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Using a modest amount of data from a large population, subgroup discovery (SGD) identifies
outstanding subsets of data with respect to a certain property of interest of that population. The
SGs are described by ”rules”. These are constraints on key descriptive parameters that characterize
the material or the environment. These parameters and constraints are obtained by maximizing a
quality function that establishes a tradeoff between SG size and utility, i.e., between generality and
exceptionality. The utility function measures how outstanding a SG is. However, this approach does
not give a unique solution, but typically many SGs have similar quality-function values. Here, we
identify coherent collections of SGs of a ”Pareto region” presenting various size-utility tradeoffs and
define a SG similarity measure based on the Jaccard index, which allows us to hierarchically cluster
these optimal SGs. These concepts are demonstrated by learning rules that describe perovskites
with high bulk modulus. We show that SGs focusing on exceptional materials exhibit a high quality-
function value but do not necessarily maximize it. We compare the mean shift with the cumulative
Jensen-Shannon divergence (DsJS) as utility functions and show that the SG rules obtained with
DcJS are more focused than those obtained with the mean shift.

I. INTRODUCTION

Machine learning typically focuses on global ap-
proaches that attempt to describe all possible scenarios
with a single model. This often implies that outstanding
situations may be averaged away by the regularization.
In materials science, this is a severe shortcoming, because
the number of possible materials is practically infinite
and the compounds that are good for a certain applica-
tion are statistically exceptional. In contrast, subgroup
discovery (SGD) [1–4] is able to concentrate on outstand-
ing situations, accepting that the mechanisms governing
the materials’ performance might be different for differ-
ent SGs of materials across the immense materials space.

The SGD approach is based on a data set for a sub-

population P̃ of materials, which is part of a larger
space of possible materials, the full population, P . Each
material of P is characterized by potentially relevant,
known features, hereafter candidate descriptive param-
eters. The target of interest, e.g., a certain materials
property or function, is only known for the materials

in P̃ . SGD starts by generating a pool of propositions
about the candidate descriptive parameters. Each propo-

sition is only verified for a portion of P̃ . For the case
of continuous (metric) parameters, the propositions are
typically inequalities constraining the values of the pa-
rameters to some minimum or maximum thresholds to
be determined during the analysis. Then, SGD uses a
search algorithm, for instance Monte-Carlo-based[5, 6] or
branch-and-bound,[7] to identify selectors σ. These are
statements formed by a number of propositions and the
“AND” (∧) connector, that result in SGs that maximize

a quality (objective) function Q(SG, P̃ ) of the form

Q(SG, P̃ ) =

(
s(SG)

s(P̃ )

)α

(u(SG, P̃ ))β , (1)

where s(SG) and s(P̃ ) are the sizes of the SG and of P̃ ,
respectively, i.e., the number of data points in the SG

and in P̃ . The ratio between the SG size and the dataset
size, s(SG)/s(P̃ ), is referred to as the coverage. u(SG, P̃ )
is a utility measure (or utility function) describing how
outstanding the distribution of the target in the SG is

compared to the distribution of the target in P̃ . The
utility function is chosen according to the question to be
addressed, and there are many possibilities such as the

shifts of mean or median in the SG with respect to P̃ ,
in the case of metric targets.[4] Finally, α and β are tun-
able parameters controlling the tradeoff between the SG
size and its utility. Usually, α = β = 1 or β = 1 − α,
with α ∈ [0.1, 0.9]. The selectors identified in the SGD
analysis depend on the key descriptive parameters that
are typically few, out of all initially offered candidate
parameters. In analogy to genes in biology, these key de-
scriptive parameters might be called materials genes,[8]
as they correlate with the materials property of interest.
The propositions entering these selectors, in turn, are in-
terpretable rules describing the outstanding behavior of
the SG, for instance, the exceptional performance of ma-
terials. These rules can then be exploited to efficiently
identify outstanding materials in P for which the target
is not known.

