for only one sign of the velocity v and correspond  
to the many-body edge states of the original 2D system. Both are topological 
gauge theories with local conservation laws linking the electric EBF and 
magnetic BCS fields to ∂tn and n, respectively, where n is the matter density.  
The magnetic-field relation corresponds to the flux attachment condition  
(the formation of composite particles consisting of particles bound to 
magnetic flux tubes that lead to an anyonic exchange phase φ), which these 
theories are built on (see rectangular box in panel a)50. b, Implementation of the 
chiral BF theory in the lower dressed state −'∣  of an optically coupled BEC, 
where states ∣↑'  and ↓'∣  are coupled by two counter-propagating Raman beams 
(inset). Its single-particle dispersion relation (left axis) depends on the 
two-photon Raman Rabi frequency Ω and detuning δ0, and its effective 
interaction strength geff (cyan, right axis) is controlled by the spin polarization 
P and the bare interaction parameters g↑↑ ≪ g↓↓. Around k0/kR = ħδ0/(4ER), the 
BEC has chiral interactions geff ∝ k x (grey dashed line) and realizes the chiral BF 
theory. Here ħΩ/ER = 5.3, ħδ0/ER = −2.62, and geff has been computed for 39K at a 
magnetic field B0 = 374.29 G.

d Chiral BF theory

⌘
<latexit sha1_base64="jpVdjwnRsHnjvYQzwTGHXHUPFLk=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120y7d3YTdiVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYiksuu63s7a+sbm1Xdop7+7tHxxWjo7bNkoM4y0Wych0A2q5FJq3UKDk3dhwqgLJO8HkLvc7T9xYEelHnMbcV3SkRSgYxVzqc6SDStWtuXOQVeIVpAoFmoPKV38YsURxjUxSa3ueG6OfUoOCST4r9xPLY8omdMR7GdVUceun81tn5DxThiSMTFYayVz9PZFSZe1UBVmnoji2y14u/uf1Egxv/FToOEGu2WJRmEiCEckfJ0NhOEM5zQhlRmS3EjamhjLM4ilnIXjLL6+Sdr3mXdbqD1fVxm0RRwlO4QwuwINraMA9NKEFDMbwDK/w5ijnxXl3Phata04xcwJ/4Hz+AAowjjw=</latexit> ⌘

<latexit sha1_base64="jpVdjwnRsHnjvYQzwTGHXHUPFLk=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120y7d3YTdiVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYiksuu63s7a+sbm1Xdop7+7tHxxWjo7bNkoM4y0Wych0A2q5FJq3UKDk3dhwqgLJO8HkLvc7T9xYEelHnMbcV3SkRSgYxVzqc6SDStWtuXOQVeIVpAoFmoPKV38YsURxjUxSa3ueG6OfUoOCST4r9xPLY8omdMR7GdVUceun81tn5DxThiSMTFYayVz9PZFSZe1UBVmnoji2y14u/uf1Egxv/FToOEGu2WJRmEiCEckfJ0NhOEM5zQhlRmS3EjamhjLM4ilnIXjLL6+Sdr3mXdbqD1fVxm0RRwlO4QwuwINraMA9NKEFDMbwDK/w5ijnxXl3Phata04xcwJ/4Hz+AAowjjw=</latexit> �
<latexit sha1_base64="WCTQ6m5ZiXOFBlTsNyrpCrs5rmY=">AAAB7XicdVDLSsNAFJ34rPVVdelmsAiuQpKa1uyKblxWsA9oQ5lMJ+3YmUmYmQgl9B/cuFDErf/jzr9x+hBU9MCFwzn3cu89Ucqo0o7zYa2srq1vbBa2its7u3v7pYPDlkoyiUkTJyyRnQgpwqggTU01I51UEsQjRtrR+Grmt++JVDQRt3qSkpCjoaAxxUgbqdUbIs5Rv1R27MCr+k4AHdv3Ar9aMcSpVaqBD13bmaMMlmj0S++9QYIzToTGDCnVdZ1UhzmSmmJGpsVepkiK8BgNSddQgThRYT6/dgpPjTKAcSJNCQ3n6veJHHGlJjwynRzpkfrtzcS/vG6m44swpyLNNBF4sSjOGNQJnL0OB1QSrNnEEIQlNbdCPEISYW0CKpoQvj6F/5OWZ7sV27s5L9cvl3EUwDE4AWfABTVQB9egAZoAgzvwAJ7As5VYj9aL9bpoXbGWM0fgB6y3Twv4j3Q=</latexit>

j j + 1

�<latexit sha1_base64="5c2kK6W0ZH97D799NZDilIMuNQM=">AAAB7XicdVDLSgMxFM34rPVVdekmWARXQ6YP2+6KLnRZwT6gHUomzbSxSWZIMkIZ+g9uXCji1v9x59+YPgQVPXDhcM693HtPEHOmDUIfzsrq2vrGZmYru72zu7efOzhs6ShRhDZJxCPVCbCmnEnaNMxw2okVxSLgtB2ML2d++54qzSJ5ayYx9QUeShYygo2VWr0rLATu5/LIReeVqleEyC171VoZWVJApVrJg56L5siDJRr93HtvEJFEUGkIx1p3PRQbP8XKMMLpNNtLNI0xGeMh7VoqsaDaT+fXTuGpVQYwjJQtaeBc/T6RYqH1RAS2U2Az0r+9mfiX101MWPVTJuPEUEkWi8KEQxPB2etwwBQlhk8swUQxeyskI6wwMTagrA3h61P4P2kVXK/oFm5K+frFMo4MOAYn4Ax4oALq4Bo0QBMQcAcewBN4diLn0XlxXhetK85y5gj8gPP2CcEMj0I=</latexit>

FIG. 4. First steps and building blocks. Cold atom experiments have realized various building blocks of gauge theories
already: (a) A Z2-minimal coupling of matter with a Z2 gauge field was realized through Floquet engineering [71]. Two
atomic hyperfine states (red, blue) on the sites of a double-well realize matter and gauge fields respectively. The experiment

[71] observed a dynamical redistribution of Z2 charge ⟨Q̂1⟩ = ⟨eiπn̂a
1 ⟩ (bottom panel). (Figure adapted from [71].) (b)

Ring exchange interaction between four spins was achieved by coupling cold atoms in an optical lattice through fourth-order
perturbation processes. The interaction induces oscillations between the states |↑↓↑↓⟩ and |↓↑↓↑⟩, as observed in the experiment
(bottom panel) [69]. The reversal of the oscillation at the quarter period was measured, providing evidence for the anyonic
statistics exhibited by the system. (Figure adapted from [69].) (c) A U(1)-minimal coupling of matter with a U(1) gauge
field was realized using a two-species mixture of sodium (blue) and lithium (orange) atoms [76]. Matter fields occupy sites
..., n, n+1, ... and gauge fields the links in-between. Heteronuclear spin-changing collisions produce the dynamics corresponding
to a gauge-invariant coupling between these two fields, retaining U(1) gauge symmetry. The dynamics of particle production is
shown (bottom panel), where the evolution of the measured density distribution Np/N in state |p⟩ is plotted. (Figure adapted
from [76].) (d) A chiral BF theory, a one-dimensional reduction of Chern-Simons theory, was realized through Raman coupling
after integrating out the gauge field [151]. The experiment observed a chiral soliton, which can only propagate robustly along
one direction (bottom panel). (Figure adapted from [151].)

It describes the elementary tunneling process of a hard-
core boson between neighboring sites i and j. Formu-
lated in the eigenbasis of τ̂z⟨i,j⟩, the sign of the tunneling

matrix element is determined by the gauge field; formu-
lated in the eigenbasis of τ̂x⟨i,j⟩, the string configuration

is flipped from |±x⟩ to |∓x⟩ upon tunneling.

The minimal instance of the Z2 gauge theory described
above, with one matter particle (denoted by a) hopping
between two sites with a gauge link in between, was re-
alized by Schweizer et al. [71] following a theoretical pro-
posal by Barbiero et al. [152]. The experiment utilized a
well-known trick for engineering synthetic gauge fields for
cold atoms [153, 154], where tunneling is first suppressed
by a strong potential gradient and subsequently restored
by a resonant modulation whose phase ϕ determines the
resulting hopping (or Peierls) phase.

