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ABSTRACT

Computational thinking (CT) and problem-solving skills are in-
creasingly integrated into K-8 school curricula worldwide. Conse-
quently, there is a growing need to develop reliable assessments for
measuring students’ proficiency in these skills. Recent works have
proposed tests for assessing these skills across various CT concepts
and practices, in particular, based on multi-choice items enabling
psychometric validation and usage in large-scale studies. Despite
their practical relevance, these tests are limited in how theymeasure
students’ computational creativity, a crucial ability when applying
CT and problem solving in real-world settings. In our work, we have
developed ACE, a novel test focusing on the three higher cognitive
levels in Bloom’s Taxonomy, i.e., Analyzing, Evaluating, and
Creating. ACE comprises a diverse set of 7×3 multi-choice items
spanning these three levels, grounded in elementary block-based vi-
sual programming.We evaluate the psychometric properties of ACE
through a study conducted with 371 students in grades 3–7 from
10 schools. Based on several psychometric analysis frameworks,
our results confirm the reliability and validity of ACE. Our study
also shows a positive correlation between students’ performance on
ACE and performance onHour of Code: Maze Challenge by Code.org.
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1 INTRODUCTION

Computational thinking (CT) is emerging as a critical skill in to-
day’s digital world. According to the work of [30], “computational
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thinking involves solving problems, designing systems, and under-
standing human behavior, by drawing on the concepts fundamen-
tal to computer science”. Several works have also discussed the
multi-faceted nature of CT and its broader role in the acquisition
of creative problem-solving skills [4, 10]. As a result, CT is being
increasingly integrated into K-8 curricula worldwide [11, 16]. With
the growing integration of CT at all academic stages, there has also
been a surge in demand for validated and reliable tools to assess
CT skills, especially at the K-8 stages [13, 15]. These assessment
tools are essential for tracking the progress of students, guiding the
design of curricula, and supporting teachers as well as researchers
to assist students in the acquisition of CT skills [4, 9, 15, 31].

Prior work has proposed several assessments that measure stu-
dents’ CT during their K-8 academic journey. On the one end, sev-
eral portfolio-based assessments have been proposed that mea-
sure students’ CT through projects in specific programming envi-
ronments [26]. Although portfolio-based tests provide open-ended
projects to capture students’ analytical, evaluative, and creative
skills, they are challenging to implement and interpret on a larger
scale [13, 22]. On the other end, several diagnostic assessment tools
have been proposed that measure CT in the form of multiple-choice
items [2, 13, 14, 23]. These assessment tools are preferred for their
practicality in large-scale administration and suitability for both
pretest and posttest conditions [22]. However, scalability comes at
the cost of limiting the ability to effectively measure students’ com-
putational creativity. Thus, there is a need to develop multi-choice
tests that also capture students’ computational creativity.

To this end, we have developed a novel test for grades 3-7, ACE,
that focuses on the three higher cognitive levels of Bloom’s Taxon-
omy, i.e., Analyzing, Evaluating, and Creating [1]. It comprises
a diverse set of multiple-choice items spanning all three higher
cognitive levels, including the highest level of Creating. Figure 1
illustrates the diversity of items covered by ACE. Further details of
the development of ACE are presented in Section 3. In this paper,
our objective is to validate ACE with students from grades 3–7, and
report on its psychometric properties. Specifically, we center the
analysis around the following research questions: (1) RQ1: How
is the internal structure of ACE organized w.r.t. item categories
pertaining to Bloom’s higher cognitive levels? (2) RQ2: What is the
reliability of ACEw.r.t. consistency of its items? (3) RQ3: How does
performance on ACE correlate with performance on real-world pro-
gramming platforms and students’ prior programming experience?
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Concept

Level

Applying– Analyzing– Evaluating–

Analyzing Evaluating Creating

Solution Solution Code Code Avatar Goal Wall
checking tracing debugging equivalence design design design

Basic moves and turns Q01 Q08 Q15

Repeat{} Q02 Q05 Q12 Q16

RepeatUntil{} Q06 Q09 Q17 Q18

RepeatUntil{If} Q07 Q10 Q19

RepeatUntil{IfElse} Q04 Q11 Q14 Q20, Q21

Repeat{Repeat} Q13

Repeat{If} Q03

(a) Our Test: Distribution of Items

Q07. You are given a code. You are also given three grids GRID-1,
GRID-2, and GRID-3. Which of these grids can be solved with this
code?

a b c d e f g h
11111111
22222222
33333333
44444444
55555555
66666666
77777777
88888888

