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A B S T R A C T

A digital twin (DT) is an automation strategy that combines a physical plant with an adaptive real-time sim-
ulation environment, where both are connected by bidirectional communication. In process engineering, DTs
promise real-time monitoring, prediction of future conditions, predictive maintenance, process optimization,
and control. However, the full implementation of DTs often fails in reality. To address this issue, we first
examine various definitions of DTs and its core components, followed by a review of its current applications
in process engineering. We then turn to the computational and numerical challenges for building the simulation
environments necessary for successful DTs implementation
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Fig. 1. Number of research works on DTs (published in English) according to the Web
of Science over the last 10 years (2014 to October 2024).

1. Introduction

In recent years, industrial sectors have been under increasing pres-
sure to optimize operations, improve efficiency, and reduce downtime.
The rise of automation technologies, along with advances in data
analytics and simulation, has paved the way for innovative solutions
to these challenges. Among these, the digital twin (DT) concept has
emerged as a key strategy for improving process control, operational
insight, and risk management.

The growing interest in DTs is reflected in the increasing number of
publications, as shown in Fig. 1, which tracks English-language publi-
cations on DTs from 2014 to 2024. The data show a steady increase
in research activity, and projections suggest that this upward trend
will continue. Beyond academia, DTs is gaining traction in various
industries, including chemistry, healthcare, and energy, as illustrated in
Fig. 2. This widespread adoption highlights the potential for knowledge
transfer and synergies between different sectors (History Digital Twin,
2023).

Despite the growing attention, the full potential of DTs remains
largely unrealized. Many of the proposed benefits are still difficult
to achieve in practice. Bridging this gap requires closer collaboration
between academia and industry to align theoretical advances with real-
world applications (National Academy of Engineering and National
Academies of Sciences, Engineering, and Medicine, 2023).

This paper attempts to explore the current state of DTs in process
engineering, with a focus on computational and numerical aspects.
Following this introduction, Section 2 discusses key definitions and
enablers of DTs. Section 3 reviews the existing literature on DTs in
process engineering. Next, Section 4 outlines numerical methods for
model development with examples from process engineering. Finally,
Section 5 summarizes key findings and suggests directions for future
research.

2. Definitions and key enablers

This section presents various definitions of DT from the existing
literature. Then, the key components that must come together to form
a DT are presented.

2.1. Definitions of digital twins

Despite being a prominent technological trend, the definition of
DTs varies widely both between and within disciplines. In addition,
the applications of DTs vary significantly across the various stages of
product lifecycle management, including product design, engineering,
2 
Fig. 2. A schematic representation of the diverse applications of DTs across multiple
industries. This illustration emphasizes the cross-industry nature of DTs and the
potential for synergy and knowledge transfer between different fields.

procurement, construction, and plant operations (Örs et al., 2020). To
highlight this inconsistency, Wright and Davidson (2020) humorously
reference a quote from the fictional character Humpty Dumpty in Lewis
Carroll’s Through the Looking Glass: ‘‘When I use a word, it means
whatever I want it to mean’’.

To provide a basic overview, we will explore the most important
definitions of DTs below. For a detailed historical overview of the
development and definitions of DTs, see History Digital Twin (2023).
The concept of DTs was introduced by Michael Grieves during an
industry presentation in 2002. Grieves defined DTs as consisting of
three essential components: (1) a physical entity in physical space, (2) a
virtual entity in virtual space, and (3) a link between the physical and virtual
entities that enables the exchange of data and information. Importantly,
according to this definition, a DT is not just the virtual part, but a
system that integrates all three elements. Nevertheless, DT is often used
as a buzzword for (very detailed) models. Clarifying this distinction is
essential to avoid mischaracterizing DTs as a fleeting trend (Wright and
Davidson, 2020).

Building on Grieves’ original definition, Jones et al. (2020) pro-
pose an expanded, standardized nomenclature for the DT concept.
They define the physical entity as the object, the physical environment
as its conditions, and the physical processes as the operations per-
formed within this environment. Accordingly, they introduce virtual
entity, virtual environment, and virtual processes to match the naming of
the physical counterparts. Interactions are enabled by physical-virtual
connections and virtual-physical connections, where a complete circuit
requires both connections. If the virtual-physical connection is miss-
ing, the concept is referred to as a digital shadow, whereas if both
connections are missing, it is called a digital model (Kritzinger et al.,
2018).

Newrzella et al. (2021) introduce cross-sectoral terms with a five-
dimensional DT concept based on Grieves’ three dimensions. These
include (1) the physical entity, (2) its characteristics, (3) the form of
communication, (4) the virtual entity, and (5) the user-specific value
added. Various user-specific values, ranging from process design and
optimization, risk reduction and maintenance (Zalai et al., 2013), to
product quality prediction (Chen et al., 2020) are reported (Mabkhot
et al., 2018).

Talkhestani et al. (2019) compare different DT definitions, focus-
ing on architectures. Their analysis reveals common requirements,
including a realistic digital representation of a physical entity with
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all relevant information. This information must include all operational
characteristics, as well as organizational and technical details from the
design phase. The authors further emphasized the need for permanent
synchronization and interfaces between DTs for co-simulation and data
exchange.

A broader definition focusing on the digital entity is provided
by Glaessgen and Stargel (2012) and Tao et al. (2018). They describe
t as an integrated, multi-physics, multi-scale, and probabilistic sim-
lation of a complex product that uses the best available physical
odels and real-time sensor data to mirror the life cycle of its physical

ounterpart. In this view, a DT serves as a digital representation of
 physical asset, process, or system, with real-time synchronization
eing critical. In addition, the authors emphasize the role of artificial
ntelligence (AI) and machine learning in improving decision-making
nd asset performance within DT systems. The level of sophistication
equired for the digital entity is a point of debate in the literature.
hile some advocate maximum detail and complexity, others argue

or simplicity to avoid excessive system complexity (National Academy
f Engineering and National Academies of Sciences, Engineering, and
edicine, 2023; Ferrari and Willcox, 2024; Willcox and Segundo,

2024).
Several DT subcategories have been proposed, but these categories

are not widely accepted. Firstly, an operational DT includes data man-
agement, process modeling, optimization, and production planning
(Örs et al., 2020). In contrast, an executable DT is an autonomous
model integrated into operational environments that represents only
those aspects relevant to its specific application (Hartmann and van der
Auweraer, 2022; Eppinger et al., 2021). Additionally, a hybrid DT
combines physics-based and data-driven methods (Chinesta et al., 2020;
Kapteyn et al., 2022). Structural DTs apply to systems that change over
time due to environmental or operational factors. Examples include
wind turbines, nuclear reactors, gas turbine engines, and civil infras-
tructure. Finally, virtual DTs are traditional numerical models based
on different discretization methods that do not continuously assimilate
data (Abramovici et al., 2017; Jones et al., 2020; Chinesta et al., 2020).

For the remainder of this paper, we define a DT as an automa-
tion strategy that connects a physical plant to an adaptive real-time
simulation environment through bidirectional communication. This en-
vironment may include multiple models with different characteristics.
Our definition emphasizes that a DT is not just a detailed model,
but a broad and flexible concept. Following National Academy of
Engineering and National Academies of Sciences, Engineering, and
Medicine (2023), we emphasize that DT models should be fit for
urpose, avoiding unnecessary complexity. In addition, we adopt the
erminology of Jones et al. (2020) to describe the relationship between

the physical and virtual components of DTs.
The process engineering application of this definition is illustrated

n Fig. 3. In this context, the connection between the physical and
igital environments is always mediated by some form of actuation.
o ensure the safe operation of the automated system, both human
onitoring and intervention are always possible.

2.2. Enablers of digital twins

For DTs to work effectively in scientific and industrial settings,
everal key components need to be in place. These components are
utlined below:

• Data acquisition and connectivity: Reliable data acquisition
systems with strong connectivity gather real-time data from phys-
ical assets. This involves using sensors (Kapteyn and Willcox,
2022), internet of things (IoT) devices, and other tools to collect
accurate information.
3 
• Data integration: Integrating data from sensors, historical
records, and external databases provides a complete view of
asset behavior. Semantic standards and communication protocols
ensure that these models can interact effectively. One such se-
mantic standard is the Asset Administration Shell, which provides
a digital interface for physical assets, ensuring consistent data
representation and interaction across systems (Industrie 4.0 Glos-
sar, 2023; Wagner et al., 2017; Park et al., 2021). In industrial
automation, OPC-UA is a widely used protocol for secure and
reliable machine-to-machine communication. It enables seamless
data exchange between devices and systems, regardless of manu-
facturer, and supports both real-time and historical data (Greppi,
2010; Redeker et al., 2021).

• Data analytics: Advanced data analysis extracts valuable in-
formation from the collected data. These methods help detect
patterns, identify anomalies, and create predictive models that
guide decision-making and optimization in DTs (Kapteyn et al.,
2020; Kapteyn and Willcox, 2022). Machine learning methods are
commonly employed to perform these tasks effectively.

• Modeling and simulation: The development of accurate and
reliable simulation models that replicate the behavior and char-
acteristics of physical assets is at the heart of DT. These models
serve as the basis for virtual testing, optimization, and ‘‘what-
if’’ scenarios within the DT environment. This DT component is
discussed in detail in Section 4.

• Co-simulation: The integration of multiple models from different
domains improves the accuracy of DTs. Co-simulation allows
models — for example, of subsystems or with different levels
of detail — to interact in real time. Each model works with
its native solver, and a common interface ensures seamless data
exchange between them. In this way, subsystems that form a
coupled problem are modeled and simulated in a distributed
manner (Talkhestani et al., 2019).

