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Abstract

The Quadrature-based Balanced Truncation (QuadBT) framework of [14] is a “non-intrusive” reformulation of balanced trun-
cation; a classical projection-based model-order reduction technique for linear systems. QuadBT is non-intrusive in the sense
that it builds approximate balanced reduced-order models entirely from system response data (e.g., transfer function mea-
surements) without the need to reference an explicit state-space realization of the underlying full-order model. In this work,
we generalize and extend QuadBT to other types of balanced truncation model reduction. Namely, we develop non-intrusive
implementations for balanced stochastic truncation, positive-real balanced truncation, and bounded-real balanced truncation.
We show that the data-driven construction of these balanced reduced-order models requires sampling certain spectral factors
associated with the system of interest. Numerical examples are included in each case to validate our approach.
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1 Introduction

Model-order reduction (MoR) is the procedure by which
one approximates a large-scale dynamical system with
a surrogate reduced-order model (RoM). We refer the
reader to, e.g. [1,2,4,5], for an overview of MoR of large-
scale dynamical systems. Balanced truncation (BT)
MoR [19, 20] and its variants, e.g. [11, 15, 21], are con-
sidered among the “gold standards” for MoR of linear
time-invariant (LTI) dynamical systems, which are the
focus of this work. The allure of BT methods stems from
the fact that they preserve certain desirable qualitative
features (e.g., stability or passivity) of the full-order
model (FoM), and satisfy tractable a priori bounds on
either the relative or absolute H∞ approximation error.

BT and its variants are “intrusive” by nature; that is,
they require access to an explicit representation of the
internal system dynamics (the state-space form) to com-
pute the RoM from the full-order system matrices via
projection. In this work, we are interested in data-driven
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approaches, which are “non-intrusive”. In other words,
data-driven methodologies construct surrogate RoMs
entirely from input-output invariants (e.g., impulse re-
sponse measurements or transfer function evaluations)
without the need to reference a particular realization of
the FoM. These data can be obtained either experimen-
tally (e.g., by measuring the response of some physical
system in laboratory setting) or synthetically (i.e., via
numerical or “black box” simulation of the underlying
model).

The recent contribution [14] introduces a data-driven
reformulation of the classical BT: Quadrature-based bal-
anced truncation (QuadBT). Other data-driven formu-
lations of BT have been proposed throughout the years;
see, e.g., [8,24,26,27]. Indeed, in [19], Moore had already
motivated a time-domain data-driven BT. However, un-
like QuadBT, these methods require state measurements
as opposed to state-space invariant input-output data
we focus on. In this work, we generalize the QuadBT
framework of [14] to other types of balanced trunca-
tion. The variants studied here are balanced stochastic
truncation (BST) [11, 15], positive-real balanced trunca-
tion (PRBT) [11], and bounded-real balanced truncation
(BRBT) [21]. The essential quantities to any type of
balancing-based MoR are the system Gramians. The key
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insight we exploit in developing data-driven extensions
of these BT-variants is that any BT-RoM is effectively
determined by the square-root factors of the relevant
Gramians. Beyond the choice of square-root factors, the
algorithmic computation of any BT-RoM proceeds iden-
tically. By decomposing the relevant Gramians using ap-
propriately chosen quadrature-based square-root factors,
we show how to approximately realize the reduced-order
quantities arising in different BT variants from various
input-output invariant frequency-response data. These
“data” required to mimic each type of balancing corre-
spond to transfer function evaluations of certain spectral
factors associated with the FoM.

The rest of this work is organized as follows: Section 2
outlines the key details of BT model reduction and the
variants studied in this work. Section 3 presents a gen-
eralized derivation of QuadBT that shows how to recon-
struct the key quantities present in any (square-root)
balancing-based algorithm entirely from input-output
data. This generalized framework is applicable to each
variant of BT we study here. Section 4 derives data-
driven implementations of BST, PRBT, and BRBT, and
by applying the generalized framework of Section 3
answers the titular question: “What do you need to sam-
ple for different balancing-based reduced models?” We
show that the computation of these data-driven RoMs
requires sampling certain spectral factors associated
with the underlying linear model. Several numerical
experiments are included in Section 5 to illustrate the
efficacy of the quadrature-based RoMs and validate our
approach. Section 6 concludes the paper.

2 Balanced truncation model reduction

Throughout this work, we consider LTI dynamical sys-
tems given in state-space form as

G :

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t).
(1)

The input and output are, respectively, given by u(t) ∈
R

m and y(t) ∈ Rp; x(t) ∈ Rn contains the state co-
ordinates; A ∈ R

n×n, B ∈ R

n×m, C ∈ R

p×n, and
D ∈ Rp×m are a state-space realization of G. We assume
the initial condition satisfies x(0) = 0. For notation, we
use (A,B,C,D) to indicate a particular realization of
G. In this work, we assume that the eigenvalues of A lie
in the open left half-plane, i.e., G is asymptotically stable.
We also assume that the given realization is minimal,
i.e., fully reachable and observable [1, Lemma 4.42]. The
transfer function of G, defined as

G(s) := C(sIn −A)−1B+D ∈ Cp×m, (2)

is a matrix-valued rational function analytic in the closed
right half-plane; In is the n × n identity matrix. The
transfer function fully characterizes the input-output
mapping of G in the frequency domain and is state-space
realization invariant. The H∞ norm of G is defined as
‖G‖H∞

:= supω∈R σmax (G(ı̇ıω)), where σmax(·) denotes

the maximal singular value of (·) and ı̇ı2 = −1. The dual
to G is the defined as the LTI system (−A⊤, −C⊤, B⊤,
D⊤) having the transfer function G(−s)⊤.

Given a system G as in (1), we seek a LTI-RoM Gr

Gr :

{
ẋr(t) = Arxr(t) +Bru(t)

yr(t) = Crxr(t) +Dru(t),
(3)

having the reduced-order transfer function

Gr(s) := Cr(sIr −Ar)
−1Br +Dr ∈ Cp×m,

where xr(t) ∈ Rr, yr(t) ∈ Rp, Ar ∈ Rr×r, Br ∈ Rr×m,
Cr ∈ Rp×r, and Dr ∈ Rp×m for r ≪ n. The objec-
tive of model reduction is that the surrogate Gr accu-
rately reproduces the input-output character of G (i.e.,
yr(t) ≈ y(t) for a variety of admissible inputs u(t))
and preserves important qualitative features (e.g., sta-
bility and passivity) of G. Projection-based model reduc-
tion (ProjMoR) is at the core of many model reduction
algorithms, including BT methods. Given left and right
model reduction subspaces spanned by Wr ∈ Rn×r and
Vr ∈ Rn×r respectively, the order-r RoM (Ar, Br, Cr,
Dr) via Petrov-Galerkin projection is determined by

Ar = W⊤

rAVr, Br = W⊤

rB, Cr = CVr. (4)

In ProjMoR, it is common to choose Dr = D. ProjMoR
methods differ in the way they choose Vr ad Wr; see [1,
2, 5] for more details on ProjMoR in general.