The potential of SGD to uncover locally outstanding
patterns in materials science has been demonstrated by
several works.[3, 4, 9–11] In particular, the ability of
SGD to handle unbalanced datasets dominated by low-
performance situations, which are ubiquitous in materi-
als science, has been highlighted.[11] However, previous
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works generally focused on the single SG that maximizes
the quality function for a fixed value of α. This descrip-
tion does not reflect all possible size-utility or, equiva-
lently, generality-exceptionality, tradeoffs that might be
relevant for a given application.[12] Besides, the defini-
tion of the utility function often assumes that the dis-

tribution of the target in P̃ is appropriately represented
by a single value and that this value properly reflects the
larger, unknown population P . For instance, the mean

value of the target, evaluated using all data points in P̃ ,
can be used in utility functions that favor the selection
of SGs with higher or lower values of targets. However,
in the typical scenario of materials science the assump-
tion may be questioned, as high-quality data sets are
small and the known distributions are often nonnormal
or highly unbalanced.

In this manuscript, a Pareto region concept is intro-
duced to identify coherent collections of SG rules that
correspond to a multitude of size-utility tradeoffs. Fur-
thermore, we discuss the similarity between SGs based
on the Jaccard index. This similarity measure enables
the hierarchical clustering of the identified optimal SG
rules. The mean shift between the distributions of tar-
get values in the SG and in P̃ is also compared with the
cumulative Jensen-Shannon divergence (DcJS)[13] as an
alternative utility function.

The concepts are demonstrated by the identification
of rules that describe cubic ABO3 perovskite materials
with high bulk modulus. We show that useful rules fo-
cusing on exceptional materials do not necessarily cor-
respond to the single SG which maximizes Q, but they
can be systematically identified with the Pareto-region
approach. Moreover, SGs obtained by considering the
nonparametric DcJS as utility function provide a more
focused description compared to those obtained with the
mean shift.

II. RESULTS

Pareto Region Identification and Similarity Analysis

In order to identify the pursued coherent collections
of SGs with multiple size-utility tradeoffs, we first run
the SGD algorithm using the quality function of Eq. 1
with α = β = 1 and two different utility functions: the
positive mean shift and the cumulative Jensen-Shannon
divergence DcJS (see below). Thus, coverage and util-
ity are given the same importance. Then, we collect a
number of SGs identified by this algorithm that are top-
ranked according to Q. Among these SGs, we identify a
Pareto region with respect to the two objectives coverage
and utility function. In multi-objective optimization, a
Pareto front is defined as the set of solutions for which
no single objective can be improved without deteriorat-
ing at least one other objective. Thus, the solutions in
the Pareto front reflect an optimal tradeoff between com-
peting objectives. To ensure that no interesting SG is left

out, we included in our analysis, not only SGs that are
part of the Pareto front, but also SGs within a given
fixed, small distance to the Pareto front in the coverage-
utility space, i.e., SG which are near the Pareto front.
This is called the Pareto region.
In order to assess the variability of the SG rules within

the Pareto region, we define a similarity measure between
two SGs using the Jaccard similarity index J :

J(SGi, SGj) =
|SGi ∩ SGj |
|SGi ∪ SGj |

. (2)

J(SGi, SGj) corresponds to the number of data points
shared by two SGs, SGi and SGj , divided by the num-
ber of data points corresponding to the union of the two
SGs. J ranges from 0 to 1, and the higher the value, the
more similar the SGs. We use the J(SGi, SGj) values
to create a similarity matrix containing the Jaccard in-
dices for all combinations of SGs in the Pareto region.
Obviously, J(SGi, SGj) = J(SGj , SGi), i.e., this matrix
is symmetric.
Finally, we group the SGs of the Pareto region accord-

ing to their similarity by applying agglomerative hier-
archical clustering[14] to the similarity matrix. In this
unsupervised clustering approach, each data point (SG)
is initially considered a cluster. Then, the two most alike
clusters with respect to a linkage criteria are combined
(agglomerated), forming a single bigger cluster. This pro-
cedure is repeated until all data points are contained in
one large cluster. The clustering analysis results in a
sorted similarity matrix, where similar SGs are close to
each other. Moreover, a tree-like diagram is generated.
The bottom of this diagram contains the individual SGs
(tree leafs). These leafs are linked by branches that are
combined as the height increases. This tree-like structure
shows how the individual SGs and clusters were agglom-
erated at each iteration of the algorithm. It is called
dendogram, and it can be truncated at any height to cre-
ate an arbitrary number of clusters between 1 and the
total number of SGs in the Pareto region. These clus-
ters can then be used to analyze the coherent collection
and to choose the SG rules that should be considered for
further investigation of materials genes or for exploita-
tion, i.e., for the discovery of new materials. We note
that the number of clusters is not defined beforehand,
but one rather chooses the desired number of cluster to
consider when truncating the dendogram. Further de-
tails on the SGD approach, Pareto-region identification,
and hierarchical clustering are available in the Methods
section.