• Cloud computing and big data infrastructure: The scalability
and processing power of cloud computing and big data infras-
tructure manage the large volumes of data generated. These
technologies enable the storage, processing, and analysis of large
data sets (Kapteyn and Willcox, 2022; Data Digital Twin, 2023).

• Cybersecurity and privacy: Because DTs often handles sensi-
tive or critical data, strong cybersecurity measures and privacy
protocols are necessary. Protecting the integrity, confidentiality,
and availability of data maintains trust and ensures the secure
operation of DTs systems (Balta et al., 2023).

• Visualization and user interfaces: Visualization and interactive
user interfaces make DTs usable and effective. This improves
decision-making and process understanding.

3. Digital twin applications in process engineering

The enablers mentioned in Section 2.2 have become more and
more available for process engineering applications, which increases
the exploration of DTs (Kockmann, 2018; Bamberg et al., 2021). These
DTs promise several benefits such as real-time monitoring, predictive
maintenance, process design, optimization, control, and deeper under-
standing of the system (Bamberg et al., 2021; Yang et al., 2020). Over-
all, they are expected to improve efficiency, reduce time-to-market,
save costs, and increase productivity (Kockmann, 2018).

In the process industry, the concept of DTs has roots that predate
the formal definition of the term itself (Bequette, 2019). In particu-
ar, in the 1990s, Natori and O’Young (1996) envision an advanced

closed-loop chemical plant that integrated multiple technologies and
incorporated environmental and sustainability considerations, even be-
fore the term DT was coined. These authors also pioneered the first
steps in implementing real-time capabilities in existing plants.

Despite early efforts, DT terminology remains inconsistent within
the field of process engineering, and the full implementation of a
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Fig. 3. Schematic of the DT concept in process engineering, illustrating the integrated flow between physical and digital environments. The digital entity includes data preprocessing,
process modeling, and scenario exploration. An actuator enables real-time control and predictive maintenance by connecting the digital and physical environments.
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DT system remains a challenge. In addition, comprehensive studies
are difficult to find because the term DT is often used synonymously
with model. Despite these challenges, recent research highlights the
potential of the DT concept. For example, He et al. (2019) propose a
ata-driven DT for chemical processes that includes monitoring, diag-
ostics, and control. The system is optimized online to increase safety
nd reduce variability. Similarly, Min et al. (2019) present a DT for the

petrochemical industry that leverages IoT data, machine learning, and
a feedback loop. This DT provides a real-time replica of the process,
leading to cost and efficiency optimization. In addition, Kender et al.
(2021) describe a DT for an air separation unit that integrates historical
and real-time data, and demonstrates its economic viability through
wo case studies. Future implementations include the development of a
T for an offshore power-to-X process (Dittler et al., 2022; Rentschler

et al., 2023).
Several studies focus on the development of individual DT com-

onents, each contributing to different aspects of the field. Below are
ome of the most important and recent works. Aversano et al. (2019)
resent reduced-order models (ROMs) for the simulation of combustion
ystems within a DT. Lopez et al. (2020) introduce a soft sensor for

monitoring cellulose-to-ethanol fermentation, creating a digital shadow.
In the field of battery management, Wu et al. (2020) review the use of
models, data, and AI, and propose an unvalidated framework aimed
at improving control and extending the life of lithium-ion batteries.
Scaling up solid oxide fuel cells using pilot scale models and data is ex-
plored by Kang et al. (2021). Meanwhile, Helgers et al. (2022) develop
 dynamic metabolic model for the production of HIV gag virus-like
articles that can be integrated into a DT for model-based control with

process-analytical detectors. In addition, Wang et al. (2023a) propose
a noise-accounting model identification approach focused on dynamic
data, which is demonstrated using the Rössler attractor and a diesel
hydrotreating unit. Edington et al. (2023) present a state-dependent

eighting technique for model integration, demonstrated using syn-
hetic data in a two-tank, single-pump system. Moreover, Wang et al.

(2023b) develop a DT for predicting composite quality by integrating
 static autoclave model and a dynamic composite model, validated
ith experimental data. Hassan et al. (2024) employ a virtual reality-

based bioreactor simulation that trains operators by simulating rare
events and evaluating their responses. Finally, Soesanto et al. (2024)
efine models of a primary separation vessel to more accurately re-
lect the actual separation process, using industry data and techniques
uch as Bayesian optimization, step testing, and sensitivity analysis to
arameterize the model.

In addition to developing custom DTs, the process industry has
xplored commercial software (de Beer and Depew, 2021). Companies
 a

4 
like AspenTech (Aspentech Digital Twin, 2023), gPROMS (PSE Digital
win, 2023), and AVEVA (AVEVA Digital Twin, 2023) offer software

for real-time simulation, optimization, analytics, and control. The solu-
tions use machine learning and AI algorithms, offering a comprehensive
approach to DT technology.

Several resources are recommended for further reading. Herwig
et al. (2021a,b) provide a comprehensive two-volume series on DTs
in biomanufacturing. In addition, Thelen et al. (2022, 2023) offer a
two-part series that reviews DTs, including a case study on battery
modeling and a discussion of uncertainty quantification. (Guo et al.,
2023) explore the maturity of DTs components in manufacturing, with
electrochemical machining as a key example. Vassiliadis et al. (2024)
provide a process systems engineering perspective, emphasizing the
eed for improved modeling and simulation tools to fully realize the
otential of DTs. Similarly, Walmsley et al. (2024) discusse the role of

self-adaptive DTs in energy-intensive industries, emphasizing its impor-
tance for optimizing energy efficiency. Finally, Bizon (2023) focuses on
simulation methods in process engineering, with particular attention to
model-order reductions (MORs) techniques.

4. Numerical methods for digital twins in process engineering

This section examines the simulation environment within DTs. Mod-
els used in DTs face several challenges, both cross-industry and process-
ngineering specific, especially when integrated into high-volume pro-

duction environments (Willcox and Segundo, 2024). These challenges
include managing large datasets, handling diverse models, address-
ing prediction discrepancies, and facilitating autonomous updates. In
ddition, issues such as model transparency, privacy, cybersecurity,

ethical considerations, and human-machine interaction must be ad-
dressed (Balta et al., 2023; Hartmann and van der Auweraer, 2022).

In process engineering, modeling presents unique complexities due
o the high dimensionality and interconnected nature of physical and
hemical processes at multiple scales (Bhutani et al., 2006; Niederer

et al., 2021). Data scarcity, resulting from the static nature of pro-
cess engineering and limited dynamic data collection, complicates the

odeling process. Measurement uncertainties introduce additional in-
ccuracies. Despite these difficulties, accurate simulations must predict

system behavior and optimize performance.
To address these challenges, we provide an overview of mathe-

atical tools and methods for constructing DTs, covering both the-
retical and practical aspects. To address these challenges, we pro-
ide an overview of mathematical tools and methods for constructing
Ts, covering both theoretical and practical aspects, and discuss their
pplications in process engineering and related fields.
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Fig. 4. Hierarchical loop concept in the DT development (Asch, 2022).

This section is organized around the hierarchical loop concept illus-
trated in Fig. 4, which includes three interrelated loops: the physical
problem-solving loop (inner loop), the optimization loop (outer loop),
and the decision loop (outer-outer loop). The physical problem-solving
loop focuses on modeling the physical problem itself. The optimization
loop includes techniques such as parameter estimation, uncertainty
quantification (UQ), co-simulation, control, and solving inverse prob-
lems. We will first explore the inner loop before moving on to the
outer loops. The outer-outer loop is primarily concerned with goals and
strategies rather than mathematical methods, and will not be discussed
here.

4.1. Physical problem-solving loop

The physical problem-solving loop involves models describing the
underlying physical system. The solutions of those models are called
simulations. Simulations allow for accurate evaluation of the system
response and thereby reduce the number of experimental tests. An
example of a generic simulation is given in Fig. 5.

Modeling dynamic systems such as chemical plants typically in-
volves either mechanistic models, data-driven models, or a combination of
both. Mechanistic models are based on physical laws, while data-driven
models are based on empirical or measured data. In many cases, mech-
anistic models may be too computationally intensive to solve directly,
leading to the use of surrogate models that approximate the original
problem and reduce computational requirements. Surrogate models can
range from ROMs to data-driven models trained on mechanistic data.
However, data-driven methods are not limited to surrogates; they are
also powerful stand-alone tools. ROMs are discussed in Section 4.1.4,
while methods for building data-driven models and surrogates can be
found in Sections 4.1.2 and 4.1.3. For a thorough overview of surrogate
models in chemical engineering, see McBride and Sundmacher (2019)
nd Peterson et al. (2024b).

4.1.1. Equations in mechanistic models: linear, nonlinear, differential, and
tochastic forms

In process engineering, mechanistic models use mathematical equa-
ions to describe chemical systems based on physical principles such
s conservation laws, thermodynamics, and transport kinetics. To ac-
urately model chemical processes, hierarchical frameworks represent
he system at different levels of abstraction, e.g. from molecular to
roduction scale (Freund and Sundmacher, 2011).

However, mechanistic models are challenged by knowledge gaps
nd algorithmic inaccuracies that lead to mismatches with real-world

processes. Building mechanistic models is often time and resource-
consuming, especially for complex systems with poorly understood
 t

5 
interactions. In addition, solving mechanistic models is computationally
demanding. However, when well implemented, mechanistic models
effectively simulate complex chemical processes and provide strong
predictive capabilities (Bhutani et al., 2006; Pantelides and Renfro,
2013).