Balanced truncation (BT) and its variants are among the
“gold standards” for ProjMoR of LTI dynamical systems.
This is because BT-RoMs (i) preserve important system-
theoretic features of the FoM and (ii) satisfy tractable
bounds on the H∞ approximation error (which bounds
the L2 output error y − yr). The system Gramians are
the key components of any balancing-based model re-
duction algorithm. In classical BT, the Gramians are the
unique solutions to dual algebraic Lyapunov equations
(ALEs). In many other variants of BT, the Gramians
are the minimal stabilizing solutions of algebraic Riccati
equations (AREs). Balancing is the simultaneous diago-
nalization of two such matrices. Once these two matri-
ces are computed, one balances the FoM by an appropri-
ate change of coordinate system in which the pertinent
Gramians are diagonal and identical. Order reduction
is then accomplished by effectively truncating the least
important components of the state-space; these are pre-
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cisely the states associated with the smallest magnitude
singular values of the balanced Gramians.

Next, we recount the key details of the BT methods that
are the focus of this work. All BT methods we consider
fit under ProjMoR and the RoM is computed as in (4).
Once the relevant system Gramians are computed (based
on the variant of BT used) construction of Vr and Wr

proceeds identically. In Sections 2.1–2.4, we specify what
Gramians are diagonalized in each BT method. Then,
Section 2.5 shows how to construct Vr and Wr given
the Gramians of choice. For a more general treatise of
BT model reduction, see [1, Ch. 7], [3, 10, 17].

2.1 Lyapunov balanced truncation

BT was independently introduced in the works [19, 20].
In its original setting (that we will refer to as Lyapunov
balancing) the central quantities are the observability
and reachability Gramians Q ∈ Rn×n and P ∈ Rn×n

of G. These Gramians are the unique solutions to dual
ALEs:

A⊤Q+QA+C⊤C = 0, (5)

and AP+PA⊤+BB⊤ = 0. (6)

The uniqueness of Q and P follows from the asymptotic
stability of G [1, Prop. 6.2].

The Gramians Q and P are symmetric positive definite
(SPD) by minimality of G, and in turn, there exist non-
singular matrices L,U ∈ Rn×n such that Q = LL⊤ and
P = UU⊤. The Hankel singular values of G are the sin-
gular values of L⊤U, denoted σ(L⊤U). In this balanced
basis the states that are weakly reachable are simulta-
neously weakly observable; these are precisely the states
identified by the smallest magnitude Hankel singular val-
ues. One constructs the BT-RoM by effectively truncat-
ing those components of the state space. Lyapunov BT-
RoMs retain the asymptotic stability of the FoM [22] and
satisfy an a priori upper bound on the H∞ approxima-
tion error ‖G −Gr‖H∞

in terms of the neglected Hankel
singular values [12].

2.2 Balanced stochastic truncation

Assume now that G has two additional properties: (i)
G is square (that is, the input and output dimensions
are the same, m = p), and (ii) the input feed-through
term D is nonsingular. For an extension to non-square
dynamical systems, see [6]. Balanced stochastic trunca-
tion (BST) [11,15] balances the reachability Gramian of
G against the minimal stabilizing solution of an ARE

A⊤QW +QWA+

(C−B⊤

WQW)⊤(DD⊤)−1(C−B⊤

WQW) = 0,
(7)

whereBW := (PC⊤+BD⊤) .Any solutionQW ∈ Rn×n

to (7) is not unique; based on the assumptions on G, there
exist (unique) maximal and minimal solutions to (7)
that obey the partial order Qmin

W ≤ QW ≤ Qmax
W [28,

Theorem 13.11]. A balanced stochastic realization is ob-
tained by balancing P ∈ Rn×n against this minimal so-
lution Qmin

W ∈ Rn×n. For simplicity of notation, we take
QW to denote the minimal solution of (7) moving for-
ward. A system G is said to be minimum phase if the
poles and the zeros of its transfer function lie in the open
left half-plane; BST-RoMs preserve this minimum-phase
property of the FoM. Moreover, BST-RoMs satisfy an
upper bound on the relative H∞ error, i.e., ‖G−1(G −
Gr)‖H∞

. The error bound is due to [16].

2.3 Positive-real balanced truncation

Again suppose that G is square. A closely related
method to that of BST is positive-real balanced trunca-
tion (PRBT), also introduced in [15]. PRBT is primarily
utilized for the model reduction of passive linear sys-
tems. Passive systems are ubiquitous in applications of
physics and engineering; electrical circuits are one such
example. Passive systems also have port-Hamiltonian
structure, an important focus of recent work in the
modeling community [18].

For s ∈ C that is not an eigenvalue of either A or −A,
the Popov function of G is defined as

Φ(s) := G(s) +G(−s)⊤. (8)

An asymptotically stable and square system G is said to
be positive-real if its transfer function satisfies

Φ(iω) = G(ı̇ıω) +G(−ı̇ıω)⊤ ≥ 0, ω ∈ R. (9)

G is strictly positive-real if the inequality (9) is strict.
(For simplicity, we consider only strictly positive-real
systems in this work, and take positive-realness to mean
strict positive-realness moving forward.) Any positive-
real system is necessarily passive; see [1, Theorem 5.30].
Equivalently, G is strictly positive real if and only if there
exists a SPD matrix QM ∈ Rn×n that satisfies the ARE

A⊤QM +QMA+

(C−B⊤QM)⊤(D+D⊤)−1(C−B⊤QM) = 0,
(10)

see, e.g., [28, Corollary 13.27]. The dual ARE to (10) is

APN +PNA⊤+

(B−PNC⊤)(D+D⊤)−1(B−PNC⊤)⊤ = 0,
(11)

for SPD PN ∈ Rn×n. (D + D⊤ is nonsingular by the
positive-real assumption.) We refer to (10) and (11) as
the positive-real AREs (PR-AREs). As in the BST set-
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ting, any SPD solution to each of the PR-AREs (10)
and (11) lies between two extremal solutions; Qmin

M ≤
QM ≤ Qmax

M and Pmin
N ≤ PN ≤ Pmax

N . A positive-real
balanced realization is obtained by balancing the mini-
mal solutions Qmin

M and Pmin
N to (10) and (11). We take

QM and PN to denote the minimal solutions to the PR-
AREs moving forward. PRBT-RoMs are guaranteed to
maintain the asymptotic stability and passivity of the
FoM. Additionally, there exists a relative type of bound
on the H∞ reduction error; see [17, Lemma 3].