As shown in the top panel of Fig. 4a, Schweizer et
al. [71] replaced the strong potential gradient by a large
on-site Hubbard interaction U ≫ J with a second atom
(denoted by f) in a different hyperfine state; J denotes
the bare tunneling amplitude. As a consequence, the ac-
quired phase of the restored tunneling matrix element
depends on the configuration of the f atom [155]. This
procedure allows to make the synthetic gauge field expe-
rienced by the a-particle dependent on the density of the
f -particle, and has been utilized more broadly to realize
density-dependent gauge fields [156].

Schweizer et al. [71] went a step further by identifying
the spatial degrees of freedom of the f -particle with the

eigenstates of τ̂z⟨i,j⟩. Noting that a relative π-phase shift

occurs in the sign of the restored tunneling matrix ele-
ment of the matter particle a when the latter hops onto /
off of a site occupied by the f -particle, the desired mini-
mal coupling Eq. (8) is realized. The tunneling amplitude
is renormalized by the first Bessel function, Ja = JJ1(η),
where η is the amplitude of the potential modulation in
units of the resonant shaking frequency ℏω = U .
In order to introduce nontrivial dynamics of the gauge

field itself, Schweizer et al. [71] realized the electric-field
term in their Hamiltonian,

Ĥel,Z2
= −Jf τ̂x⟨i,j⟩, (9)

by further suppressing tunneling of the f -particle
through a magnetic gradient ∆ seen only by the f -
particle. For a proper choice of the shaking amplitude
η = 1.84, for which J0(η) = J2(η) = Jf/J , they demon-
strated that the restored tunneling of the f -particle —
corresponding to a spin-flip in the eigenbasis of τ̂z⟨i,j⟩ —

becomes independent of the a-configuration, as required
by Eq. (9).

As a demonstration of their quantum simulator,
Schweizer et al. [71] initialized an a-particle on the left
of the double-well and an f -particle in an eigenstate of
τ̂x⟨i,j⟩. The subsequent dynamics of the charge operator

on this site, ⟨Q̂1⟩ = ⟨eiπn̂a
1 ⟩, is shown in the bottom panel

of Fig. 4a. It shows oscillations, which are damped due
to gauge-non invariant processes Ĥ1 originating from av-
eraging over multiple double wells in an inhomogeneous
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trapping potential.
Overall, the experiment demonstrates the principle

feasibility of simulating Z2 LGTs coupled to dynami-
cal matter. Theoretical analysis by Schweizer et al. [71]
suggests that gauge invariance can be ensured in the
building block by fine-tuning the experimental param-
eters. Accompanying theoretical work [152] demon-
strated the scalability of the approach to extended one-
dimensional systems if one utilizes two-frequency driving
to engineer density-dependent Peierls phases. The latter
were demonstrated in a parallel experiment by Görg et
al. [157], completing the demonstration of all required in-
gredients to realize larger-scale Z2 LGTs in contemporary
cold-atom setups. Further extensions in Rydberg-atom
tweezer arrays were recently proposed theoretically by
Homeier et al. [158].

B. Ring exchange from high-order perturbation
theory

The magnetic field in gauge-theory quantum sim-
ulators only appears beyond one spatial dimension
and represents a particular challenge due to its
multiparticle/higher-order nature. In higher-dimensional
lattice QED, such as 2+ 1D, the magnetic-field operator
can be represented by the plaquette term [4, 40, 159]. As
illustrated in Fig. 4b, the plaquette is a small square cre-
ated by connecting four neighboring lattice sites. The
links of this plaquette are identified by indices n ranging
from 1 to 4, and each link is associated with a dynami-
cal operator denoted as Ûn or Ûij from site i to j. This
gauge-invariant term is a product of four link variables
Ûn, which can be written as

Û□ = ÛijÛjkÛ
†
lkÛ

†
il, (10)

and it flips the electric fields around the edge of a loop.
This plaquette term represents the simplest nontrivial
form of a Wilson loop, which involves a closed loop path
integral of the gauge fields. In the QLM formalism, the
term in the Hamiltonian associated with the plaquette
operator manifests itself as the ring-exchange interactions
among four spins. These interactions can be described as
follows for a square plaquette,

ĤRing = −J
□
(Ŝ+

1 Ŝ
−
2 Ŝ

+
3 Ŝ

−
4 +H.c.), (11)

where Ŝ±
n represent the spin raising and lowering opera-

tors, respectively, on link n, and J
□
denotes the coupling

strength of the four-body ring-exchange interaction; see
Fig. 4b, which illustrates the action of the ring-exchange
term.

The four-body ring-exchange interaction can be de-
rived through a higher-order expansion of the Hubbard
Hamiltonian [160]. Therefore, ultracold atoms confined
in optical lattices which are well-described by the Hub-
bard model, can serve as a suitable quantum simula-
tor for investigating dynamics of gauge theories medi-
ated by the ring-exchange interaction. In Ref. [68], an

initial proposal suggested coupling the spins of the four
links using a ‘molecular’ state. Additionally, Ref. [161]
proposed the implementation of a ring-exchange interac-
tion within a square optical superlattice. Notably, they
suggested a scheme for suppressing lower-order processes
which would otherwise govern the spin dynamics of the
plaquette system.

Experimental observation of the four-body ring-
exchange interaction was first reported in Ref. [69]. The
technical developments on full control of the atomic
states in square superlattices enable practical realiza-
tion [128, 162]. Starting with a unity-filled MI state,
the spin configuration was initialized to |↑↓↑↓⟩. The high
barriers between neighboring plaquettes isolate the sys-
tem into an array of four-site building blocks. In each
plaquette, the bare tunneling dynamics is blocked by
the on-site interaction U as the system was turned into
the strongly interacting regime with J ≪ U . Further-
more, the superexchange process that involves second-
order interactions was suppressed by an effective mag-
netic gradient field. Since the ring-exchange coupling
strength J

□
≈ 40J4/U3 is very sensitive to the Hub-

bard parameters, the experiment was carried out in a
nearly homogeneous regime. Finally, as shown in Fig. 4b,
with excellent controllability of quantum coherence, the
ring-exchange oscillations between the state |↑↓↑↓⟩ and
|↓↑↓↑⟩ were clearly measured, ranging from 3 Hz up to
36 Hz [69].

The ability to generate such ring-exchange interac-
tions opens a range of interesting perspectives. For
example, it is a key ingredient of Kitaev’s toric code
model [163] in the square lattice. While Kitaev’s toric
code is effectively a Z2 LGT without dynamical matter,
in Ref. [69] the ring-exchange interaction was introduced
and interpreted within the language of the toric code
Hamiltonian. Namely, in the subspace realized experi-
mentally (|↑↓↑↓⟩ and |↓↑↓↑⟩), the Hamiltonian takes the

form ĤRing = −J
□
σ̂x
1 σ̂

x
2 σ̂

x
3 σ̂

x
4 . As shown in Ref. [163],

the anyonic statistics measured in this building block
imply that topological matter could be engineered and
quantum-simulated in this many-body system [164]. It
is known that condensed matter systems with significant
ring exchange interactions exhibit exotic phases such as
quantum spin liquids [165], or high-Tc superconductiv-
ity [166, 167]. However, due to the relatively small in-
teraction strength in the ultracold-atom simulators, ob-
serving novel quantum phases driven by the plaquette
ring-exchange interaction remains a challenge. To ad-
dress this issue, enhancing the ring-exchange interaction
becomes crucial. By increasing the on-site interaction
strength U while maintaining the ratio J/U , the magni-
tude of J

□
, which scales as J4/U3, will be amplified.



11

C. U(1) gauge theory from angular momentum
conservation

In Ref. [168], it was realized that by suitably sepa-
rating degrees of freedom, the global symmetry of an-
gular momentum conservation can be promoted to a
local symmetry. This approach has been further ex-
tended, refined, and simplified in a series of theory
works [47, 75, 169, 170], until it became possible to imple-
ment a first building block of a U(1) QLM in the large-S
limit in a two species cold-atom experiment.