Application to Perovskite Design

The identification and clustering of coherent collec-
tions of SGs and the usefulness of our approach will be
demonstrated for the learning of rules describing ABO3

perovskites that exhibit a high bulk modulus, B0. The of-
fered candidate descriptive parameters are atomic prop-
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(a) (b)

(d) (e)

(c)

FIG. 1. Subgroup discovery of perovskites with high bulk modulus (B0) using the positive mean shift as utility function

u(SG, P̃ ) (see Eq. 3) (a) Top 5,000 of the identified SGs (in grey), with the SG that maximizes Q highlighted in orange
(SGmax) and the SGs belonging to the Pareto front (66 SGs) and Pareto region (141 SGs) highlighted in blue. Two examples
of SGs at the Pareto front with lower and higher coverage compared to SGmax are highlighted in red and magenta, respectively
(SGA and SGB). (b) From top to bottom: Distributions of the target B0 in the entire data set, in SGmax, in SGA, and in
SGB. The identified selectors for each SG are noted. They constrain the values of the radius of valence-s orbitals of +1 cations
(cat) of B element (rcats,B), the equilibrium lattice constant (a0) and the cohesive energy (E0). (c) Similarity among the SGs
belonging to the Pareto region. (d) Hierarchical cluster map obtained from the similarity matrix shown in (c). (e) Clusters of
SGs obtained by the analysis of the dendrogram of (d) - see corresponding colors.

erties of the free atoms of the elements A and B as well
as some bulk properties of the solid perovskite materi-
als, namely the cohesive energy (E0) and the equilib-
rium lattice constant (a0). A data set of 504 mate-
rials, obtained using density functional theory calcula-
tions (DFT-PBEsol) is used (see ref. [15]). This con-
sidered material space includes A elements from the al-
kali, alkaline-earth, and scandium groups as well as lan-
thanides. The choice of B elements includes transition-
metals as well as main-group elements such as bismuth,
antimony, and germanium. Further details on the data
set are provided in the Methods section.

Let us first analyze the results obtained with the

positive-mean-shift utility function, which is defined as

u(SG, P̃ ) =
ȳ(SG)− ȳ(P̃ )

ymax(P̃ )− ȳ(P̃ )
. (3)

Here, ȳ(SG) and ȳ(P̃ ) are the mean values of the distri-

bution of the target in the SG and in P̃ , and ymax(P̃ )

is the maximum value that the targets assumes in P̃ .
This utility function requests that the values of the tar-

get within the SG are high with respect to ȳ(P̃ ). It also
assumes that the distributions of target values in the SG

and in P̃ are properly described by the mean values and

that P̃ is representative of the full population P .
The top-ranked SGs obtained with the utility function

of Eq. 3 are shown as grey points in the utility function
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vs. coverage plot of Fig. 1(a), along with the identified
Pareto region in blue. The SGs belonging to the Pareto
front and near it are highlighted in dark and light blue,
respectively. This plot shows, in orange, the SG that
maximizes Q, denoted SGmax, and the curve correspond-

ing to the constant value of Q(SGmax, P̃ ) as a dashed
orange line. The Pareto region contains many SGs with

Q values close to Q(SGmax, P̃ ) at intermediate coverage
values. However, SGs at the Pareto region correspond-
ing to lower and higher coverages such as SGA and SGB ,
shown in red and magenta respectively, present relatively

lower Q values compared to Q(SGmax, P̃ ).
The analysis of the distributions of B0 values in SGA,