2.4 Bounded-real balanced truncation

The last variant studied here is bounded-real balanced
truncation (BRBT) [21]. An important class of systems
is those having transfer functions which are bounded
along the imaginary axis; such systems are used in pa-
rameterizing all stabilizing controllers of a system such
that the closed-loop system satisfies a particular H∞

constraint [13]. These systems are called bounded-real.
Formally, an asymptotically system G is called bounded-
real if its transfer function G(s) satisfies

γ2Im −G(−ı̇ıω)⊤G(ı̇ıω) ≥ 0, ω ∈ R, (12)

where γ := ‖G‖H∞
. Condition (12) can be alternatively

posed as ‖G‖H∞
≤ γ. Since it is always possible to

normalize G(s) so that ‖G‖H∞
≤ 1, without loss of gen-

erality we assume that γ = 1 in this work. (A system is
strictly bounded-real if the inequality (12) is strict; for
simplicity, we assume strict bounded-realness, and take
bounded-realness to mean strict bounded-realness.)
According to the Bounded-real Lemma [28, Corol-
lary 13.24], G is strictly bounded-real if and only if there
exists a SPD matrix QJ ∈ Rn×n that satisfies the ARE

A⊤QJ +QJA+C⊤C+ (B⊤QJ +D⊤C)
⊤

×

(Im −D⊤D)
−1

(B⊤QJ +D⊤C) = 0.
(13)

The dual ARE to (13) has a SPD solution PK ∈ Rn×n

APK +PKA
⊤+BB⊤+ (PKC

⊤+BD⊤)×

(Ip −DD⊤)
−1

(PKC
⊤+BD⊤)

⊤

= 0.
(14)

(The nonsingularity of Im−D⊤D and Ip−DD⊤ is guar-
anteed by the strictly bounded-real assumption on G
and its dual, respectively.) We refer to (13) and (14)
as the bounded-real AREs (BR-AREs). Any SPD solu-
tions to (13) and (14) lie between some extremal solu-
tions; Qmin

J ≤ QS ≤ Qmax
J and Pmin

K ≤ PZ ≤ Pmax
K .

A bounded-real balanced realization is obtained by bal-
ancing Qmin

J and Pmin
K ; we take QJ and PK to de-

note the minimal solutions to the BR-AREs moving for-
ward. BRBT-RoMs preserve the asymptotic stability and
bounded-realness of the FoM, as well as satisfy an a pri-
ori error bound on the absolute H∞ error [21].

2.5 The square-root algorithm for BT-MoR

Let PX ∈ Rn×n and QY ∈ Rn×n denote the “relevant”
pair of system Gramians (that is, relevant to the type
of balancing being considered). In other words, we treat
these matrices as agnostic with respect to any of the
balancing-based variants studied in this work. For ex-
ample, in the Lyapunov setting, we would have PX = P
and QY = Q that solve (6) and (5). In BST, instead we
would have QY = QW , the minimal solution to (7).

In a numerical setting, one never computes the full-
balancing transformation since this transformation is
notoriously ill-conditioned, see, e.g., [1, Sec. 7.3]. Indeed,
one does not even need PX and QY , but only their
square-root factors UX ∈ Rn×n and LY ∈ Rn×n:

PX = UXU⊤

X , QY = LYL
⊤

Y . (15)

The factors UX and LY can be obtained directly with-
out forming PX and QY explicitly; see, e.g., the sur-
veys [7,25]. In a practical setting, balancing and trunca-
tion are achieved simultaneously by ProjMoR. The left
and right projection subspaces are obtained from the
singular-value decomposition (SVD) of L⊤

YUX . This ap-
proach is known as the square-root algorithm for BT [1,
Ch 7.4]; its key details are presented in Algorithm 1.
This approach is numerically well-conditioned and lends
itself to a low-rank implementation by replacing the UX

and LY with approximate low-rank factors ŨX and L̃Y .

Once the SVD of L⊤

YUX is computed as in (16), the
model reduction bases Wr and Vr are completely deter-
mined, and constructed according to (17). Finally, a RoM
is computed via ProjMoR as in (18). We re-emphasize
that the square-root implementation of Algorithm 1 can
be applied for any variant of BT (i.e., using any pair of
Gramians) and in particular those discussed in this work.
The key algorithmic difference is the pair of square-root
factors UX and LY (15) derived from the appropriate
Gramians PX and QY . Otherwise, steps (2)-(4) remain
exactly the same.

3 A generalized framework for QuadBT

Algorithm 1 is “intrusive” insofar as it demands an
explicit internal realization (A, B, C, D) of G in or-
der to compute the BT-RoM. By contrast, the recent
work [14] derives a novel “non-intrusive” or data-driven
reformulation of BT; quadrature-based balanced trun-
cation (QuadBT). “Data” for our purposes refers to
input-output frequency-response data (e.g., particular
transfer function measurements) sampled along ı̇ıR.
As the name suggests, this is accomplished by (implic-
itly) replacing the exact square-root factors used in
Algorithm 1 with approximate quadrature-based factors
derived from integral representations of P and Q.
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Algorithm 1 Square-root Balanced Truncation

Input: System matrices A ∈ Rn×n, B ∈ Rn×m, C ∈
R

p×n, and order 1 ≤ r < n so that σr > σr+1.

Output: BT-RoM given by Ar ∈ Rr×r, Br ∈ Rr×m,
Cr ∈ Rp×r.

(1) Obtain square-root factors UX , LY ∈ Rn×n of
the relevant system Gramians PX , QY ∈ Rn×n.

(2) Compute the SVD of L⊤

YUX :

L⊤

YUX =
[
Z1 Z2

] [Σ1

Σ2

][
Y⊤

1

Y⊤

2

]
, (16)

where Σ1 ∈ Rr×r, Σ2 ∈ R(n−r)×(n−r), Z1,Y1 ∈
R

n×r and Z2,Y2 ∈ Rn×(n−r).
(3) Build Petrov-Galerkin model reduction matrices:

Wr = L⊤

YZ1Σ
−1/2
1 , Vr = UXY1Σ

−1/2
1 , (17)

where W⊤

rVr = Ir by construction.
(4) Compute the BT-RoM via projection:

Ar = W⊤

rAVr = Σ
−1/2
1 Z⊤

1

(
L⊤

YAUX

)
Y1Σ

−1/2
1 ,

Br = W⊤

rB = Σ
−1/2
1 Z⊤

1

(
L⊤

YB
)
, (18)

Cr = CVr = (CUX )Y1Σ
−1/2
1 .

QuadBT [14] is restricted to the Lyapunov setting. As
our first main contribution, we present a generalized
framework for quadrature-based balancing that yields
non-intrusive implementations of the BT-variants stud-
ied here. This generalized presentation contains QuadBT
as a special case; see Remark 3.1. The key insight we
exploit is that once the square-root factors of the rel-
evant Gramians are specified, any (intrusive) BT-MoR
proceeds identically according to Algorithm 1. The same
can be said for a non-intrusive implementation; one only
needs that the relevant Gramians elicit exploitable in-
tegral representations. Akin to Algorithm 1, this paves
a way for deriving data-driven implementations of BST,
PRBT, and BRBT by replacing LY and UX with appro-
priately chosen quadrature-based factors.

3.1 Theoretical formulation for Generalized QuadBT

Let QY ∈ Rn×n and PX ∈ Rn×n denote an arbitrary
pair of Gramians that are agnostic to any particular type
of balancing. The only key assumption that we make is
that the matrices QY and PX are the SPD solutions to
a pair of Lyapunov equations:

A⊤QY +QYA+C⊤

YCY = 0, (19)

and APX +PXA⊤+BXB⊤

X = 0. (20)

Equations (19) and (20) yield an alternative perspective
on the agnostic Gramians. We view QY as the observ-
ability Gramian of linear system Y of the form (1) de-
termined by the quadruple (A,BY ,CY ,DY). Likewise,
we view PX as the reachability Gramian of a linear sys-
tem X determined by the quadruple (A,BX ,CX ,DX ).
We let my, py, and mx, px denote the input, output di-
mensions of Y and X , respectively. We allow for the sys-
tem matrices, e.g., CY andBX , to possibly depend upon
QY , PX so that the AREs studied in this work can be
re-written in the form of (19) and (20). Exact formu-
lations of these systems (and the corresponding state-
space quadruples) will be revealed in Section 4 for the
different variants of BT studied here.