The employed model and setup were as follows. As
sketched in Fig. 4c, at each site of the optical lattice, two
degrees of freedom reside, labeled by v and p, and gov-

erned by annihilation (creation) operators b̂j,v and b̂j+1,p

(b̂j,v and b̂j+1,p), respectively. These will represent the
matter of the theory. Within the Schwinger model, these
degrees of freedom are fermionic, but in the experiments
of Mil et al. [76] they were chosen as bosonic, getting
close to the Abelian Higgs model [171]. As the labeling
indicates, two partners from neighboring optical-lattice
sites are considered as sitting at the same matter site of
the target LGT. In this way, this model realizes the upper
and lower components of a Dirac spinor via so-called Wil-
son fermions [75] rather than the more commonly used
staggered fermions [159]. Within a matter site (across
two sites of the optical lattice), the two components can
be coupled by a laser-assisted tunneling of strength Ω, de-

scribed by the Hamiltonian Ĥl.a.t. =
∑

j ℏΩb̂
†
j,pb̂j,v+H.c.

An additional deeper optical lattice strongly traps a
second bosonic atomic species described by two internal
states σ = 0, 1 and with associated annihilation (cre-

ation) operators âσ,j (â
†
σ,j). Locally, we can identify these

bosonic fields via the Schwinger representation with spin
operators of length,

L̂+
j,j+1 = â†0,j â1,j , (12a)

L̂−
j,j+1 = â†1,j â0,j , (12b)

L̂z
j,j+1 =

1

2

(
â†0,j â0,j − â†1,j â1,j

)
, (12c)

which become the gauge (L̂±
j,j+1) and electric (L̂z

j,j+1)
fields in a QLM formulation. Since the local occupation

â†0,j â0,j+â
†
1,j â1,j = 2S can be high, as large as thousands

of atoms [47, 76], this approach permits to work in the
large-S limit of the QLM theory.
The species a is considered sufficiently tightly trapped,

such that dynamics can happen only within a site of
the optical lattice. The essentially only way for it to
evolve is then through heteronuclear boson–fermion spin-
changing collisions, which preserve the total angular mo-
mentum — thanks to the tight trapping — locally within
each optical-lattice site. The corresponding process is

described by Ĥs.c.c. = Γ
∑

j b̂
†
j,pL̂

−
j,j+1b̂j+1,v + H.c. This

process encodes the gauge-invariant tunnelling.
Additional terms come from the local on-site energies

±∆ of the internal atomic states |v⟩ and |p⟩, as well as

on-site Hubbard interactions γ between |↑⟩ and |↓⟩ states
representing the gauge sector. Together, these realize a
gauge theory of the form

ĤU(1) = ℏΩ
∑
j

(b̂†j,pb̂j,v +H.c.) + γ
∑
j

(L̂z
j,j+1)

2

+ Γ
∑
j

(b̂†j,pL̂
−
j,j+1b̂j+1,v +H.c.)

+
∆

2

∑
j

(b̂†j,pb̂j,p − b̂†j,vb̂j,v). (13)

This Hamiltonian commutes with the generator of the
U(1) Gauss’s law, see Eq. (5), Ĝj = L̂z

j,j+1−L̂z
j+Q̂j , with

Q̂j = b̂†j,pb̂j,p + b̂†j,vb̂j,v. In contrast to other approaches,
this layout permits to physically place the gauge fields on
the same site as the two matter components it is supposed
to interact with, thus greatly enhancing the overlap of
the involved fields and consequently the corresponding
interaction rate.

This principle was realized for a building block in the
experiment of Mil et al. [76] using a mixture of condensed
7Li and 23Na atoms. In these experiments, a bosonic
species was employed, which permitted to use larger oc-
cupation numbers and thus to increase the relevant in-
teraction rates.

The experiment employed 300× 103 sodium and
50× 103 lithium atoms, and used an external magnetic
bias field to energetically suppress any spin change not
coming from heteronuclear collisions and to populate
only the two Zeeman levels mF = 0 and 1 of the F = 1
hyperfine ground-state manifolds. This then permitted
to observe the gauge-invariant production of (bosonic)
particles out of the matter vacuum, purely through in-
teractions with the gauge field (see Fig. 4c, bottom).
Although the implementation was for a single building
block, the employed experimental ingredients are in prin-
ciple all scalable to a large chain.

D. Chiral BF theory from Raman-dressing

In the systems reviewed above, gauge and matter fields
were directly implemented, which leads to the require-
ment to enforce the corresponding local gauge symme-
tries between the constituents. An alternative approach
is to focus on theories with either the gauge or matter
fields already formally integrated out. As a result, no or
fewer local constraints remain. This can alleviate exper-
imental overhead, but at the same time more complex
interactions can emerge, which can make direct experi-
mental implementations more challenging. Such a proce-
dure was utilized successfully in a first realization of the
U(1) Schwinger model (1 + 1D lattice QED) on a digital
quantum computer using trapped ions [28].

The same approach has recently been chosen in a
cold-atom experiment by Frölian et al. [151], who im-
plemented the so-called chiral BF theory. The latter
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corresponds to a dimensional reduction of the 2 + 1D
U(1) Chern-Simons theory, which is able to describe the
gapless chiral edge excitations that appear in fractional
quantum Hall systems, see top panel in Fig. 4d. Using
the local conservation laws to eliminate the gauge degrees
of freedom, the chiral BF Hamiltonian becomes

ĤchBF =

∫
dx

(
− 1

2m
ϕ̂†∂2xϕ̂+ V (n̂) +

λ

2
ϕ̂†ĵϕ̂

)
. (14)

Here, V (n̂) describes a local interaction of the matter

field ϕ̂(x) (polynomial in n̂(x) = ϕ̂†(x)ϕ̂(x)), and the last
term constitutes the chiral BF interaction which involves
the current operator ĵ(x) = [ϕ̂†∂xϕ̂−(∂xϕ̂

†)ϕ̂]/(2im) and
breaks Galilean invariance.

The Hamiltonian (14) was implemented by Frölian et
al. [151] in a Raman-dressed Bose-Einstein condensate
(BEC). The obtained momentum-dependent spin texture
leads to a momentum-dependent interaction, as required
for the chiral BF theory. The experimentalists demon-
strated their method by realizing a chiral soliton in their
setup, which corresponds to a nonlinear nondispersing so-
lution of the corresponding wave equation. Notably, the
soliton becomes unstable when its momentum is reversed:
This is reflected by the momentum-dependent width of
the wave packet observed over time, see bottom panel of
Fig. 4d, where the blue dots (green squares) correspond
to the stable chiral soliton (unstable wave packet) with
kx < 0 (kx > 0).
The chiral BF theory can be viewed as a point of depar-

ture for realizing a larger class of two-dimensional topo-
logical field theories with anyon excitations captured by
Chern-Simons gauge theory [172].

V. CURRENT STATE OF THE ART:
LARGE-SCALE GAUGE-THEORY COLD-ATOM

QUANTUM SIMULATORS

We now turn our attention to the current experimen-
tal state-of-the-art of cold-atom quantum simulators of
gauge theories, which comprise some of the largest-scale
platforms for probing gauge-theory dynamics from first
principles. We review two seminal experiments, as sum-
marized in Fig. 5.