In the realm of mechanistic models, we encounter two main cate-
gories: Unit-based and function-based models. Unit-based models focus
on individual plant units such as reactors and heat exchangers. These

odels are often presented visually as flow diagrams that provide a
lear picture of all unit operations. In contrast, function-based models
ncapsulate the overall behavior of the chemical system. They account
or the flow of mass, energy, and momentum across system boundaries.
wo examples of function-based models are the elementary process
unction (EPF) method and the FluxMax approach. The EPF method

dynamically optimizes its process path by manipulating Lagrangian
atter elements (Freund and Sundmacher, 2008; Peschel et al., 2010).
he FluxMax approach segments the state space into discrete thermody-

namic states and models the transition between them with elementary
processes. This results in a network flow optimization problem (Liesche
et al., 2019; Schack et al., 2020; Svitnič and Sundmacher, 2022).

Despite the variety of approaches to mechanistic modeling, the same
types of equations appear: algebraic equations, differential equations, and
tochastic equations. For each of these types of equations, there are
stablished numerical methods for solving or estimating their solutions.
n overview of possible solutions for all types of equations is given in

Table 1.

Systems of linear and nonlinear equations: Systems of equations
are divided into two categories: Linear and nonlinear. Linear equations,
epresented as 𝐀𝐱 = 𝐛, are characterized by direct relationships be-
ween variables. Here, 𝐀 ∈ R𝑚×𝑛 is the coefficient matrix, 𝐱 ∈ R𝑛 the
ector of variables, and 𝐛 ∈ R𝑚 the vector of known constants. The

power of each variable in a linear equation is one, which results in a
straight line when plotted in two dimensions. Solving linear equations
involves finding values of 𝐱 that (approximately) satisfy the equation.
Methods for solving linear equations include direct techniques, such
as Gaussian elimination, and iterative approaches, such as Newton’s
method (Golub and van Loan, 2013). The choice of the numerical
cheme depends on factors such as the desired spatial and temporal
ccuracy, requiring careful consideration of shocks, breaking points,
nd other discontinuities (Rheinboldt, 1998).
Nonlinear equations represent more complicated interactions be-

tween variables. They are expressed as 𝐆(𝐱) = 𝟎, where 𝐆 ∶ R𝑛 → R𝑚 is
 vector-valued function. Solving nonlinear equations involves finding
he vector 𝐱 ∈ R𝑛 that (approximately) satisfies 𝐆 = 𝟎. Nonlinear equa-
ions may involve higher powers of variables, exponential functions,
ogarithms, or other mathematical functions that introduce complexity
eyond simple proportionality. As a result, the graph of a nonlinear

equation takes on a variety of shapes, such as parabolas, circles, or
exponential curves, depending on the specific form of the equation.

ethods for solving nonlinear equations include bracketing methods
uch as the bisection method, iterative methods such as Newton–
aphson and secant methods, and optimization techniques such as
auss–Newton and gradient descent algorithms. Each is tailored to the

pecific characteristics of the problem.

Process engineering applications: In process engineering, systems
of equations model complex phenomena such as chemical reactions,
phase equilibria, and physical interactions. For example, heat transfer
calculations in heat exchangers demonstrate linear behavior, while
temperature-dependent reaction rates, described by the Arrhenius equa-
tion, illustrate nonlinear behavior.

Differential equations: Differential equations describe a system’s dy-
namics, e.g., how variables change with factors such as temperature
r pressure. Ordinary differential equations (ODEs) are differential equa-
ions dependent on one single independent variable. A system of 𝑛
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Fig. 5. Diagram describing the simulation of dynamical systems.
Table 1
Overview of equation types and solution techniques.
Equation type Solution techniques

Linear equations Direct methods (e.g., Gaussian elimination),
Iterative methods (e.g., Newton’s method)

Nonlinear equations Bracketing methods (e.g., bisection),
Iterative methods (e.g., Newton–Raphson, secant methods),
Optimization methods (e.g., Gauss–Newton, gradient descent)

ODEs Forward methods (e.g., Euler, Runge–Kutta),
Backward methods (e.g., implicit Euler, implicit Runge–Kutta),
Machine learning methods (e.g., PINN)

PDEs Discretization methods (e.g., FDM, FEM, FVM),
Machine learning methods (e.g., PINN)

DAEs Index reduction methods (e.g. Pantelides’ algorithm)
Direct discretization methods

Stochastic equations Strong approximation methods (e.g., Euler–Maruyama method),
Weak approximation methods (e.g., MC simulations)
first-order ordinary differential equations (ODEs) takes the following
form:
{

𝑑
𝑑 𝑡𝐱(𝑡) = 𝐹 (𝑡, 𝐱(𝑡)), 𝑡 ∈ 𝐼 ,
𝐱(𝑡0) = 𝐱0,

(1)

In this equation, 𝐹 ∶ R × R𝑛 → R𝑛 is a vector-valued function,
𝐱 ∈ R𝑛 is the variable vector, 𝐼 is the interval of interest, and 𝐱0 is the
initial condition at time 𝑡 = 𝑡0. Solving ODEs involves various numerical
methods, including forward and backward approaches. Choosing a
method depends on accuracy requirements and whether the problem
is stiff or non-stiff (Golub and van Loan, 2013). In addition, artifi-
cial neural networks (ANNs)-based methods, such as physics-informed
neural networks (PINNs), solve complex or high-dimensional ODEs by
approximating the solution with neural networks.

Partial differential equation (PDE) involve multiple variables and
their partial derivatives, modeling dynamic systems with spatial and
temporal variations. While PDEs are ideal for such modeling, many
process models are simplified to differential-algebraic equations (DAEs)
or ODEs by assuming steady states or negligible spatial variations. Var-
ious methods solve PDEs, with discretization being the most common.
The finite difference method (FDM) approximates the PDE derivatives
by finite differences and converts them into algebraic equations. The
finite volume method (FVM) integrates PDEs over control volumes
and calculates boundary flows to satisfy conservation laws, making it
ideal for mass, momentum, or energy conservation simulations. Finite
element method (FEM) subdivides the domain into elements and uses
variational methods. In addition, as with ODEs, ANN methods can solve
PDEs.

Partial differential equations (PDEs) consist of differential and alge-
braic equations and typically arise from the spatial discretization of
6 
PDEs. They capture the interplay between conservation laws or state-
dependent equations. Unlike ODEs, which rely on integration, DAEs
involve differentiation in their solution, requiring specialized numerical
techniques (Ascher and Petzold, 1998a; Kunkel and Mehrmann, 2006;
Ascher and Petzold, 1998b). While index reduction methods simplify
DAEs by converting algebraic constraints into differential relations, di-
rect discretization methods are also applicable, as mentioned in Chapter
10 of Ascher and Petzold (1998b). Reduced DAEs are solved using
numerical integrators like Euler or Runge–Kutta methods, chosen based
on the system’s stiffness.

Process engineering applications: In process engineering, differential
equations are critical for modeling conservation laws such as mass,
energy, and momentum balances. Recent advances include Ji et al.
(2021), which employ a PINN framework for stiff chemical kinet-
ics, and Langiu et al. (2021), which present a differential–algebraic
modeling framework for optimizing energy systems.

Stochastic Equations: Stochastic differential equations model pro-
cesses influenced by random forces or fluctuations, capturing behaviors
affected by inherent variability, environmental noise, and uncertain
parameters. A general form of a stochastic differential equation is:
𝑑𝐙
𝑑 𝑡 =  (𝐙, 𝑡) + (𝐙, 𝑡) ⋅ 𝜂(𝑡), (2)

where 𝐙 is the systems’ state variable, 𝑡 is time,  (𝐙, 𝑡) is the determinis-
tic part, (𝑍 , 𝑡) is the stochastic part, and 𝜂(𝑡) is the random noise term.
Solving stochastic differential equations involves strong approximation
methods, such as the Euler–Maruyama method for approximating the
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Table 2
Overview of data-driven modeling categories.

Category Description

Supervised learning Identifies patterns or relationships in labeled data. Methods include
ANN, GP, decision tree, random forest, SVM.

Unsupervised learning Identifies patterns or relationships in unlabeled data. Methods
include clustering, PCA, and self-organizing maps.

Reinforcement learning An agent learns decision-making by interacting with the
environment.
b

i

n

t

u

m

solution path, and weak approximation methods, such as Monte Carlo
(MC) simulation for estimating probability distributions.

Process engineering applications: Process engineers use stochastic
equations to study noisy chemical reactions, analyze system variabil-
ity, and assess robustness, reliability, and risk (Ripley, 2009; Prévôt
and Röckner, 2007). Stochastic differential equations are useful for
onstructing Markov processes with predetermined statistical proper-

ties that model random disturbances in process plants (King, 1974).
In Pineda and Stamatakis (2018), stochastic modeling of surface reac-
tions using the Langevin equation generates stochastic realizations of
the Fokker–Planck equation, considering test cases of a single species
for adsorption, desorption, reaction, or diffusion on a lattice.

4.1.2. Data-driven models
Data-driven models use historical, sensor, and simulation data to

predict complex system behavior through statistical techniques. The
ata characteristics and the process being modeled determine the best

data-driven approach. For an overview of the data-driven category, see
Table 2.

Data-driven models are increasingly popular in process engineer-
ing (Pirdashti et al., 2013; Kockmann, 2018; Venkatasubramanian,
2019; Shang and You, 2019; Md Nor et al., 2020; Schweidtmann et al.,
2021; Pistikopoulos et al., 2021) due to their ability to be built without
rior knowledge of underlying physics. They effectively handle non-

linear relationships, a common challenge for mechanistic models, and
ffer faster decision-making due to computational efficiency. However,

challenges include ensuring model reliability, addressing confidence
limits, and dealing with ethical concerns like data security (Wang et al.,
2021; Pistikopoulos et al., 2021). Additionally, data-driven models
often rely on sparse, noisy data and might miss critical phenomena
such as faulty operations (Sansana et al., 2021). Design of experiments
(DOE) helps address these issues by systematically collecting relevant
data to improve model quality and reliability (Pan et al., 2022; Sharma
and Liu, 2022).