Consider the square-root factors UX and LY of PX

and QY . Recall from (17) in Algorithm 1 that the BT-
ProjMoR bases are defined as

Wr = LYZ1Σ
−1/2
1 and BVr = UXY1Σ

−1/2
1 .

Since Z1, Y1, and Σ1 are extracted from the SVD of
L⊤

YUX , the BT-RoM (18) is in essence entirely deter-
mined by the following key quantities:

L⊤

YUX , L⊤

YAUX , L⊤

YB, and CUX . (21)

We derive approximations to the matrices in (21) that
are constructed entirely from different state-invariant
input-output data. This will be accomplished by replac-
ing UX and LY with certain quadrature-based square-
root factors derived from (implicit) numerical quadra-
ture rules used to approximate PX and QY . These nu-
merical quadratures are indeed never constructed but
form the basis of the analysis. First, we introduce two
definitions to aid our exposition.

Definition 3.1 LetM ∈ C(pK)×(mJ). Then for 1 ≤ j ≤
J and 1 ≤ k ≤ K, the matrix Mk,j ∈ Cp×m denotes
the (k, j)th block of M. When J = 1 or K = 1, we use
Mi to denote the ith p × m-sized row or column block
of M, respectively. In the SISO case of m = p = 1,
Mk,j = M(k, j) is a scalar quantity.

Definition 3.2 For a proper rational function

G(s) = C(sIn −A)−1B+D ∈ Cp×m

as in (2), we denote the strictly proper part of G(s) by
G∞(s), defined as

G∞(s) = C(sIn −A)−1B = G(s)− lim
s→∞

G(s). (22)

The linear systems X and Y are asymptotically stable
because they share the same A matrix as the underlying
model G. Consequently, the solutions to (20) and (19)
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are unique [1, Prop. 6.2] and admit the integral formulae

PX =
1

2π

∫ ∞

−∞

(ı̇ıζIn−A)−1BX× (23)

B⊤

X (−ı̇ıζIn −A⊤)−1 dζ,

and QY =
1

2π

∫ ∞

−∞

(−ı̇ıωIn−A⊤)−1C⊤

Y× (24)

CY(ı̇ıωIn −A)−1 dω.

Consider a numerical quadrature rule determined by the
weights ρj and nodes ζj for j = 1, 2, . . . , J. By applying
this rule to the integral form of PX in (23), i.e.

PX ≈
J∑

j=1

ρ2j(ı̇ıζjIn −A)BXB⊤

X (−ı̇ıζjIn −A⊤)−1,

one obtains the approximate quadrature-based square-

root factorizationPX ≈ ŨX Ũ∗
X ofPX . The quadrature-

based factor ŨX ∈ Cn×(mxJ) is defined (according to
Definition 3.1) by

(ŨX )j = ρj (ı̇ıζjIn −A)
−1

BX ∈ Cn×mx , (25)

for all j = 1, . . . , J . A similar quadrature-based fac-
torization can be obtained for QY in (24). Consider
weights φk and nodes ωk for all k = 1, 2, . . . ,K. Then,

QY ≈ L̃YL̃
∗
Y where L̃∗

Y ∈ C(pyK)×n is defined by

(L̃∗
Y)k = φkCY(ı̇ıωkIn −A)−1 ∈ Cpy×n, (26)

for all k = 1, . . . ,K, respectively. These factors can be
used in lieu of of UX and LY in Algorithm 1. Then, the
quadrature-based quantities

L̃∗
YŨX , L̃∗

YAŨX , L̃∗
YB, and CŨX , (27)

replace those in (21) and completely specify the approx-
imate BT-RoM. We refer to this framework as general-
ized quadrature-based balanced truncation (GenQuadBT).
However, there are two major questions left to make Gen-
QuadBT a fully data-driven approach:

Q1. Can the modified/generalized quantities be com-
puted non-intrusively using transfer function data?

Q2. If so, what do you need to sample for different data-
driven balancing-based reduced models?

Our first main result answers Q1.

Theorem 3.1 Define the transfer functions:

Gσ,A(s) = CY(sIn −A)−1BX ∈ Cpy×mx , (28)

GB(s) = CY(sIn −A)−1B ∈ Cpy×m, (29)

GC(s) = C(sIn −A)−1BX ∈ Cp×mx . (30)

Let ŨX and L̃Y be defined as in (25) and (26) respec-
tively. Define the matrices

L̃ := L̃∗
YŨX ∈ C(pyK)×(mxJ),

M̃ := L̃∗
YAŨX ∈ C(pyK)×(mxJ),

H̃ := L̃∗
YB ∈ C(pyK)×m,

G̃ := CŨX ∈ Cp×(mxJ).

(31)

Then, the (k, j)th blocks of L̃ and M̃ are given by

L̃k,j = −φkρj
Gσ,A(ı̇ıωk)−Gσ,A(ı̇ıζj)

ı̇ıωk − ı̇ıζj
, (32)

M̃k,j = −φkρj
ı̇ıωkGσ,A(ı̇ıωk)− ı̇ıζjGσ,A(ı̇ıζj)

ı̇ıωk − ı̇ıζj
, (33)

and the kth and jth blocks of H̃ and G̃ are given by

H̃k = ρkGB(ı̇ıωk) and G̃j = φjGC(ı̇ıζj), (34)

for each 1 ≤ k ≤ K and 1 ≤ j ≤ J .

Proof 3.1 Let ei be the ith canonical unit vector, i.e., its
ith entry is 1, and all other entries are 0. Additionally,
for any positive integers i and ℓ define the matrix:

Ei,ℓ =
[
e(i−1)ℓ+1 e(i−1)ℓ+2 · · · eiℓ

]
∈ Rn×ℓ.

The result exploits two resolvent identities. For s, z ∈ C
that are not in the spectrum of A, we have

(sIn −A)−1(zIn −A)−1 =
(zIn −A)−1

− (sIn −A)−1

s− z
.

(35)

Using the definitions of L̃ in (31), L̃Y in (26), ŨX in (25)
and the resolvent identity (35), it follows that

L̃k,j = E
⊤

k,py L̃Ej,mx
=

(
E

⊤

k,py L̃
∗
Y

)(
ŨXEj,mx

)

= φkρjCY(ı̇ıωkIn −A)−1(ı̇ıζjIn −A)−1
BX

= φkρjCY

(
(ı̇ıζjIn −A)−1

− (ı̇ıωkIn −A)−1

ı̇ıωk − ı̇ıζj

)
BX

= −φkρj
Gσ,A(ı̇ıωk)−Gσ,A(ı̇ıζj)

ı̇ıωk − ı̇ıζj
,

where the last line follows from the definition of Gσ,A(s).
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This proves (32). For arbitrary s, z ∈ C that are not in
the spectrum of A, the second resolvent identity states

z (z In −A)
−1 − s (sIn −A)

−1

= −(z − s) (zIn −A)
−1

A (sIn −A)
−1

. (36)

To prove (33), we use (36) and the definitions of M̃

in (31), ŨX in (25), and L̃Y in (26) to obtain

M̃k,j = E
⊤

k,pyM̃Ej,mx
=

(
E

⊤

k,py L̃
∗
Y

)
A

(
ŨXEj,mx

)

= φkρjCY(ı̇ıωkIn −A)−1
A(ı̇ıζjIn −A)−1

BX

= φkρjCY

(
ı̇ıζj(ı̇ıζjIn −A)−1

− ı̇ıωk(ı̇ıωkIn −A)−1

ı̇ıωk − ı̇ıζj

)
BX

= −φkρj
ı̇ıωkGσ,A(ı̇ıωk)− ı̇ıζjGσ,A(ı̇ıζj)

ı̇ıωk − ı̇ıζj
.