A. Rydberg setups

The experiments of Bernien et al. [143] realized a one-
dimensional tweezer array (length L) with a variable
number of Rydberg excitations created by laser light.
The electronic ground and Rydberg states form a pseudo-
spin-1/2, with states |↓⟩j and |↑⟩j , and associated Pauli
operators τ̂αj . Here, j labels the tweezer trap. The cor-
responding dynamics is described by the Hamiltonian

ĤRyd =

L∑
j=1

(Ω τ̂xj + δ τ̂zj ) +

L∑
j<ℓ=1

Vj,ℓn̂j n̂ℓ. (15)

The operator n̂j = (τ̂zj + 1)/2 counts the atoms in the
Rydberg state, which interact with strength Vj,ℓ. Fur-
ther, 2Ω and 2δ are the Rabi frequency and the detuning
of the laser excitation. The experiments of Ref. [143] fo-
cused on the regime where Vj,j+1 is much larger than all
other energy scales (due to the sharp decay of Rydberg
interactions with distance, Vj,ℓ beyond nearest neighbors
can be neglected in what follows). The resulting Ryb-
derg blockade leads to the constraint n̂j n̂j+1 = 0, i.e.,
atoms on neighboring sites cannot simultaneously reside
in the Rydberg state. The Fendley–Sengupta–Sachdev
(FSS) Hamiltonian describing this regime reads [173]

ĤFSS = PRb

L∑
j=1

(
Ω τ̂xj + δ τ̂zj

)
PRb. (16)

Despite its simple-looking form, Rydberg excitations be-
come strongly correlated across different traps owing to
the applied projector PRb onto the subspace respecting
the Rydberg blockade, making the FSS Hamiltonian an
instance of the famous PXP model [174].

After the experimental study [143] was published,
Surace et al. [18] pointed out that the FSS Hamilto-
nian can be mapped to the spin-1/2 U(1) QLM by using
Gauss’s law to integrate out the matter fields. This im-
plies that the experimental results by Bernien et al. [143]
can be interpreted in the context of LGTs, which is the
perspective we will take in the following.

To understand how the gauge theory arises, consider
a (1 + 1D) QLM with arbitrary spin-S and target sector
gℓ = 0, ∀ℓ. The Gauss’s law, Eq. (5), allows to eliminate
the matter field by writing σ̂z

ℓ = −2(ŝzℓ−1,ℓ + ŝzℓ,ℓ+1)− 1.
Inserting this relation into the Hamiltonian of the QLM,
Eq. (4), the latter can be rewritten as

Ĥspin = P̂
∑
ℓ

[
− κ

a
√
S(S + 1)

ŝxℓ,ℓ+1 − 2µŝzℓ,ℓ+1 (17)

+
g2a

2

(
ŝzℓ,ℓ+1

)2
+ aχ(−1)ℓ+1ŝzℓ,ℓ+1

]
P̂, (18)

where P̂ is the projector onto gauge configurations con-
sistent with the target sector gℓ = 0, ∀ℓ. For the case of
S = 1/2 relevant to the Rydberg experiment [143], the
term ∝ g2a/2 becomes a constant; hence, by identifying

τ̂j = ŝℓ−1,ℓ, Ω = −κ/[a
√
S(S + 1)], and δ = −2µ, the

above Hamiltonian for θ = π, i.e., χ = 0, coincides with
ĤFSS.
Notably, the Rydberg blockade constrains the the-

ory exactly to the physical subspace of states respecting
Gauss’s law [18]: Namely, the U(1) electric field can only
remain unchanged in the case with no charge, or increase
(decrease) in the case of a particle (antiparticle) occupy-
ing an even (odd) matter site, see Fig. 5a. This leaves
one disallowed gauge-field configuration per matter site,
which maps onto the pair of neighboring Rydberg ex-
citations avoided by the blockade mechanism. Finally,
Surace et al. [18] also pointed out how a tunable θ-angle
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can be added to the Rydberg setup, e.g., by a position-
dependent AC Stark shift.

The measurements by Bernien et al. [143] started
from a charge density wave (CDW) state of alternat-
ing Rydberg-no Rydberg excitations along the chain and
observed the subsequent dynamics. Remarkably, they
found slow and only weakly damped oscillations to the
reversed CDW state and back. Initially, these oscilla-
tions were interpreted as quantum scars [174]. Using the
mapping to a U(1) QLM, Surace et al. [18] were able to
relate these oscillations directly to string-inversion dy-
namics well-known to occur in various gauge theories,
clarifying the origin of this phenomenon more broadly.

B. Gauge protection

The principal property of a gauge theory is gauge sym-
metry. As such, a necessary requirement for a quan-
tum simulator of a gauge theory is to realize a stabilized
and controlled gauge symmetry. This requirement be-
comes particularly important in large-scale quantum sim-
ulators, where an extensive number of local constraints
have to be controlled. This is indeed a nontrivial prob-
lem, as a quantum simulator will generally always have
unavoidable gauge symmetry-breaking terms. These will
lead to a steady and uncontrolled buildup of gauge viola-
tions, eventually rendering the dynamics obtained from
the quantum simulator unrepresentative of the underly-
ing gauge theory [175].

A theoretically straightforward way to suppress gauge
violations on a quantum simulator involves realizing a
ground-state manifold of the target gauge sector, as
proposed by Halimeh and Hauke [175]. Let us de-
note the target gauge superselection sector by its back-
ground charges gtarj . Engineering the protection term

V ĤG = V
∑

j

(
Ĝj − gtarj

)2
into the quantum simulator

will then ensure, at sufficiently large V , that the target
sector is a ground-state manifold. As a result, processes
due to λĤ1, which take the system to other gauge sec-
tors, are energetically penalized, and the gauge violation,
defined as

∑
j⟨Ĝ2

j ⟩/L, settles into a value ∝ λ2/V 2 up
to all numerically accessible times for sufficiently large
V [175]. Although a very effective protection scheme,
this approach can require a significant engineering over-
head, which can make it experimentally unfeasible.

For the case of a U(1) LGT, there is a much sim-
pler way to protect gauge symmetry by employing the
method of linear gauge protection, proposed by Halimeh
et al. [176], where the following protection term is em-

ployed: V ĤG = V
∑

j cjĜj . If the coefficients cj are

tailored to satisfy the compliance condition
∑

j cjg
tar
j ̸=∑

j cjgj where at least one gj ̸= gtarj , then stabilization
of the gauge symmetry is guaranteed up to times expo-
nential in a volume-independent V , with the gauge vi-
olation again settling into a plateau of value ∝ λ2/V 2.
However, this becomes untenable for large systems, as

term [16]. The key element of our mapping, which is
schematically illustrated in Fig. 1, is that gauge invariance
has a natural counterpart in the Rydberg blockade mecha-
nism, which constrains the Hilbert space in the sameway as
Gauss law does in gauge theories. This provides an
immediate interpretation of the recent experiment with
Rydberg-blockaded atom arrays in Ref. [14] as the first
large-scale quantum simulation of a LGT at the edge of
classical computational methods [7].
From a theoretical viewpoint, the mapping offers a

hitherto unexplored perspective on the anomalously slow
relaxation recently observed in experiments: the long-lived
oscillations in the population of excited Rydberg atoms
correspond to a string inversion, a phenomenon which is
directly tied to string breaking [6,17,18] prototypical of
gauge theories including dynamical matter [cf. Figs. 1(d)
and 1(e)]. Themapping indicates that this phenomenon has a
natural interpretation in the LGT framework and suggests
the occurrence of slow dynamics in other U(1) gauge
theories, such as higher-spin QLMs [19], Higgs theories
[20,21], and the Schwinger model [22,23]. These theories
have been widely discussed in the context of Schwinger pair
production taking place at high-intensity laser facilities, thus
providing a highly unexpected, direct link between appa-
rently unrelated experimental platforms [18,24–27].
We discuss the generality of this type of quantum

evolution by extending our analysis to other relevant

instances of “slow dynamics,” characterized by the absence
of relaxation on all timescales corresponding to any micro-
scopic coupling present in the system. As initial states, we
focus on those consisting of particle-antiparticle pairs,
corresponding to regular configurations of the Rydberg
atom arrays with localized defects, which are accessible
within the setup of Ref. [14]. We show that these defects
propagate ballistically with long-lived coherent interfer-
ence patterns. This behavior is found to be governed by
special bands of highly excited eigenstates characterized
by a regularity in the energy-momentum dispersion rela-
tion. These findings open up a novel perspective which
complements and extends toward gauge theories recent
approaches to slow relaxation in Rydberg-blockaded
atomic chains [28–33].