GRID-1

a b c d e f g h
11111111
22222222
33333333
44444444
55555555
66666666
77777777
88888888

GRID-2

a b c d e f g h
11111111
22222222
33333333
44444444
55555555
66666666
77777777
88888888

GRID-3

OPTION A Only GRID-1

OPTION B GRID-1 and GRID-2

OPTION C GRID-1 and GRID-3

OPTION D All three grids GRID-1, GRID-2, and GRID-3

(b) Q07. Solution checking

Q09. You are given a code and a grid. You may have to fix some errors
in the code such that it solves the grid. How can you fix the code?

a b c d e f g h
11111111
22222222
33333333
44444444
55555555
66666666
77777777
88888888

OPTION A The code does not have any errors and it already solves the grid

OPTION B Add move forward after Block-2

OPTION C Add move forward after Block-4

OPTION D Change Block-3 to turn left and Block-5 to turn right

(c) Q09. Code debugging

Q13. You are given a code CODE-1 and two smaller codes CODE-2
and CODE-3. You have to think about the AVATAR’s behavior when
a code is run on a grid. Which of these two smaller codes produce the
same behavior as CODE-1 on any grid?

CODE-1 CODE-2 CODE-3

OPTION A None of these two smaller codes

OPTION B Only CODE-2

OPTION C Only CODE-3

OPTION D Both CODE-2 and CODE-3

(d) Q13. Code equivalence

Q18. You are given a code and an incomplete grid without the GOAL.
You can add the GOAL in any grid cell which is not occupied by the
AVATAR and is not a WALL. How many different locations of the
GOAL are possible such that the grid is solved by the code?

a b c d e f g h
11111111
22222222
33333333
44444444
55555555
66666666
77777777
88888888

OPTION A 1

OPTION B 4

OPTION C 5

OPTION D 8

(e) Q18. Goal design

Q21. You are given a code and an incomplete grid. You can add
additional WALL cells to the grid by converting any of FREE cells
into WALL cells. What is the smallest number of additional WALL
cells you must add such that the grid is solved by the code?

a b c d e f g h
11111111
22222222
33333333
44444444
55555555
66666666
77777777
88888888

OPTION A 1

OPTION B 2

OPTION C 7

OPTION D 8

(f) Q21.Wall design

Figure 1: (a) shows the distribution of test items w.r.t to CT and problem-solving concepts and Bloom’s cognitive levels. (b)–(f)

are examples of five items from ACE. These items are grounded in the domain of Hour of Code: Maze Challenge (HoCMaze) [6],

which can be found at studio.code.org/s/hourofcode.HoCMaze domain comprises elementary block-based visual programming

tasks where one has to write a solution code that would navigate the Avatar (blue dart) to the Goal (red star) without crashing

into Walls (gray grid cells). We encourage the reader to attempt these items; answers are at the end of page 6.

2 RELATEDWORK

Prior work has proposed several CT assessments and their cate-
gorizations based on their format including the following [13, 22]:
(a) portfolios, which are project-based programming assessments;
(b) interviews, which are used in conjunction with portfolios to

gain insights into students’ thinking process; (c) summative assess-
ments, which are long-format answer type questions to measure CT
specifically in the context of a particular domain; (d)multi-choice di-
agnostic tests, which measure CT aptitude and may be administered
in both pretest and posttest conditions. As mentioned in Section 1,
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Table 1: Categorization of different CT assessments proposed in recent works. The first column shows the specific CTAssessment.

The next three columns, Applying-Analyzing, Analyzing-Evaluating, and Evaluating-Creating, classify the assessment

based on these different cognitive levels of Bloom’s Taxonomy where “✓” implies presence of the levels and “✗” implies absence

of the levels. The “Grade” column refers to the intended grades (age group) for the test. The “Validity” column refers to three

dimensions across which the test was validated, including (i) “Student”: test items validated with students; (ii) “Expert”: test

items validated with experts; (iii) “Convergent”: test validated w.r.t. performance on another test/course. Finally, the “Domain”

column shows the domain on which the items in the test were designed. Further details are presented in Section 2.