The final claims (34) for H̃ and G̃ follow directly from

the definitions of H̃, L̃Y , and G̃, ŨX . Observe that:

H̃k = E⊤

k,py
H̃ = φkCY (ı̇ıωkIn −A)

−1
B = φkGB(ı̇ıωk),

and for G̃:

G̃j = G̃Ej,mx
= ρjC (ı̇ıζjIn −A)

−1
BX = ρjGC(ı̇ıζj),

thus completing the proof.

This result provides the key ingredients for GenQuadBT
that we present in Algorithm 2. The choice of notation
Gσ,A(s), GB(s), and GC(s) for the transfer functions
in (28)-(30) is intentional; the underscored quantities in
each transfer function correspond to the quantities in
the data-driven RoM that require samples of that trans-
fer function. Put differently, Theorem 3.1 (and the as-
sociated notation) can be interpreted as follows: (i) The

construction of L̃ (and hence its SVD) and the reduced-

order Ãr in steps (2) and (3) of Algorithm 2 require sam-
ples of Gσ,A(s); (ii) Construction of the reduced-order

B̃r in step (3) of Algorithm 2 requires samples of GB(s);

(iii) Construction of the reduced-order C̃r in step (3) of
Algorithm 2 requires samples of GC(s).

3.2 Algorithmic formulation for Generalized QuadBT

Having established its theoretical formulation, an algo-
rithmic formulation for GenQuadBT is presented in Al-
gorithm 2 next. In principle, it only requires the left and
right quadrature weights/nodes used implicitly in ap-
proximating PX and QY , and samples of the transfer
functions Gσ,A(s), GB(s) and GC(s) given in (28)–(30)
(or at least, the ability to evaluate them).

Some remarks are in order. We emphasize that at no

Algorithm 2 Generalized-QuadBT (GenQuadBT)

Input: Mappings Gσ,A(s), GB(s), GC(s), and:
• “Left” weights/nodes {ρj , ζj}

J
j=1,

• “Right” weights/nodes {φk, ωk}Kk=1,
and reduction order 1 ≤ r ≤ n.

Output: GenQuadBT-RoM determined by the state-

space matrices Ãr ∈ Rr×r, B̃r ∈ Rr×m, C̃r ∈ Rp×r.
(1) Obtain samples {Gσ,A(ı̇ıζj)}Jj=1, {GC(ı̇ıζj)}Jj=1,

{Gσ,A(ı̇ıωk)}Kk=1, and {GB(ı̇ıωk)}Kk=1. Construct

matrices (L̃, M̃, H̃, G̃) according to Theorem 3.1.

(2) Compute the SVD of L̃:

L̃ =
[
Z̃1 Z̃2

] [Σ̃1

Σ̃2

][
Ỹ∗

1

Ỹ∗
2

]
∈ C(pyK)×(mxJ),

where Σ̃1 ∈ R

r×r, Σ̃2 ∈ R

(pyK−r)×(mxJ−r),

Z̃1, Ỹ1 and Z̃2, Ỹ2 are partitioned conformally.
(3) Compute the GenQuadBT-RoM:

Ãr = Σ̃
−1/2

1 Z̃∗
1

(
M̃

)
Ỹ1Σ̃

−1/2

1

B̃r = Σ̃
−1/2

1 Z̃∗
1

(
H̃

)
,

C̃r =
(
G̃

)
Ỹ1Σ̃

−1/2

1 .

point do we explicitly compute the quadrature-based
approximations of the Gramians PX and QY . These
are leveraged implicitly to derive the quadrature-base
square-root factors in (25) and (26) and realize the ap-
proximate BT-RoM solely from input-output data. The
key deviation from the work of [14] is that the transfer
function evaluations required in this generalized setting
are not necessarily those of G(s) (the transfer function
of the linear model being approximated). Rather, Algo-
rithm 2 requires samples of Gσ,A(s), GB(s), and GC(s)
as in (28)-(30) Nonetheless, Algorithm 2 avoids any ex-
plicit reference to “internal” quantities (e.g., a state-
space realization of G, or any other linear model).

Remark 3.1 Theorem 3.1 and Algorithm 2 contain
QuadBT of [14] as a special case. Indeed, the proof uses
similar tools as in [14]. In the Lyapunov setting, we
simply have that QY = Q and PX = P, and so the gen-
eralized equations (19) and (20) are the dual ALEs (5)
and (6) corresponding to G. Then, BX = B, CY = C,
and the transfer functions Gσ,A(s), GB(s), and GC(s)
all equal G∞(s); this is precisely the aggregate result
of [14, Prop. 3.1, Prop. 3.3].

What remains to be seen is what the transfer functions
Gσ,A(s), GB(s), and GC(s) correspond to for different
variants of BT. We investigate exactly this question next
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for the case of BST, PRBT, and BRBT. Using this gen-
eralized framework, we answer Q2: what does one need
to sample for different data-driven balancing-based re-
duced models? Unlike in the Lyapunov setting, the to-
be-sampled “data” will not necessarily be the measure-
ments of G(s), the transfer function of the FoM G. We
ultimately show that in the aforementioned contexts,
the general quantities in (28)-(30) can be interpreted in
terms of certain spectral factorizations associated with
the AREs that the relevant Gramians are solutions to.

4 What to sample for BT-variants

In this section, we derive data-driven implementations of
BST, PRBT, and BRBT. This is accomplished by apply-
ing the generalized framework of Section 3 to the afore-
mentioned variants. Spectral factorizations will provide
the main tool for interpreting Theorem 3.1 as it applies
to the data-driven extensions of BST, PRBT, and BRBT
(and in particular, determining what the transfer func-
tions in equations (28)-(30) correspond to). Indeed, the
Gramians relevant to each variant will be interpreted as
either the observability or reachability Gramian of some
spectral factor. Our treatise of spectral factorizations
follows [28, Chapter 13.4]; we refer the reader here for a
more detailed study.

We sequentially present the data-driven derivations of
BST, PRBT, and BRBT. The particular organizational
structure of this section is as follows: (i) For each vari-
ant, we introduce the relevant spectral factorizations as-
sociated with the appropriate AREs. (ii) We interpret
the result of Theorem 3.1 in the context of each variant
and show that the transfer functions (28)-(30) can be
written in terms of the aforementioned spectral factors.