II. RYDBERG ATOM ARRAYS

We are interested here in the dynamics of a one-dimen-
sional array of L optical traps, each of them hosting a single
atom, as schematically illustrated in Fig. 1(a). The atoms
are trapped in their electronic ground state (black circle),
denoted by j↓ij, where j numbers the trap. These ground
states are quasiresonantly coupled to a single Rydberg
state, i.e., a highly excited electronic level, denoted by j↑ij.
The dynamics of this chain of qbits fj↑;↓ijgj¼1;…;L is
governed by the following Ising-type Hamiltonian [13,34]:
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FIG. 1. Gauge-theory interpretation of Rydberg atom quantum simulations. (a) Schematics of a Rydberg atom chain. Each potential
well of the optical lattice hosts a single atom, which can be in either the ground (black) or excited Rydberg (yellow) state. These two
levels are coupled by a laser field. The Rydberg blockade prevents the simultaneous excitations of neighboring atoms. (b) Degrees of
freedom of a U(1) LGT in the spin-1=2 quantum link model (QLM) formulation. Gauge fields are represented by spin variables residing
on links. Matter fields are represented by Kogut-Susskind fermions: an occupied site corresponds to the vacuum on odd sites and to a
quark q on even sites. An empty site, instead, corresponds to the vacuum on even sites and to an antiquark q̄ on odd sites. (c): Mapping
between Rydberg-blockaded states and configurations of the electric field constrained by the Gauss law in the QLM. Because of the
staggered electric charge, the allowed configurations of the electric field depend on the link, as illustrated. The two so-called charge-
density wave configurations “CDW1” and “CDW2” of the Rydberg atom arrays are mapped onto the “string” and “antistring” states,
respectively, characterized by uniform rightward or leftward electric fluxes. The empty configuration with all Rydberg atoms in their
ground state is mapped to a state filled by adjacent particle-antiparticle pairs. (d) Time evolution of the Rydberg array governed by the
effective Hamiltonian HFSS in Eq. (2), starting from the CDW1 state. The plot shows the space and time resolved population hnji of the
excited Rydberg atoms. (e) Evolution of the expectation value of the electric field operator Êj;jþ1 in the QLM. These dynamics map
exactly onto the ones shown in (d) via the mapping illustrated in (c). The thin lines highlight the oscillation between CDW1, CDW2 [left,
bottom of (c)] or string and antistring (right) states. In these simulations, L ¼ 24 and δ ¼ m ¼ 0.
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immediate interpretation of the recent experiment with
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classical computational methods [7].
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correspond to a string inversion, a phenomenon which is
directly tied to string breaking [6,17,18] prototypical of
gauge theories including dynamical matter [cf. Figs. 1(d)
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the occurrence of slow dynamics in other U(1) gauge
theories, such as higher-spin QLMs [19], Higgs theories
[20,21], and the Schwinger model [22,23]. These theories
have been widely discussed in the context of Schwinger pair
production taking place at high-intensity laser facilities, thus
providing a highly unexpected, direct link between appa-
rently unrelated experimental platforms [18,24–27].
We discuss the generality of this type of quantum

evolution by extending our analysis to other relevant

instances of “slow dynamics,” characterized by the absence
of relaxation on all timescales corresponding to any micro-
scopic coupling present in the system. As initial states, we
focus on those consisting of particle-antiparticle pairs,
corresponding to regular configurations of the Rydberg
atom arrays with localized defects, which are accessible
within the setup of Ref. [14]. We show that these defects
propagate ballistically with long-lived coherent interfer-
ence patterns. This behavior is found to be governed by
special bands of highly excited eigenstates characterized
by a regularity in the energy-momentum dispersion rela-
tion. These findings open up a novel perspective which
complements and extends toward gauge theories recent
approaches to slow relaxation in Rydberg-blockaded
atomic chains [28–33].

II. RYDBERG ATOM ARRAYS

We are interested here in the dynamics of a one-dimen-
sional array of L optical traps, each of them hosting a single
atom, as schematically illustrated in Fig. 1(a). The atoms
are trapped in their electronic ground state (black circle),
denoted by j↓ij, where j numbers the trap. These ground
states are quasiresonantly coupled to a single Rydberg
state, i.e., a highly excited electronic level, denoted by j↑ij.
The dynamics of this chain of qbits fj↑;↓ijgj¼1;…;L is
governed by the following Ising-type Hamiltonian [13,34]:
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well of the optical lattice hosts a single atom, which can be in either the ground (black) or excited Rydberg (yellow) state. These two
levels are coupled by a laser field. The Rydberg blockade prevents the simultaneous excitations of neighboring atoms. (b) Degrees of
freedom of a U(1) LGT in the spin-1=2 quantum link model (QLM) formulation. Gauge fields are represented by spin variables residing
on links. Matter fields are represented by Kogut-Susskind fermions: an occupied site corresponds to the vacuum on odd sites and to a
quark q on even sites. An empty site, instead, corresponds to the vacuum on even sites and to an antiquark q̄ on odd sites. (c): Mapping
between Rydberg-blockaded states and configurations of the electric field constrained by the Gauss law in the QLM. Because of the
staggered electric charge, the allowed configurations of the electric field depend on the link, as illustrated. The two so-called charge-
density wave configurations “CDW1” and “CDW2” of the Rydberg atom arrays are mapped onto the “string” and “antistring” states,
respectively, characterized by uniform rightward or leftward electric fluxes. The empty configuration with all Rydberg atoms in their
ground state is mapped to a state filled by adjacent particle-antiparticle pairs. (d) Time evolution of the Rydberg array governed by the
effective Hamiltonian HFSS in Eq. (2), starting from the CDW1 state. The plot shows the space and time resolved population hnji of the
excited Rydberg atoms. (e) Evolution of the expectation value of the electric field operator Êj;jþ1 in the QLM. These dynamics map
exactly onto the ones shown in (d) via the mapping illustrated in (c). The thin lines highlight the oscillation between CDW1, CDW2 [left,
bottom of (c)] or string and antistring (right) states. In these simulations, L ¼ 24 and δ ¼ m ¼ 0.
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complements and extends toward gauge theories recent
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denoted by j↓ij, where j numbers the trap. These ground
states are quasiresonantly coupled to a single Rydberg
state, i.e., a highly excited electronic level, denoted by j↑ij.
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FIG. 5. Large-scale realizations of LGTs with cold
atoms. (a) Mapping by Surace et al. [18] of the FSS Hamil-
tonian, describing an array of strongly interacting and driven
Rydberg atoms, to a U(1) QLM. The Rydberg-blockaded
state with two adjacent Rydberg excitations corresponds to
the gauge-field configuration forbidden after integrating out
the matter excitations. The resulting QLM describes the
Rydberg-tweezer experiment by Bernien et al. [143]. (b) Map-
ping of the spin-1/2 U(1) QLM (4) onto an optical superlattice
of cold bosons governed by the microscopic Bose–Hubbard
Hamiltonian (22). Even (odd) sites of the optical lattice rep-
resent the sites (links) of the QLM, where a staggering poten-
tial δ distinguishes between odd and even sites on the optical
lattice. An even site can host a single boson, indicating the
presence of charged matter, or no bosons at all, indicating the
absence of charged matter. An odd site can host either 0 or
2 bosons, representing the two possible polarizations of the
local electric field. A second staggering potential χ is applied
onto the odd sites (links of the QLM) in order to realize the
topological θ-term.

then the coefficients cj will grow exponentially, leading
to experimental impracticability. Fortunately, it turns
out that the compliance condition is not necessary for
stabilizing the gauge symmetry for most experimentally
relevant local errors. Indeed, one can analytically show
that when the coefficients are simply cj = (−1)j , the
gauge violation is once again suppressed into a plateau
∝ λ2/V 2 up to times linear V in a worst-case scenario.
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Even more, numerical benchmarks using exact diagonal-
ization [176] and matrix product states [177] show that
the stabilization of the gauge symmetry can persist up
to all accessible timescales independent of system size.
As we will discuss in the following, this method of lin-
ear gauge protection has proven crucial in stabilizing the
gauge symmetry in the first large-scale cold-atom quan-
tum simulators of gauge theories.