SGmax and SGB (Fig. 1(b)) indicates that, as the cover-
age increases, the SGs of the Pareto region have broader
B0 distributions and lower mean B0 values. For the goal
of identifying exceptional perovskites with high-B0, the
rules associated to SGs with low coverage and higher B0

values are useful, since they provide a more focused de-
scription. Such SGs would not be detected based on the
maximization of Q alone.
The selectors defining SGmax, SGA, and SGB shown

in the inset of Fig. 1(b), contain propositions constrain-
ing the values of the radius of valence-s orbitals of +1
cations (cat) of B element, rcats,B . Moreover, these propo-
sitions constrain the value of a0 and E0 of the material
to maximum and minimum thresholds, respectively. The
propositions associated to SGmax, SGA, and SGB are
illustrated in the 2-dimensional plots of E0 vs. a0 and
E0 vs. rcats,B in Fig. 2. In these plots, the B0 values for
the materials in the dataset are indicated by the color of
the circles. The identified inequalities describing SGA,
SGmax, and SGB highlight that materials with high E0

and low a0 present high B0. This reflects the direct (in-
verse) relationship of B0 with a0 (E0).[15]

In order to assess whether the identified SGs describe
all relevant materials with high B0 values, we verify
whether the 26 perovskites presenting B0 values higher
than 1.43 eV/Å3, the 95%-ile of the B0 distribution over
the training data set, are contained in SGmax, SGA, and
SGB . SGmax and SGB , which are SGs with intermediate
and high coverage values among the SGs in the Pareto re-
gion, respectively, contain all 26 materials with B0 ≥1.43
eV/Å3. These materials are perovskites composed by
the B elements cromium, manganese, iron, cobalt, and
tungsten, and the A elements scandium, prseodymium,
neodymium, cerium, promethium, yttrium, samarium,
and beryllium. However, SGA, which presents a lower
coverage value but higher utility, does not include two
of the 26 high-B0 materials, those composed by the A
element beryllium: BeMnO3 and BeWO3, with B0 1.43
and 1.45 eV/Å3, respectively. These two materials, high-
lighted in Fig. 2(b), present the lowest E0 values (6.63
and 7.47 eV/atom, respectively) among the 26 materi-
als. Thus, they do not satisfy the inequality E0 >7.48
eV/atom, which is part of the selector of SGA (Fig. 1(b),
in red).

The Jaccard similarity indices for all pairs of SGs of

the Pareto region identified with the positive-mean-shift
utility function are depicted by the colors in the sim-
ilarity matrix of Fig. 1(c). In this figure, the SG in-
dices are sorted according to increasing coverage. The
regions close to the diagonal are associated to close-to-
one J(SGi, SGj), indicating that SGs with similar cov-
erages values are similar. Moreover, this plot shows that
SGs with low coverage present rather low similarity with
the average- and high-coverage SGs. By applying the hi-
erarchical clustering to the similarity matrix (Fig. 1(d)),
distinct portions of the Pareto region are more clearly
identified. In order to obtain examples of clusters that
can identified in this analysis, we truncate the gener-
ated dendogram at the height indicated by upper edge
of the colored rectangles in Fig. 1(d). We find four dif-
ferent clusters, colored in red, blue, magenta, and orange.
These clusters are represented in the coverage vs. util-
ity plot of Fig. 1(e) with the same colors as in Fig. 1(d).
They roughly correspond to different coverage regimes.
Thus, they present different levels of specificity. SGA,
SGmax and SGB are examples of SGs belonging to the
red, orange, and magenta clusters.
Finally, we evaluate the variability of the SGs with

respect to the data set size by training the SGD with
random selections of 75%, 50%, and 25% of the data set.
Even though the Jaccard similarity indices decrease with
decreasing data-set size, the SGs obtained with only 25%
of the data set still present significant similarity com-
pared to the SGs obtained with the entire data set. Thus,
for the problem under consideration, SGD would be effi-
cient even with a fraction of the data set. More details of
this analysis can be found in the electronic supplemen-
tary information (ESI).
We now turn our attention to the utility functionDcJS ,

the divergence being evaluated between the distribution
of the target values in the SG and the distribution of the

target values in P̃ .[13] The information-theoretic DJS is
a symmetrized version of the Kullback-Leibler divergence
(DKL) or relative entropy. The DJS between the discrete
distributions R and S can be defined as

DJS(R,S) =
1

2
DKL(R,M) +

1

2
DKL(S,M)

=
1

2

∑
x∈χ

R(x)log

(
R(x)