CT Assessment and Tests Applying– Analyzing– Evaluating– Grades Validity: Domain

Analyzing Evaluating Creating Student Expert Convergent

ACE (this paper) ✓ ✓ ✓ 3-7 ✓ ✓ ✓ block-based visual programming
cCTt [13] ✓ ✓ ✗ 3-4 ✓ ✓ ✗ block-based visual programming
TechCheck [21] ✓ ✓ ✗ K-4 ✓ ✓ ✓ everyday scenarios
CT-Test [9, 22, 23] ✓ ✓ ✗ 6-8 ✓ ✓ ✓ block-based visual programming
Gane et al. 2021 [8] ✓ ✓ ✗ 3-4 ✓ ✓ ✗ block-based visual programming

and everyday scenarios
Chen et al. 2017 [3] ✓ ✓ ✗ 5 ✓ ✓ ✗ robotics programming

and everyday scenarios
ACES [18] ✓ ✓ ✗ 3-5 ✓ ✗ ✗ block-based visual programming

and everyday scenarios
CTC [14] ✓ ✓ ✗ 8-12 ✓ ✓ ✓ block-based visual programming

and real-world problem-solving
Commutative Assessment [28] ✓ ✓ ✗ 8-12 ✓ ✓ ✗ block-based visual programming

and text-based visual programming
Mühling et al. 2015 [17] ✓ ✓ ✗ 8-10 ✓ ✗ ✗ similar to Karel programming [19]
PSIv1 [2] ✓ ✗ ✗ 13-14 ✓ ✓ ✓ text-based programming

(college)

we focus on multi-choice CT tests due to their practicality and scal-
ability. Table 1 presents several different multi-choice diagnostic
tests proposed in the literature, viewed through the lens of Bloom’s
taxonomy [22]. Specifically, we classify them based on their cov-
erage of the higher cognitive levels of the taxonomy (Applying,
Analyzing, Evaluating, and Creating).

These tests cater to students from different school years, starting
from kindergarten (K) through the early years of college. Next, we
describe three representative assessments in different years. The
competent Computational Thinking test (cCTt) [13] was proposed
recently in 2022 for students in grades 3–4. The test comprised items
that only required finding solution codes or completing a given
solution code. These types of items invoke students’ Applying,
Analyzing, and Evaluating cognitive levels. The Computational
Thinking Challenge (CTC) [14] was proposed in 2021 for students
in grades 9–12. The test contains programming items in the form
of Parsons problems [32], solution-finding multi-choice items, and
general items on real-world problem-solving. The items in CTC
also cover all cognitive levels except the Creating level. Finally,
Placement Skill Inventory v1 (PSIv1) [2] was also proposed recently
in 2022 for college students as a placement test. The test contains
multi-choice theoretical items on programming and covers only the
Applying and Analyzing levels of Bloom’s taxonomy. Contrary
to these tests, ACE contains items that require synthesizing new
problem instances to verify the correctness of a proposed solution.
These items in ACE are intended to cover the Bloom’s Creating
cognitive level. ACE is developed for students in grades 3–7.

Table 1 also shows different domains in which CT is measured in
these tests. For grades K–8, the most popular setting is block-based
visual programming, likely because of the low syntax overhead
of the domains and the ease of measuring CT concepts such as

conditionals, loops, and sequences [9, 13, 23, 28]. Beyond block-
based programming domains, several CT tests also utilize real-world
settings, including everyday-scenarios (e.g., a scenario related to
seating arrangements in a gathering) [18], robotics [3], and real-
world problem-solving (e.g., a problem related to route planning in a
city) [14]. The advantage of these real-world settings and domains is
their administration with minimal domain knowledge, thus making
them suitable pretest and posttest candidates. ACE is based on the
block-based visual programming domain.

Finally, an important aspect of developing such CT assessments
is their validation and reliability [13]. Generally, CT assessments are
validated using three methods: (a) with students in specific grades
for which the assessment was designed; (b) with expert feedback;
(c) w.r.t. another test or performance in a course (i.e., convergent
validity). For a well-rounded evaluation, it is advisable to explore
all three validation methods [13, 22]. As shown in Table 1, most
tests are validated with students, while some of them are refined
by experts. However, the incorporation of convergent validity is
less common. ACE is validated using all three methods.

3 OUR TEST: ACE

The development of ACE is centered around the higher cognitive
levels of Bloom’s taxonomy: Analyzing, Evaluating, and Creat-
ing. The test contains items grounded in the domain of block-based
visual programming. Specifically, we consider the popular block-
based visual programming domain of Hour of Code: Maze Chal-
lenge [6] by code.org [5]. We picked this domain as it encapsulates
important CT and problem-solving concepts of conditionals, loops,
and sequences, within the simplicity of the block-based structure.
Students can attempt tasks in this domain with a simple description
of the constructs and task, as discussed in the caption of Figure 1.
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Figure 2: An overview of the performance of students on ACE. (a) overall distribution of ACE scores across all 371 students; (b)
distribution of ACE score per grade; (c) success rate of students for each item in ACE. Details are in Section 4.