4.1 BST from data: QuadBST

Recall the assumptions of Subsection 2.2; namely that
G is square (m = p) and D is nonsingular. Again let
QW ∈ Rn×n denote the minimal stabilizing solution to
the BST-ARE (7). By [28, Corollary 13.28], there exists
W(s) ∈ Cm×m such that W(s) is a left spectral factor
ofG(s)G(−s)⊤, meaningG(s)G(−s)⊤ = W(−s)⊤W(s).
Further, define

BW := PC⊤+BD⊤ ∈ Rn×m,

and CW := D−1 (C−BWQW) ∈ Rm×n,
(37)

where P is the reachability Gramian of G. Then W(s) is
the rational transfer function of an asymptotically stable
and minimal linear system W defined by the state-space
quadruple (A,BW ,CW ,D⊤), i.e.

W(s) = CW(sIn −A)−1BW +D⊤. (38)

Such a spectral factor is said to be minimal phase, as the
matrixQW used in its construction is the minimal stabi-
lizing solution to the corresponding ARE (7). (Although
in general, we note that the solution (7) need not be ex-
tremal for the construction of W .) Note that any given
realization of W can be computed from a state-space re-
alization of G and the corresponding Gramian QW .

With this, we now describe explicitly how the general-
ized framework of Section 3 can be applied in this in-
stance. Recall that we require the relevant GramiansQY

and PX be given as solutions to the observability and
reachability Lyapunov equations (19) and (20) of some
linear systems Y and X (so that, in turn, they elicit ex-
ploitable integral representations (24) and (23)). By def-
inition of CW in (37), the ARE (7) can be re-written in
the generalized form of (19):

A⊤QW +QWA+C⊤

WCW = 0, (39)

which is the observability Lyapunov equation of W , the
system associated with the minimal phase factor W(s).
Thus for BST, the relevant observability Gramian QY =
QW is the observability Gramian of Y = W deter-
mined by (A,BY ,CY ,DY) = (A,BW ,CW ,D−1). By
the asymptotic stability of W , the solution to (39) is
unique, and so QW has the integral representation

QW =
1

2π

∫ ∞

−∞

(−ı̇ıωIn −A⊤)−1(C−B⊤

WQW)⊤D−⊤×

D−1(C−B⊤

WQW)(ı̇ıωIn −A)−1 dω.

(Note that this agrees with (24) for CY = CW .) The
relevant reachability Gramian in BST is PX = P, that
of the linear system X = G with (A,BX ,CX ,DX ) =
(A,B,C,D). Thus P and QW can be decomposed into
quadrature-based square-root factors (25) and (26) with
BX = B and CY = CW . Particularly, (26) becomes

(L̃∗
W )k = φkD

−1(C−B⊤

WQW)(ı̇ıωkIn −A)−1,

for k = 1, . . .K. Theorem 3.1 (and Algorithm 2) can
then be applied to realize a data-driven implementation
of BST, that we call Quadrature-based BST (QuadBST).
The question remains: what do the transfer functions
Gσ,A(s), GB(s), and GC(s) in (28)–(30) correspond to
in the context of QuadBST? We answer this with Theo-
rem 4.1, that shows how to interpret these transfer func-
tions in terms of G(s) and the spectral factor W(s).

In the following we use [ · ]+ to denote the purely stable
part of a rational transfer function. Additionally, when
the notation (A,B,C,D) does not fit in a single line
(as in (42)), we represent the corresponding system by
 A B

C D


.
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Theorem 4.1 Let QW ∈ R

n×n be the observability
Gramian of the system W corresponding to the mini-
mal phase spectral factor as in (38) and P ∈ Rn×n be
the reachability Gramian of G as in (1). Then, in the
setting of BST, the transfer functions Gσ,A(s), GB(s),
and GC(s) defined as in (28)-(30) of Theorem 3.1 (and
Algorithm 2) are

GC(s) = G∞(s), and (40)

Gσ,A(s) = GB(s) =
[
(W(−s)⊤)

−1
G∞(s)

]
+
. (41)

Proof 4.1 Here, BX = B, and CY = CW in (37). So
by definition of GC(s) in (30)

GC(s) = C(sIn−A)−1BX = C(sIn−A)−1B = G∞(s),

proving (40). To prove (41), first note that

Gσ,A(s) = GB(s) = CW(sIn −A)−1B,

by (28), (29). Thus, (41) amounts to proving

CW(sIn −A)−1B =
[
(W(−s)⊤)

−1
G∞(s)

]
+
.

Using the state-space of W in (38) and of G in (1), the
state-space of the cascaded system with transfer function
(W(−s)⊤)−1

G∞(s) can be realized by




−A⊤+C⊤

WD−1B⊤

W C⊤

WD−1C 0n×m

0n A B

D−1B⊤

W D−1C 0m


 , (42)

where 0n ∈ Rn×n and 0n×m ∈ Rn×m denote the matri-
ces with all zero entries. The ARE (7) can be rearranged
to be written as

(−A⊤+C⊤

WD−1B⊤

W)(−QW) +AQW +C⊤

WD−1C = 0.

Using this reformulation, the state-space transformation

T =

[
In −QW

0n In

]
∈ R2n×2n decouples the cascaded

system realization (42). In other words, the transformed
state-space is given by




−A⊤+C⊤

WD−1B⊤

W 0n QWB

0n A B

D−1B⊤

W CW 0m


 . (43)

Note that the (1, 1) block of the cascaded system is
purely antistable (e.g., the poles lie in the open right
half-plane) and the (2,2) block is purely stable. Since

(W(−s)⊤)
−1

G∞(s) is the transfer function of (43), it
can be written as

(W(−s)⊤)
−1

G∞(s) = ⋆ + CW(sIn −A)−1B︸ ︷︷ ︸
=Gσ,A(s)=GB(s)

,

where the unspecified ⋆ corresponds to the anti-stable part

of (W(−s)⊤)
−1

G(s). Thus, bothGσ,A(s) andGB(s) are

equivalent to
[
(W(−s)⊤)−1

G∞(s)
]
+
, as claimed in (41).

In conjunction, Theorems 3.1 and 4.1 realize QuadBST
as a fully-fledged data-driven and non-intrusive imple-
mentation of BST. Algorithm 2 yields QuadBST when
the transfer functions GC(s) and Gσ,A(s), GB(s) to be
sampled are chosen as in (40) and (41), respectively.

4.2 PRBT from data: QuadPRBT

Recall the assumptions of Subsection 2.3; namely that
G is square and strictly positive real. Define R := D +
D⊤ ∈ Rn×n; R is SPD by the strict positive realness
of G. Let QM,PN ∈ Rn×n be the minimal stabilizing
solutions to the PR-AREs (10) and (11), respectively.
By [28, Corollary 13.27], the Popov function Φ(s) in (8)
has a minimum phase left spectral factor M(s) ∈ Cm×m

Φ(s) = G(s) +G(−s)⊤ = M(−s)⊤M(s).

The rational function M(s) is the transfer function
of the asymptotically stable and minimal linear sys-
tem M determined by the state-space quadruple
(A,B,CM,R1/2), where

CM := R−1/2(C−B⊤QM), (44)

and M(s) := CM(sIn −A)−1B+R1/2. (45)

Applying [28, Corollary 13.27] to the dual of G, one ob-
tains a right minimal phase spectral factor N(s) of Φ(s)

Φ(s) = G(s) +G(−s)⊤ = N(s)N(−s)⊤.