M(x)

)
+

1

2

∑
x∈χ

S(x)log

(
S(x)

M(x)

)
,

(4)

where M(x) = R(x)+S(x)
2 , and χ indicates the sample

space. DJS measures the dissimilarity between two dis-
tributions. It assumes small values for similar distri-
butions and increases as the distributions are shifted
with respect to each other or have different narrownesses.
Thus, the DcJS does not make assumptions on the shape
of the distributions nor it explicitly requests that the val-
ues of the target in the SG are higher or lower compared
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(a)

(b)

(c)

FIG. 2. Subgroup rules describing perovskites with high bulk modulus obtained using the positive mean shift utility function
for (a) SGmax, (b) SGA, and (c) SGB, as defined in Fig. 1(b). The propositions defining the SGs constrain the values of the
equilibrium lattice constant (a0), the cohesive energy (E0) and the radius of valence-s orbitals of +1 cations (cat) of B element
rcats,B , as indicated by the arrows. The grey scale of the circle colors indicates the value of the target property bulk modulus (B0).
The orange, red, and magenta crosses indicate the materials belonging to each of the identified SGs. The high-B0 materials
BeMnO3 and BeWnO3, which are part of the 95%-ile of the B0 distribution over the entire data set but are not contained in
the SGA, are marked with blue and cyan squares in (b), respectively.

to the mean value in P̃ . Moreover, the DcJS favors the
selection of SGs presenting narrower distributions of tar-
get values than the distribution of the entire data set.

The results obtained with the DcJS(SG, P̃ ) utility
function are shown in Fig. 3. The SGs identified at the
Pareto region (Fig. 3(a)) contain materials with high B0

(Fig. 3(b)). Moreover, these SGs present narrow distri-
butions of target values, in particular the SGs at the low
coverage region (e.g., SG′

A). Thus, by using the DcJS

utility function and the Pareto region concept, focused
descriptions of high-B0 materials can be identified in a
systematic way. The selector defining SG′

A, shown in
the inset of Fig. 3(b), contains propositions constraining
the values of rcats,B , a0, the expected oxidation state of

A in the perovskite (nA), and the electron affinity and
ionization potential of the element B (EAB and IPB , re-
spectively). SG′

max and SG′
B are additional examples of

SGs identified with the DcJS utility function.

The 5% perovskites presenting the highest B0 values
of the data set are all contained in SG′

B . However,
SG′

max does not contain the material BeMnO3, which
is part of the top 5% with respect to B0. The SG′

A, in
turn, does not contain three of the 26 high-B0 materials:
BeMnO3, BeWO3, and ScWO3, with B0 1.43, 1.45, and
1.44 eV/Å3, respectively. The fact that SG′

A ”misses”
these materials can be related to the significantly dif-
ferent properties of beryllium and tungsten compared to
the elements that are present in the remaining 23 high-
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(a) (b)

(d) (e)

(c)

FIG. 3. Subgroup discovery of perovskites with high bulk modulus (B0) using the cumulative Jensen-Shannon divergence
(DcJS) as utility function (see Eq. 4) (a) Top 5,000 of the identified SGs (in grey), with the SG that maximizes Q highlighted
in orange (SG′

max) and the SGs belonging to the Pareto front (79 SGs) and Pareto region (209 SGs) highlighted in blue. Two
examples of SGs at the Pareto front with lower and higher coverage compare to SG′

max are highlighted in red and magenta,
respectively (SG′

A and SG′
B). (b) From top to bottom: Distibutions of the target B0 in the entire data set, in SG′

max, in SG′
A,

and in SG′
B. The identified selectors for each SG are noted. (c) Similarity among the SGs belonging to the Pareto region. (d)

Hierarchical cluster map obtained from the similarity matrix shown in (c). (e) Clusters of SGs obtained by the analysis of the
dendrogram of (d) - see corresponding colors.

B0 materials, i.e., 3dmetals (chromium, manganese, iron,
cobalt) at the B site and metals from the scandium group
or lanthanides at the A site.