Box 2 | Bosonic mapping

In the spin-1/2 representation, the electric-field opera-
tor ŝzℓ,ℓ+1 is a two-level system with eigenvalues ±1/2.
This automatically means that the gauge-coupling term
in Hamiltonian (4) is rendered an inconsequential con-
stant, which we can neglect. The matter-field (Pauli) op-
erator σ̂z

ℓ is also a two-level system, regardless of S. Let
us now imagine an optical superlattice whose even (odd)
sites shall represent the sites (links) of the U(1) QLM, see
Fig. 5b. If we denote the sites of this optical superlattice
with the index j, then we have the correspondence: even
sites j(ℓ) = 2ℓ and odd sites j(ℓ, ℓ + 1) = 2ℓ + 1, with
the latter corresponding to the link between the QLM
sites ℓ and ℓ + 1. On the even sites of the optical lat-
tice, a hard-core boson constraint should be enforced to
faithfully represent the matter field:

σ̂+
ℓ = P̂ℓâ

†
ℓP̂ℓ, (19a)

σ̂z
ℓ = P̂ℓ(2â

†
ℓ âℓ − 1)P̂ℓ, (19b)

where P̂ℓ is the projector onto the local bosonic Hilbert
space span{|0⟩ℓ , |1⟩ℓ}. On the odd sites of the superlat-
tice, which host the electric and gauge fields of the QLM,
a doublon constraint is enforced:

ŝ+ℓ,ℓ+1 =
1√
2
P̂ℓ,ℓ+1â

†
ℓ,ℓ+1â

†
ℓ,ℓ+1P̂ℓ,ℓ+1, (20a)

ŝzℓ,ℓ+1 =
1

2
P̂ℓ,ℓ+1(â

†
ℓ,ℓ+1âℓ,ℓ+1 − 1)P̂ℓ,ℓ+1, (20b)

where P̂ℓ,ℓ+1 is the projector onto the local bosonic
Hilbert space span{|0⟩ℓ,ℓ+1 , |2⟩ℓ,ℓ+1}. The bosonic lad-
der operators satisfy the canonical commutation relations

[âj , âi] = 0 and [âj , â
†
i ] = δj,i.

Finally, it is worth noting that linear gauge protec-
tion has been extended to other Abelian gauge theo-
ries. For example, in the case of the Z2 LGTs, the
concept of a local pseudogenerator Ŵj has been intro-
duced. It acts identically to the full local generator
Ĝj in the target sector, but is actually a two-body in-
stead of a three-body term, easing experimental require-
ments [158, 178]. One then modifies the protection term

to V ĤW = V
∑

j cjŴj , and the qualitative picture of
gauge-symmetry stabilization remains the same as above.

C. Mapping onto optical superlattice

1. With matter fields

We are now ready to discuss large-scale cold-atom
quantum simulators of gauge theories, including how the
method of linear gauge protection stabilizes their gauge
symmetry and allows large system sizes. Our focus will
be on the spin-1/2 U(1) QLM, i.e., Eq. (4) with S = 1/2,
which we map onto a cold-atom quantum simulator.

Starting with Hamiltonian (4) and employing the
bosonic mapping outlined in Box 2, we arrive at the ef-
fective Hamiltonian

Ĥ = P̂
∑
ℓ

{
− κ√

6

[
âℓ
(
â†ℓ,ℓ+1

)2
âℓ+1 +H.c.

]
+ µâ†ℓ âℓ +

χ

2
(−1)ℓ+1â†ℓ,ℓ+1âℓ,ℓ+1

}
P̂, (21)

where P̂ =
∏

ℓ P̂ℓP̂ℓ,ℓ+1 is a projector onto the target
sector of Gauss’s law.

In order to realize Hamiltonian (21) in an actual cold-
atom setup, we need to consider the Bose–Hubbard
Hamiltonian on an optical superlattice, which naturally
governs the microscopic dynamics of the constituent
bosons, and constrain it into an excited manifold that
leads to the effective Hamiltonian (21). The Bose–
Hubbard Hamiltonian is given by

ĤBH =− J

L−1∑
j=1

(
â†j âj+1 +H.c.

)
+
U

2

L∑
j=1

n̂j
(
n̂j − 1

)
+

1

2

L∑
j=1

[
(−1)jδ + 2j∆+ χj

]
n̂j , (22)

where J is the tunneling strength, U is the on-site repul-
sion potential, δ is the staggering potential distinguishing
between matter sites (even j) and gauge links (odd j),
∆ is a linear tilt, L = 2Lm is the number of sites, and

n̂j = â†j âj . Furthermore, we have added a second stag-
gering potential on odd sites such that χj = ±χ when j
mod 4 = 1 and 3, respectively, (χj = 0 otherwise) allow-
ing us to realize a topological θ-term at finite χ. In the
regime U ≈ 2δ ≫ ∆, J, χ > 0, we are able to restrict the
allowed bosonic occupations on odd (even) sites of the op-
tical superlattice to 0 and 2 (0 and 1), in accordance with
our desired mapping between the local degrees of freedom
of the QLM and those of the bosonic model. This then
allows us to obtain the effective Hamiltonian (21) from
the microscopic Bose–Hubbard Hamiltonian (22) up to
second order, O(J2/U), in degenerate perturbation the-
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FIG. 6. Simulation of a lattice gauge theory in a 71-site quantum system. In Ref. [72], Yang et al. experimentally
observed the quantum phase transition and the fundamental gauge symmetry of a 1+1D U(1) LGT. (a) The Feynman diagram
depicts the quantum phase transition from a charge-proliferated phase (with particle rest mass m → −∞) to a vacuum phase
(with m → +∞), illustrating the gauge-invariant annihilation of particles and antiparticles. In the final vacuum state, a
charge-conjugation–parity symmetry breaking phase emerges, allowing the electric field to freely traverse the system in two
opposite directions. (b) The matter and gauge field of the LGT are mapped onto the occupation number of ultracold atoms
in a superlattice. In this 71-site Hubbard simulator, the on-site interaction is denoted as U , tunneling strength as J and the
energy offsets as δ and ∆. The state where each even site contains one atom corresponds to the charge-proliferated state with
m → −∞. Conversely, in the limit of m → +∞, the ground state is a vacuum phase where doublons occupy half of the odd
lattice sites. The vacuum phase manifests two distinct configurations, each corresponding to one direction of the electric field
as shown in (a). (c) The quantum phase transition occurs when the rest mass m is adiabatically ramped from a large negative
to a large positive value. The transition leads to the transfer of atom population from even sites to odd sites, resulting in
the formation of doublons. The deviation of the electric field serves as the order parameter in this phase transition. (d) The
probabilities of the gauge-invariant states are measured during the many-body dynamics. The numerical results are shown
in the orange curve. Throughout the phase transition, the gauge violation, quantified by Gauss’s law, remains below 10%,
indicating the preservation of gauge invariance.

ory, where

κ ≈
√
6J2

[
δ

δ2 −∆2
+

U − δ

(U − δ)2 −∆2

]
, (23a)

µ ≈ δ − U

2
. (23b)

Examining Hamiltonian (22), one can see that the tun-
neling term perturbatively breaks gauge symmetry, but
is essential to induce gauge-theory dynamics. The gauge-
invariant part of this Hamiltonian can be written as

Ĥdiag =
∑
ℓ

{
U

2

[
n̂ℓ
(
n̂ℓ − 1

)
+ n̂ℓ,ℓ+1

(
n̂ℓ,ℓ+1 − 2

)]
+

1

2

[
(−1)ℓχ− 2µ

]
n̂ℓ,ℓ+1 + cℓĜℓ

}
, (24)

where the linear gauge protection term
∑

ℓ cℓĜℓ emerges
with cℓ = 2(−1)ℓℓ∆, and the generator (5) is rewritten
in terms of the bosonic operators as

Ĝℓ = (−1)ℓ
(
n̂ℓ +

n̂ℓ−1,ℓ + n̂ℓ,ℓ+1

2
− 1

)
. (25)

This linear gauge protection term is what stabilizes the
gauge symmetry of this quantum simulator, and the tilt
potential ∆ is crucial for its emergence. From the per-
spective of degenerate perturbation theory, the tilt po-
tential ∆ suppresses gauge symmetry-breaking second-
order hopping processes to next-to-nearest-neighbor sites
so long as ∆ ≫ J2/δ.