Next, we describe the items in ACE which are divided into the fol-
lowing three categories based on Bloom’s higher cognitive levels:

• Applying–Analyzing: This category comprises items either on
finding a solution code of a given task or reasoning about the
trace of a given solution code on one or more visual grids. They
are based on the Applying and Analyzing levels of Bloom’s
taxonomy, as they require applying CT concepts and analyzing
code traces. These items are typically the most common type of
items included in several CT tests [13, 18].

• Analyzing–Evaluating: This category comprises items that
require reasoning about errors in candidate solution codes of a
task and evaluating the equivalence of different codes for a given
task. They are based on the Analyzing and Evaluating levels
of Bloom’s taxonomy. Several CT assessments also include these
types of debugging items [9, 14].

• Evaluating–Creating: This category comprises items that re-
quire reasoning about the design of task grids for given solution
codes. They are based on the Evaluating and Creating levels
of Bloom’s taxonomy, as they involve synthesizing components
of visual grids such as Avatar, Goal, and Wall. These items
are unique to ACE and capture the open-ended nature of task
design, such as counting several possible task configurations to
satisfy a given solution code (see items Q18 and Q21 in Figure 1).

In the process of developing ACE, we consulted with CS edu-
cators and researchers with expertise in using CT tools for K-12
education. Five experts provided feedback on an initial version of
the test in terms of items’ suitability and difficulty. Furthermore,
we asked six students (not part of the study) from grades 3 to 6
to attempt a version of the test while recording their thought pro-
cesses via think-aloud methods. The responses of these students
allowed us to further refine the phrasing and structure of the items.
Ultimately, the final version of ACE contained 21 single-correct
multiple-choice items to be completed in one 45-minute lesson. The
items were divided equally across three categories based on Bloom’s
cognitive levels, i.e., each category comprised 7 items. The three
categories are henceforth referred to as ACE[01-07], ACE[08-14],
and ACE[15-21], respectively. Figure 1 presents the breakdown of
all our 21 test items and also illustrates 5 items from ACE.

4 STUDY AND DESCRIPTIVE STATISTICS

In this section, we provide details of the data collection process for
ACE’s psychometric evaluation.

4.1 Two-Phase Data Collection Process

The study to evaluate the psychometric properties of ACE was
planned in two phases, spread across two weeks. The first phase
was intended to familiarize students with the block-based visual pro-
gramming domain of Hour of Code: Maze Challenge (HoCMaze) [6]
by code.org [5], and introduce them to basic programming concepts.
Additionally, it would serve as a baseline to correlate students’ per-
formance w.r.t. ACE, and measure the convergent validity of ACE.
In the second phase of the study, students would take the ACE
test. This two-phase study design ensured that students would
have enough focus on each study component as well as a time gap
between domain familiarity and the actual test.

We obtained an Ethical Review Board approval from the Ethics
Committee of Tallinn University before conducting the study. The
study was conducted in Estonia, where a random selection of 10
schools was pooled from 11 out of 15 counties. Participation in
the study was voluntary for both teachers and students. Next, we
outline the details of each phase of the study.

The data collection process was conducted in May 2023. During
both phases, students received usernames to ensure anonymity
throughout the study. The first phase of data collection included
one 45-minute lesson during which the students filled in a short
background questionnaire in Google Forms (about 5 minutes) and
then solved 20 tasks from HoCMaze (about 40minutes). We hosted
these 20 tasks on a separate platform created for the study to enable
the collection of students’ performance data on these tasks. Students
were allowed multiple attempts to solve each task and could score
a maximum of 20 points, i.e., 1 point per task. Henceforth, we refer
to students’ performance in this phase as their HoCMaze score.
The second phase took place one week later and involved a 45-
minute lesson during which students took the ACE test. The test
was administered through a Qualtrics survey. Students could score
a maximum of 21 points, i.e., 1 point per item. Henceforth, we refer
to students’ performance in this phase as their ACE score.
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Figure 3: Results from a 1-parameter Rasch model [20] on the ACE items and student scores. (a) Item characteristic curve for

each item in ACE and (b) Wright map corresponding to our student population.