Data-driven model infrastructure: Robust data-driven models require
a structured infrastructure for data storage, preprocessing, parameter op-
timization, feature selection, and model evaluation (Raschka and Mirjalili,
2019). Efficient data storage systems like databases or data warehouses
manage large datasets. Data preprocessing includes cleaning, normaliza-
tion, noise reduction, and dimensionality reduction to prepare data for

odel training. After preprocessing, feature selection identifies relevant
ariables, improving accuracy and performance. During model develop-

ment, optimization algorithms, such as stochastic gradient descent (SGD),
adjust model parameters based on loss gradients (Kingma and Ba, 2014;
Lydia and Francis, 2019), affecting model accuracy. Model evaluation
applies metrics like accuracy and precision to assess generalizability,
with ongoing validation and monitoring essential to detect performance
changes.

Supervised learning: Supervised learning builds data-driven mod-
els using labeled data sets, where the data contains corresponding
utcomes for the model to predict. These models include regression,
lassification, and active learning. Regression models predict continuous
utcomes, such as chemical process yield, while classification models
lassify inputs into discrete classes, such as determining process states.
 i

7 
Active Learning Models optimize data labeling by selecting the most
informative data points for training. Supervised learning algorithms can
e adapted to different tasks by modifying learning objectives and loss

functions, with common methods including

• ANNs, which model nonlinear relationships using layers of inter-
connected nodes (neurons) that process inputs through activation
functions.

• Gaussian processess (GPs), which provide a probabilistic ap-
proach, useful for limited data sets, and offer predictions with
confidence intervals.

• Decision trees, which model complex decision processes by recur-
sively splitting the data into branches based on feature values.

• Random forests, which combine multiple decision trees trained
on random subsets of the data to improve accuracy and reduce
the risk of overfitting.

• Support vector machines (SVMs), which identifies the optimal
hyperplane for class separation or regression, with a margin of
error.

Process engineering applications: Supervised learning methods have
proven to be highly effective in modeling, prediction, and optimization
n various process engineering applications. For example, Willis et al.

(1991) provide a comprehensive review of ANNs used in chemical engi-
eering, while Deringer et al. (2021) review GPs regression methods for

materials science. In addition, Ma and Wang (2009) automate decision
rees for chemical process control, and Partopour et al. (2018) apply

random forests to microkinetic models. The use of support vector ma-
chines (SVMs) in chemical property prediction is explored in Ivanciuc
(2007). Research in active learning demonstrates how the iterative
design of experiments can significantly reduce the burden of reaction
screening (Eyke et al., 2020).

Unsupervised learning: Unsupervised learning deals with unlabeled
datasets, aiming to uncover hidden patterns and relationships with-
out predefined labels. This is valuable when the data distribution is
nknown or manual labeling is impractical. Typical methods are:

• Clustering, which groups data points based on their similarities
to reveal natural groupings or trends within the data.

• Principle components analysis (PCA), which reduces the dimen-
sionality of the data by projecting it into a lower-dimensional
space while preserving as much variance as possible.

• Self-organizing maps, which create a low-dimensional represen-
tation of high-dimensional data by mapping similar data points
close together to help identify patterns.

Process engineering applications: Unsupervised learning methods
discover patterns in unlabeled process data. For example, Sancho et al.
(2022) use k-means clustering to classify crude oil, while Lin et al.
(2000) apply nonlinear PCA for process monitoring. Furthermore, Chen
and Yan (2012) extend self-organizing maps for troubleshooting in
chemical processes.

Reinforcement learning: Reinforcement learning focuses on decision-
aking and control in dynamic environments. Unlike supervised learn-

ng, it involves an agent that learns through interactions with its
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Fig. 6. Circular description of some of the needed steps for SciML.

environment, receiving rewards or penalties to develop strategies for
achieving goals.

Process engineering applications: Shin et al. (2019) review the im-
act of reinforcement learning on process control, while Hubbs et al.

(2020) demonstrate its application to production scheduling, address-
ing uncertainty, and enhancing operational efficiency.

4.1.3. Scientific machine learning
Scientific machine learning (SciML) integrates traditional computa-

ional sciences with machine learning techniques to improve model ro-
ustness, interpretability, and reliability (Karpatne et al., 2017; Sharma

and Liu, 2022; Karniadakis et al., 2021). Fig. 6 illustrates the key steps
n a typical SciML setup. The importance of SciML is highlighted in
everal studies (Karpatne et al., 2017; Willard et al., 2020; Karniadakis
t al., 2021; Scientific machine learning, 2023), with practical applica-

tions in aerospace and medical engineering (Kapteyn et al., 2020, 2021;
Kapteyn and Willcox, 2022; Kapteyn et al., 2022).

Several methods integrate scientific knowledge with data-driven
odels throughout the modeling process. These techniques span from

nitial input selection to final model evaluation:

• Feature selection chooses features that capture the essential phys-
ical processes of the system. This ensures that the model focuses
on relevant data (Schubert et al., 1994; Sharma and Liu, 2022).

• Synthetic data generation supplements real data with synthetic
points created using physical principles. This approach reduces
the need for additional measurements and is useful when data is
limited (Sharma and Liu, 2022).

• Loss function design incorporates physical constraints through
penalty terms, ensuring that the model adheres to known physical
laws and limits (Schubert et al., 1994; Karpatne et al., 2017;
Sharma and Liu, 2022).

• Model architecture must be carefully chosen to ensure optimal
performance and accuracy. For instance, ANN models can be
designed to include symmetries and invariances (Karpatne et al.,
2017; Karniadakis et al., 2021).

• Pre-training with synthetic data accelerates learning and im-
proves model robustness (Serra et al., 2003; Karpatne et al., 2017;
Sharma and Liu, 2022).

• Hybrid modeling integrates physical information into data-driven
models. Mechanism correction uses deviations between model
and measured states as error signals, while mechanism estimation
predicts process parameters that are challenging to derive from
first principles (von Stosch et al., 2014).
8 
For effective SciML implementation, advanced computational tools
are essential. These tools should integrate smoothly with existing sci-
entific simulations (Essential Tools of Machine Learning, 2023; Asch,
2022) and include:

• Structured linear algebra efficiently manages and manipulates
large matrices and vectors common in scientific computing.

• Mixed precision arithmetic number types speed up computations
while maintaining accuracy, especially in large-scale simulations.

• Differentiable programming utilizes automatic differentiation
tools to compute derivatives efficiently, which is essential for
training neural networks and solving differential equations.

• Equation solvers handle algebraic and differential equations in
complex systems modeled in SciML (see Section 4.1.1).

• Probabilistic programming aids in UQ and global sensitivity anal-
ysis by quantifying uncertainty and assessing model reliability
(see Section 4.2.4).

• Optimization techniques train models and fine-tune hyperparam-
eters to achieve optimal performance (see Section 4.2.1).

• Model benchmarking involves using standardized benchmark
datasets to compare and evaluate different models, ensuring they
meet performance standards (Thiyagalingam et al., 2022).

In the following, we will delve into two key areas within SciML:
identifying governing equations and integrating physical principles
with ANNs.

Identification of governing equations: Two primary techniques, sym-
bolic regression and sparse regression, are widely used to identify gov-
erning equations. Both methods decipher the dynamics of the system,
particularly the right-hand side of differential equations. Symbolic Re-
gression generates a set of candidate symbolic functions and compares
them with the numerical derivatives to select the best-fitting function.
Initially, random candidate functions are refined using evolutionary
algorithms like genetic programming via expression trees.

Sparse regression, specifically the SINDy approach, discovers par-
simonious models by applying sparsity-promoting regression on the
erivatives to a library of candidate nonlinear functions. This library,
hich must be created manually, may contain pre-existing information.
 limitation of the original SINDy approach is that it requires direct ac-
ess to or approximation of gradient information in the time domain, as
oes symbolic regression. This leads to numerical errors from gradient
pproximation, a problem that is addressed in Goyal and Benner (2022)

by incorporating classical numerical integration schemes (e.g., Runge–
utta) into the sparse identification process, thereby eliminating the
eed for derivative information collection. Another solution for the
radient approximation problem is proposed in Both et al. (2021),
here the sparse regression is done within ANNs with automatic differ-
ntiation. In Forootani and Benner (2024), the curse of dimensionality

and large datasets is addressed by solving the most informative samples
via discrete empirical interpolation method (DEIM) as preprocessing for
the SINDy algorithm.

Process engineering applications: Symbolic regression is used by de
Carvalho Servia et al. (2023) for model generation in an isomerization
ase study. In Bhadriraju et al. (2020) and Bhadriraju et al. (2019),
INDy derives multiple models from historical data for different input

scenarios. These models, along with their training data, are then used to
construct a deep ANN. This ANN is integrated into a model predictive
control (MPC) framework for closed-loop operation, facilitating the
identification and control of a continuous stirred tank reactor (CSTR).

Combination of physical principles and ANNs: ANNs handle noisy
data, perform automatic differentiation, and act as flexible, meshless
models. The Universal Approximation Theorem demonstrates this by
showing that a feed-forward network with a single hidden layer and
a finite number of neurons can approximate continuous functions on
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compact subsets of R𝑛 under certain conditions on the activation func-
ion. However, sometimes ANNs face convergence issues, especially for
ong-time integration and nonlinear problems, and the determination

of the optimal network architecture is uncertain. As a result, the
combination of ANNs-based solutions with traditional physics-based
methods is increasingly being explored to improve performance and
eliability.