2. Integrating out the matter fields

It is also possible to realize a gauge theory in an optical
lattice by integrating out the matter fields. Namely, the
PXP-Hamiltonian from Eq. (17) for spin-1/2 maps onto
the Bose–Hubbard model [82]

Ĥ ′
BH =− J

L−1∑
j=1

(
â†j âj+1 +H.c.

)
+
U

2

L∑
j=1

n̂j
(
n̂j − 1

)
+

1

2

L∑
j=1

[
(−1)jχ+ 2j∆

]
n̂j . (26)
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Note that here there is no δ, and this makes sense as
there are only links in Hamiltonian (18), obviating the
need of a staggering potential to differentiate them from
the nonexistent matter sites. Furthermore, this mapping
works in the regime of U ≈ ∆ ≫ χ, J , where then µ ≈
(∆− U)/2 and κ ≈

√
6J .

D. Experiments in optical lattices

The large-scale lattice gauge theory (LGT) in the Hub-
bard model was successfully quantum-simulated in a re-
cent experiment conducted by Yang et al. [72]. This
achievement was made possible by state-of-the-art ad-
vancements in cold-atom manipulation techniques. The
preservation of the gauge invariant subspace was first of
all ensured through a high-fidelity state preparation pro-
cedure. Starting from a quasi 2D Bose-Einstein conden-
sate, the atoms were further cooled in an optical super-
lattice to create a nearly unity occupied atomic MI [53].
The filling factor of this Mott state was measured to be
0.992(1) in a 2D square lattice consisting of ten thousand
sites.

To effectively separate the 2D MI into an array of 1D
systems, the coupling along one direction was suppressed.
This allowed for the realization of a large-scale quantum
simulation in a 1D system. Notably, in such a 1D system
with 100 lattice sites, the average length of a defect-free
chain was approximately 71 sites. The employed optical
superlattice further divided the atoms into even and odd
sites, representing the matter and gauge sites, respec-
tively. In the state initialization, a sub-lattice spin ad-
dressing technique is employed to remove atoms residing
on the even sites [53]. The presence of both the matter
field and gauge field was a crucial element for observing
gauge invariance.

The experiment demonstrated complete control over
the model parameters to manipulate Coleman’s phase
transition [49], see Fig. 6a. In addition to regulating
on-site interaction U and tunneling term J , the super-
lattice potential employed two types of energy offsets (δ
and ∆) to finely tune the model parameters, as sketched
in Fig. 6b. The ground state at the extreme negative
rest mass m → −∞ was characterized by the presence
of a single atom on the matter (even) sites, while the
gauge (odd) sites remain unoccupied (see Fig. 6a). The
quantum phase transition was driven by slowly sweep-
ing the rest mass m and the coupling strength κ of the
system. The ramp speed was optimized to minimize non-
adiabatic excitations and unwanted heating effects. As
the rest mass approached large positive values shown in
Fig. 6a,b, the system converged to the ground state of
another limit with m→ +∞. In this state, a majority of
atoms were transferred from even to odd sites, forming
doublons and corresponding to the annihilation of parti-
cle and anti-particle pairs.

The phase transition process was observed through
time-dependent measurements of site occupation, as de-

picted in Fig. 6c. Following the phase transition, the
development of spatial order was quantified using the
density-density correlation method. A significant con-
tribution of this experiment is the direct demonstration
of the fundamental gauge symmetry. This was achieved
by detecting the probabilities of gauge-invariant states
throughout the phase transition, allowing for the quan-
tification of violation of Gauss’s law or gauge invariance.
Despite the imaging system’s limitation in achieving sin-
gle lattice site resolution, the precise state engineering
technique was employed to probe the three gauge-allowed
Fock states. The degree of gauge violation, denoted as
ϵ(t), represents the projection of the system state out-
side the gauge-invariant subspace. A upper bound for
the gauge violation is presented in Fig. 6d.

Quantum simulation holds the potential to outperform
classical computers in specific tasks, particularly in the
far-from-equilibrium dynamics of gauge theories that in-
volve exponentially large Hilbert spaces. On the experi-
mental platform reviewed above, the thermalization dy-
namics of a 1 + 1D LGT were experimentally investi-
gated using this large-scale Hubbard simulator in Zhou
et al. [179]. To enforce gauge symmetry and constraints,
energy penalties were implemented in an optical super-
lattice. By controlling the degree of gauge violation, a
controllable method was established to distinguish be-
tween the gauge invariant and non-constrained regimes.

Upon subjecting the system to a global quantum
quench, the unitary dynamics, governed by U(1) sym-
metry, exhibited emergent irreversible thermalization be-
havior. The thermalization dynamics with and without
gauge constraints displayed distinct behaviors, particu-
larly in the final steady state. In the gauge constrained
subspace, the out-of-equilibrium dynamics demonstrated
an effective loss of initial state information, character-
istic behavior of a thermal state. By manipulating the
energy density of the initial state prior to the quench
dynamics, the final states converged to a steady state
with the same effective temperature. The equilibration
to thermal equilibrium value was observed in all of the
quench dynamics. This research paves the way for explor-
ing far-from-equilibrium dynamics of higher-dimensional
gauge theories, where classical computational methods
face challenges.

By utilizing a quantum gas microscope, the critical
point of Coleman’s phase transition was accurately de-
termined in the Hubbard simulator [180]. The investi-
gation focused on the equilibrium and quench dynamics
in the vicinity the critical regime. The critical point was
located through finite-size scaling analysis, where the in-
tersection point of the phase transition curves was iden-
tified. Additionally, the results revealed that the phase
transition exhibited a universal scaling of Ising type.

Su et al. [82] adapted this setup by integrating out
the matter fields, as described in Sec. VC2, and un-
covered rich scarring regimes. The experiment employed
quantum-interference protocols to measure entanglement
entropy, which showed that upon preparing the system
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in a scarred state, the subsequent many-body dynam-
ics is trapped in a low-entropy subspace. This simplified
version of the optical lattice, given in Eq. (26), opens the
door for manipulating χ with a staggered superlattice po-
tential and subsequently tuning the topological θ-term.

The confinement–deconfinement phase transition can
be observed by tuning the topological θ-term in Eq. (4).
Based on theoretical proposals by Halimeh et al. [181]
and Cheng et al. [182], a recent experiment by Zhang et
al. [183] studied the confinement–deconfinement transi-
tion by manipulating χ with a staggered lattice potential;
see Eq. (26). Within this setup, a particle-antiparticle
pair was prepared within the 1D vacuum state back-
ground of the QLM. Real-time dynamics were monitored
during a large-mass quench at various value of χ. At
small χ, the length of electric string between the particle-
antiparticle pairs grew ballistically. Conversely, at larger
values of χ, the string length remained close to its ini-
tial value, indicating the emergence of the confinement
phase. This allowed for a clear distinction between the
confined and deconfined phases.

VI. PERSPECTIVE

We have reviewed the exciting experimental progress
in the quantum simulation of LGTs using the cold-atom
platform. In order to be able to probe gauge-theoretic
phenomena of relevance to experiments such as at the
LHC and RHIC, this technology must be further ad-
vanced, in particular to accommodate higher spatial di-
mensions [36], larger representations of the electric field,
and non-Abelian gauge groups. Below, we outline a few
proposals towards overcoming these main challenges.

Abelian: higher dimensions, higher-spin
representations.— Various proposals have been put for-
ward to further advance cold-atom quantum simulators
of Abelian gauge groups. For example, various mappings
of the electric-field operator onto bosonic occupation
numbers have been suggested to achieve higher-level
representations of the electric field [73, 74, 184, 185]. A
higher-spin mapping leveraging on the scheme discussed
in Sec. VD has recently been presented in Ref. [186].
There, the local electric-field eigenvalue szℓ,ℓ+1 is repre-

sented by the bosonic occupation nℓ,ℓ+1 = 2(szℓ,ℓ+1 + S),
which converges faithfully to the lattice-QED limit for
S → ∞, and an extended Bose–Hubbard setup with
bosonic Dysprosium atoms has been proposed for a
three-level representation of the electric field. This
extension allows for the observation of string breaking
[73] as well as for a tunable gauge-coupling term that is
not possible in the two-level representation. Such a term
is a crucial parameter for confinement in QED, and its
realization on a quantum simulator would therefore be a
significant step forward.