4.2 Participant Details and Descriptive Statistics

A total of 371 students participated in the study, distributed across
five different grades as follows: 𝑛 = 51 from grade 3, 𝑛 = 34 from
grade 4, 𝑛 = 114 from grade 5, 𝑛 = 81 from grade 6, and 𝑛 = 91
from grade 7. The participants’ age varied from 9 to 15 years. The
distribution of students w.r.t. gender was as follows: 48% girls and
52% boys. Regarding the students’ prior programming experience,
their reported duration of programming experience was as follows:
40% reported no programming experience, 22% reported at least 1
year, 15% reported at least 2 years, 13% reported at least 3 years,
and 10% reported between 4 to 6 years. Among the 60% of partici-
pants (𝑛 = 223) having programming experience, they reported the
following sources of gaining programming experience (multiple
sources could be selected): 77% studied programming in school
lessons, 31% studied programming in after-school lessons, and 14%
studied programming independently at home.

Figure 2 summarizes the students’ performance on ACE. The
average score of all 371 students is 10.69. The distribution of the
scores across all participants is shown in Figure 2a. Grade 7 averaged
the highest score of 12.84, while grade 3 averaged the lowest score
of 6.67. Grades 4, 5, and 6 had similar average scores of around 10.5.
Figure 2b shows the distribution of scores per grade, and Figure 2c
shows the success rate per item. Overall, the success rate of ACE[01-
07] was higher than those of ACE[08-14] and ACE[15-21]. More
concretely, the average score of all 371 students when measured per
category (i.e., points on 7 items in each category) was as follows:
4.45 on ACE[01-07], 3.22 on ACE[08-14], and 3.02 on ACE[15-21].

5 RESULTS AND DISCUSSION

In this section, we discuss the results of the study centered around
the research questions (RQs) introduced in Section 1.

5.1 RQ1: Internal Structure of ACE

We assess the internal structure of ACE w.r.t. its three item cate-
gories (ACE[01-07], ACE[08-14], ACE[15-21]) as its underlying fac-
tors using Confirmatory Factor Analysis (CFA), a standard method
in quantitative test analysis [7, 14]. CFA determines whether the
structure of ACE scores aligns with the three item categories as

three factors. Specifically, CFA provides the Root Mean Square Er-
ror of Approximation (RMSEA) as the goodness of fit for statistical
models. RMSEA values between 0 and 0.01 indicate excellent fit,
and values up to 0.05 indicate good fit. Additionally, CFA provides
the Comparative Fit Index (CFI) and Tucker-Lewis Index (TLI). CFI
measures how well our three-factor model fits the observed data on
test scores compared to an independent-item model with 21 items
as factors. TLI also measures model fit by accounting for model
simplicity. CFI and TLI values greater than 0.90 indicate a good fit.

Our test presented a significant model with good fit statistics
(𝑝 < 0.01; RMSEA=0.0275; CFI=0.945; TLI=0.938). This analysis also
highlighted a potential issue with item Q17, as the Standardized
Estimate for CFA’s factor loading of this item seemed problematic
with a value of −0.111 (𝑝 = 0.059). Nevertheless, the model fit did
not improve significantly after removing item Q17 from the data;
new statistics without Q17 (𝑝 < 0.01; RMSEA=0.0278; CFI=0.949;
TLI=0.942) are similar to statistics reported above without any
significant difference. We discuss this item further as part of RQ2.

5.2 RQ2: Reliability of ACE

Next, we determine the reliability of ACE, i.e., a measure of its
ability to produce consistent and stable results over repeated ad-
ministrations (a higher value being better). One standard way to
measure this is through the Cronbach alpha value [14, 27] that re-
flects the average inter-item correlations in a test. Another method
is the reliability of student ability estimates obtained from Item
Response Theory (IRT). In our study, we apply IRT analysis on
students’ responses to ACE and fit a 1-parameter logic Rasch model
(1-PL IRT) [20]. The model estimates the per-item difficulties and
students’ abilities, and provides the reliability of these estimates.

The overall reliability for our test was good with a Cronbach
alpha value of 0.813. Among the three item categories, Cronbach
alpha was 0.622 for ACE[01-07], 0.562 for ACE[08-14], and 0.625
for ACE[15-21]. Figure 3a shows the 1-PL IRT item characteristic
curves for all items; we find that Q02 is the easiest and Q17 is the
hardestACE item. Figure 3b illustrates the difficulty of items as well
as the estimated ability of students’ in our population. The 1-PL
IRT Person reliability value for all 21 items is 0.790 (with 𝑝 < 0.01).
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Q17. You are given a code and an incomplete grid without the
AVATAR. How many different positions of the AVATAR are possi-
ble such that the grid is solved by the code?