The rational function N(s) is the transfer function of
the asymptotically stable and minimal linear system N
determined by the quadruple (A,BN ,C,R1/2), where

BN := (B−PNC⊤)R−1/2, (46)

and N(s) := C(sIn −A)−1BN +R1/2. (47)

By definitions of CM and BN in (44) and (46), the dual
PR-AREs (10) and (11) can be cast in the generalized
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forms of (19) and (20):

A⊤QM +QMA+C⊤

MCM = 0, (48)

and APN +PNA⊤+BNB⊤

N = 0. (49)

Equation (48) is the observability Lyapunov equation of
the linear system Y = M that is associated with the
spectral factor (45) and defined by (A,BY ,CY ,DY) =
(A,B,CM,R1/2); QY = QM is thus the observability
Gramian of M. Similarly, (49) is the reachability Lya-
punov equation of the linear system X = N that is as-
sociated with the spectral factor (47) and defined by
(A,BX ,CX ,DX ) = (A,BN ,C,R1/2); PX = PN is
the reachability Gramian of N . By the asymptotic sta-
bility of N and M, Gramians PN and QM have inte-
gral representations (23) and (24), and can be decom-
posed into the quadrature-based square-root factors (25)
and (26) with BX = BN and CY = CM. Thus, The-
orem 3.1 (and Algorithm 2) can be applied to derive a
data-driven implementation of PRBT; Quadrature-based
PRBT (QuadPRBT). Similar to QuadBST, the necessary
data Gσ,A(s), GB(s), and GC(s) can be understood in
terms of the spectral factorsM(s) andN(s) of the Popov
function associated with G(s).

Theorem 4.2 Let QM ∈ Rn×n and PN ∈ Rn×n be the
observability Gramian and reachability Gramian of the
systems M and N corresponding to the minimal phase
spectral factors (45) and (47), respectively. Then, in the
setting of PRBT, the transfer functions Gσ,A(s), GB(s),
and GC(s) defined in (28)-(30) of Theorem 3.1 (and
Algorithm 2) are given by:

Gσ,A(s) =
[
(M(−s)⊤)

−1
N∞(s)

]
+
, (50)

GB(s) = M∞(s), GC(s) = N∞(s). (51)

Proof 4.2 Here, BX = BN , and CY = CM as in (46)
and (44). So, from (29) and (30)

GB(s) = CM(sIn −A)−1B = M∞(s),

GC(s) = C(sIn −A)−1BN = N∞(s),

thus proving (51). The claim in (50) follows nearly iden-
tically from the argument of Theorem 4.1, by replacing
W(s) with M(s) and G∞(s) with N∞(s), as well as the
associated state-space realizations.

Theorem 4.2 shows how to interpret the transfer func-
tions in Theorem 3.1 in the context of PRBT, yielding a
non-intrusive data-driven reformulation of the variant.
Algorithm 2 yields QuadPRBT when the transfer func-
tions Gσ,A(s) and GB(s), GC(s) to be sampled are cho-
sen as in (50) and (51), respectively.

4.3 BRBT from data: QuadBRBT

Suppose G is strictly bounded-real. Define the matrices
RJ := Im − D⊤D ∈ Rm×m and RK := Ip − DD⊤ ∈
R

p×p. Both RJ and RK are SPD by the strict bounded-
realness of G and its dual. Let QJ ,PK ∈ R

n×n be
the minimal stabilizing solutions to the BR-AREs (13)
and (14), respectively. By [28, Corollary 13.21], there ex-
ists J(s) ∈ Cm×m such that J(s) is a minimal phase left
spectral factor of Im −G(−s)⊤G(s), i.e.

Im −G(−s)⊤G(s) = J(−s)⊤J(s).

The (rational) function J(s) is the transfer function of
the asymptotically stable and minimal system J deter-

mined by the quadruple (A,B,CJ ,R
1/2
J ), where

CJ :=−R
−1/2
J (B⊤QJ +D⊤C), (52)

and J(s) := CJ (sIn −A)−1B+R
1/2
J . (53)

Similarly, the dual result [28, Corollary 13.22] states
there exists a minimal phase right spectral factorK(s) ∈
C

p×p of Ip −G(s)G(−s)⊤, i.e.,

Ip −G(s)G(−s)⊤ = K(s)K(−s)⊤.

Similarly, K(s) is the transfer function of the asymptot-
ically stable and minimal system K determined by the

quadruple (A,BK,C,R
1/2
K ), where

BK :=− (PKC
⊤+BD⊤)R

−1/2
K , (54)

and K(s) := C(sIn −A)−1BK +R
1/2
K . (55)

The dual BR-AREs (13) and (14) can now be interpreted
as the relevant Lyapunov equations (19) and (20) of some
related linear systems; although, these are not specifi-
cally J and K corresponding to the aforementioned fac-
tors as in the previous instances. Define the matrices:

B̂K :=
[
B BK

]
∈ Rn×2m, R̂K :=

[
D R

1/2
K

]
∈ Rp×2m,

ĈJ :=

[
C

CJ

]
∈ R2p×n, R̂J :=

[
D

R
1/2
J

]
∈ R2p×m.

(56)

Then, (13) and (14) can be written as

A⊤QJ +AQJ + Ĉ⊤

J ĈJ = 0, (57)

and APK +A⊤PK + B̂KB̂
⊤

K = 0, (58)

respectively. So, we consider (57) to be the observ-
ability Lyapunov equation of the asymptotically stable

10



linear system Y = Ĵ defined by (A,BY ,CY ,DY) =

(A,B, ĈJ , R̂J ); QY = QJ is the observability Gramian

of Ĵ . The transfer function Ĵ(s) ∈ C2p×m of Ĵ is

Ĵ(s) := ĈJ (sIn −A)−1B+ R̂J =

[
G(s)

J(s)

]
. (59)

(Note that the choice for DY as R̂J is so that Ĵ(s) can
be interpreted in terms of G(s) and the spectral factor
J(s).) Similarly (58) is the reachability Lyapunov equa-

tion of the asymptotically stable linear system X = K̂
defined by (A,BX ,CX ,DX ) = (A, B̂K,C, R̂K); PX =

PK is the reachability Gramian of K̂. The transfer func-

tion K̂(s) ∈ Cp×2m of K̂ is

K̂(s) := C(sIn −A)−1B̂K + R̂K =
[
G(s) K(s)

]
. (60)

This fits the generalized framework of Section 3. By the

asymptotic stability of K̂ and Ĵ , the relevant Grami-
ans PK and QJ admit integral formulae (23) and (24)
along with the analogous quadrature-based square-root

factors (25) and (26) where BX = B̂K and CY = ĈJ .
Once more, this sets the stage for the application of The-
orem 3.1; we refer to the resulting non-intrusive variant
of BRBT as quadrature-based BRBT (QuadBRBT). The
necessary data Gσ,A(s), GB(s), and GC(s) can be un-

derstood in terms of J(s), Ĵ(s), K(s), and K̂(s).