In this context, we present four approaches. (1) Neural ODEs param-
eterizes the derivative of the hidden state with a neural network, allow-
ng the integration of the hidden state over time (Chen et al., 2018).

(2) Neural Operators learn the map  between infinite-dimensional
function spaces and serve as discretization-free surrogates for PDEs (Li
t al., 2020). (3) PINNs encode the differential equation within the

neural network, allowing it to learn the solution as it fits observed
data (Raissi et al., 2017, 2019; Cuomo et al., 2022). Finally, (4)
roup equivariant convolutional networks use convolutional layers that
reserve the translational structure of the data, exploit symmetries, and
equire less training data while enforcing structure (Cohen and Welling,

2016). These networks maintain transformations that preserve system
ynamics, such as invariance under time shifts, time reversal, spatial
hifts, spatial reflection, rotations, and coordinate rescaling.

Process engineering applications: Recent advances in process engi-
neering have demonstrated the growing importance of the interaction
between physical principles and ANNs. In particular, hybrid modeling
has made remarkable progress, as reviewed in von Stosch et al. (2014),
which highlights applications in biochemistry and chemical engineer-
ng. For example, Raccuglia et al. (2016) train models to predict

crystallization outcomes and aid material discovery using reaction data,
while Wu et al. (2019a) develop a machine learning predictive control
scheme with real-time updates for non-isothermal reactors. In addi-
tion, Bangi and Kwon (2020) combine first principles with deep ANNs
o model hydraulic fracturing, and Wang et al. (2021) integrates deep

learning with d-band theory to predict surface reactivity of transition
etals. In contrast, Peterson et al. (2024a) compare hybrid models to
ata-driven approaches in a CSTR case study, challenging assumptions
bout the enduring superiority of hybrid modeling.

In the realm of neural ODEs, Owoyele and Pal (2022) apply this
approach to chemical kinetics by modeling hydrogen-air self-ignition,
incorporating adjustments to ANN weights for more accurate predic-
tions. Similarly, neural operators are used by Goswami et al. (2024)
o solve stiff chemical kinetics problems, including applications to
ombustion kinetics and the three-species ROBERS problem. PINNs
ave also been explored in solving stiff chemical kinetic systems, as
emonstrated by Ji et al. (2021). Furthermore, Qiao et al. (2021),

apply group equivariant convolutional networks to quantum chemistry,
and Kaba and Ravanbakhsh (2022) use these networks to incorporate
rystalline symmetries in materials science predictions.

4.1.4. Model order reduction
Outer-loop applications require fast and accurate processing of po-

entially large-scale, complex dynamical systems. With advances in
modern computing environments and high-performance clusters, the
limits of computational feasibility are continuously pushed.

Reduced-order models (ROMs) addresses the computational chal-
lenges of large dynamical systems by intersecting disciplines such as
control, systems theory, approximation theory, and numerical linear
lgebra. The core idea of MOR is to replace complex, large-scale

systems, typically described by many ODEs, with reduced-dimensional
systems governed by well-understood dynamics. Effective MOR ap-
proaches ensure that ROMs exhibit reduced complexity, reliability,
and preservation of essential properties of the original system. As
highlighted in Asch (2022), a DT benefits significantly from a finely
uned MOR. The lack of a universal MOR methodology for all DTs

requires a tailored approach to ensure that the ROM is calibrated for
reliable and accurate results. However, this customization may hinder
the development and implementation of DTs (Asch, 2022).
9 
For a comprehensive review of the variety of MOR methods that
ave been proposed and continuously developed over the last two
ecades, we refer the reader to the reviews of Baur et al. (2014)

and Benner et al. (2015) as well as the books of Antoulas (2005),
Benner et al. (2017), Antoulas et al. (2020) and Benner et al. (2021). A
survey of MOR methods for DAEs is given in Benner and Stykel (2017).
n Eason and Biegler (2021), developments and practical applications

of ROMs in process engineering are emphasized, especially in process
optimization.

MOR methods are subdivided into two categories: intrusive and non-
intrusive methods. Intrusive methods necessitate the processing of the
governing equations of the full order model (FOM), while non-intrusive
methods operate on the input–output or snapshot data of the system,
thereby avoiding making changes to the underlying simulation code.
However, not all methods are unequivocally categorized into one of
these two subdivisions. Table 3 lists all the methods described in this
section.

Proper orthogonal decomposition: A prime example of resistance to
categorization is POD. The categorization of POD as either intrusive
or non-intrusive depends on its implementation within the MOR pro-
cess. For example, when POD is used in conjunction with Galerkin
rojection, which requires access to and modification of the governing
quations, it is considered an intrusive method. Conversely, when POD

is used in a data-driven manner, such as in the snapshot method
introduced by Sirovich (1987), it is considered non-intrusive because
it operates on snapshot data and does not require modifications to
the underlying model. POD, closely related to PCA or Karhunen-Loève
expansion, serves two purposes. On the one hand, it acts as a statistical
ool, adept at extracting significant structures or patterns from large

data sets. On the other hand, it reduces complexity, being able to use
a minimal number of POD modes to approximate a given dynamical
system to a desired level of accuracy. Once a sufficient number of POD
modes are identified, these modes can be used to transform the data
into a latent dimensional space. This reduced data can then be used
as input to standard data-driven models (Ammar et al., 2024; Chinesta
t al., 2020).

Process engineering applications: In Abdullah et al. (2021), a non-
linear identification approach (based on nonlinear PCA and system
dentification approaches) computes a dynamic model of first-order
onlinear ODEs describing the temporal evolution of the slow process
tates for two test cases: An isothermal multi-reaction batch reactor and
 non-isothermal jacketed CSTR. Agarwal et al. (2009) develop a ROM

based on POD, which is a low-dimensional approximation to a dynamic
PDE-based model with application to pressure swing adsorption (PSA)
processes (for a dynamically coupled PDE-based model of a two-bed,
four-step PSA process for the separation of hydrogen from methane).
In Bremer et al. (2016, 2017), a hybrid approach (known as POD-

EIM (Chaturantabut and Sorensen, 2010)), is applied to a dynamic,
wo-dimensional reactor model for catalytic CO2-methanation. The
ethod is snapshot-based, i.e. it uses snapshots of the time-domain

volution of the system state.

I Classical, intrusive methods
Traditional MOR involves access to the full model and reduction by

intrusive methods, typically projection-based. As shown in the linear
setup in Fig. 7, the main idea behind MOR (and in particular the
tructure-preserving classes of methods) is to approximate the original

(potentially) large-scale model described by 𝑛 state variables by a ROM
of (much) lower dimension, denoted by 𝑟, and with a structure similar
to that of the original.

The classical setup of linear, time-invariant dynamical systems is
escribed by a state-space representation with first-order dynamics.

Within this framework, the dynamical system with homogeneous (zero)
initial conditions is characterized by equations in both the time (left)
nd frequency (right) domains, as shown below:

{

𝑑
𝑑 𝑡 𝐱(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡),

⟺

{

𝑠𝐱(𝑠) = 𝐀𝐱(𝑠) + 𝐁𝐮(𝑠),
(3)
𝐲(𝑡) = 𝐂𝐱(𝑡), 𝐱(𝑡) = 𝟎. 𝐲(𝑠) = 𝐂𝐱(𝑠).
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Table 3
Overview of equation types and solution techniques.
Category Methods

Intrusive Balanced truncation (BT), moment matching (MM), reduced basis (RB)

Non-intrusive System identification (SI), subspace identification (SSI) (e.g., MOESP,
N4SID), dynamic mode decomposition (DMD) operator inference (OpInf),
Frequency domain analysis methods

Both Proper orthogonal decomposition (POD)
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Fig. 7. Projection-based MOR in a particular setup (the linear time-invariant case).

The system matrices 𝐀 ∈ R𝑛×𝑛, 𝐁 ∈ R𝑛×𝑚, and 𝐂 ∈ R𝑝×𝑛 capture
the dynamics and relationships between the control inputs 𝐮(𝑡) ∈ R𝑚,
observed outputs 𝐲(𝑡) ∈ R𝑝, and state variables 𝐱(𝑡) ∈ R𝑛.

Using a frequency domain analysis, the Laplace transform is applied
to Eq. (3), resulting in 𝐱(𝑠) = (𝑠𝐈 − 𝐀)−1𝐁𝐮(𝑠). This allows us to
express the transfer function of the system as 𝐇(𝑠) = 𝐂𝐊(𝑠)−1𝐁, where
𝐊(𝑠) = (𝑠𝐈 − 𝐀)−1. The Laplace transform is a mathematical integration
technique commonly used in control systems and signal processing to
convert differential equations into algebraic equations in the frequency
domain. By analyzing the system’s response to different input signals
and designing controllers based on the transformed equations, specific
tasks are achieved based on performance criteria.

When modeling systems that incorporate state delays and derivative
bservations adjustments are required. In process engineering, delayed

ODEs result from time delays in system response due to transport
phenomena, reaction kinetics, or feedback loops. For example, Roussel
(1996) studies delayed variable enzyme catalysis and Oregonator mod-
els. These modified equations are expressed, to illustrate the required
adjustments, as follows:
{

𝑑
𝑑 𝑡 𝐱(𝑡) = 𝐀𝐱(𝑡) + 𝐀1𝐱(𝑡 − 𝜏) + 𝐁𝐮(𝑡),

𝐲(𝑡) = 𝐂𝐱(𝑡) + 𝐂1
𝑑
𝑑 𝑡𝐱(𝑡).