a b c d e f g h
11111111
22222222
33333333
44444444
55555555
66666666
77777777
88888888

OPTION A 1

OPTION B 2

OPTION C 4

OPTION D More than 4

Figure 4: Q17. Avatar design

Next, we discuss the potentially problematic item Q17 shown
in Figure 4. We find that its exclusion from the model doesn’t
significantly improve the IRT Person reliability. One possible reason
Q17 prompted incorrect responses is that it was the first item inACE
requiring enumeration of all possible Avatar locations. However,
students adapted to similar formats in subsequent items (e.g., Q18
and Q21 in Figure 1). Prior work confirms that varying response
formats can cause deviations [12]. A possible revision of item Q17
could be simplifying the visual grid to reduce its complexity.

5.3 RQ3: Correlating ACE scores

We measure the convergent validity of ACE w.r.t. HoCMaze scores.
Additionally, we also measure the correlation of the three ACE cat-
egories with both HoCMaze scores as well as overall ACE scores.
Finally, we measure the influence of extrinsic factors such as prior
programming experience on ACE scores. To measure all these
correlations, we perform standard Pearson’s correlation analysis
between each of these features on data from our entire student
population [14, 24]. High positive values of Pearson’s correlation
coefficient, 𝑟 , indicate a strong positive correlation.

The correlation results for ACE with HoCMaze and item cat-
egories of ACE are shown in Figure 5. For instance, the Pearson
correlation between ACE scores and HoCMaze scores w.r.t. all stu-
dents is 𝑟 = 0.41, 𝑝 < 0.001, confirming the convergent validity of
ACE. All item categories were (significantly) positively correlated
with ACE and also have high positive inter-category correlations.

In terms of the effect of prior programming experience on ACE,
we observed a significant positive correlation with both the stu-
dent’s year of study (𝑟 = 0.358, 𝑝 < 0.01) and age (𝑟 = 0.359,
𝑝 < 0.01). Our result aligns with prior work [25] indicating that par-
ticipants’ developmental factors (e.g., reading skills, abstract think-
ing) can impact test performance. In our student population, vary-
ing programming exposure due to elective programming courses
influenced prior programming skills. Analyzing this further, we dis-
covered that students who took after-school programming classes
outperformed those who did not onACE (𝑝 < 0.05, w.r.t. 𝑡-test [29]).

5.4 Limitations

Next, we discuss a few limitations of our current study. Firstly, in
this study, we evaluated the convergent validity of ACE w.r.t. HoC-
Maze scores. However, it would be more informative to evaluate

ACE[01–07]
0.37

ACE[08–14]
0.36

ACE[15–21]
0.32

ACE
0.41

0.57

0.520.62

0.82 0.86

0.
85 r value with HOCMAZE

r value with ACE
r value with ACE categories

Figure 5: Pearson’s correlation coefficient, 𝑟 , between ACE

andHoCMaze, between ACE and its categories, and between

each category. All values are significant with 𝑝 < 0.001.

ACE w.r.t. other types of assessments, such as portfolios, which
specifically consider Creating cognitive level. Moreover, it would
be interesting to evaluate the convergent validity of ACE w.r.t.
students’ performance in other subjects involving CT. Secondly,
grade 3 did not present a significant correlation between ACE and
HoCMaze scores (Pearson’s 𝑟 = 0.068; 𝑝 = 0.633), possibly because
of difficulties with text comprehension of the item descriptions.
Hence, refining the presentation of items could be beneficial for
this age group. Finally, we presented the test items in a fixed order,
which might have affected students’ performance on specific items
such as Q17. Implementing a randomized order of the test items
within each category could be a way to address this limitation.

6 CONCLUSION AND FUTUREWORK

We developed a new test, ACE, to assess CT and problem-solving
skills, focusing on higher levels of Bloom’s taxonomy, including
Creating. We capture this level through a novel category of items
that go beyond solution finding or debugging and consider task
design. In this paper, we studied the psychometric properties of
ACE, and our results confirm ACE’s reliability and validity. There
are several exciting directions for future work. Firstly, we can ex-
tend the framework of items to develop tests with more advanced
programming constructs, such as variables/functions suitable for
higher grades. Secondly, while we studied the utility of items inACE
for CT assessments, these items could also be incorporated as part
of the curriculum to teach students richer CT and problem-solving
skills such as problem design and test-case creation.

Answers to Q07, Q09, Q13, Q18, Q21 (Figure 1) and Q17 (Figure 4)
are as follows: C, B, D, C, A, and D, respectively.
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