Theorem 4.3 Let QJ ∈ Rn×n and PK ∈ Rn×n be the
observability Gramian and reachability Gramian of the

linear systems Ĵ and K̂ defined in (59) and (60), respec-
tively. Then the transfer functions Gσ,A(s), GB(s), and
GC(s) given in equations (28)-(30) of Theorem 3.1 (and
Algorithm 2) are given by:

Gσ,A(s) =



[

Ip 0p×m

G∞(−s)⊤ J∞(−s)⊤

]−1

×

[
G∞(s) K∞(s)

−D⊤G∞(s) −D⊤K∞(s)

]]

+

,

(61)

GB(s) = Ĵ∞(s), GC(s) = K̂∞(s). (62)

Proof 4.3 Here, BX = B̂K and CY = ĈJ as in (56).
So, from (29) and (30) we have that

GB(s) = ĈJ (sIn −A)−1B = Ĵ∞(s),

GC(s) = C(sIn −A)−1B̂K = K̂∞(s),

proving (62). Next, define the matrices B̂ ∈ Rn×(p+m),

Ĉ ∈ R(p+m)×n, and R̂ ∈ R(p+m)×(p+m) by

B̂ :=
[
0n×p B

]
, Ĉ :=

[
C

−D⊤C

]
, R̂ :=

[
Ip

R
1/2
J

]
.

It is straightforward to verify that the linear systems cor-
responding to the transfer functions

[
Ip 0p×m

G∞(−s)⊤ J∞(−s)⊤

]−1

,

[
G∞(s) K∞(s)

−D⊤G∞(s) −D⊤K∞(s)

]
,

have realizations given by (−A⊤+Ĉ⊤

J R̂−1B̂⊤,−Ĉ⊤

JR−1,

R̂−1B̂⊤, R̂−1) and (A, B̂K, Ĉ,0p+m), respectively, where

ĈJ and B̂K are defined as in (56). The resulting cas-
caded system on the right-hand side of the claimed equal-
ity in (61) then has a realization:




−A⊤+ Ĉ⊤

J R̂−1B̂⊤ Ĉ⊤

J R̂−1Ĉ 0n×(p+m)

0n A B̂K

R̂−1B⊤ R̂−1Ĉ 0p+m


 .

After some manipulations, the ARE (13) can be rear-
ranged to be written as

(−A⊤+ Ĉ⊤

J R̂−1B̂⊤)(−QJ ) +AQJ + Ĉ⊤

J R̂−1Ĉ = 0.

Using this reformulation of (13), the state-space trans-

formation T =

[
In −QJ

0n In

]
∈ R

2n×2n decouples

the cascaded system realization above. In other words, the
transformed state-space is given by




−A⊤+ Ĉ⊤

J R̂−1B̂⊤ 0n QJ B̂K

0n A B̂K

R̂−1B⊤ ĈJ 0p+m


 . (63)

Evidently, the stable part of this system has the transfer

function ĈJ (sIn −A)−1B̂K. Recalling that BX = B̂K,

CY = ĈJ , this is precisely Gσ,A(s) according to (28).

Theorem 4.3 shows how to interpret the transfer func-
tions in Theorem 3.1 in the context of BRBT, yielding a
non-intrusive data-driven reformulation of the variant.
Algorithm 2 yields QuadBRBT when the transfer func-
tionsGσ,A(s), andGB(s),GC(s) to be sampled are cho-
sen as in (61) and (62), respectively.
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5 Numerical Examples

In this section we provide a proof of concept for our
data-driven BT-RoMs. For each of the variants stud-
ied (BST, PRBT, BRBT) we compare the performance
of our approach (i.e., data-driven RoMs computed via
QuadBST, QuadPRBT, and QuadBRBT following the
layout of Algorithm 2) against their respective intrusive
counterparts via Algorithm 1. These experiments were
performed on a MacBook Pro equipped with 8 gigabytes
of RAM and a 2.3 GHz Dual-Core Intel Core i5 proces-
sor running macOS Ventura version 13.6.1. The experi-
ments were run using MATLAB version 23.2.0.2428915
(R2023b) Update 4. All MATLAB code and data for
reproducing the subsequent experiments are available
publicly at [23].

We briefly outline our experimental set-up. The system
we study is an order n = 400 single-input single-output
RLC circuit model G presented in [17]; the choice of phys-
ical parameters parameters are R = C = L = 0.1,
and R = 1. The system is both passive and square
by construction, and contains a non-trivial and non-
singular input feedthrough term D. In the case of Quad-
BRBT, we additionally normalize the circuit model so
that ‖G‖H∞

= 0.5, and G satisfies the bounded-real as-
sumption (12). The intrusive BST, PRBT, and BRBT-
RoMs that we benchmark against our data-driven RoMs
were computed using the MATLAB toolbox MORLAB [9].
For the data-driven GenQuadBT-RoMs, the necessary
data given in Theorems 4.1-4.3 are obtained numerically
by explicitly sampling the relevant transfer functions.
The GenQuadBT-RoMs are then computed according to
Algorithm 2. In generating these data, the built-in MAT-
LAB routine ‘icare’ was used in computing the minimal
solutions to the appropriate AREs. To (implicitly) ap-
proximate the relevant Gramians PX and QY we em-
ploy the Trapezoidal rule using N = 40, 80, 160 quadra-
ture nodes. These are chosen as logarithmically-spaced
points in the interval ı̇ı[10−1, 104] ⊂ ı̇ıR, closed under
complex conjugation.

Figures 1, 2, and 3 compare the performance of
QuadBST, QuadPRBT, and QuadBRBT, respectively, to
their classical intrusive formulation. In each figure, the
top plot depicts the true singular values of σ(L⊤

YUX )

against the data-driven σ(L̃∗
YŨX ), and the bottom

plot depicts the relative H∞ error ‖G − Gr‖H∞
/‖G‖H∞

induced by the intrusive and data-driven RoMs. As
illustrated by the figures, for each BT-variant the data-
driven singular values capture the true (dominant) ones
accurately. And similarly the data-driven GenQuadBT-
RoMs approach the approximation quality of their in-
trusive counterpart as the number of nodes N increases.
Therefore, using only the relevant input-output data
without having access to a state-space form, we are able
to match the performance of the intrusive BT-RoMs.
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Figure 1. The true singular values compared against the ap-
proximate quadrature-based ones using N quadrature nodes
(top) and the relative H∞ approximation error for BST and
QuadBST-RoMs for orders r = 2, 4, . . . , 20 (bottom).
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Figure 2. The true singular values compared against the ap-
proximate quadrature-based ones using N quadrature nodes
(top) and the relative H∞ approximation error for PRBT

and QuadPRBT-RoMs for orders r = 2, 4, . . . , 20 (bottom).

6 Conclusion

We have developed data-driven implementations for
some important extensions of BT; namely BST, PRBT,
and BRBT. These formulations are entirely non-intrusive
and require only system-response data, i.e., the mea-
surements of certain transfer functions. Moreover, these
data-driven BT-RoMs require sampling certain spectral
factorizations associated with the underlying model.
The numerical examples illustrate the accuracy of the
data-driven RoMs. In this work, we focused on the theo-
retical formulation of the data-driven BT variants. How
to obtain the required samples of the relevant spectral
factors in an experimental or “real-world” setting is still
an open question and an ongoing work.
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Figure 3. The true singular values compared against the ap-
proximate quadrature-based ones using N quadrature nodes
(top) and the relative H∞ approximation error for BRBT

and QuadBRBT-RoMs for orders r = 2, 4, . . . , 20 (bottom).
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