⟺

{

𝑠𝐱(𝑠) = (𝐀 + 𝑒−𝜏 𝑠𝐀1)𝐱(𝑠) + 𝐁𝐮(𝑠),
𝐲(𝑠) = (𝐂 + 𝑠𝐂1)𝐱(𝑠).

(4)

Similarly, as before, using the Laplace transformation and solving for
𝐱(𝑠), we get that 𝐱(𝑠) = (𝑠𝐈−𝐀−𝑒−𝜏 𝑠𝐀1)−1𝐁𝐮(𝑠). So the transfer function
are written as 𝐇(𝑠) = 𝐲(𝑠)

𝐮(𝑠) = 𝐂(𝑠)𝐊(𝑠)−1𝐁, where 𝐊(𝑠) = (𝑠𝐈−𝐀−𝑒−𝜏 𝑠𝐀1)−1

and 𝐂(𝑠) = 𝐂 + 𝑠𝐂1.
Among the various intrusive methods in the family of MOR ap-

roaches, balanced truncation (BT) and moment matching (MM) are
idely used, established techniques from system and control the-
ry (Antoulas, 2005).

Balanced truncation: BT computes ROMs by eliminating states that
have a negligible impact on the output of the system. BT-type methods
10 
use basic but important concepts from control theory, such as control-
lability, observability, and Hankel singular values (Antoulas, 2005). In
the case of linear systems, they are shown to preserve the asymptotic
stability of the system and also provide explicit ways to quantify
the approximation error. BT-type methods have been combined with
Bayesian inference (Qian et al., 2022b), used in the context of data
assimilation (DA) (Lawless et al., 2008; König and Freitag, 2022), and
extended to a realization-free data-driven formulation (from input–
output data) (Gosea et al., 2022). For further reading, we refer the
eader to Chapters 4, 5, 6, and 7 in Antoulas (2005), and to Chapter 6

in Benner et al. (2017).

Process engineering applications: In their study, Hahn and Edgar
(2002) apply BT to a CSTR case study, proposing the computation of the
alancing transformation matrix by empirical Gramians. Dones et al.

(2011) extend BT to nonlinear systems, recommending the inclusion
f all states in the balancing outputs and the use of a linearizing
tatic transformation of the states. Their methodology is applied to a

distillation column model.

Moment matching: In MM, the moments of the original system are
matched to the reduced ones. These approximation techniques are
computationally efficient through the use of Krylov subspace meth-
ods (Grimme, 1997), which are a class of methods used to solve linear
systems and eigenvalue problems. With readily available algorithms
from numerical linear algebra, MM is easy to implement. For a bet-
er understanding of interpolation-based MOR methods, we refer the
eaders to Chapter 8 in Antoulas et al. (2020), and Chapters 7 and 8

in Benner et al. (2017).

Process engineering applications: In Li et al. (2014), two Krylov
subspace methods are proposed to speed up the computation of cyclic
steady states for moving bed processes simulated with linear isotherms.
Full and partial update schemes for the derivation of ROMs for a
glucose-fructose separation are proposed in Yue et al. (2014). In a
related approach, Shih and Shieh (1978) use MM to reduce the order
of multivariable continuous and discrete systems, highlighting its utility
in control system design.

Reduced basis: Traditional MOR methods, such as modal analysis or
ystem theoretical model reduction of linear time-invariant systems,
ay not be directly applicable to PDEs since they do not effectively
andle the spatial and temporal complexities inherent in these equa-
ions. A popular approach in the context of PDEs is the RB method.
he RB projects the high-fidelity problem onto a subspace composed
f relevant basis functions (Quarteroni et al., 2015). For single-domain

systems, the RB method focuses on reducing the size of the system-
evel finite element approximation space. This is particularly beneficial
hen dealing with large and complex engineering systems that require
iscrete time steps. However, a limitation of these RB-based approaches
s that the full system-level problem can still be quite large, posing
omputational challenges for complex engineering systems.

Process engineering applications: In the context of DT applications
in aerospace engineering, Kapteyn et al. (2020) adopt the static-
condensation RB method (Huynh et al., 2013) to model lithium-ion
batteries with spatially resolved porous electrodes. The application of
the RB method to multiscale problems is described in Ohlberger et al.
(2016).
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Fig. 8. A diagram illustrating non-intrusive construction of ROMs.
II Data-based, non-intrusive methods
An alternative approach to classical (intrusive) methods of MOR,

which rely on explicit access to a large-scale model, is the use of
data-driven (non-intrusive) techniques. Unlike intrusive methods, data-
driven ROMs do not require explicit knowledge of the model struc-
ture or matrices. Instead, low-order models are directly computed
from time-domain data. This makes non-intrusive methods suitable
for reduction and system identification tasks where the underlying
mathematical model is not known or easily accessible. The general
construction of non-intrusive ROMs can be seen in Fig. 8. In the
following, we highlight several prominent specific examples.

System identification: System identification (SI) encompasses vari-
ous methods for deriving mathematical models of dynamic systems
from observed input–output data. Acting as a bridge between practical
applications and the mathematical domain of systems and control
theory, SI encompasses a wide range of techniques and methodologies.
These methods vary according to the structure and behavior of the
models, and include linear, nonlinear, hybrid, nonparametric, and other
approaches. For further reading, we recommend the influential book by
Ljung (1999), which provides a comprehensive overview of established
SI methods. References such as Gevers (2006), Verhaegen and Verdult
(2007), and Pintelon and Schoukens (2012) further explore related
aspects.

Subspace identification (SSI) is a special form of SI that is based
on discrete linear systems. Among the many proposed methods, two
notable ones are the MOESP algorithm (Verhaegen and Dewilde, 1992)
and the N4SID approach (Van Overschee and De Moor, 1994). A com-
prehensive review of subspace system identification methods, including
MOESP and N4SID, is provided by Favoreel et al. (2000). We further
refer the reader to Qin (2006) for an extensive overview of methods
developed by the mid-2000s. Extensions of SSI (e.g., applications to
bilinear control systems) are proposed in Favoreel et al. (1999).

Process engineering applications: Building on the MOESP method,
Borjas and Garcia (2011) introduce the MON4SID algorithm, which
computes state sequences and the extended observability matrix. The
authors apply SI methods to the Shell benchmark process and demon-
strate that a linear model can accurately describe a nonlinear sys-
tem within a certain operating range. Addressing ill-conditioning in
SI, Hachicha et al. (2014) highlight the robustness of these methods
for parameter estimation in process control, emphasizing the MOESP
algorithm’s ability to handle the Hankel block, which significantly im-
proves parameter estimation and has important implications for process
engineering. Finally, Kumari et al. (2021) present a k-nearest neighbor-
based parametric ROMs that incorporates MOESP to improve numerical
robustness in response to parameter changes, as demonstrated in a case
study of a supercritical CO2 release.

Dynamic mode decomposition: Dynamic mode decomposition (DMD)
extracts the dominant dynamic modes of a system by analyzing time-
domain snapshots of state variables (Schmid, 2010). In particular, DMD
is closely related to the concept of the Koopman operator (Koopman
and von Neumann, 1932), a mathematical tool that describes the evo-
lution of scalar observables (functionals of measurable state variables)
in infinite time in an infinite-dimensional Hilbert space (a mathe-
matical space equipped with inner products and completeness prop-
erties). Through the extended DMD approach presented in Williams
et al. (2015), the leading Koopman eigenfunctions are identified and
a finite-dimensional representation of the underlying linear dynamics
is approximated. A comprehensive understanding of DMD, including
11 
its variants such as DMD with control (DMDc) (Proctor et al., 2016),
which incorporates control signals into the dynamics equation, are
found in Kutz et al. (2016).

Process engineering applications: DMD is often studied and applied
in the field of fluid dynamics (Schmid, 2022), which is related to pro-
cess engineering, but there are also applications to process engineering
itself. For example, Narasingam and Kwon (2017) propose a modifica-
tion of DMDc to capture local dynamics through temporal clustering
of snapshot data using mixed-integer nonlinear programming, which
is applied to the feedback control of hydraulic fracturing processes to
compute optimal pumping schedules. In addition, Velegar et al. (2024)
present an optimized DMD algorithm for constructing an adaptive
and computationally efficient prediction tool for global atmospheric
chemical dynamics.

Operator inference: Operator inference (OpInf) builds ROMs in con-
tinuous time (Peherstorfer and Willcox, 2016). The basic idea is to
construct polynomials of a given order in the reduced coordinates.
Learning the matrices of the polynomials is theoretically possible us-
ing the least squares method. However, since the problem is often
ill-conditioned and the stability of the ROM is not guaranteed, parame-
terization guidelines (Goyal and Benner, 2022; Pontes Duff et al., 2024)
or large regularization terms (Qian et al., 2022a) are often required. For
detailed principles, innovations, and applications of OpInf, we refer the
reader to Benner et al. (2020, 2022), and also to the review paper of
Kramer et al. (2024).

Process engineering applications: OpInf has been applied to pro-
cess engineering problems, such as a single-injector rocket combustion
model (McQuarrie et al., 2021) or the methanation of a carbon dioxide
reactor (Peterson et al., 2024c; Gosea et al., 2024).