A 2 + 1D generalization of this quantum simulator
has also been proposed to realize a quantum link for-
mulation of scalar QED [187], where the matter degrees

of freedom are hard-core bosons. The gauge protection
scheme in this case involved a tilt in both spatial dimen-
sions, but was shown to also be very effective in numer-
ical benchmarks. Other proposals to advance cold-atom
gauge quantum simulators to higher dimensions include
approaches based on Floquet engineering [188], digital
optical-lattice schemes [189], Z2 gauge protection in Ry-
dberg tweezer setups [158], as well as the exploitation of
interspecies spin-changing collisions between small con-
densates located at the links of an optical lattice [185],
as a variation of the setup discussed in Sec. IVC.

Non-Abelian in d+1D.— The importance of proceed-
ing to non-Abelian gauge symmetries in view of ap-
plications to high-energy and nuclear physics questions
has been realized early on. Pioneering proposals in-
cluded exploitation of Rydberg interactions [190], sym-
metries of the interactions of cold alkaline-earth atoms
in species-dependent optical superlattices [191], and
angular-momentum conservation in interacting boson–
fermion mixtures [74] (similar in spirit to the simplified
Abelian approach of Sec. IVC). Many further propos-
als have since been presented on the cold-atom platform,
with recent years having seen a stronger focus on digital
approaches such as in Rydberg arrays [192].

A recent proposal [131] employed a top-down approach
making use of gauge protection in the spirit of Sec. VB.
In that proposal, the emphasis was on realizing an SU(N)
gauge symmetry locally at vertices, while obtaining an
effective LGT by perturbatively inducing tunneling be-
tween neighboring vertices. For example, by employ-
ing cold polar molecules in optical tweezer arrays, one
can utilize the naturally occurring dipole interactions be-
tween these molecules at a vertex to realize an SU(2)
gauge symmetry through a proper Floquet sequence. Ex-
tensions of this approach to SU(N) Hubbard models have
also been proposed [131, 193].

Despite much progress on the side of proposals, the
cold-atom quantum simulation of non-Abelian symme-
tries still remains an outstanding challenge for experi-
ments, since it involves the precise control of a signifi-
cantly larger number of degrees of freedom (such as the
color charge of QCD).

In conclusion, throughout the last decade or so, the
cold-atom quantum simulation of gauge theories has been
an extremely lively area of research. While of much po-
tential already by itself, it has also engendered stim-
ulating cross-fertilization with various other fields: ex-
tremely promising proposals and groundbreaking imple-
mentations on other platforms have been demonstrated,
most notably superconducting qubits and trapped ions
[28–34], quantum simulation of gauge theories presents
stimulating connections between subatomic physics and
condensed-matter models such as spin ice and topolog-
ical states of matter [165–167, 194] as well as topologi-
cal quantum technologies [163, 195]; and quantum sim-
ulation and classical simulation methods, such as tensor
networks or path-integral approaches, are driving each
other [3]. As these examples and those treated in the
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bulk of this article illustrate, though much theoretical,
experimental, and engineering work still lies ahead on
the road, the cold-atom quantum simulation of LGTs is
an exciting arena of current research.
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C. Schweizer, G.-X. Su, P. Stornati, E. Tirrito, R. Verre-
sen, Z.-S. Yuan, H. Zhao, E. Zohar for fruitful discussions
and collaborations on topics related to this review.

[1] S. Weinberg, The Quantum Theory of Fields, Vol.
2: Modern Applications (Cambridge University Press,
1995).

[2] R. Ellis, W. Stirling, and B. Webber, QCD and Collider
Physics, Cambridge Monographs on Particle Physics,
Nuclear Physics and Cosmology (Cambridge University
Press, 2003).

[3] J. Berges, M. P. Heller, A. Mazeliauskas, and R. Venu-
gopalan, Qcd thermalization: Ab initio approaches
and interdisciplinary connections, Rev. Mod. Phys. 93,
035003 (2021).

[4] U.-J. Wiese, Ultracold quantum gases and lattice sys-
tems: quantum simulation of lattice gauge theories, An-
nalen der Physik 525, 777 (2013).

[5] M. Dalmonte and S. Montangero, Lattice gauge theories
simulations in the quantum information era, Contemp.
Phys. 57, 388 (2016).

[6] E. Zohar, I. Cirac, and B. Reznik, Quantum Simula-
tions of Lattice Gauge Theories using Ultracold Atoms
in Optical Lattices, Rep. Prog. Phys. 79, 014401 (2016).

[7] M. C. Banuls, R. Blatt, J. Catani, A. Celi, J. I. Cirac,
M. Dalmonte, L. Fallani, K. Jansen, M. Lewenstein,

S. Montangero, et al., Simulating lattice gauge theo-
ries within quantum technologies, Eur. Phys. J. D 74,
1 (2020).

[8] M. Aidelsburger, L. Barbiero, A. Bermudez, T. Chanda,
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Porsev, M. S. Safronova, I. Bloch, and S. Blatt, State-
Dependent Optical Lattices for the Strontium Optical
Qubit, Phys. Rev. Lett. 124, 203201 (2020).

[123] N. Darkwah Oppong, G. Pasqualetti, O. Bettermann,
P. Zechmann, M. Knap, I. Bloch, and S. Fölling,
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[141] D. Barredo, S. De Léséleuc, V. Lienhard, T. Lahaye, and
A. Browaeys, An atom-by-atom assembler of defect-free
arbitrary two-dimensional atomic arrays, Science 354,
1021 (2016).

[142] H. Labuhn, S. Ravets, D. Barredo, L. Béguin, F. No-
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https://doi.org/10.1088/1674-1056/abd76f
https://doi.org/10.1103/PhysRevA.90.023415
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
http://arxiv.org/abs/2303.08053
http://arxiv.org/abs/2303.08078
http://arxiv.org/abs/2303.08078
https://doi.org/10.1126/science.abi8794
https://doi.org/10.1038/s41586-022-04592-6
https://doi.org/10.1103/PhysRevLett.128.223202
http://arxiv.org/abs/2309.04717
http://arxiv.org/abs/2301.11869
http://arxiv.org/abs/2301.11869
https://doi.org/10.1038/s41586-022-04943-3
https://doi.org/10.1038/s41586-022-04943-3
https://doi.org/10.1126/sciadv.aav7444
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1103/PhysRevLett.107.255301
http://stacks.iop.org/1367-2630/17/i=10/a=103021
https://doi.org/10.1103/PhysRevLett.121.030402
https://doi.org/10.1103/PhysRevLett.121.030402
https://doi.org/10.1038/s41567-019-0615-4
https://doi.org/10.1038/s41567-019-0615-4
https://doi.org/10.1038/s42005-023-01237-6
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevB.37.9753
https://doi.org/10.1103/PhysRevB.37.9753
http://link.aps.org/doi/10.1103/PhysRevA.77.023603
http://link.aps.org/doi/10.1103/PhysRevA.77.023603
https://link.aps.org/doi/10.1103/PhysRevA.96.011602
https://doi.org/http://dx.doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1038/nphys3803
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevB.69.064404
http://link.aps.org/doi/10.1103/PhysRevLett.86.1881
http://link.aps.org/doi/10.1103/PhysRevB.65.224412
http://link.aps.org/doi/10.1103/PhysRevB.65.224412
https://doi.org/10.1103/PhysRevA.88.023617
https://doi.org/10.1103/PhysRevLett.112.120406
https://doi.org/https://doi.org/10.1016/j.physletb.2016.07.036
https://doi.org/10.1103/PhysRevD.92.076003
https://doi.org/10.1103/PhysRevD.92.076003


24

thetic flux attachment, Phys. Rev. Res. 2, 033453
(2020).

[173] P. Fendley, K. Sengupta, and S. Sachdev, Competing
density-wave orders in a one-dimensional hard-boson
model, Phys. Rev. B 69, 075106 (2004).

[174] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Ser-
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