The Jaccard similarity analysis and hierarchical clus-
tering of the Pareto region identified with the DcJS util-
ity function (Fig. 3(c) and (d), respectively) highlight
that the similarity score between the SGs with low cov-
erage and the remaining SGs of the Pareto region is close
to zero (e.g., the red cluster displayed in Fig. 3(d) and
(e)). The Pareto front of SGs is sligthly modified when
only a fraction of the data set is used for training the SG
rules (see ESI for details).

Let us now compare the results obtained with the two
utility functions. The Pareto region of SGs identified
based on the positive mean shift utility function is asso-
ciated to coverages in the approximate range [0.20, 0.80]

(Fig. 1(a)). The range of coverages of SGs in the Pareto
region identified for the case of the DcJS utility function
is, in turn, ca. [0.10, 0.70] (Fig. 3(a)). Thus, optimal
SGs with coverage values below 0.20, i.e., SGs that con-
tain less than 20% of the dataset, could only be obtained
with the the DcJS utility function. These small SGs are
also associated with narrower distributions of B0 values.
Thus, the rules corresponding those SGs are focused on
the exceptional situations. This can be related to the
fact that only the DcJS explicitly favors narrow SGs.

We evaluated the similarity between SGs at the Pareto
region obtained with the utilities positive mean shift and
DcJS . Figure 4(a) shows the similarity matrix obtained
again using the Jaccard concept of Eq. 2. In this ma-
trix, the SG indices are sorted from low to high cov-
erages. The similarity between SGs with intermediate
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coverages is high, as indicated by the yellow cells in Fig-
ure 4(a). However, SGs at low and high coverages are
significantly different depending on the applied utility
function. Indeed, the SGs with high coverages identi-
fied with the positive mean shift (e.g., SGs with indices
≥ 110 in Fig. 4(a), ordinate) and the SGs with low cover-
ages identified with DcJS utility function (e.g., SGs with
indices ≤ 30 in Fig. 4(a), abssissa) do not correspond
to similar SGs obtained with the other utility function.
This is in line with the fact that the ranges of SG cov-
erages achieved by each utility function are different (see
above).

Finally, we compared in more detail the SGs that
maximize the quality-function values according to the
positive-mean-shift and Jensen-Shannon-divergence utili-
ties, SGmax and SG′

max, respectively. SGmax and SG′
max,

contain, respectively, 268 and 193 materials, as illus-
trated in Fig. 4(b) and (c). The Jaccard similarity index
between these two SGs is 0.71 and there are 79 mate-
rials which are only part of one of these two SGs. In
particular, SG′

max misses some high-B0 materials, e.g.,
several ABO3 perovskites composed by the B elements
aluminum and titanium (in blue and green, respectively,
in Fig. 4(c)), which have B0 in the range 0.86-1.34 eV/Å3

and are contained in SGmax. Despite missing some of
the high-B0 materials, SG′

max presents overall a higher
B0 mean value than SGmax(1.32 and 1.27 eV/Å3, respec-
tively) and a smaller narrowness (standard deviation of
B0 values equal to 0.09 and 0.12 eV/Å3, respectively).

III. DISCUSSION

An approach for the identification of coherent collec-
tions of SGs based on a Pareto region was introduced.
Using a measure for SG similarity, the SGs belonging
to the Pareto region were hierarchically clustered. The
sensitivity of SGD results with respect to the two util-
ity functions positive mean shift and DcJS was analyzed.
The concepts were demonstrated by the learning of rules
that describe perovskites with high bulk modulus. Our
results show that rules focused on exceptional materials
do not necessarily correspond to the SG that maximizes
the quality function, but these rules can be identified with
the Pareto region concept. The Pareto region analysis
does not require additional computational effort, since
the SGD solutions with quality-function values close to
the maximum value are obtained on the fly during the
optimization. We conclude that the DcJS is a better
choice of utility function than the positive mean shift for
the purpose of identifying SG rules focusing on high-B0

perovskites using the considered data set. Compared to
the mean shift, the DcJS has the advantage of simultane-
ously favoring SGs with shifted and narrow distributions

of target values with respect to P̃ . The DcJS utility func-
tion also alleviates the assumption that a summary value
(e.g., the mean value) fully characterizes the distributions