Frequency domain analysis methods: Frequency domain analysis
methods approximate and analyze the behavior of a system using its
transfer function, which provides insight into the system’s response
to a range of frequencies actuated by the control input. One notable
approach is the Loewner framework (Mayo and Antoulas, 2007), which
uses interpolation to construct ROMs using rational approximation. By
selecting interpolation points, the Loewner framework recovers the dy-
namics of the system and provides a priori estimates of the complexity
of the system (encoded in the singular values of the Loewner matrix). A
major advantage of the Loewner approach is its directness and ease of
implementation, avoiding complicated optimization schemes. Another
method is the vector fitting algorithm (Gustavsen and Semlyen, 1999),
which uses a linearized least-squares fitting approach. This algorithm
iteratively adjusts the parameters of the rational functions to minimize
the mismatch between the model and the actual data, resulting in an
accurate recovery of the transfer function. In addition, the adaptive
Antoulas-Anderson (AAA) algorithm (Nakatsukasa et al., 2018) combines
elements of both interpolation and least squares fitting. It aims at
finding an approximation by iteratively adjusting the model based on
the greedily selected interpolation points and on the least squares fit.
Process engineering applications: The Loewner framework has re-
cently been applied to electrochemistry test cases, by fitting ROMs
constructed from impedance data corresponding to models of polymer
electrolyte membrane (PEM) fuel cells (Sorrentino et al., 2023; Gosea
et al., 2023) and of lithium-ion batteries (Rüther et al., 2023). In
addition, the vector fitting algorithm has been used in Hu et al. (2012)
for battery thermal management for high-power applications (in the
context of hybrid and electric vehicles).
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Fig. 9. A generic optimization scheme.
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4.2. Optimization loop

The optimization loop contains methods that repeatedly invoke the
model of the physical problem. Many of these methods are based
on optimization (e.g., parameter fitting, scheduling optimal control),
ence the name. In this section, we will discuss optimization, inverse
roblems, DA, UQ, and control.

4.2.1. Optimization
As stated in Asch (2022), optimization is fundamental to the devel-

opment of DT. Typically, optimization involves finding the minimum
or maximum of a given function. Fig. 9 shows a generic optimization
cheme. Several steps are needed when formulating an optimization

problem:

• Construct a model that describes the underlying process or plant
and the associated optimization problem.

• Define a suitable objective (cost) function.
• Choose an optimization algorithm.
• Verify (potential) optimality conditions
• Perform sensitivity analysis of the results.

Optimization problems come in many forms, ranging from discrete
o continuous, constrained to unconstrained, and local to global. Tra-
itional optimization methods rely on having an explicit function or
umerical approximation to optimize. However, when such explicit

knowledge is lacking, finite difference approximations or the ability to
ompute the gradient of a quadratic cost function are used. Classical

optimization methods typically provide only local minimum guaran-
tees, while achieving a global minimum often requires specialized
techniques such as simulated annealing, genetic algorithms, or swarm
optimization (Mitchell, 1998).

Optimization tools are divided into three main categories: First-
rder or gradient methods, second-order or Newtonian methods, and
tochastic methods. Gradient methods are typically used when the objec-

tive function is smooth and its gradient is easy to compute. Newtonian
methods are used in cases where the objective function is highly nonlin-
ear and second-order information (i.e., the Hessian) is available and can
improve convergence speed. Stochastic methods are useful in scenarios
where the objective function is noisy, high-dimensional, or computa-
tionally expensive to evaluate, as they can efficiently explore the search
space without relying on gradient information. Extensive discussions
and detailed descriptions of prominent optimization approaches can
be found in Nocedal and Wright (1999) and Locatelli and Schoen
(2013). In the field of process optimization, a comprehensive coverage
of nonlinear programming methods, covering both steady-state and
dynamic process optimization, is provided in Biegler (2010).

Process engineering applications: Process engineering often involves
complex problems with multiple solutions that interact economically
 e

12 
and in terms of performance, making it difficult to intuitively iden-
ify the optimal solution. To address this growing complexity, the
ntegrated Platform for Advanced Process Modeling and Simulation
IDAES) provides a framework that combines process simulators and
lgebraic modeling languages (Lee et al., 2021). Tailored for process

flowsheet optimization, the platform uses advanced solvers and tech-
niques to model and optimize dynamic, interconnected systems. It
supports structure-based design and optimization under uncertainty,
providing the flexibility to adapt to industrial needs.

Several notable works highlight optimization in process engineer-
ing. Genetic algorithms have been applied to computer-aided molecular
design in Venkatasubramanian et al. (1994), while hybrid approaches
to modeling intracellular dynamics in biochemical applications are
explored in del Rio-Chanona et al. (2016), Teixeira et al. (2006) and
Zhang et al. (2019a). A gray-box modeling approach for chemical
rocess optimization is proposed in Asprion et al. (2019), and Kumar

et al. (2016) optimize furnace temperature distribution in a steam
methane reformer using ROM. In Lima et al. (2007), a symbolic rep-
resentation of fundamental equations for hybrid mechanistic-empirical

odels is developed and applied to the optimization of the Williams-
tto benchmark reactor. In renewable energy-to-chemicals applica-

ions, Uebbing et al. (2020) optimize power-to-methane processes via
uperstructure optimization, focusing on heat integration and gas grid
equirements. Uebbing et al. (2021) optimize PSA processes with re-

duced models and a trust-region filtering method, significantly re-
ducing computational time. In addition, Garmatter et al. (2021) de-
velop a benchmark structure for syngas production that addresses the
omplexity of dynamic modeling.

4.2.2. Inverse problems
Mathematically, two problems are considered inverse if solving one

requires addressing all or part of the solution to the other. One is
called a direct problem and the other is called an inverse problem. The
direct problem, also known as the forward problem, involves solving
the physical equations to obtain the dependent variable of interest
when all other quantities are known. These problems are solved using
established tools from numerical linear algebra in the linear case, or
iterative descent methods in the nonlinear case. In contrast, the inverse
problem aims to go from the effects to the cause by reconstructing the
unknown quantities based on observed data. The interaction of the
forward and inverse models is shown in Fig. 10.

Inverse problems are further classified as deterministic or statistical,
nd linear or nonlinear, depending on the type of algebraic or dif-

ferential operators involved. Solving inverse problems is typically more
hallenging than solving direct problems because they involve incom-

plete information, measurement errors, and noise, which can lead to
ill-posed solutions with unstable or non-unique properties. Addressing
hese challenges requires specially designed algorithms that deal with
rrors in the measurement data.
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Fig. 10. A generic schematic for inverse modeling.
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We follow the general mathematical formulation of an inverse
problem from Asch (2022), given by the equality 𝐝 = 𝑔(𝐦), where
𝐦 is a vector of parameters in the model parameter space , 𝐝 is a
vector of data values in the data space , and 𝑔 is an operator that
describes the forward model. The operator 𝑔 is defined by differential,
algebraic, integral, or matrix equations. In practical scenarios, the data
values are often corrupted by additive (Gaussian) noise, leading to the
modification of the relationship, as: 𝐝 = 𝑔(𝐦) +𝜂. Then, the data vectors
are connected to the prediction vector using the relation 𝐲 = ℎ(𝐝) =
ℎ(𝑔(𝐦)), where 𝐲 represents the vector of predictions or observations,

is the observation space, and ℎ is the observation operator.
For a comprehensive understanding of the available regularization

echniques and strategies in inverse problems, we recommend read-
ng Kirsch (2011). In addition, the review by Ghattas and Willcox

(2021) highlights significant advances in efficient algorithms for in-
verse problems related to MOR of large models. As outlined there,
he distinction between the two approaches is that inverse problems
nvolve inferring uncertain input components from output observations,
hereas MOR focuses on obtaining low-dimensional models that accu-

rately represent the main features of the input–output relationship by
pproximating them within a reduced subspace.

Process engineering applications: In process engineering, inverse
modeling aims to infer the unknown independent variables, or inputs,
of a system from its observed outputs. For example, in materials’
design, Venkatasubramanian (2019) use inverse problems for the dis-
covery and design of new materials with desired properties. In process
control, inverse modeling techniques enable the control and optimiza-
tion of process variables, as demonstrated in the control of distillation
plants using ANN controllers (Savkovic-Stevanovic, 1996). In addition,
inverse modeling contributes to process understanding by quantifying
the effects of time variations and production dynamics, allowing engi-
neers to gain insight into the relationships between process variables
and system behavior (Tomba et al., 2014). Moreover, inverse modeling
s used in process optimization and parameter estimation in the food
rocessing industry, where techniques such as model validation, opti-
ization algorithms, and sensitivity analysis improve process efficiency

nd product quality (Reddy et al., 2022). The integration of data-
driven models into a broader decision framework is facilitated by the
OMLT software package, which provides the essential optimization
 m

13 
equations (Ceccon et al., 2022). This concept is further extended to in-
corporate surrogate models into broader design or operations problems
involving complex flowsheets.

4.2.3. Data assimilation
As illustrated in Fig. 11, data assimilation (DA) merges knowledge

rom a numerical model of a system with newly acquired observational
ata (Bocquet et al., 2015). The goal is to accurately predict the state
f the system while accounting for uncertainties. The primary benefit
f DA is to improve predictions, reduce model uncertainties, and adjust
odel parameters.

Two main categories of DA are typically prevalent, i.e., variational
A and statistical (or sequential) DA. Variational DA optimally com-
ines model and data by minimizing a given criterion (typically a
ost function). Key methods include 3D-Var and 4D-Var approaches
s well as nudging techniques. The goal is to improve predictions by
djusting model parameters based on observations. Statistical DA uses
 set of model trajectories or scenarios that are intermittently updated
ccording to data. It infers the past, present, or future state of a system.
nsemble Kalman Filter approaches, Bayesian methods, and nonlinear
iltering all fall into this category. Finally, hybrid methods combine
oth approaches, i.e., hybrid ensemble-variational (EnVar) DA, such
s 3D-EnVar in Hamill and Snyder (2000), or 4DEnVar in Lorenc

(2003), which combine 3D-Var and 4D-Var with ensemble, statistical
approaches.