of target values in P̃ and in the SGs, as the entire dis-

tributions are considered for evaluating DcJS . Thus, the
DcJS utility function can handle distributions that de-
viate significantly from a Gaussian more efficiently than
utility functions based on the mean shift. Nevertheless,
DcJS does not explicitly requests low or high values of
target, which is a disadvantage compared to the positive
(or negative) mean shift utility functions. The selection
and testing of the utility function is thus crucial in SGD.
Finally, we note that the rules identified with SGD will

be valid as long as the physical processes governing the
materials in the training data set (and in the identified
SGs) also govern the behavior of the materials in the ma-
terials space to be explored. In order to cover portions of
the materials space where different underlying processes
from those present in the training set are important, the
incorporation of new data points and retraining of SG
rules will be required.
The multi-objective perspective introduced in this con-

tribution provides a framework for effectively dealing
with the tradeoff between generality and exceptionality
in SGD. This strategy combined with efficient algorithms
for SG search and with a systematic incorporation of new
data points to cover portions of materials space with sig-
nificantly different characteristics than those of the train-
ing set will accelerate the AI-driven discovery of excep-
tional materials, while providing physical insights.

IV. METHODS

Data set As target materials property, we consider the
bulk modulus (B0), calculated using density-functional
theory (DFT) with the PBEsol exchange-correlation
functional. The candidate descriptive parameters used
to characterize the cubic ABO3 perovskites are shown
in Table I. These features are atomic (elemental) prop-
erties of isolated atoms of the elements A or B such as
orbital radii, ionization potential, electronegativity, etc.,
and properties of the solid perovskite materials equilib-
rium lattice constant (a0) and cohesive energy (E0). E0

is defined as the energy needed per atom to atomize the
crystal. In total, 11 candidate descriptive parameters
were used. The detailed description of the DFT calcula-
tions is available in reference [15].
SGD approach We used the SGD approach as imple-

mented in the realkd version 0.7.2. A Monte-Carlo-based
SG search algorithm[5, 6] was used with 50,000 seeds for
the initialization. The propositions were created based
on 10 different thresholds per candidate descriptive pa-
rameter. These thresholds were determined by k-means
clustering.

Pareto-region identification We consider the 5,000
SGs which are top-ranked with respect to Q. SGs are
considered near the Pareto front if their distances to the
Pareto front, measured in the coverage vs. utility plots,
are lower than the threshold 0.01.

Hierarchical clustering An agglomerative hierarchi-
cal clustering is performed, using the SG similarity ma-
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(a)

(b) (c)

FIG. 4. (a) Jaccard similarity between SGs at the Pareto region obtained using the utility functions positive mean shift and
cumulative Jensen-Shannon divergence (DcJS). The SG indicies are sorted according to increasing coverage values. (b) and
(c) illustrate the dataset in the cohesive energy (E0) vs. equilibrium lattice constant (a0) space along with the identified SGs
that maximize the quality functions with the positive-mean-shift and cumulative-Jensen-Shannon-divergence utilities, SGmax

and SG′
max, respectively. The grey scale of the circles indicates the value of the target property bulk modulus (B0). The

orange crosses indicate the materials in each of the identified SGs. The materials composed by the B elements aluminium and
titanium, which are missed by SG′

max, are marked with blue and green crosses in (c), respectively.

TABLE I. Features or candidate descriptive parameters used to characterize the ABO3 cubic perovskites. a Evaluated on an
isolated atom using DFT-PBEsol. b Evaluted for the (solid) material using DFT-PBEsol.

Name Symbol Unit

Radii of the valence-s orbitals of the A and B atomsa rs,A,rs,B Å

Radii of the valence-s orbitals of the A and B +1 cationsa rcats,A,r
cat
s,B Å

Electron affinity of the A and B atomsa EAA, EAB eV
Ionization potential of the A and B atomsa IPA, IPB eV
Expected oxidation state of the element A nA Z

Equilibrium lattice constantb a0 Å

Cohesive energyb E0 eV/atom

trix defined by the Jaccard indices as input. The un-
weighted pair group method with arithmetic mean was
used as linkage criterion. The Euclidean distance was
taken as distance measure. The hierachical clustering
was performed using the seaborn package.[16]

V. DATA AVAILABILITY

The data set, including all input and output files of
the calculations, are available in reference [15].
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