Process engineering applications: Originally developed for compu-
tational geosciences, DA has found applications in various fields, in-
cluding process engineering. In this context, DA techniques integrate
real-time measurements into model predictions, improving prediction
ccuracy and supporting real-time process monitoring, control, and
ptimization (Law et al., 2015). By addressing model deficiencies and

uncertainties, DA improves both process understanding and decision-
making capabilities (Law et al., 2015). Despite these benefits, further
evaluation is needed to fully assess the effectiveness of DA methods in
process engineering applications (Bocquet et al., 2015).

4.2.4. Uncertainty quantification analysis
Uncertainty quantification (UQ) provides a systematic approach to

anaging uncertainty from sources such as measurement error, model
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Fig. 11. A generic scheme for data assimilation (DA).
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inaccuracy, and parameter variability. A key component of UQ is the
assessment of uncertainty in the computational estimation of a quantity
of interest (QoI), focusing on statistical information such as expected
alues, variances, and probability distributions. A comprehensive ref-
rence on UQ theory and practice is Smith (2013). UQ are divided into
forward propagation and inverse evaluation.
Forward propagation: Forward propagation assesses how uncertain-
ies propagate through a model to predict the overall uncertainty in the

system response. Existing approaches to forward propagation include
probabilistic and non-probabilistic approaches. Probabilistic approaches
treat uncertainties as random variables and use probability distribu-
tions to represent them. Non-probabilistic approaches work with small
sample sizes and are often used when the credibility of probabilistic
analysis results is questioned due to small sample sizes.

Inverse evaluation: Inverse evaluation focuses on uncertainties as-
ociated with the model or its parameters. Two main approaches in
nverse UQ are Frequentist and Bayesian. Frequentist methods use sta-
istical techniques that treat model parameters as fixed but unknown.
ncertainties are estimated from experimental data.

In contrast, Bayesian methods quantify uncertainty through prob-
ability distributions. The key steps in the Bayesian approach are: (1)
defining the prior distribution, (2) specifying the noise distribution, (3)
omputing the likelihood function, (4) applying Bayes’ law to derive
he posterior distribution, and (5) predicting the experimental response

and discrepancy function. Numerical methods, such as those described
in Table 4, are crucial for efficient Bayesian inference, especially when
analytical solutions are intractable.

Gaussian processes (GP) techniques extend the Bayesian approach
by modeling both the function and its uncertainty through probability
istributions. This provides not only function estimates but also their

associated uncertainties, which helps to manage constraints and ensure
hat they are satisfied with some probability (Roberts et al., 2013).

For example, Raissi et al. (2017) show how modifying GP priors us-
ng differential operators allows parameter inference from limited or
oisy data. Integrating GPs into the Bayesian framework improves the
obustness and reliability of uncertainty quantification.

Process engineering applications: UQ plays a pivotal role in process
ngineering, providing a robust framework for managing and reducing
ncertainties. For example, Thelen (2023) addresses the quantification
f epistemic uncertainty, which arises from our limited knowledge, as
pposed to aleatory uncertainty inherent in the system itself. Their
pproach is illustrated with a case study of optimizing the decommis-
ioning of a lithium-ion battery cell. In Rafiei and Ricardez-Sandoval

(2018), a MC sampling strategy for joint uncertainty propagation is
pplied to facilitate constraint relaxation in a water treatment plant
cenario. Additionally, in Bradford et al. (2020), a stochastic MPC
14 
approach incorporating GPs is employed for constraint relaxation in a
batch reactor. Similarly, Bradford et al. (2018) use GPs for optimization
of lutein production from microalgae.

4.2.5. Control
As discussed in Section 2.1, the DTs modeling framework not only

represents real-world systems but also actively interacts with and in-
luences them. Control is a key aspect of this interaction, aimed at
anaging dynamic systems to achieve desired states while minimizing
ndesired behavior such as lags, overshoots, and deviations from steady
tate. Effective control within DTs facilitates real-time optimization,
ecision-making, and adaptability to system changes (Tao et al., 2018).
n example of a control scheme is shown in Fig. 12. For a deeper

understanding of control theory, the reader is referred to Franklin et al.
(1998) and Ogata (2010).

To enable control, two considerations must be addressed: Observabil-
ity and controllability. Observability focuses on the controller’s ability to
monitor the system state through output measurements, while Control-
lability evaluates the effectiveness of the control signal in steering the
ystem toward the desired state.

A variety of non-model-based control strategies are available. Classi-
cal controllers (P, I, or PID) adjust control inputs based on the difference
between a desired setpoint and the actual state of the system. Fuzzy
logic control, which uses linguistic variables instead of precise numerical
values, effectively handles uncertainty and imprecision. Reinforcement
learning, a type of machine learning, allows an agent to optimize future
actions based on rewards or penalties received from interactions with
its environment. Importantly, model-based and non-model-based strate-
gies are synergistically combined. For example, integrating a classical
controller into an optimal control framework improves robustness to
model inaccuracies and unanticipated disturbances.

When suitable models are available, two main techniques for model-
ased control can be applied: Optimal control and MPC. Optimal control
etermines the best control strategy for a dynamic system over time to
ptimize an objective. MPC uses a discrete-time model of the process
o predict its future behavior based on input signals. This allows MPC
o compute input signals that satisfy certain quality criteria and lead to
ptimal outputs (Allgöwer et al., 2004).

Process engineering applications: Control systems play a critical role
n chemical engineering, ensuring that processes run efficiently, safely,

and sustainably. Among the most important standards in this area are
the National Electric Code (NFPA 70), which sets benchmarks for safe
lectrical design and installation, and the ISA-88 and ISA-95 standards,
hich provide frameworks for batch control and enterprise control

ystem integration, respectively (Alford and Buckbee, 2020). While
classical controllers are often used in industry, the academic literature
frequently explores MPC, with notable studies including Allgöwer et al.
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Table 4
Methods for numerical integration and approximation within the Bayesian method.
Method Description

Numerical quadrature schemes Provide a straightforward approach for integral evaluation but may be impractical for
high-dimensional problems. Examples include Riemann sums, the trapezoid rule,
Gauss–Legendre, Gauss–Kronrod, Newton-Cotes, and Simpson rules.

Laplace approximations Used to approximate integrals involving exponential functions. It approximates the
posterior distribution as a Gaussian centered around the maximum of the log-posterior.
Effective for unimodal distributions but may not capture multimodal distributions
accurately (Shun and McCullagh, 1995).

MC integration A general method for numerical integration using random sampling. Offers flexibility
and simplicity but can suffer from convergence issues, especially in high dimensions
(Hammersley and Handscomb, 1964).

MCMC methods Combines MC integration with Markov chain theory to compute posterior distributions.
Methods such as Metropolis–Hastings and Gibbs sampling are commonly used for
sampling from the target distribution (Hastings, 1970).
Fig. 12. A generic closed-loop control scheme.
(2004), Morari and Lee (1999) and Schwenzer et al. (2021). A recent
development in process engineering is the integration of machine learn-
ing into control systems (Himmel et al., 2024; Wu et al., 2019b; Zhang
et al., 2019b), which enables adaptive and self-learning processes for
more precise control under dynamic conditions. Comprehensive re-
views of control in chemical engineering are provided by Bequette
(2003), Prett and García (2013) and Stephanopoulos (1984).

5. Conclusions and outlook

DTs offer a transformative potential for process engineering, en-
abling real-time monitoring, future state prediction, and process op-
timization. They improve safety and reduce environmental impact by
facilitating early risk detection. Despite this promise, the widespread
use of DTs remains limited. The primary challenge lies not in the
individual components themselves, but in the interdisciplinary integra-
tion of these diverse subfields. Our work focuses on addressing this
challenge by advancing a key component: the computational tools and
numerical methods essential for DTs development.

In this review, we employ the hierarchical loop concept as an
organizational framework to structure our discussion of computational
tools and methods into three interrelated loops: the physical problem-
solving loop, the optimization loop, and the decision loop. The physical
problem-solving loop includes numerical simulations, including mech-
anistic and data-driven approaches, with an emphasis on surrogate
and reduced-order models. The optimization loop includes optimization
techniques, UQ, co-simulation, control, and inverse problem-solving.
Finally, the decision loop ensures the reliability of DTs based on the
results of the first two loops. Throughout this review, we have pro-
vided practical examples from process engineering that illustrate the
application of these tools.

Further advances in fast, robust modeling techniques will accelerate
the full realization of DTs. As technologies continue to evolve, building
15 
comprehensive DTs for process engineering will become more feasible,
offering significant potential for improved industrial operations.

List of acronyms

AAA adaptive Antoulas-Anderson

ANN artificial neural network

AI artificial intelligence

BT balanced truncation

CSTR continuous stirred tank reactor

DA data assimilation

DAE differential–algebraic equation

DEIM discrete empirical interpolation method

DMD dynamic mode decomposition

DMDc DMD with control

DOE Design of experiments

DT digital twin

EPF elementary process function

FDM finite difference method

FEM finite element method

FOM full order model
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FVM finite volume method

GP Gaussian processes

IoT internet of things

MC Monte Carlo

MM moment matching

MOR model-order reduction

MPC model predictive control

ODE ordinary differential equation

OpInf operator inference

PCA principle components analysis

PEM polymer electrolyte membrane

PDE partial differential equation

PINN physics-informed neural network

POD proper orthogonal decomposition

PSA pressure swing adsorption

QoI quantity of interest

ROM reduced-order model

RB reduced basis

SciML scientific machine learning

SGD stochastic gradient descent

SI sparse identification

SSI subspace identification

SVM support vector machine

SI system identification

UQ uncertainty quantification
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